Synthetic Dataset Generation with [temset-Based
Generative Models

Christian Lezcano and Marta Arias

Universitat Politécnica de Catalunya, Barcelona, Spain

October 28, 2019

UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

Christian Lezcano and Marta Arias Synthetic Dataset Generation with Generative Models



Introduction
Motivation
Contributions

Synthetic data applications

@ Provide data when in short supply.

@ Synthetic data (based on statistical models) allows to choose
the data volume as well as to generate as many copies as
desired.

@ Protect the confidentiality of real data (e.g., in software
testing)
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Data generation approach
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Contributions

The contributions of this work are:

@ three synthetic transactional dataset generators using
generative models based on itemsets.

@ quality evaluation of generated datasets based on various

criteria in order to know the strengths and weaknesses of each
model.
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Dataset representation

Transaction ID Items bought from a supermarket
Customer 1 egg bread milk pizza
Customer 2 bread beer diapers milk butter
Customer 3 diapers milk butter Market Basket
Customer 4 egg bread beer diapers  milk transactions
Customer 5 beer diapers milk butter pizza

X = {beer, diapers} example of frequent itemset (“‘pattern”)

The support of an itemset sup(X) is defined as the number of transactions that
contain X.

sup(X) = |{t € D | X C t}]

X is considered frequent if its support is greater than or equal to a minimum support
minsup defined by the user, i.e., sup(X) > minsup.
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IGM model

Now, we need a probabilistic model of a
representative set of patterns.

IGM model® only models a specific pattern X and its power set 2X:
X w.p. 0
T(X) = X' X 1-6
- w.p. (2|><\_1)
TR =X"CX wp (ziw)

IGM assumes a transaction is generated with only one pattern

T(X) and noise T(X).
New transaction T < T(X) U T(X)

1Laxman et al. (2007)
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LDA

|GM-based generato

Algorithm 1: IGM-based generator

1 Generate dataset (D,,;, minsup)
2 Dgyn <+ 0
3 fi < Mine frequent itemsets (D,,;, minsup)
a fi* < Filter frequent itemsets (fi)
5 while |Dgyn| < |Dgyi| do
6 Dsyn < Dsyn U Generate transaction(fi™)
7 | return Dsyn
8 Generate transaction (fi*)
T+ 0
10 X < Sample itemset from fi*
1
{ X
12 T(X) = 1-6
X' X .p. —
S U (2|X| —1 New transaction T
X)=x"CX we. (sixr)
13 TX)=X"CX _wp STT=TX]
1 T« T(X) U T(X)
15
16 | return T
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LDA

Models adaptations

[IM model

[IM model?® infers itemsets that represent best the data using
structural EM.

IIM allows to obtain a probabilistic distribution over a set of
patterns.

Yy ~ Bernoulli(px)

New transaction T = x|y, -1 X

2Fowkes and Sutton (2016)
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[IM-based generato
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Algorithm 2: [IM-based generator

Generate database (D,,;)
Dsyn — 0
I, p < Learn IIM model (D)
while |Dgyn| < |Dgi| do
Dsyn « Dsyn + Generate transaction(//, p)

return Dsyp

Generate transaction (//, p)
T+ 0
foreach itemset X in Il do
Yx ~ Bernoulli(py) i
T = UX\szl X } New transaction T

return T
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Models adaptations

LDA model®
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3Blei et al. (2003)
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Models adaptations

LDA model
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Models adaptations

LDA-based generator

Algorithm 3: LDA-based generator

1 Generate dataset (D,,;, K)

2 Dgyn < 0

3 0;, ot < Learn LDA model (D,,;, K)

4 while |Dgyn| < |Dgyi| do

5 T+ 0

6 while |T| < N; do

7 t <— Sample topic from 6;

8 wj <= Sample word from Wr} New transaction T
9

T+ TUw;
10
11 Dsyp <= Dsyn + T
12 return Dsyp

For each document d;, 1 < i < M, choose its own probability distribution of topics 0; from a
Dirichlet distribution with parameter «.

e For each topic t, 1 < t < K, choose its probability distribution of words ¢; from a Dirichlet
distribution with parameter 3. The number of topics K is defined by the user.

For each word in a document, that is, for each word w;j in a document d;, first (a) select a topic
t from 6; and, then (b) select a word w; from ;.

Generative Models
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Characteristics

Preservation of frequent itemsets
Experimental results Privacy

Runtime

List of datasets generated

Dataset Model Levels of support (%) Generated datasets
1. forests LDA (60, 70, 80, 90) (for; pp60, for; ps70, for; pp80, for; pp90)
2. forests IGM (70, 80, 90) (forigpm 70, for;gp80, forigp90)
3. forests 1M (forym)
4. bogPlants LDA (10, 20, 30, 40, 50, 60) (bog1 pal0, bog pa20, bog; pa30, . . ., bog  pa60)
5. bogPlants IGM (10, 20, 30, 40, 50, 60) (bogiGnm 10, bogiGpn20, bogim 30, - . . , bogigp60)
6. bogPlants 1IM (bogim)

Benchmarking datasets forest and bogPlants taken from W. Hamalainen®

We generate 10 datasets for each synthetic dataset representation,
e.g., for  pa60 actually represents a set of 10 generated databases.

4nttp://www.cs.uef.fi/ whamalai/datasets.html (accessed September 1, 2017)
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Characteristic metrics

Dataset DS AS ATS MTS  F1(%) GGD (%) HIL A2 MSS (%)
1. forests 246 206.00 61.26  162.00  20.74 89.88 7.07 13.24 93.09
2. forjp, 246 20570 46.45  100.85 2258 95.52 7.41  13.84 61.04
3. forioy 246 12,67  7.07  10.93  69.98 66.67 274 475 78.46
4. forgy 246  202.60 61.59  87.40  30.40 85.32 7.06 13.13 93.09
5. bogPlants 377 315.00 14.65  39.00 4.65 16.57 6.56  11.56 65.25
6. bog[p, 377 29052 1249  29.55 4.32 25.19 6.87 12.22 47.02
7. bogioy 377 8.67  4.86 7.77  67.75 83.33 249 392 72.46
8. bogyy 377 270.80  15.03  28.90 5.55 24.73 6.50 1177 64.85

Each value represents the average between all the databases
generated by each benchmarking dataset and model.
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Experimental results Privacy
Runtime

Evaluation on characteristics: |IM is the best.
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Preservation of frequent itemsets: |IM is the best.
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e _ | XnY]| _ 1
precision px(Y) = v i P(Flsyn) = TPl ZYeFlsy,, maxxer,, {px(Y)}
_ Xyl . _ 1
recall rx (V) = 1k i r(Flsyn) = 157 2oxer,; Maxyery, {rx(Y)}
F _ 2xprecision recall
1-score = precision—+recall
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Experimental results

Characteristics
Preservation of frequent itemsets
Privacy
Runtime

Evaluation on privacy: IGM is the best.
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precision p(Dsy,,) = @ ZYEDsyn maXxeDo,,-{PX(Y)}
recall r(Dsyn) = ﬁ erpm maXYeDsy,,{rX(Y)}~
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Experimental results

Runtime evaluation

Table 1: Learning fase
runtime in seconds.

Model forest bogPlants

IGM 0.02 0.03
1M 546.29 102.24
LDA 1654.79 228.53
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Characteristics

Preservation of frequent itemsets
Privacy

Runtime

Table 2: Generation fase
runtime in seconds.

Model  forest  bogPlants

1M 0.43 0.62
LDA 6.50 1.98
IGM 400.43 119.89
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Conclusion

Conclusion and future work

@ We presented in this work several types of generators to create
synthetic transactional datasets which are based on generative
models.

@ It was observed experimentally that each one possesses specific
abilities according to several criteria.

© As future work, we plan on using a larger set of benchmarking
datasets, and we are in the process of introducing new
generator algorithms
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Thank you for your attention
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