
Compilers: midterm laboratory exam.

April 9th 2024

ATTENTION: In Racó you will find the test code examples required to take the
exam. The package contains modified versions of the modules common/SemErrors.*
and common/TypesMgr.* with the methods needed to give new errors or manage the
new types appearing in the exam exercises. BEFORE YOU START DOING ANYT-
HING, read the instructions at the end of the statement to see how to download and
install it.
ATTENTION: The exam must be submitted in a .tgz file uploaded to the Racó.
Read the instructions at the end of the statement to see how to generate it.

SCORE: The first three points of the lab exam grade are obtained with the test examples
of the base practice. The rest are obtained by overcoming the exam-specific test examples.
Correction is automatic, through the testing examples of this statement, plus an additional
set of private testing examples.

IMPORTANT: The exam consists of two independent exercises. You can do them in any
order. It is recommended to perform each exercise incrementally, resolving each test example
before moving on to the next one.

1 Exception handling (3.5 points)

We want to add to the ASL a try-catch exception handling structure, which the following
characteristics:

The structure encloses a group of statments in the try section. Statments inside try may
include the statement throw followed by an expression.

� A try section including a sequence of statements.

� Statements inside try section may include the throw statement at any point.

� A throw statement is followed by an expression of a primitive type.

� A catch section including a list of cases. Each case consists of an expression and a
sequence of statements.

� The expressions for cases in the catch section must be of primitive type, and all of them
of the same type (int and float are allowed to be mixed though)

1



An example code:

1 func main()

2 var i,j : int

3 var x,y,z : float

4 var a : array [10] of float

5

6 try

7 i = 0;

8 while i<10 do

9 if y == 0 then

10 throw x*2;

11 else

12 a[i] = x/y;

13 endif

14 endwhile

15 if a[0]>a[9] then

16 throw -3;

17 else

18 if x!=y then

19 throw j+1;

20 endif

21 endif

22 catch

23 4*j-1 : a[0]=a[9];

24 x=0;

25 z-2 : i=1;

26 if a[i]!=2 then

27 x =1;

28 endif

29 -3 : write "ok";

30 endtry

31

32 endfunc

2



Test code 1 (1 point). The first step is to extend the grammar with the new structure
try-catch and the new statement throw.

At the moment, we are not going to do any type checking on the throw and catch expressions
yet, but the instructions inside the structure must be normally checked.

The first test code:

1 func main()

2 var i,j : int

3 var x,y,z : float

4 var a : array [10] of float

5

6 try

7 i = 0;

8 while i<(10 and j!=’a’) do

9 if y+1 then

10 throw x*2;

11 else

12 a[x] = z/y;

13 endif

14 endwhile

15 if a[0]>a[9] then

16 throw -3;

17 else

18 if x[i]!=z+1 then

19 throw j+1;

20 endif

21 endif

22 catch

23 j-1 : a[0]=a[9]-k*z;

24 x=0;

25 i*2 : i=1;

26 if a[i-w*2]!=2 then

27 x = 1;

28 endif

29 -3 : write "ok";

30 endtry

31 endfunc

generates the following errors:

Line 8:12 error: Operator ’<’ with incompatible types.

Line 8:17 error: Operator ’and’ with incompatible types.

Line 8:22 error: Operator ’!=’ with incompatible types.

Line 9:8 error: Instruction ’if’ requires a boolean condition.

Line 12:13 error: Array access with non integer index.

Line 18:11 error: Array access to a non array operand.

Line 23:21 error: Identifier ’k’ is undeclared.

Line 26:18 error: Identifier ’w’ is undeclared.

3



Test code 2 (1 point). Next we will check that the expression in throw statements are of
primitive type.

In the modified common/SemErrors.* for the exam you will find that the method throwRequiresBasicType
that will emit the corresponding error message.

Thus, the second test code:

1 func main()

2 var i,j : int

3 var x,y,z : float

4 var a : array [10] of float

5

6 try

7 i = 0;

8 while i<10 and j!=’a’ do

9 if y+1 then

10 throw a;

11 else

12 a[x] = z/y;

13 endif

14 endwhile

15 if a[0]>a[j-2]*y then

16 throw (x>0 or y!=z+1);

17 else

18 if x[i]!=z+1 then

19 throw j+1/a[z-2];

20 endif

21 throw m;

22 endif

23 catch

24 ’a’ : a[0]=a[9]-k*z;

25 x=0;

26 ’b’ : i=1;

27 if a[i-w*2]!=2 then

28 x = 1;

29 endif

30 ’Z’ : write "ok";

31 endtry

32

33 endfunc

generates the error messages:

Line 8:21 error: Operator ’!=’ with incompatible types.

Line 9:8 error: Instruction ’if’ requires a boolean condition.

Line 10:4 error: Basic type required in ’throw’.

Line 12:13 error: Array access with non integer index.

Line 18:11 error: Array access to a non array operand.

Line 19:23 error: Array access with non integer index.

Line 21:7 error: Identifier ’m’ is undeclared.

Line 24:21 error: Identifier ’k’ is undeclared.

Line 27:18 error: Identifier ’w’ is undeclared.

4



Test code 3 (1 point). We will now typecheck the expressions in the cases inside the catch
section. All must be of a primitive type, and all must be of the same type.

In the modified common/TypesMgr.* for the exam you will find methods allPrimitiveType
and allSameType that will check a list of TypeIds.

Important: To achieve that these errors are reported in the appropriate line, give the catch
token position as argument to the error methods you’ll find in common/SemErrors.*; that is, use
catchCasesRequireBasicTypes(ctx->CATCH()) and catchCasesRequireCompatibleTypes(ctx->CATCH()).

Thus, the third test code:

1 func f(x: int)

2 var b : array [5] of bool

3 try

4 b[1] = x-1;

5 throw b[x-2];

6 catch

7 b : write "error";

8 b[5] : write "crash ";

9 endtry

10

11 return x*2;

12 endfunc

13

14 func main()

15 var i,j : int

16 var x,y,z : float

17 var a : array [10] of float

18

19 try

20 i = 0;

21 if a then

22 if y+1 then

23 throw a + b[0];

24 else

25 a[x] = z/y;

26 throw k;

27 endif

28 endif

29 if a[0]>a[j-2]*y then

30 throw (x>0 or y)!=z+1;

31 else

32 if x[i]!=z+1 then

33 throw f;

34 endif

35 endif

36 catch

37 ’a’ : a[0]=a[9]-k*z;

38 x=0;

39 2*j+1 : i=1;

40 if a[i-w*2]!=2 then

41 x = 1;

42 endif

43 ’Z’ : write "ok";

44 endtry

45 endfunc

produces the messages:

Line 4:11 error: Assignment with incompatible types.

Line 6:3 error: Basic types required in ’catch’ cases.

Line 11:3 error: Return with incompatible type.

Line 21:6 error: Instruction ’if’ requires a boolean condition.

Line 22:9 error: Instruction ’if’ requires a boolean condition.

Line 23:12 error: Operator ’+’ with incompatible types.

Line 23:14 error: Identifier ’b’ is undeclared.

Line 25:14 error: Array access with non integer index.

Line 26:11 error: Identifier ’k’ is undeclared.

Line 30:20 error: Operator ’or’ with incompatible types.

Line 30:25 error: Operator ’!=’ with incompatible types.

Line 32:12 error: Array access to a non array operand.

Line 33:12 error: Basic type required in ’throw’.

Line 36:3 error: Compatible types required in ’catch’ cases.

Line 37:24 error: Identifier ’k’ is undeclared.

Line 40:21 error: Identifier ’w’ is undeclared.

5



Test code 4 (0.5 points). Finally, we are going to allow that int and float expressions are
mixed in the catch section.

The modified common/TypesMgr.* for the exam contains a new method allNumericType

which might be useful for this exercise.

The next test code:

1 func f(x: int)

2 var b : array [5] of bool

3 try

4 b[1] = x-1;

5 throw b[x-2];

6 catch

7 b : write "error";

8 b[5] : write "crash ";

9 endtry

10

11 return x*2;

12 endfunc

13

14 func main()

15 var i,j : int

16 var x,y,z : float

17 var a : array [10] of float

18

19 try

20 i = 0;

21 if a then

22 if y+1 then

23 throw a + b[0];

24 else

25 a[x] = z/y;

26 throw k;

27 endif

28 endif

29 if a[0]>a[j-2]*y then

30 throw (x>0 or y)!=z+1;

31 else

32 if x[i]!=z+1 then

33 throw f;

34 endif

35 endif

36 catch

37 z/2 : a[0]=a[9]-k*z;

38 x=0;

39 j+1 : i=1;

40 if a[i-w*2]!=2 then

41 x = 1;

42 endif

43 a[i]+j : write "ok";

44 endtry

45 endfunc

should produce the errors:

Line 4:11 error: Assignment with incompatible types.

Line 6:3 error: Basic types required in ’catch’ cases.

Line 11:3 error: Return with incompatible type.

Line 21:6 error: Instruction ’if’ requires a boolean condition.

Line 22:9 error: Instruction ’if’ requires a boolean condition.

Line 23:12 error: Operator ’+’ with incompatible types.

Line 23:14 error: Identifier ’b’ is undeclared.

Line 25:14 error: Array access with non integer index.

Line 26:11 error: Identifier ’k’ is undeclared.

Line 30:20 error: Operator ’or’ with incompatible types.

Line 30:25 error: Operator ’!=’ with incompatible types.

Line 32:12 error: Array access to a non array operand.

Line 33:12 error: Basic type required in ’throw’.

Line 37:24 error: Identifier ’k’ is undeclared.

Line 40:21 error: Identifier ’w’ is undeclared.

6



2 Array initialization expressions (3.5 points)

The second exercise consists of adding array expressions that can be used in an assignment to
initialize a array. Correct array expression can be built as follows:

a) A list of expressions in curly brackets, separated by commas, is an array expression (e.g.
{4, i+1, a[i]-2}).

b) A list in curly brackets can be repeated with the operator ^ and an integer constant (e.g.
{a,b+1}^3 is equivalent to {a,b+1,a,b+1,a,b+1})

c) Several lists in curly brackets, with or without repetition, can be concatenated with
colons to create a valid array expression (e.g. {a,b}^3:{1,2,3}:{i-1}^2 is equivalent to
{a,b,a,b,a,b,1,2,3,i-1,i-1})

The type of the array expression is a array of the size given by the number of specified elements,
containing the type of the specified elements. If the elements are of mixed types, the type of
the whole array expression will be error. If the elements are mixed numeric types, the type
of the array elements will be float. (e.g. The type of the expression {1,2}^2:{4,5,6} will
be array [7] of int. The type of {’a’}^5 will be array [5] of char. And the type of
{1,2.5}^2:{6} will be array [5] of float).

So we could write for example:

1 func main()

2 var b : array [10] of int

3 var a : array [6] of float

4 var i,j: int

5 var c : array [10] of char

6

7 b = {5}^10; // fill b with 10 fives

8 b = {i+1}^10; // fill b with 10 times the value of i+1

9

10 // fill a with 6 given values

11 a = {1, j/2.0, 4.1, 2.1*i/j, 44, i-2};

12

13 // fill c with {’a’, ’a’, ’a’, ’b’, ’e’, ’d’, ’x’, ’z’, ’x’, ’z’}

14 c = {’a’}^3:{ ’b’,’e’,’d’}:{’x’,’z’}^2;

15

16 // fill b with other values

17 b = {j+2*i}^5:{i-3*j}^5;

18 endfunc

7



Test code 5 (0.5 points). The first step is to modify the grammar in order to add the
required tokens and the rules to recognize array expressions, consisting of a list of expressions
in curly brackets, separated by commas, e.g. {x+1, 2, z}.

Without any additional type checks yet, we can go through the first test code.

This test code:

1 func main()

2 var b : array [10] of int

3 var a : array [6] of float

4 var i,j: int

5 var x : float

6 var c : array [9] of char

7

8 z = x+1;

9 x[k] = 3;

10

11 b = {5,5,5,5,5,5,5,5,5,5};

12 b = {i+1,i+2,i+3,i+4,i+5,

13 i+6,i+7,i+8,i+9,i+10};

14

15 a = {1.0, j/2.0, 4.1,

16 2.1*i/j, x, x-2};

17 i = 0;

18 while i<10 do

19 write i; write " ";

20 write a[i]; write "\n";

21 j = i-2*a[j];

22 endwhile

23

24 c = {’a’,’a’,’a’,

25 ’b’,’e’,’d’,’b’,’e’,’d’};

26

27 if i*j then

28 x = x+y;

29 a[x] = 1;

30 endif

31

32 b = {j+2*i,j+2*i,j+2*i,j+2*i,

33 i-3*j,i-3*j,i-3*j,i-3*j,

34 0,0};

35 endfunc

generates the following errors:

Line 8:2 error: Identifier ’z’ is undeclared.

Line 9:2 error: Array access to a non array operand.

Line 9:4 error: Identifier ’k’ is undeclared.

Line 21:7 error: Assignment with incompatible types.

Line 27:2 error: Instruction ’if’ requires a boolean condition.

Line 28:11 error: Identifier ’y’ is undeclared.

Line 29:7 error: Array access with non integer index.

8



Test code 6 (0.5 points). Next, we will start with the type checks. First we will address the
simplest case, a list of expressions.

The type of the resulting expression must be an array with size the number of elements in
the list, and with element type the type of the expressions inside (assume you can use the type
of the first element).

If some expression in the list is not of a primitive type, an error is emmited, and the resulting
type is error. If the expressions in the list are not all of the same type, an error is emmited,
and the resulting type is error.

Since the array assignment is already in the basic compiler, errors related to the assignment
and not to the array expression itself should work out of the box.

In the modified common/TypesMgr.* for the exam, you will find new methods allPrimitiveType
and allSameType that will check a vector of TypeIds. Error messages for new errors can also
be found in module common/SemErrors.*.

We pass this test code:

1 func main()

2 var b : array [10] of int

3 var a : array [6] of float

4 var i,j: int

5 var x : float

6 var c : array [9] of char

7

8 z = x+1;

9 x[k] = 3;

10

11 b = {5,5,5,5,5,5,5,5,5,5};

12 b = {i+1,i+2,i+3,i+4,i+5,

13 i+6,i+7,i+8,i+9,i+10};

14 b = {1,2,3,4,

15 ’a’,’b’,’c’,’d’,

16 j>0,x+1};

17

18 a = {j/2.2,j/3.3,j/4.4,

19 j/5.5,j/6.6,j/7.7};

20 a = {j+1,j+2,j+3,j+4,j+5,j+6};

21 a = {’h’,’h’,’h’};

22

23 i = 0;

24 while i<10 do

25 write i; write " ";

26 write a[i]; write "\n";

27 j = i-2*a[j];

28 endwhile

29

30 c = {’a’,’b’,’c’,’d’,’e’,

31 ’f’,’g’,’h’,’i’};

32

33 if i*j then

34 x = x+y;

35 a[x] = 1;

36 endif

37

38 b = {a,a};

39 b = {c,c,c,c,c,c,c,c,c,c};

40 b = {b};

41 endfunc

generating errors:

Line 8:2 error: Identifier ’z’ is undeclared.

Line 9:2 error: Array access to a non array operand.

Line 9:4 error: Identifier ’k’ is undeclared.

Line 14:6 error: Compatible types required in ’array expression’.

Line 20:4 error: Assignment with incompatible types.

Line 21:4 error: Assignment with incompatible types.

Line 27:7 error: Assignment with incompatible types.

Line 33:2 error: Instruction ’if’ requires a boolean condition.

Line 34:11 error: Identifier ’y’ is undeclared.

Line 35:7 error: Array access with non integer index.

Line 38:6 error: Basic types required in ’array expression’.

Line 39:6 error: Basic types required in ’array expression’.

Line 40:6 error: Basic types required in ’array expression’.

9



Test code 7 (1 point). Next, we will deal with repetitions, where a list can be folded several
times (e.g. {x+1, 2, z}^3 or {2}^4 ).

You need to extend the grammar to cover this new format of the array expressions, and
adapt the type check to produce the right result type. The size of the array type for the
expression will obviously be the number of elements of the list times the number of repetitions
(e.g. expression {x+1, 2, z}^3 results on a list of length 9).

We pass this test code:

1 func main()

2 var b : array [10] of int

3 var a : array [6] of float

4 var i,j: int

5 var x : float

6 var c : array [9] of char

7

8 z = x+1;

9 x[k] = 3;

10

11 b = {1,2,3,4,5,6,7,8,9,10};

12 b = {i+1}^5;

13 b = {1,2,3,4,

14 ’a’,’b’,’c’,’d’,

15 j>0,x+1};

16

17 a = {1.1, 2.2, 3.3,

18 4.4, 5.5, 6.6};

19 a = {1.1, 2.2, 3.3}^2;

20 a = {true , x>0, i <10}^4;

21 a = {j+1}^6;

22 a = {’h ’}^3;

23 a = {’h’,’i’,’j’,’k’};

24 a = {’h’,’i’,’j’,’k’,’l’,’m’};

25

26 i = 0;

27 while i<10 do

28 write i; write " ";

29 write a[i]; write "\n";

30 j = i-2*a[j];

31 endwhile

32

33 c = {’a’}^9;

34 c = {’a’,’b’,’c’}^3;

35 c = {’a’,’b’,x}^3;

36 c = {’a’,’b’,’c’}^4;

37

38 if i*j then

39 x = x+y;

40 a[x] = 1;

41 endif

42

43 b = {a}^2;

44 b = {c}^10;

45 endfunc

generating errors:

Line 8:2 error: Identifier ’z’ is undeclared.

Line 9:2 error: Array access to a non array operand.

Line 9:4 error: Identifier ’k’ is undeclared.

Line 12:4 error: Assignment with incompatible types.

Line 13:6 error: Compatible types required in ’array expression’.

Line 20:4 error: Assignment with incompatible types.

Line 21:4 error: Assignment with incompatible types.

Line 22:4 error: Assignment with incompatible types.

Line 23:4 error: Assignment with incompatible types.

Line 24:4 error: Assignment with incompatible types.

Line 30:7 error: Assignment with incompatible types.

Line 35:6 error: Compatible types required in ’array expression’.

Line 36:4 error: Assignment with incompatible types.

Line 38:2 error: Instruction ’if’ requires a boolean condition.

Line 39:11 error: Identifier ’y’ is undeclared.

Line 40:7 error: Array access with non integer index.

Line 43:6 error: Basic types required in ’array expression’.

Line 44:6 error: Basic types required in ’array expression’.

10



Test code 8 (1 point). In this test, we will introduce the concatenation of expresions lists
with the colon (e.g. {x+1, 2, z}:{3,4}^4).

Extend the grammar to cover this expressions, and adapt the type checking to properly
check that the types of the elements in the lists are primitive types and that all elements are
of the same type. If the lists have non primitive types or contain mixed types, the appropriate
error is produced, as in previous steps.

The size of the resulting array type is the sum of the sizes of each fragment (taking into
account the repetitions, if any). The type of the array elements is the type of the elements of
the list (assume you can use the type of the first element).

With this, the following program:

1 func main()

2 var b : array [10] of int

3 var a : array [6] of float

4 var i,j: int

5 var x : float

6 var c : array [9] of char

7

8 z = x+1;

9 x[k] = 3;

10

11 b = {1 ,2 ,3 ,4}:{5 ,6 ,7}:{8 ,9 ,10};

12 b = {i+1}^2:{i -1}^3;

13 b = {1}^3:{ ’a’}:{j>0,x+1}^3;

14

15 a = {1.1, 2.2}:{3.3 ,4.4}^2;

16 a = {1.1, 2.2, 3.3}^2;

17 a = {true , x>0}:{i <10}^4;

18 a = {j+1}^6;

19 a = {’h ’}^3;

20 a = {’h’,’i’}^1:{ ’j’,’k’};

21 a = {’h’,’i’}:{’j’,’k ’}^2;

22

23 i = 0;

24 while i<10 do

25 write i; write " ";

26 write a[i]; write "\n";

27 j = i-2*a[j];

28 endwhile

29

30 c = {’a’}:{’b’}:{’c’}:

31 {’d’}:{’e’}:{’f’}:

32 {’g’}:{’h’}:{’i’};

33 c = {’a’}:{’b’}:{’c’}:{’d’}^3:

34 {’e’}:{’f’}:{’g’};

35 c = {’a’}:{’b’}:{’c’}:

36 {’d’}:{’e’}:{’f ’}^2:

37 {’g’}:{’h’}:{’i’};

38 c = {’a’,’b’,’c’}^3;

39 c = {’a’,’b ’}^2:{x+1};

40 c = {’a’,’b’,’c’}^4;

41

42 if i*j then

43 x = x+y;

44 a[x] = 1;

45 endif

46

47 b = {a}^2;

48 b = {c}^10;

49 endfunc

must output:

Line 8:2 error: Identifier ’z’ is undeclared.

Line 9:2 error: Array access to a non array operand.

Line 9:4 error: Identifier ’k’ is undeclared.

Line 12:4 error: Assignment with incompatible types.

Line 13:6 error: Compatible types required in ’array expression’.

Line 17:4 error: Assignment with incompatible types.

Line 18:4 error: Assignment with incompatible types.

Line 19:4 error: Assignment with incompatible types.

Line 20:4 error: Assignment with incompatible types.

Line 21:4 error: Assignment with incompatible types.

Line 27:7 error: Assignment with incompatible types.

Line 35:4 error: Assignment with incompatible types.

Line 39:6 error: Compatible types required in ’array expression’.

Line 40:4 error: Assignment with incompatible types.

Line 42:2 error: Instruction ’if’ requires a boolean condition.

Line 43:11 error: Identifier ’y’ is undeclared.

Line 44:7 error: Array access with non integer index.

Line 47:6 error: Basic types required in ’array expression’.

Line 48:6 error: Basic types required in ’array expression’.

11



Test code 9 (0.5 points). Finally, we will add the check for coercions. If the list combines
numerical types (int and float), then it must be accepted, and the type of the array elements
must be float.

In the modified common/TypeMgr.* contains a method allNumericType that will check a
vector of TypeIds.

With this, the following program:

1 func ff(a: array [10] of int ,

2 b: array [6] of float): float

3 var i,j : int

4

5 a = {1 ,2 ,3 ,4}:{5 ,6 ,7}:{8 ,9 ,10};

6 a = {1 ,2 ,3}^2:{4 ,5.1 ,6 ,7};

7 a = {1 ,2 ,3}^2:{4 ,5.1};

8

9 b = {i+j}^2:{i*2.1,j/b[1]}^2;

10 b = {i+j}^2:{i,j}^2;

11 b = {i+j}^2:{i,z};

12

13 return b[1]+j<0;

14 endfunc

15

16 func main()

17 var x : array [10] of int

18 var y : array [6] of float

19 var i,j: int

20 var x : float

21 var c : array [9] of char

22

23 y[0] = ff(x,y);

24

25 z = x+1;

26 x[k] = 3;

27

28 i = 0;

29 while i<10 do

30 write i; write " ";

31 write a[i]; write "\n";

32 j = i-2*a[j];

33 endwhile

34

35 if i*j then

36 x = x+y;

37 a[x] = 1;

38 endif

39

40 b = {true ,a}^2;

41 b = {c}^10;

42 endfunc

must output:

Line 6:5 error: Assignment with incompatible types.

Line 7:5 error: Assignment with incompatible types.

Line 10:5 error: Assignment with incompatible types.

Line 11:5 error: Assignment with incompatible types.

Line 11:18 error: Identifier ’z’ is undeclared.

Line 13:3 error: Return with incompatible type.

Line 20:6 error: Identifier ’x’ already declared.

Line 25:2 error: Identifier ’z’ is undeclared.

Line 25:7 error: Operator ’+’ with incompatible types.

Line 26:4 error: Identifier ’k’ is undeclared.

Line 31:11 error: Identifier ’a’ is undeclared.

Line 32:13 error: Identifier ’a’ is undeclared.

Line 35:2 error: Instruction ’if’ requires a boolean condition.

Line 36:7 error: Assignment with incompatible types.

Line 36:10 error: Operator ’+’ with incompatible types.

Line 37:5 error: Identifier ’a’ is undeclared.

Line 37:7 error: Array access with non integer index.

Line 40:2 error: Identifier ’b’ is undeclared.

Line 40:12 error: Identifier ’a’ is undeclared.

Line 41:2 error: Identifier ’b’ is undeclared.

Line 41:6 error: Basic types required in ’array expression’.

12



Important Information

FILES FOR EXAM: In Racó (examens.fib.upc.edu) you will find a examen.tgz file with
the following content:

� parcial-lab-CL-2024.pdf: This document, with the statement and the instructions.

� jps: Subdirectory with test codes (jp chkt XX.asl), and its expected output (jp chkt XX.err).

� common: Subdirectory with auxiliary modules SemErrors and TypesMgr extended with
code needed for the exam.

� avalua.sh: Script that runs all test codes and says whether or not they are produce the
expected result.

� empaqueta.sh: Script that creates a examen-USERNAME.tgz file with your solution. This
is the file to be uploaded to Racó.

STEPS TO FOLLOW:

� Make a copy of the folders asl and common of your practice in a new directory examen.
mkdir examen

cp -r practica/asl practica/common examen/

� Switch to the new examen directory, and unzip the examen.tgz Racó file:
cd examen

tar -xzvf examen.tgz

This will extract the contents of the package, adding to your directory examen the files
listed above.

IMPORTANT: Do it in the specified order (first a copy of your practice and then
decompress .tgz). Doing this in reverse order will cause you to lack the required code in
common and the JPs to be unsuitable.

� Work as usual in folder examen/asl.
cd asl

make antlr

make -j4

...

(If the build is slow due to server overload, you can run the fast-make.sh script)

� To see the differences between the output of your asl and the expected output in a specific
type check test code, you can do:
./asl ../jps/jp_chkt_XX.asl | diff -y - ../jps/jp_chkt_XX.err

(You can ignore line “There are semantic errors: no code generated”’ generated
by main.cpp)

� To run all test codes and see if are passed, run ../avalua.sh.

� Run ../empaqueta.sh to create the delivery file ../examen-USERNAME.tgz which needs
to be uploaded to the Racó.
Packages created without using this script will be graded as NOT PRESENTED.

13


