Main methods to handle ANTLR ParseTree nodes

ANTLR generates a visitor method for each rule in the grammar. The visitor method looks like:
std::any visitRULE(As| Parser: : RULECont ext *ct x)

where RULE is the name of the rule.
The parameter of each visitor method is a pointer ct x to an object of class RULECont ext , which is derived from ANTLR class Par seRul eCont ext .
The pointer ct x allows access to information in the node currently being visited, and to its children.

For instance, if our grammar contains the rule:
expr : expr (M| D V) expr
then our visitor will have a method:
std::any visitExpr(Asl Parser:: ExprContext *ctx)
Inside this method we can, for instance:
» Check whether the node has a MJL child:
if (ctx->MIL())
» Get the string that matched the MUL regex:
ct x->MJL() - >get Text ()

(not very useful for MJL, but very useful e.g. for I D or | NTVAL)

» Check whether the rule has some expr child:



if (ctx->expr())...
Get how many expr children the rule has:
ctx->expr().size()

Note: Only when more than one expr are expected in the rule/subrule, ct x- >expr () isastd
is the only expr child.

Get the i-th expr child (counting from 0):
ct x->expr (i)
Get the total number of children of any kind:
ctx->chil dren. si ze()
Get the i-th child of any kind:
ctx->children[i]
Both ct x- >expr () and ct x- >chi | dr en can be iterated if needed:

for (int i=0; i<ctx->expr().size(); ++i) visit(ctx->expr(i));
for (auto ex : ctx->expr()) visit(ex);

for (int i=0; i<ctx->children.size(); ++i) visit(ctx->children[i]);
for (auto ch : ctx->children) visit(ch);

The last two iterations are equivalent to a simple call to vi si t Chi | dren(ct x) .

. :vect or <Par seRul eCont ext >. Otherwise, ct x- >expr ()



