Compilers: midterm laboratory exam.

April 9th 2024

ATTENTION: In Racé you will find the test code examples required to take the
exam. The package contains modified versions of the modules common/SemErrors. *
and common/TypesMgr. * with the methods needed to give new errors or manage the
new types appearing in the exam exercises. BEFORE YOU START DOING ANYT-
HING, read the instructions at the end of the statement to see how to download and
install at.

ATTENTION: The exam must be submitted in a .tgz file uploaded to the Racd.
Read the instructions at the end of the statement to see how to generate it.

SCORE: The first three points of the lab exam grade are obtained with the test examples
of the base practice. The rest are obtained by overcoming the exam-specific test examples.
Correction is automatic, through the testing examples of this statement, plus an additional
set of private testing examples.

IMPORTANT: The exam consists of two independent exercises. You can do them in any
order. It is recommended to perform each exercise incrementally, resolving each test example
before moving on to the next one.

1 Exception handling (3.5 points)

We want to add to the ASL a try-catch exception handling structure, which the following
characteristics:

The structure encloses a group of statments in the try section. Statments inside try may
include the statement throw followed by an expression.

e A try section including a sequence of statements.
e Statements inside try section may include the throw statement at any point.
e A throw statement is followed by an expression of a primitive type.

e A catch section including a list of cases. Each case consists of an expression and a
sequence of statements.

The expressions for cases in the catch section must be of primitive type, and all of them
of the same type (int and float are allowed to be mixed though)

An example code:

1 | func main ()

2 var i,j : int

3 var x,y,z : float

4 var a : array [10] of float
5

6 try

7 i = 0;

8 while i<10 do

9 if y == 0 then
10 throw x*2;
11 else

12 alil = x/y;
13 endif

14 endwhile

15 if al[0]>a[9] then
16 throw -3;

17 else

18 if x!=y then
19 throw j+1;
20 endif

21 endif

22 catch

23 4xj-1 : al[0]=al9];
24 x=0;

25 z-2 : i=1;

26 if al[i]l!=2 then
27 x =1;

28 endif

29 -3 : write "ok";
30 endtry

31

32 | endfunc

Test code 1 (1 point). The first step is to extend the grammar with the new structure
try-catch and the new statement throw.

At the moment, we are not going to do any type checking on the throw and catch expressions
yet, but the instructions inside the structure must be normally checked.

The first test code:

1 | func main ()

2 var i,j : int

3 var x,y,z : float

4 var a : array [10] of float

5

6 try

7 i = 0;

8 while i<(10 and j!=’a’) do

9 if y+1 then

10 throw x*2;

11 else

12 alx] = z/y;

13 endif

14 endwhile

15 if a[0]>a[9] then

16 throw -3;

17 else

18 if x[i]!=z+1 then

19 throw j+1;

20 endif

21 endif

22 catch

23 j-1 : al[0]l=al[9]-k*z;

24 x=0;

25 i*x2 @ i=1;

26 if ali-w*2]!=2 then

27 x = 1;

28 endif

29 -3 : write "ok";

30 endtry

31 | endfunc
generates the following errors:
Line 8:12 error: Operator ’<’ with incompatible types.
Line 8:17 error: Operator ’and’ with incompatible types.
Line 8:22 error: Operator ’!=’ with incompatible types.
Line 9:8 error: Instruction ’if’ requires a boolean condition.
Line 12:13 error: Array access with non integer index.
Line 18:11 error: Array access to a non array operand.
Line 23:21 error: Identifier ’k’ is undeclared.
Line 26:18 error: Identifier ’w’ is undeclared.

Test code 2 (1 point). Next we will check that the expression in throw statements are of
primitive type.

In the modified common/SemErrors. * for the exam you will find that the method throwRequiresBasicType
that will emit the corresponding error message.

Thus, the second test code:

1 | func main()

2 var i,j : int

3 var x,y,z : float

4 var a : array [10] of float

5

6 try

7 i = 0;

8 while i<10 and j!=’a’ do

9 if y+1 then

10 throw a;

11 else

12 alx] = z/y;

13 endif

14 endwhile

15 if a[0]>al[j-2]*y then

16 throw (x>0 or yl!=z+1);

17 else

18 if x[i]!'=z+1 then

19 throw j+1/alz-2];

20 endif

21 throw m;

22 endif

23 catch

24 ’a’ : al[0]=al[9]-kx*z;

25 x=0;

26 b’ . i=1;

27 if ali-w*2]!=2 then

28 x = 1;

29 endif

30 ’Z’ : write "ok";

31 endtry

32

33 | endfunc
generates the error messages:
Line 8:21 error: Operator ’!=’ with incompatible types.
Line 9:8 error: Instruction ’if’ requires a boolean condition.
Line 10:4 error: Basic type required in ’throw’.
Line 12:13 error: Array access with non integer index.
Line 18:11 error: Array access to a non array operand.
Line 19:23 error: Array access with non integer index.
Line 21:7 error: Identifier ’m’ is undeclared.
Line 24:21 error: Identifier ’k’ is undeclared.
Line 27:18 error: Identifier ’w’ is undeclared.

Test code 3 (1 point). We will now typecheck the expressions in the cases inside the catch
section. All must be of a primitive type, and all must be of the same type.

In the modified common/TypesMgr . * for the exam you will find methods al1PrimitiveType
and allSameType that will check a list of TypeIds.

Important: To achieve that these errors are reported in the appropriate line, give the catch
token position as argument to the error methods you’ll find in common/SemErrors. *; that is, use
catchCasesRequireBasicTypes (ctx->CATCH()) and catchCasesRequireCompatibleTypes (ctx->CATCH()).

Thus, the third test code: produces the messages:
1 | func f(x: int) Line 4:11 error: Assignment with incompatible types.
2 var b : array [5] of bool Line 6:3 error: Basic types required in ’catch’ cases.
3 try Line 11:3 error: Return with incompatible type.
4 b[1] = x-1; Line 21:6 error: Instruction ’if’ requires a boolean condition.
5 throw b[x-2]; Line 22:9 error: Instruction ’if’ requires a boolean condition.
6 catch Line 23:12 error: Operator ’+’ with incompatible types.
7 b : write "error"; Line 23:14 error: Identifier ’b’ is undeclared.
8 b[6] : write "crash"; Line 25:14 error: Array access with non integer index.
9 endtry Line 26:11 error: Identifier ’k’ is undeclared.
10 Line 30:20 error: Operator ’or’ with incompatible types.
11 return x*2; Line 30:25 error: Operator ’!=’ with incompatible types.
12 | endfunc Line 32:12 error: Array access to a non array operand.
13 Line 33:12 error: Basic type required in ’throw’.
14 | func main() Line 36:3 error: Compatible types required in ’catch’ cases.
15 var i,j : int Line 37:24 error: Identifier ’k’ is undeclared.
16 var x,y,z : float Line 40:21 error: Identifier ’w’ is undeclared.
17 var a : array [10] of float
18
19 try
20 i = 0;
21 if a then
22 if y+1 then
23 throw a + b[0];
24 else
25 alx] = z/y;
26 throw k;
27 endif
28 endif
29 if al[0]>al[j-2]*y then
30 throw (x>0 or y)!=z+1;
31 else
32 if x[i]!'=z+1 then
33 throw f;
34 endif
35 endif
36 catch
37 ’a’ : al0]l=a[9]-k*z;
38 x=0;
39 2xj+1 @ i=1;
40 if ali-w*2]!=2 then
41 x = 1;
42 endif
43 17 : write "ok";
44 endtry
45 | endfunc

= o
= O © 00O Uk W N

R R R R R W W W W W W W W W WNNDNDNDNDNDNNDNDNRE = e
T WN O OO Uk WNRFEFOO©OWO U WNRFEOO©OW-O O WwN

Test code 4 (0.5 points). Finally, we are going to allow that int and float expressions are

mixed in the catch section.

The modified common/TypesMgr.* for the exam contains a new method allNumericType

which might be useful for this exercise.

The next test code:

func f(x: int)
var b : array [5] of bool

try
b[1] = x-1;
throw b[x-2];
catch
b : write "error";
b[5] : write "crash';
endtry

return x*2;
endfunc

func main ()
var i,j : int
var x,y,z : float
var a : array [10] of float

try
i = 0;
if a then
if y+1 then
throw a + b[0];
else
alx] = z/y;
throw k;
endif
endif
if a[0]>al[j-2]*y then
throw (x>0 or y)!=z+1;

else
if x[i]!=z+1 then
throw f;
endif
endif
catch
z/2 : al[0]=a[9]-k*z;
x=0;
j+1 coi=1;
if al[i-w*2]!=2 then
x = 1;
endif
alil+j : write "ok";
endtry
endfunc

should produce the errors:

Line 4:11 error: Assignment with incompatible types.

Line 6:3 error: Basic types required in ’catch’ cases.

Line 11:3 error: Return with incompatible type.

Line 21:6 error: Instruction ’if’ requires a boolean condition.
Line 22:9 error: Instruction ’if’ requires a boolean condition.
Line 23:12 error: Operator ’+’ with incompatible types.

Line 23:14 error: Identifier ’b’ is undeclared.

Line 25:14 error: Array access with non integer index.

Line 26:11 error: Identifier ’k’ is undeclared.

Line 30:20 error: Operator ’or’ with incompatible types.

Line 30:25 error: Operator ’!=’ with incompatible types.

Line 32:12 error: Array access to a non array operand.

Line 33:12 error: Basic type required in ’throw’.

Line 37:24 error: Identifier ’k’ is undeclared.

Line 40:21 error: Identifier ’w’ is undeclared.

2 Array initialization expressions (3.5 points)

The second exercise consists of adding array expressions that can be used in an assignment to
initialize a array. Correct array expression can be built as follows:

a) A list of expressions in curly brackets, separated by commas, is an array expression (e.g.
{4, i+1, alil-2}).

b) A list in curly brackets can be repeated with the operator ~ and an integer constant (e.g.
{a,b+1}"3 is equivalent to {a,b+1,a,b+1,a,b+1})

¢) Several lists in curly brackets, with or without repetition, can be concatenated with
colons to create a valid array expression (e.g. {a,b}"3:{1,2,3}:{i-1}"2 is equivalent to
{a,b,a,b,a,b,1,2,3,i-1,i-1})

The type of the array expression is a array of the size given by the number of specified elements,
containing the type of the specified elements. If the elements are of mixed types, the type of
the whole array expression will be error. If the elements are mixed numeric types, the type
of the array elements will be float. (e.g. The type of the expression {1,2}°2:{4,5,6} will
be array [7] of int. The type of {’a’}"5 will be array [5] of char. And the type of
{1,2.5}"2:{6} will be array [5] of float).

So we could write for example:

1 | func main()

2 var b : array [10] of int

3 var a array [6] of float

4 var i, j: int

5 var ¢ array [10] of char

6

7 b = {56}°10; // £ill b with 10 fives

8 b = {i+1}°10; // £ill b with 10 times the value of i+1
9

10 // £ill a with 6 given values

11 a = {1, j/2.0, 4.1, 2.1%i/j, 44, i-2};

12

13 // £ill ¢ with {’a’, ’a’, ’a’, ’b’, ’e’, ’d’, ’x’, ’z’, ’x’, ’z’}
14 c = {’a’}"3:{’b’,’e’,’d’}:{’x’,’°2°}"2;

15

16 // £ill b with other values

17 b = {j+2xi}"5:{i-3*%j}"5;

18 | endfunc

Test code 5 (0.5 points). The first step is to modify the grammar in order to add the
required tokens and the rules to recognize array expressions, consisting of a list of expressions
in curly brackets, separated by commas, e.g. {x+1, 2, z}.

Without any additional type checks yet, we can go through the first test code.

This test code:

1 | func main()

2 var b : array [10] of int

3 var a array [6] of float

4 var i,j: int

5 var x float

6 var c array [9] of char

7

8 z = x+1;

9 x[k] = 3;

10

11 b = {6,5,5,5,5,5,5,5,5,5};

12 b = {i+1,i+2,i+3,i+4,i+5,

13 i+6,i+7,i+8,i+9,i+10};

14

15 a = {1.0, j/2.0, 4.1,

16 2.1*%i/j, x, x-2};

17 i = 0;

18 while i<10 do

19 write 1i; write " ";

20 write al[il; write "\n";

21 j = i-2*xaljl;

22 endwhile

23

24 c={’a’,’a’,’a’,

25 ’b’,’e’,’d’,’b’,’e’,’d’};

26

27 if i*j then

28 X = X+y;

29 alx] = 1;

30 endif

31

32 b = {j+2%i,j+2%i,j+2%i,j+2%i,

33 i-3%j,i-3%j,1i-3%j,1-3%j,

34 0,0};

35 | endfunc
generates the following errors:
Line 8:2 error: Identifier ’z’ is undeclared.
Line 9:2 error: Array access to a non array operand.
Line 9:4 error: Identifier ’k’ is undeclared.
Line 21:7 error: Assignment with incompatible types.
Line 27:2 error: Instruction ’if’ requires a boolean condition.
Line 28:11 error: Identifier ’y’ is undeclared.
Line 29:7 error: Array access with non integer index.

35
36
37
38
39
40
41

Test code 6 (0.5 points). Next, we will start with the type checks. First we will address the

simplest case, a list of expressions.

The type of the resulting expression must be an array with size the number of elements in
the list, and with element type the type of the expressions inside (assume you can use the type

of the first element).

If some expression in the list is not of a primitive type, an error is emmited, and the resulting
type is error. If the expressions in the list are not all of the same type, an error is emmited,

and the resulting type is error.

Since the array assignment is already in the basic compiler, errors related to the assignment
and not to the array expression itself should work out of the box.

In the modified common/TypesMgr . * for the exam, you will find new methods al1PrimitiveType
and allSameType that will check a vector of TypeIds. Error messages for new errors can also
be found in module common/SemErrors. *.

We pass this test code:

func main ()

var b array [10] of int
var a : array [6] of float
var i,j: int
var x : float
var c array [9] of char
z = x+1;
x[k] = 3;
b = {§,5,5,5,5,5,5,5,5,5};
b = {i+1,i+2,i+3,1i+4,i+5,
i+6,i+7,i+8,i+9,i+10};
b = {1,2,3,4,
Ja7’ib7’7ci,’d7’
j>0,x+1};
a = {j/2.2,j/3.3,j/4.4,
j/5.5,j/6.6,3/7.7};
a = {j+1,j+2,j+3,j+4,j+5,j+6};
a ={"h’,’h’,’h’};
i = 0;
while i<10 do
write 1i; write " ";
write al[i]; write "\n";
j = i-2*aljl;
endwhile
c = {’a’,’b’,’c’,’d’,’e’,
’f’,’g’,’h’,’i’};
if i*j then
X = X+y;
alx] = 1;
endif
b = {a,a};
b = {c,c,c,c,c,c,c,c,c,c};
b = {b};
endfunc

generating errors:

Line 8:2 error:

Identifier ’z’ is undeclared.

Line 9:2 error: Array access to a non array operand.

Line 9:4 error:
14:
20:
21:
27:
33:
34:
35:
38:
39:
40:

Line
Line
Line
Line
Line
Line
Line
Line
Line
Line

D OoOONEE NN DO

[N

error:
error:
error:
error:
error:
error:
error:
error:
error:
error:

Identifier

’k’ is undeclared.

Compatible types required in ’array expression’.

Assignment
Assignment
Assignment

with incompatible
with incompatible
with incompatible

types.
types.
types.

Instruction ’if’ requires a boolean condition.
Identifier ’y’ is undeclared.

Array access with non integer index.

Basic

Basic

Basic

types required in ’array expression’.
types required in ’array expression’.
types required in ’array expression’.

= =
= O © 00O Uk Wi -

W W W W W NNNDNDNDDNDDNDINDLN = = = ==
BWN = O OO0 Uk WNHO®©OWwO Ut bk WN

35
36
37
38
39
40
41
42
43
44
45

Test code 7 (1 point). Next, we will deal with repetitions, where a list can be folded several

times (e.g. {x+1, 2, z}"3or {2}°4).

You need to extend the grammar to cover this new format of the array expressions, and

adapt the type check to produce the right result type.

The size of the array type for the

expression will obviously be the number of elements of the list times the number of repetitions
(e.g. expression {x+1, 2, z}"3 results on a list of length 9).

We pass this test code:

func main ()

var b : array [10] of int

var a : array [6] of float

var i,j: int

var x : float

var c array [9] of char

z = x+1;

x[k] = 3;

b =4{1,2,3,4,5,6,7,8,9,10};

b = {i+1}°5;

b = {1,2,3,4,
’a’,’b’,’c’,’d’,
j>0,x+1};

a = {1.1, 2.2, 3.3,

4.4, 5.5, 6.6};

a = {1.1, 2.2, 3.3}"2;

a = {true, x>0, i<10}°4;

a = {j+1}76;

a = {’h’}"3;

a={’h’,’i’,’j’,’k’};

a={’h’,’i’,’j’,’k’,’l’,’m’};

i = 0;

while i<10 do

write 1i; write " ";
write al[i]; write "\n";
j = i-2%aljl;

endwhile

c = {’a’}"9;

c = {’a’,’b’,’c’}"3;

c = {’a’,’b’,x}"3;

c = {7a;’zb:’;c;}*4;

if i*j then
X+y;

alx] = 1;
endif

X =

b = {a}"2;
b {c}"10;
endfunc

generating errors:

Line 8:2 error:

Identifier ’z’ is undeclared.

Line 9:2 error: Array access to a non array operand.

Line 9:4 error:

Line 12:4 error:
Line 13:6 error:
Line 20:4 error:
Line 21:4 error:
Line 22:4 error:
Line 23:4 error:
Line 24:4 error:
Line 30:7 error:
Line 35:6 error:
Line 36:4 error:
Line 38:2 error:
Line 39:11 error:
Line 40:7 error:
Line 43:6 error:
Line 44:6 error:

Assignment
Compatible
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
Compatible
Assignment

Identifier ’k’ is undeclared.

with incompatible
types required in
with incompatible
with incompatible
with incompatible
with incompatible
with incompatible
with incompatible
types required in
with incompatible

types.
’array expression’.
types.
types.
types.
types.
types.
types.
’array expression’.
types.

Instruction ’if’ requires a boolean condition.
Identifier ’y’ is undeclared.

Array access with non integer index.

Basic types required in ’array expression’.

Basic types required in ’array expression’.

10

Test code 8 (1 point). In this test, we will introduce the concatenation of expresions lists
with the colon (e.g. {x+1, 2, z}:{3,4}"4).

Extend the grammar to cover this expressions, and adapt the type checking to properly
check that the types of the elements in the lists are primitive types and that all elements are
of the same type. If the lists have non primitive types or contain mixed types, the appropriate
error is produced, as in previous steps.

The size of the resulting array type is the sum of the sizes of each fragment (taking into
account the repetitions, if any). The type of the array elements is the type of the elements of
the list (assume you can use the type of the first element).

© 00 g O Uk W N

B R B B R R R R R W0 W W W 0 LW WN NN NN NN N NN e e e e e e
© TR WRNFE ODHIDANERXRRWROOPIOOANREWXNRLOO©OWTDA R WN = O

With this, the following program: must output:
func main () Line 8:2 error: Identifier ’z’ is undeclared.
var b : array [10] of int Line 9:2 error: Array access to a non array operand.
var a : array [6] of float Line 9:4 error: Identifier ’k’ is undeclared.
var i,j: int Line 12:4 error: Assignment with incompatible types.
var x : float Line 13:6 error: Compatible types required in ’array expression’.
var ¢ array [9] of char Line 17:4 error: Assignment with incompatible types.
Line 18:4 error: Assignment with incompatible types.
z = x+1; Line 19:4 error: Assignment with incompatible types.
x[k] = 3; Line 20:4 error: Assignment with incompatible types.
Line 21:4 error: Assignment with incompatible types.
b = {1,2,3,4}:{5,6,7}:{8,9,10};|| Line 27:7 error: Assignment with incompatible types.
b = {i+1}72:{i-1}"3; Line 35:4 error: Assignment with incompatible types.
b = {1}"3:{’a’}:{j>0,x+1}"3; Line 39:6 error: Compatible types required in ’array expression’.
Line 40:4 error: Assignment with incompatible types.
a = {1.1, 2.2}:{3.3,4.4}"2; Line 42:2 error: Instruction ’if’ requires a boolean condition.
a={1.1, 2.2, 3.3}"72; Line 43:11 error: Identifier ’y’ is undeclared.
a = {true, x>0}:{i<10}"4; Line 44:7 error: Array access with non integer index.
a = {j+1}76; Line 47:6 error: Basic types required in ’array expression’.
a = {’h’3}"3; Line 48:6 error: Basic types required in ’array expression’.
a = {’h’,’i’}‘l:{’j’,’k’};
a = {’h’,’i’}:{’j’,’k’}*2;
i = 03
while i<10 do
write 1i; write " ";
write al[i]; write "\n";
j = i-2%aljl;
endwhile
c = {a’}:{’v’}:{’c’}:
{’d’}:{’e’}:{£}:
{g’r:0n}: {1}
c = {a’}:{’v’}:{’c’}:{°d’}"3:
e’} {0f3:{’g’};
c = {?a’}:{’v’}r:{’c’}:
{’a’}:{’e’}:{7£}"2:
{’g’r:{°h’}:{7i};
c = {7a7’;b7’7c;}*3;
c = {’a’,’b’}"2:{x+1};
c = {’a’,’b’,’c’}‘4;
if i*j then
X = xX+y;
alx] = 1;
endif
b = {a}"2;
b = {c}"10;
endfunc

11

= =
= O © 00O Utk Wi

AR R W W W W W W W W W WNNDNDNDDNDNDNDNDNDN R e
N = O ©0 O Uk WNFOOOWNNOU B WNFEOO©OWwW-NO U W

Test code 9 (0.5 points). Finally, we will add the check for coercions. If the list combines
numerical types (int and float), then it must be accepted, and the type of the array elements

must be float.

In the modified common/TypeMgr.* contains a method allNumericType that will check a

vector of Typelds.

func ff(a: array
b: array
var i, j int
a = {1,2,3,4}
a = {1,2,3}"2
a = {1,2,3}"2
b =
b =
b =

endfunc

func main ()

if i*j then
X+y;

alx]l = 1;
endif

X =

b {true,al}t"2
b {c}"10;
endfunc

With this, the following program:

[10] of int,

[6] of float): float

:{6,6,7}:{8,9,10%};

:{4,5.1,6,7};

:{4,5.1};

{i+j}-2:{i*2.1,j/b[1]1}"2;
{i+jr-2:{i,j}r"2;
{i+j}r-2:{i,z};

return b[1]+j<0;

var x array [10] of int

var y array [6] of float

var i,j: int

var x float

var ¢ array [9] of char

y[0]l = ff(x,y);

z = x+1;

x[k] = 3;

i = 0;

while i<10 do
write 1i; write " ";
write al[il]; write "\n";
j = i-2%aljl;

endwhile

H

must output:

Line 6:5 error: Assignment with incompatible types.
Line 7:5 error: Assignment with incompatible types.

Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line

10
11
11

20

25:
25:
26:
31:
32:
35:
36:
36:
37:
37:
40:
40:

41
41

:5 error:
:5 error:

:18 error:
13:

3 error:
:6 error:
2 error:
7 error:
4 error:

2 error:
7 error:

5 error:
7 error:
2 error:

:2 error:
:6 error:

11 error:
13 error:

10 error:

12 error:

Assignment with incompatible types.
Assignment with incompatible types.
Identifier ’z’ is undeclared.
Return with incompatible type.
Identifier ’x’ already declared.
Identifier ’z’ is undeclared.
Operator ’+’ with incompatible types.
Identifier ’k’ is undeclared.
Identifier ’a’ is undeclared.
Identifier ’a’ is undeclared.
Instruction ’if’ requires a boolean condition.
Assignment with incompatible types.
Operator ’+’ with incompatible types.
Identifier ’a’ is undeclared.
Array access with non integer index.
Identifier ’b’ is undeclared.
Identifier ’a’ is undeclared.
Identifier ’b’ is undeclared.
Basic types required in ’array expression’.

12

Important Information

FILES FOR EXAM: In Racé (examens.fib.upc.edu) you will find a examen.tgz file with
the following content:

e parcial-lab-CL-2024.pdf: This document, with the statement and the instructions.
e jps: Subdirectory with test codes (jp-chkt XX.asl), and its expected output (jp-chkt _XX.err).

e common: Subdirectory with auxiliary modules SemErrors and TypesMgr extended with
code needed for the exam.

e avalua.sh: Script that runs all test codes and says whether or not they are produce the
expected result.

e empaqueta.sh: Script that creates a examen-USERNAME. tgz file with your solution. This
is the file to be uploaded to Racé.

STEPS TO FOLLOW:

e Make a copy of the folders asl and common of your practice in a new directory examen.
mkdir examen
cp -r practica/asl practica/common examen/

e Switch to the new examen directory, and unzip the examen.tgz Racé file:
cd examen
tar -xzvf examen.tgz
This will extract the contents of the package, adding to your directory examen the files
listed above.

IMPORTANT: Do it in the specified order (first a copy of your practice and then
decompress .tgz). Doing this in reverse order will cause you to lack the required code in
common and the JPs to be unsuitable.

e Work as usual in folder examen/asl.
cd asl
make antlr
make -j4

(If the build is slow due to server overload, you can run the fast-make.sh script)

e To see the differences between the output of your asl and the expected output in a specific
type check test code, you can do:
./asl ../jps/jp_chkt_XX.asl | diff -y - ../jps/jp_chkt_XX.err
(You can ignore line “There are semantic errors: mno code generated’’ generated
by main.cpp)

e To run all test codes and see if are passed, run ../avalua.sh.

e Run ../empaqueta.sh to create the delivery file . ./examen-USERNAME.tgz which needs
to be uploaded to the Racé.
Packages created without using this script will be graded as NOT PRESENTED.

13

