Markov Chains and Random Walks

Josep Díaz Maria J. Serna Conrado Martínez
U. Politècnica de Catalunya

RA-MIRI 2022–2023
A stochastic process is a sequence of random variables \(\{X_t\}_{t=0}^{n} \).

Usually the subindex \(t \) refers to time steps and if \(t \in \mathbb{N} \), the stochastic process is said to be discrete.

The random variable \(X_t \) is called the state at time \(t \).

If \(n < \infty \) the process is said to be finite, otherwise it is said infinite.

A stochastic process is used as a model to study the probability of events associated to a random phenomena.
An example: Gambler’s Ruin

Model used to evaluate insurance risks.

- You place bets of 1€. With probability p, you gain 1€, and with probability $q = 1 - p$ you loose your 1€ bet.
- You start with an initial amount of 100€.
- You keep playing until you loose all your money or you arrive to have 1000€.

- One goal is finding the probability of winning i.e. getting the 1000€.

Notice in this process, once we get 0€ or 1000€, the process stops.
An example: Gambler’s Ruin

Model used to evaluate insurance risks.

- You place bets of 1€. With probability p, you gain 1€, and with probability $q = 1 - p$ you loose your 1€ bet.
- You start with an initial amount of 100€.
- You keep playing until you loose all your money or you arrive to have 1000€.

- One goal is finding the probability of winning i.e. getting the 1000€.

Notice in this process, once we get 0€ or 1000€, the process stops.
An example: Gambler’s Ruin

Model used to evaluate insurance risks.

- You place bets of 1€. With probability p, you gain 1€, and with probability $q = 1 - p$ you loose your 1€ bet.
- You start with an initial amount of 100€.
- You keep playing until you loose all your money or you arrive to have 1000€.

- One goal is finding the probability of winning i.e. getting the 1000€.

Notice in this process, once we get 0€ or 1000€, the process stops.
Markov Chain

One simple model of stochastic process is the Markov Chain:

- Markov Chains are defined on a finite set of states \((S)\), where at time \(t\), \(X_t\) could be any state in \(S\), together with by the matrix of transition probability for going from each state in \(S\) to any other state in \(S\), including the case that the state \(X_t\) remains the same at \(t + 1\).

- In a Markov Chain, at any given time \(t\), the state \(X_t\) is determined only by \(X_{t-1}\).

 memoryless: does not remember the history of past events,

Other memoryless stochastic processes are said to be Markovian.
An example: Gambler’s Ruin

- You place bets of 1€. With probability p, you gain 1€, and with probability $q = 1 - p$ you lose your 1€ bet.
- You start with an initial amount of 100€.
- You keep playing until you loose all your money or you arrive to have 1000€.
- We have a state for each possible amount of money you can accumulate $S = \{0, 1, \ldots, 100\}$.
- The probability of losing/winning is independent on the state and the time, so this process is a Markov chain.
- Observe that the number of states is finite.
An example: Gambler’s Ruin

- You place bets of 1€. With probability p, you gain 1€, and with probability $q = 1 - p$ you loose your 1€ bet.
- You start with an initial amount of 100€.
- You keep playing until you loose all your money or you arrive to have 1000€.
- We have a state for each possible amount of money you can accumulate $S = \{0, 1, \ldots, 1000\}$.
- The probability of losing/winning is independent on the state and the time, so this process is a Markov chain.
- Observe that the number of states is finite.
An example: Gambler’s Ruin

- You place bets of 1€. With probability p, you gain 1€, and with probability $q = 1 - p$ you lose your 1€ bet.
- You start with an initial amount of 100€.
- You keep playing until you lose all your money or you arrive to have 1000€.
- We have a state for each possible amount of money you can accumulate $S = \{0, 1, \ldots, 1000\}$.
- The probability of losing/winning is independent on the state and the time, so this process is a Markov chain.
- Observe that the number of states is finite.
An example: Gambler’s Ruin

- You place bets of 1€. With probability p, you gain 1€, and with probability $q = 1 - p$ you lose your 1€ bet.
- You start with an initial amount of 100€.
- You keep playing until you lose all your money or you arrive to have 1000€.
- We have a state for each possible amount of money you can accumulate $S = \{0, 1, \ldots, 1000\}$.
- The probability of losing/winning is independent on the state and the time, so this process is a Markov chain.
- Observe that the number of states is finite.
Markov-Chains: An important tool for CS

- One of the simplest forms of stochastic dynamics.
- Allows to model stochastic temporal dependencies.
- Applications in many areas
 - Surfing the web
 - Design of randomizes algorithms
 - Random walks
 - Machine Learning (Markov Decision Processes)
 - Computer Vision (Markov Random Fields)
 - etc. etc.
Formal definition of Markov Chains

Definition

A finite, time-discrete Markov Chain, with finite state $S = \{1, 2, \ldots, k\}$ is a stochastic process $\{X_t\}$ s.t. for all $i, j \in S$, and for all $t \geq 0$,

$$\mathbb{P}[X_{t+1} = j \mid X_0 = i_0, X_1 = i_1, \ldots, X_t = i] = \mathbb{P}[X_{t+1} = j \mid X_t = i].$$

We can abstract the time and consider only the probability of moving from state i to state j, as $\mathbb{P}[X_{t+1} = j \mid X_t = i]$.
Formal definition of Markov Chains

Definition

A finite, time-discrete Markov Chain, with finite state \(S = \{1, 2, \ldots, k\} \) is a stochastic process \(\{X_t\} \) s.t. for all \(i, j \in S \), and for all \(t \geq 0 \),

\[
P[X_{t+1} = j \mid X_0 = i_0, X_1 = i_1, \ldots, X_t = i] = P[X_{t+1} = j \mid X_t = i].
\]

We can abstract the time and consider only the probability of moving from state \(i \) to state \(j \), as \(P[X_{t+1} = j \mid X_t = i] \)
For $v, u \in S$, let $p_{u,v}$ be the probability of going from $u \rightsquigarrow v$ in 1 step i.e. $p_{u,v} = \mathbb{P}[X_{s+1} = v | X_s = u]$.

$P = (p_{u,v})_{u,v \in S}$ is a matrix describing the transition probabilities of the MC.

P is called the transition matrix.

P also defines a digraph, possibly with loops.
MC: Transition probability matrix

For $v, u \in S$, let $p_{u,v}$ be the probability of going from $u \rightsquigarrow v$ in 1 step i.e. $p_{u,v} = \mathbb{P}[X_{s+1} = v | X_s = u]$.

$P = (p_{u,v})_{u,v \in S}$ is a matrix describing the transition probabilities of the MC

P is called the transition matrix

P also defines a digraph, possibly with loops.
For \(v, u \in S \), let \(p_{u,v} \) be the probability of going from \(u \sim v \) in 1 step i.e. \(p_{u,v} = \mathbb{P}[X_{s+1} = v | X_s = u] \).

\(P = (p_{u,v})_{u,v \in S} \) is a matrix describing the transition probabilities of the MC

\(P \) is called the transition matrix

\(P \) also defines digraph, possibly with loops.
MC: Transition probability matrix

For $v, u \in S$, let $p_{u,v}$ be the probability of going from $u \leadsto v$ in 1 step i.e. $p_{u,v} = \mathbb{P}[X_{s+1} = v | X_s = u]$.

$P = (p_{u,v})_{u,v \in S}$ is a matrix describing the transition probabilities of the MC

P is called the transition matrix

P also defines digraph, possibly with loops.
You place bets of 1€. With probability p, you gain 1€, and with probability $q = 1 - p$ you loose your 1€ bet.

You start with an initial amount of i € and keep playing until you loose all your money or you arrive to have n €.

We have a state for each possible amount of money you can accumulate $S = \{0, 1, \ldots, n\}$.
You place bets of 1€. With probability p, you gain 1€, and with probability $q = 1 - p$ you lose your 1€ bet. You start with an initial amount of i € and keep playing until you lose all your money or you arrive to have n €. We have a state for each possible amount of money you can accumulate $S = \{0, 1, \ldots, n\}$.
Transition matrix: Example

Notice the entry \((u, v)\) in \(P\) denotes the probability of going from \(u \rightarrow v\) in one step.

Notice, in a MC the transition matrix is stochastic, so sum of transitions out of any state must be 1 = sum of the elements of any row of the transition matrix must be 1
For $v, u \in S$, let $p_{u,v}^{(t)}$ be the probability of going from $u \rightsquigarrow v$ in exactly t steps i.e. $p_{u,v}^{(t)} = \mathbb{P}[X_{s+t} = v | X_s = u]$.

Formally for $s \geq 0$ and $t > 1$, $p_{u,v}^{(t)} = \mathbb{P}[X_{s+t} = v | X_s = u]$.

Notice that $p_{u,v} = p_{u,v}^{(1)}$; we shall use $P^{(t)}$ for the matrix whose entries are the values $p_{u,v}^{(t)}$, and $P^{(1)} = P$.

How can we relate $P^{(t)}$ with P?
The powers of the transition matrix

![Graph of states A, B, and C with transition probabilities]

$P = \begin{pmatrix}
 0 & 2/3 & 1/3 \\
 1/2 & 0 & 1/2 \\
 1/2 & 0 & 1/2
\end{pmatrix}$

In ex. $P[X_1 = C|X_0 = A] = P_{A,C}^{(1)} = 1/3$.

$P[X_2 = C|X_0 = A] = P_{A,B}^{(1)} P_{B,C}^{(1)} + P_{A,C}^{(1)} P_{C,C}^{(1)} = 1/3 + 1/6 = P_{A,C}^{(2)}$

In general, assume a MC with k states and transition matrix P, let $u, v \in S$:

- What is the $P[X_1 = u|X_0 = v]$, i.e. $P_{v,u}$?
- What is the $P[X_2 = u|X_0 = v] = P_{v,u}^{(2)}$?
The powers of the transition matrix

Use Law Total Probability + Markov property:

\[P^{(2)}_{v,u} = P[X_2 = u | X_0 = v] = \sum_{w=1}^{m} P[X_1 = w | X_0 = v] P[X_2 = u | X_1 = w] \]

\[= \sum_{w=1}^{m} P_{v,w} P_{w,u}. \]
The powers of the transition matrix

In general

\[p^{(t)}_{v,u} = P[X_t = u | X_0 = v] \]

\[= \sum_{w=1}^{m} P[X_{t-1} = w | X_0 = v] P[X_t = u | X_{t-1} = w] \]

\[= \sum_{w=1}^{m} p^{(t-1)}_{v,w} P_{w,u}. \]

Lemma

*Given the transition matrix \(P \) of a MC, then for any \(t > 1 \),

\[P^{(t)} = P^{(t-1)} \cdot P \]

*With the convention \(P^{(0)} = I \) (the identity matrix), we have

\[P^{(t)} = P^t, \]

*for any \(t \geq 0. \)
Distributions at time t

To fix the initial state, we consider a random variable X_0, assigning to S an initial distribution π_0, which is a row vector indicating at $t = 0$ the probability of being in the corresponding state.

For example, in the MC:

$$
\begin{array}{ccc}
\ & \ A & \\
B & 2/3 & 1/2 \\
C & 1/2 & 1/2 & 1/2 \\
\end{array}
$$

we may consider,

$$\begin{pmatrix} 0 & 0.3 & 0.6 \end{pmatrix} = \pi_0$$
Distributions at time t

Starting with an initial distribution π_0, we can compute the state distribution π_t (on S) at time t,

For a state v,

$$
\pi_t[v] = \mathbb{P}[X_t = v] = \sum_{u \in S} \mathbb{P}[X_0 = u] \mathbb{P}[X_t = v|X_0 = u] = \sum_{u \in S} \pi_0[u] P_{v,u}^{(t)}.
$$

where $\pi_t[y]$ is the probability at step t the system is in state y.

Therefore, $\pi_t = \pi_0 P^t$ and $\pi_{s+t} = \pi_s P^t$.
Gambler’s Ruin: Exercise

- You place bets of 1€. With probability p, you gain 1€, and with probability $q = 1 - p$ you loose your 1€ bet.
- You start with an initial amount of i € and keep playing until you loose all your money or you arrive to have n €.
- We have a state for each possible amount of money you can accumulate $S = \{0, 1, \ldots, n\}$.

Which is the initial distribution π_0?

And, the state distribution at time $t = 3$?
Gambler’s Ruin: Exercise

- You place bets of 1€. With probability p, you gain 1€, and with probability $q = 1 - p$ you lose your 1€ bet.
- You start with an initial amount of i € and keep playing until you lose all your money or you arrive to have n €.
- We have a state for each possible amount of money you can accumulate $S = \{0, 1, \ldots, n\}$.

Which is the initial distribution π_0?

And, the state distribution at time $t = 3$?
Example MC: Writing a research paper

Recall that Markov Chains are given either by a weighted digraph, where the edge weights are the transition probabilities, or by the $|S| \times |S|$ transition probability matrix P.

Example: Writing a paper $S = \{r, w, e, s\}$

$$
\begin{pmatrix}
 r & w & e & s \\
 0.5 & 0.3 & 0 & 0.2 \\
 0.2 & 0.5 & 0.1 & 0.2 \\
 0.1 & 0.3 & 0.3 & 0.3 \\
 0 & 0.2 & 0.3 & 0.5 \\
\end{pmatrix}
$$
More on the Markovian property

Notice the memoryless property does not mean that X_{t+1} is independent from $X_0, X_1, \ldots, X_{t-1}$.

(For instance notice that intuitively we have: $\mathbb{P}[\text{Thinking at } t + 1] < \mathbb{P}[\text{Thinking at } t | \text{Thinking at } t - 1]$).

But, the dependencies of X_t on X_0, \ldots, X_{t-1}, are all captured by X_{t-1}.
Example of writing a paper

\[P[X_2 = s | X_0 = r] \] is the probability that, at \(t = 2 \), we are in state \(s \), starting in state \(r \).

\[
\begin{pmatrix}
0.5 & 0.3 & 0 & 0.2 \\
0.2 & 0.5 & 0.1 & 0.2 \\
0.1 & 0.3 & 0.3 & 0.3 \\
0 & 0.2 & 0.3 & 0.5
\end{pmatrix}
\begin{pmatrix}
0.5 & 0.3 & 0 & 0.2 \\
0.2 & 0.5 & 0.1 & 0.2 \\
0.1 & 0.3 & 0.3 & 0.3 \\
0 & 0.2 & 0.3 & 0.5
\end{pmatrix}
=
\begin{pmatrix}
0.31 & 0.34 & 0.09 & 0.26 \\
0.21 & 0.38 & 0.14 & 0.27 \\
0.14 & 0.33 & 0.21 & 0.32 \\
0.07 & 0.29 & 0.26 & 0.38
\end{pmatrix}
\]

\[P[X_1 = s | X_0 = r] = 0.07. \]
Distribution on states

Recall π_t is the prob. distribution at time t over S.

For our example of writing a paper, if $t = 0$ (after waking up):

$$\pi_0 = \begin{pmatrix} 0.2 & 0 & 0.3 & 0.5 \end{pmatrix}$$

$$\begin{pmatrix} 0.5 & 0.3 & 0 & 0.2 \\ 0.2 & 0.5 & 0.1 & 0.2 \\ 0.1 & 0.3 & 0.3 & 0.3 \\ 0 & 0.2 & 0.3 & 0.5 \end{pmatrix} \begin{pmatrix} 0.2 & 0 & 0.3 & 0.5 \end{pmatrix} = \begin{pmatrix} 0.13 & 0.25 & 0.24 & 0.38 \end{pmatrix} = \pi_1$$

Therefore, we have $\pi_t = \pi_0 \times P^t$ and $\pi_{k+t} = \pi_k \times P^t$

Notice $\pi_t = (\pi_t[r], \pi_t[w], \pi_t[e], \pi_t[s])$
An Example of MC analysis: The 2-SAT problem

Section 7.1 of [MU].

Given a Boolean formula \(\phi \), on
- a set \(X \) of \(n \) Boolean variables,
- defined by \(m \) clauses \(C_1, \ldots, C_m \), where each clause is the disjunction of exactly 2 literals, \((x_i \text{ or } \bar{x}_i)\), on different variables.
- \(\phi = \) conjunction of the \(m \) clauses.

The 2-SAT problem is to find an assignment \(A^* : X \to \{0, 1\} \), which satisfies \(\phi \), i.e, to find an \(A^* \) s.t. \(A^*(\phi) = 1 \).

Notice that if \(|X| = n \), then \(m \leq \binom{2n}{2} = \Theta(n^2) \).

In general \(k\text{-SAT} \in \text{NP-complete} \), for \(k \geq 3 \). But \(2\text{-SAT} \in \text{P} \).
A randomized algorithm for 2-SAT

Given a n variable 2-SAT formula ϕ, $\{C_j\}_{j=1}^m$

for $1 \leq i \leq n$ do
 $A(x_i) := 1$
end for

t := 0

while $t \leq 2cn^2$ and some clause is unsatisfied do
 Pick and unsatisfied clause C_j
 Choose u.a.r. one of the 2 variables in C_j and flip its value
 if ϕ is satisfied then
 return A
 end if
end while

return ϕ is unsatisfiable
An example: unsat formula

If $\phi = (x_1 \lor x_2) \land (\overline{x}_1 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_2) \land (x_1 \lor \overline{x}_2)$
does not has a $A^* \models \phi$.

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>sel clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

ϕ is unsat eventually the algorithm will stop after reaching the maximum number of steps.
An example: unsat formula

If $\phi = (x_1 \lor x_2) \land (\bar{x}_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2)$
does not has a $A^* \models \phi$.

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>sel clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

ϕ is unsat eventually the algorithm will stop after reaching the maximum number of steps.
An example: unsat formula

If $\phi = (x_1 \lor x_2) \land (\bar{x}_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2)$
does not has a $A^* \models \phi$.

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>sel clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

ϕ is unsat eventually the algorithm will stop after reaching the maximum number of steps.
An example: unsat formula

If $\phi = (x_1 \lor x_2) \land (\bar{x}_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2)$ does not has a $A^* \models \phi$.

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>sel clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

ϕ is unsat eventually the algorithm will stop after reaching the maximum number of steps.
An example: unsat formula

If \(\phi = (x_1 \lor x_2) \land (\bar{x}_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2) \) does not has a \(A^* \models \phi \).

<table>
<thead>
<tr>
<th>t</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>sel clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\(\phi \) is unsat eventually the algorithm will stop after reaching the maximum number of steps.
An example: unsat formula

If $\phi = (x_1 \lor x_2) \land (\bar{x}_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2)$ does not have a $A^* \models \phi$.

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>sel clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

ϕ is unsat eventually the algorithm will stop after reaching the maximum number of steps.
An example: sat formula

If $\phi = (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor x_3) \land (\bar{x}_1 \lor x_2) \land (\bar{x}_4 \lor x_3) \land (x_4 \lor \bar{x}_1)$

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>sel clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

$(0, 0, 1, 0)$ satisfies ϕ
An example: sat formula

If $\phi = (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_2) \land (\bar{x}_4 \lor \bar{x}_3) \land (x_4 \lor \bar{x}_1)$

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>sel clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

$(0, 0, 1, 0)$ satisfies ϕ
An example: sat formula

If $\phi = (x_1 \lor \tilde{x}_2) \land (\tilde{x}_1 \lor \tilde{x}_3) \land (\tilde{x}_1 \lor x_2) \land (\tilde{x}_4 \lor \tilde{x}_3) \land (x_4 \lor \tilde{x}_1)$

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>sel clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

(0, 0, 1, 0) satisfies ϕ
An example: sat formula

If $\phi = (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor x_3) \land (\bar{x}_1 \lor x_2) \land (\bar{x}_4 \lor x_3) \land (x_4 \lor \bar{x}_1)$

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>sel clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>—</td>
</tr>
</tbody>
</table>

$(0, 0, 1, 0)$ satisfies ϕ
An example: sat formula

If \(\phi = (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor x_3) \land (x_1 \lor x_2) \land (\bar{x}_4 \lor x_3) \land (x_4 \lor \bar{x}_1) \)

<table>
<thead>
<tr>
<th>t</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>sel clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

\((0, 0, 1, 0)\) satisfies \(\phi \)
An example: sat formula

If \(\phi = (x_1 \lor \tilde{x}_2) \land (\tilde{x}_1 \lor \tilde{x}_3) \land (\tilde{x}_1 \lor x_2) \land (\tilde{x}_4 \lor \tilde{x}_3) \land (x_4 \lor \tilde{x}_1) \)

\[
\begin{array}{cccc|c}
 t & x_1 & x_2 & x_3 & x_4 & \text{sel clause} \\
 1 & 1 & 1 & 1 & 1 & 2 \\
 2 & 0 & 1 & 1 & 1 & 1 \\
 3 & 0 & 0 & 1 & 1 & 4 \\
 4 & 0 & 0 & 1 & 0 & - \\
\end{array}
\]

\((0, 0, 1, 0)\) satisfies \(\phi \)
An example: sat formula

If $\phi = (x_1 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_3) \land (x_1 \lor x_2) \land (\overline{x}_4 \lor x_3) \land (x_4 \lor \overline{x}_1)$

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>sel clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>–</td>
</tr>
</tbody>
</table>

$(0, 0, 1, 0)$ satisfies ϕ
An example: sat formula

If $\phi = (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_2) \land (\bar{x}_4 \lor \bar{x}_3) \land (x_4 \lor \bar{x}_1)$

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>sel clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>–</td>
</tr>
</tbody>
</table>

$(0, 0, 1, 0)$ satisfies ϕ
Given $\phi, |X| = n, \{C_j\}_{i=1}^m$

assume that there is A^* such that $\phi(A^*) = 1$

- Let A_i be the assignment at the i-th iteration.
- Let $X_i = |\{x_j \in X | A_i(x_j) = A^*(x_j)\}|$.
- Notice $0 \leq X_i \leq n$. Moreover, when $X_i = n$, we found A^*.

Analysis: Starting from $X_i < n$, how long to get $X_i = n$?

- Note that $\mathbb{P}[X_{i+1} = 1 | X_i = 0] = 1$.
Analysis for 2-SAT algorithm

- As A^* satisfies ϕ and A_i no, there is a clause C_j that A^* satisfies but A_i not.
- So A^* and A_i disagree in the value of at least one variable.
- It is also possible to flip the value of a variable in C_j in which A and A^* agree.
- Therefore,

$$
\text{For } 1 \leq k \leq n - 1, \mathbb{P}[X_{i+1} = k + 1 | X_i = k] \geq 1/2 \text{ and } \mathbb{P}[X_{i+1} = k - 1 | X_i = k] \leq 1/2.
$$
Analysis for 2-SAT

The process X_0, X_1, \ldots is not necessarily a MC,

- The probability that $X_{i+1} > X_i$ depends on whether A_i and A^* disagree in 1 or 2 variables in the selected unsatisfied clause C.
- If A^* makes true both literals in C,
 \[P[X_{i+1} = k + 1 \mid X_i = k] = 1, \text{ otherwise} \]
 \[P[X_{i+1} = k + 1 \mid X_i = k] = 1/2 \]
- This difference might depend on the clauses and variables selected in the past, so the transition probabilities are not memoryless.
- X_t is not a Markov chain. Can we bound the process by a MC?.
Analysis for 2-SAT

The process X_0, X_1, \ldots is not necessarily a MC,

- The probability that $X_{i+1} > X_i$ depends on whether A_i and A^* disagree in 1 or 2 variables in the selected unsatisfied clause C.

- If A^* makes true both literals in C,
 \[
P[X_{i+1} = k + 1 \mid X_i = k] = 1, \text{ otherwise}
 \]
 \[
P[X_{i+1} = k + 1 \mid X_i = k] = 1/2
 \]

- This difference might depend on the clauses and variables selected in the past, so the transition probabilities are not memoryless.

- X_t is not a Markov chain. Can we bound the process by a MC?
Analysis for 2-SAT

Define a MC Y_0, Y_1, Y_2, \ldots which is a pessimistic version of process X_0, X_1, \ldots, in the sense that Y_i measures exactly the same quantity than X_i but the probability of change (up or down) will be exactly $1/2$.

- $Y_0 = X_0$ and $P[Y_{i+1} = 1 \mid Y_i = 0] = 1$;
- For $1 \leq k \leq n - 1$, $P[Y_{i+1} = k + 1 \mid Y_i = k] = 1/2$;
- $P[Y_{i+1} = k - 1 \mid Y_i = k] = 1/2$.

The time to reach n from $j \geq 0$ in $\{Y_i\}_{i=0}^n$ is \geq that in $\{X_i\}_{i=0}^n$.
Upper Bound on the time to arrive state n

Lemma

If a 2-CNF ϕ on n variables has a satisfying assignment A^*, the 2-SAT algorithm finds one in expected time $\leq n^2$.

Proof

- Let h_j be the expected time, for process Y, to go from state j to state n.
- It suffices to prove that, when Y starts in state j the time to arrives to n is $\leq 2cn^2$.
- We devise a recurrence to bound h.
Upper Bound on the time to arrive state n

Proof (cont’d)

- $h_n = 0$ and $h_1 = h_0 + 1$;
- We want a general recurrence on h_j, for $1 \leq j < n$;
- Define a rv Z_j counting the steps to go from state $j \rightarrow n$ in Y.
- With probability $1/2$, $Z_j = Z_{j-1} + 1$ and, with probability $1/2$, $Z_j = Z_{j+1} + 1$.
- So $h_j = \mathbb{E}[Z_j]$.

$$
\mathbb{E}[Z_j] = \mathbb{E}\left[\frac{Z_{j-1} + 1}{2} + \frac{Z_{j+1} + 1}{2}\right] = \frac{\mathbb{E}[Z_{j-1}] + 1}{2} + \frac{\mathbb{E}[Z_{j+1}] + 1}{2}.
$$

So, $h_j = \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1$.
Upper Bound on the time to arrive state n

Proof (cont’d)

From the previous bound we get $h_j = \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1$. The recurrence has the $n + 1$ equations,

\begin{align*}
h_n &= 0 \\
h_0 &= h_1 + 1 \\
h_j &= \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1 \quad 0 \leq j \leq n - 1
\end{align*}

Let us prove, by induction that

$$h_j = h_{j+1} + 2j + 1.$$
Upper Bound on the time to arrive state n

Proposition

For $0 \leq j \leq n - 1$, $h_j = h_{j+1} + 2j + 1$.

Proof (of Proposition)

Base case: If $j = 0$, $2j + 1 = 1$, and we were given $h_0 = h_1 + 1$.
Upper Bound on the time to arrive state n

Proposition

For $0 \leq j \leq n - 1$, $h_j = h_{j+1} + 2j + 1$.

Proof of Proposition (cont’d)

IH: for $j = k - 1$, $h_{k-1} = h_k + 2(k - 1) + 1$.

Now consider $j = k$. By the “middle case” of our system of equations,

\[
 h_k = \frac{h_{k-1} + h_{k+1}}{2} + 1
 = \frac{h_k + 2(k - 1) + 1}{2} + \frac{h_{k+1}}{2} + 1 \quad \text{by IH}
 = \frac{h_k}{2} + \frac{h_{k+1}}{2} + \frac{2k + 1}{2}
\]

Subtracting $\frac{h_k}{2}$ from each side, we get the result. □
Upper Bound on the time to arrive state n

Proof (cont’d)

As

$$h_j = h_{j+1} + 2j + 1.$$

$$h_0 = h_1 + 1 = h_2 + 3 + 1 = h_3 + 5 + 3 + 1 \cdots$$

$$= h_n + \sum_{i=0}^{n-1} (2i + 1) = n^2.$$

□
Error probability for 2-SAT algorithm

Theorem

The 2-SAT algorithm gives the correct answer NO if ϕ is not satisfiable. Otherwise, with probability $\geq 1 - \frac{1}{2^c}$ the algorithm returns a satisfying assignment.
Let ϕ be satisfiable (otherwise the theorem holds).

Break the $2cn^2$ iterations into c blocks of $2n^2$ iterations.

For each block i, define a r.v. $Z =$ number of iterations from the start of the i-block until a solution is found.

Using Markov’s inequality:

$$\mathbb{P}[Z > 2n^2] \leq \frac{n^2}{2n^2} = \frac{1}{2}.$$

Therefore, the probability that the algorithm fails to find a satisfying assignment after c segments (no block includes a solution) is at most $\frac{1}{2^c}$.

□