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Synthetic data applications

Provide data when in short supply.
Synthetic data (based on statistical models) allows to choose
the data volume as well as to generate as many copies as
desired.
Protect the confidentiality of real data (e.g., in software
testing)
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Data generation approach
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Contributions

The contributions of this work are:

1 three synthetic transactional dataset generators using
generative models based on itemsets.

2 quality evaluation of generated datasets based on various
criteria in order to know the strengths and weaknesses of each
model.
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Dataset representation

Transaction ID Items bought from a supermarket
Customer 1 egg bread milk pizza . . .
Customer 2 bread beer diapers milk butter
Customer 3 diapers milk butter . . . . . .
Customer 4 egg bread beer diapers milk
Customer 5 beer diapers milk butter pizza

X = {beer, diapers} example of frequent itemset (“pattern”)

The support of an itemset sup(X ) is defined as the number of transactions that
contain X .

sup(X ) = |{t ∈ D | X ⊆ t}|

X is considered frequent if its support is greater than or equal to a minimum support
minsup defined by the user, i.e., sup(X ) ≥ minsup.

Market Basket
transactions
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IGM model

Now, we need a probabilistic model of a
representative set of patterns.

IGM model1 only models a specific pattern X and its power set 2X :

T (X ) =

{
X w.p. θ

X ′ ⊂ X w.p.
(

1−θ
2|X |−1

)
T(X̄) = X” ⊆ X̄ w.p.

(
1

2|I |−|X |

)
IGM assumes a transaction is generated with only one pattern

T (X ) and noise T (X̄ ).

New transaction T ← T (X ) ∪ T (X̄ )

1Laxman et al. (2007)
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IGM-based generator

Algorithm 1: IGM-based generator
1 Generate dataset (Dori ,minsup)
2 Dsyn ← ∅
3 fi ← Mine frequent itemsets (Dori ,minsup)
4 fi∗ ← Filter frequent itemsets (fi)
5 while |Dsyn| < |Dori | do
6 Dsyn ← Dsyn ∪ Generate transaction(fi∗)

7 return Dsyn

8 Generate transaction (fi∗)
9 T ← ∅

10 X ← Sample itemset from fi∗

11

12 T (X ) =

 X

X’ ⊂ X w.p.
(

1−θ

2|X|−1

)
13 T (X̄ ) = X ′′ ⊆ X̄ w.p.

(
1

2|I|−|X|

)
14 T ← T (X ) ∪ T (X̄ )
15

16 return T

New transaction T
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IIM model

IIM model2 infers itemsets that represent best the data using
structural EM.

IIM allows to obtain a probabilistic distribution over a set of
patterns.

Yx ∼ Bernoulli(px )

New transaction T =
⋃

X |Yx =1 X

2Fowkes and Sutton (2016)
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IIM-based generator

Algorithm 2: IIM-based generator
1 Generate database (Dori )
2 Dsyn ← ∅
3 II , p ← Learn IIM model (Dori )
4 while |Dsyn| < |Dori | do
5 Dsyn ← Dsyn + Generate transaction(II , p)

6 return Dsyn

7 Generate transaction (II , p)
8 T ← ∅
9 foreach itemset X in II do

10 Yx ∼ Bernoulli(px )
11 T =

⋃
X|Yx =1 X

12 return T

New transaction T

Christian Lezcano and Marta Arias Synthetic Dataset Generation with Generative Models



Introduction
Models adaptations
Experimental results

Conclusion

IGM
IIM
LDA

LDA model3

Image credit: Christine Doig
3Blei et al. (2003)
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LDA model

One topic represents a specific pattern
Image taken from Hornsby et al. (2019)
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LDA-based generator

Algorithm 3: LDA-based generator
1 Generate dataset (Dori ,K)
2 Dsyn ← ∅
3 θi , ϕt ← Learn LDA model (Dori , K)
4 while |Dsyn| < |Dori | do
5 T ← ∅
6 while |T | < Ni do
7 t ← Sample topic from θi
8 wj ← Sample word from ϕt

9 T ← T ∪ wj

10

11 Dsyn ← Dsyn + T

12 return Dsyn

1 For each document di , 1 ≤ i ≤ M, choose its own probability distribution of topics θi from a
Dirichlet distribution with parameter α.

2 For each topic t, 1 ≤ t ≤ K , choose its probability distribution of words ϕt from a Dirichlet
distribution with parameter β. The number of topics K is defined by the user.

3 For each word in a document, that is, for each word wj in a document di , first (a) select a topic
t from θi and, then (b) select a word wj from ϕt .

New transaction T
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List of datasets generated

Dataset Model Levels of support (%) Generated datasets
1. forests LDA 〈60, 70, 80, 90〉 〈forLDA60, forLDA70, forLDA80, forLDA90〉
2. forests IGM 〈70, 80, 90〉 〈forIGM70, forIGM80, forIGM90〉
3. forests IIM 〈forIIM〉
4. bogPlants LDA 〈10, 20, 30, 40, 50, 60〉 〈bogLDA10, bogLDA20, bogLDA30, . . . , bogLDA60〉
5. bogPlants IGM 〈10, 20, 30, 40, 50, 60〉 〈bogIGM10, bogIGM20, bogIGM30, . . . , bogIGM60〉
6. bogPlants IIM 〈bogIIM〉

Benchmarking datasets forest and bogPlants taken from W. Hamalainen4

We generate 10 datasets for each synthetic dataset representation,
e.g., forLDA60 actually represents a set of 10 generated databases.

4http://www.cs.uef.fi/~whamalai/datasets.html (accessed September 1, 2017)
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Characteristic metrics

Dataset DS AS ATS MTS F1 (%) GGD (%) H1 H2 MSS (%)
1. forests 246 206.00 61.26 162.00 29.74 89.88 7.07 13.24 93.09
2. for∗LDA 246 205.70 46.45 100.85 22.58 95.52 7.41 13.84 61.04
3. for∗IGM 246 12.67 7.07 10.93 69.98 66.67 2.74 4.75 78.46
4. forIIM 246 202.60 61.59 87.40 30.40 85.32 7.06 13.13 93.09
5. bogPlants 377 315.00 14.65 39.00 4.65 16.57 6.56 11.56 65.25
6. bog∗LDA 377 290.52 12.49 29.55 4.32 25.19 6.87 12.22 47.02
7. bog∗IGM 377 8.67 4.86 7.77 67.75 83.33 2.49 3.92 72.46
8. bogIIM 377 270.80 15.03 28.90 5.55 24.73 6.50 11.77 64.85

Each value represents the average between all the databases
generated by each benchmarking dataset and model.
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Evaluation on characteristics: IIM is the best.
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Preservation of frequent itemsets: IIM is the best.
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BogPlants' generated datasets
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(d) bogPlants

precision pX (Y ) = |X ∩ Y |
|Y | ; p(FIsyn) = 1

|FIsyn|
∑

Y∈FIsyn
maxX∈FIori

{pX (Y )}

recall rX (Y ) = |X ∩ Y |
|X | ; r(FIsyn) = 1

|FIori |
∑

X∈FIori
maxY∈FIsyn{rX (Y )}

F1-score = 2∗precision∗recall
precision+recall
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Evaluation on privacy: IGM is the best.
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precision p(Dsyn) = 1
|Dsyn|

∑
Y∈Dsyn

maxX∈Dori
{pX (Y )}

recall r(Dsyn) = 1
|Dori |

∑
X∈Dori

maxY∈Dsyn{rX (Y )}.
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Runtime evaluation

Table 1: Learning fase
runtime in seconds.

Model forest bogPlants
IGM 0.02 0.03
IIM 546.29 102.24
LDA 1654.79 228.53

Table 2: Generation fase
runtime in seconds.

Model forest bogPlants
IIM 0.43 0.62
LDA 6.50 1.98
IGM 400.43 119.89

Christian Lezcano and Marta Arias Synthetic Dataset Generation with Generative Models



Introduction
Models adaptations
Experimental results

Conclusion

Conclusion and future work

1 We presented in this work several types of generators to create
synthetic transactional datasets which are based on generative
models.

2 It was observed experimentally that each one possesses specific
abilities according to several criteria.

3 As future work, we plan on using a larger set of benchmarking
datasets, and we are in the process of introducing new
generator algorithms
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Thank you for your attention
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