\EIB

e o o ©

B

Lexical Analysis (Scanning)

José Miguel Rivero

rivero@cs.upc.edu

Barcelona School of Informatics (FIB)
Universitat Politecnica de Catalunya BarcelonaTech (UPC)

José Miguel Rivero Lexical Analysis - p. 1/2?

Summary

Objectives of Lexical Analysis
Scanning in Compilers / Interpreters
Regular Expressions. Applications
The Basic Problem: w € L(er) ?

» Nondeterministic Automata NFA(re)

» Deterministic Automata DFA(re)
s Comparing Both Approaches

The Problem of Lexical Analysis

o

\EIB

Lexical Errors. Recovery
Automatic Generation of Scanners: ANTLR, flex, ...

]

José Miguel Rivero Lexical Analysis — p. 3/2?

—

\jFIB

ﬁnn

Credits

Some of the material in these slides has been extracted
from:

» the one elaborated by Prof. Stephen A. Edwards
(University of Columbia) for the course COMS
W4115 (Programming Languages and Translators)

» the ones elaborated by Profs. Jordi Cor-
tadella, Guillem Godoy and Robert Nieuwenhuis
(Barcelona Tech (UPC)) for the course Compilers
(Barcelona School of Informatics)

José Miguel Rivero ~ Lexical Analysis - p. 2/2?

Objective. Tokens

Objective:
split the sequence of characters of the
source program into a sequence of
lexical components (tokens)
Tokens to be recognized and be sent to the parser:
s language keywords (while, vars, write)
s operators (+, /, <=, OR, :=)

» punctuation symbols (parenthesis, comma,
semicolon)

» identifiers (nume1ls), integer values (834), strings
("Hello world!™"), floats (3.04E-3)

]

José Miguel Rivero Lexical Analysis — p. 4/2?

Other Lexical Components

—

» Tokens to be recognized but without interest
for later phases:

» separators: blanks, tabs
s comments: /* ... «/inC, # ... inPerl
» newlines. To localize syntactical errors

Token Attributes

s for all of them: the position

s for identifiers, numerical values, strings:
the corresponding text (“v0”, “54.7”)

o .

José Miguel Rivero Lexical Analysis — p. 5/2?

Scanning in Compilers / Interpreters

| B

» Conceptual structure

annotated
source list of sintactic sintactic
program LEXICAL tokens SINTACTIC ree SEMANTIC tree
= > -
ANALYSIS ANALYSIS ANALYSIS

o Usual structure

annotated
source token sintactic
program LEXICAL SINTACTIC tree SEMANTIC tree
— F———
ANALYSIS ANALYSIS ANALYSIS
nextToken()
\/_/_/_/ ~—
2nd pass
1st pass d

GFIB internal representations

José Miguel Rivero Lexical Analysis — p. 7/2?

Example

f.p Source program: T

Program
Vars
Integer i
Real r
EndVars

i=4;r:=117
While i <=25 Do // 22times
r=r/i;i=i+1
EndwWhile
Write ("end")
EndProgram

N Qo a bk wN

—

N J Sequence of tokens: PROGRAM VARS INTEGER IDENT(") REAL IDENT('r")
ENDVARS IDENT() ASSIG INTCONST('4") SEMI IDENT(*") ASSIG REALCONST('1.17") WHILE
IDENT(") LESS INTCONST('25") DO IDENT('r) ASSIG IDENT(*) REALDIV IDENT(i") SEMI

IDENT("i") ASSIG IDENT("") PLUS INTCONST("1") ENDWHILE WRITE LEFTPAR

OFIB STRINGCONST("end") RIGHTPAR ENDPROGRAM

José Miguel Rivero ~ Lexical Analysis - p. 6/22

Motivation

—

Why a specific phase for the lexical analysis?

B

» Conceptually is a specialized task: filter and break
the input in those items interesting for the next phase,
the syntactical analysis

Applied techniques are

s simple and efficient:
“Not use a sledgehammer to crack a nut”

s flexible (lexical changes can be easily resolved)
s portable and general

These techniques are applied in many
other applications

[ore .

José Miguel Rivero Lexical Analysis — p. 8/??

o o 0 ©

o o 0 ©

\EIB

\EIB

Some Applications

Information retrieval queries
Genetic problems
Syntax-driven text editors

Operating systems (shell script languages, grep)
Example (in unix): % rm progx.[ch]

Pattern/action programming languages: (awk)
Analysis of digital circuits
State controllers of video games

]

José Miguel Rivero Lexical Analysis — p. 9/2?

Expressive Power

B

The set of well-balanced expressions, for example
{a™™ | n > 0}, cannot be accepted by a finite
automata: “finite automata cannot count”

Neither can be accepted the words of the language
{na™ | n >0} = {0, la, 2aa, 3aaa, ...}

The language of repeated strings {wcw | w € (a|b)* }
cannot be described by a regular expression, nor even
by a context-free grammar.

]

José Miguel Rivero ~ Lexical Analysis —p. 11/2?

Regular Expressions

B

fLexical components of a language are specified through
regular expressions over an alphabet .

Formation rules:
® re =€ is aregular expression
® re=q isaregular expression forall a € ¥

® if re; and rey are regular expressions,
re = rey|res is aregular expression

® if re; and rep are regular expressions,
re = rejreg is aregular expression

® if re; is aregular expression re = rej, re = re}r and
re = re;? (rep|e) are regular expressions

® if re; is aregular expression, re = (rep) is a regular expression

\jFIB

José Miguel Rivero Lexical Analysis - p. 10/22

NFA(re) Construction

f.. Thompson’s algorithm: transform a regular T
expression er into a nondeterministic automata N (er).

Given the regular expressions e, a, rej|res, rejres,
rej and (rep), and the automata N(re;) and N(rez):

€ a
—(—0) —(—0)
D (& N\ (& O
3 3
' ~
(Y @)
o sS4
SS

er= erler2 er=erl* €

N\
Qe mead % O iy ©
ﬁFIB € J

José Miguel Rivero Lexical Analysis —p. 12/2?

NFA(re) Construction
]

» Construction invariant: every NFA have an initial state
without input edges, and only one final state without
output edges

The number of states of NFA(re) < 2|re|, because at
most 2 new states are added at each construction step

There are at most 2 output edges (2 transitions) for
each automata’s state. Therefore, we obtain a compact
representation of the automata

o .

José Miguel Rivero Lexical Analysis — p. 13/22

Example 2

. B

Combination of NFA’s for the disjunction of a set of regular
expressions re;’s (similar to lexical analysis)

‘re: re | rel.. |ren‘

\EIB

José Miguel Rivero Lexical Analysis —p. 15/2?

Example 1

fNondeterministic finite automata for the regular expression T
re = (alb)*abb.
These are the first steps of the NF A(er) construction:

X

— —0O—0 a
€ €
€ b €

José Miguel Rivero Lexical Analysis — p. 14/22

Decision Algorithm for w € NFA(re)

First we define two auxiliary functions:
e-closure(S) is the set of states accessible from states in S
with zero o more e-transitions.
move(S, a) is the set of states accessible from states in .S
with a transition labelled with a.

Algorithm to decide if w € NFA(re):

Pre: sp is the initial state of the automata NFA
F is the set of final states of NFA
eof is the symbol ending w
S := e-closure({so});
a := NextSymbol();
while a '= eof do
S := e-closure(move(S, a));
a := NextSymbol();

OFIB endwhile
Post: NFA accepts w iff SNF #0

José Miguel Rivero Lexical Analysis — p. 16/2?

\iFIB

\iﬂl

Simulating the input: - aabb

m

b €

€
€
€

Simulating the input: aa - bb

RN
bgb@

]

\EIB

gnn

Simulating the input: a - abb

€ b €

José Miguel Rivero Lexical Analy

Simulating the input: aab - b

]

ysis - p. 18/22

Simulating the input: aabb - Algorithm Costs
| : B | B

Temporal cost:
O(lrel - Jwl)

Spatial cost (size of NFA'’s transition table):
O(lrel)

o s . o .

José Miguel Rivero ~ Lexical Analysis — p. 21/22 José Miguel Rivero Lexical Analysis — p. 22/22

DFA(re) Construction Determination Algorithm
f: Determination algorithm. Example T f: Deterministic finite automata: no e-transition nor any T
» DFA spatial cost stgtezwith more than one edge for the same symbol
a .
Minimization algorithm. Example
o .g P » Computing subsets of states. Each possible subset of
Decision algorithm for w € DFA(er) states in the NFA will correspond to one state in the
» Compression techniques DFA. Transitions between these states will be computed
Algorithm:

s Dstate (the set of DFA states) and Dtran (the DFA
transition table) will be computed.

o A state in Dstate will be marked when all their
transitions in Dfran have been defined

\EIB J ﬁnn J

José Miguel Rivero ~ Lexical Analysis — p. 23/2? José Miguel Rivero Lexical Analysis — p. 24/2?

Determination Algorithm

Pre: sp is the initial state of NFA

F is the set of final states of NFA
eclosure({sp}) 1is the only state in Dstate and is not marked
while exist a state S not marked in Dstate do

mark S

foreach input symbol a€X do
S’ := e-closure(move(S, a));
if S" ¢ Dstate then

add S’ (without mark) to Dstate

endif
Dtran[S, a] := S’;

endfor

endwhile
Post: The initial state of DFA 1is eclosure({so})

Final states of DFA are those (sets of)

\EIB states containing at least one state of F J
José Miguel Rivero Lexical Analysis — p. 25/2?
Example
Dtran:
symbol
state | @ | b DFA b
A |B|C
b b
B B | D
c|BlcC a
D |B|E @ a b (®)
E B | C

o]

José Miguel Rivero ~ Lexical Analysis — p. 27/2?

Example

fCompu’[e the deterministic FA for the regular expression T
re = (alb)*abb

NFA:

e-closure({0})

e-closure(move(A, a))

{0,1,2,4, 7} =A
e-closure({3, 8})
{1,2,3,4,6,7,8 =B

Dtran[A, a]| = B

e-closure({5})
{1,2,4,5,6, 7} =C

\EIB Dtran[A, b] = C J

José Miguel Rivero Lexical Analysis — p. 26/22

e-closure(move(A, b))

DFA(re) Spatial Cost

| B

The spatial cost (number of states in Dtran) may be
exponential wrt. the length of re:
The number of different subsets of a set of N elements is 2V

Example: Given the regular expression (alb)*a(alb)*,
the automata NFA will be constructed in the following way:

» Aninitial state 0 with edges labelled with « and b
towards itself, and an edge labelled with « towards
state 1

» Transitions from state ¢ labelled with « and b towards
state i+1, for i € [1..k]

o State k+1 is the final state

[ore]

José Miguel Rivero Lexical Analysis — p. 28/??

DFA(re) Spatial Cost
| . N

H(&a@ab abka,b

The size of the corresponding DFA is exponential in %
because it needs to remember £ + 1 bits (the latest k& + 1
symbols that have been read)

With k& =3:

abba (final state) —® bbaa (non-final state)

baba (non-final state) —° abab (final state)

o .

José Miguel Rivero Lexical Analysis — p. 29/22

DFA Minimization Algorithm

fCompute successive partitions of the set of states. T
initial partition Il =Il,ew with two grups :
final states F and non-final states S\ F
repeat
II:=1lsew
for each grup G of II do
1. divide G in subgrups s.t. two states s and t
of G leave in the same subgrup iff for all
symbol a € ¥, s and t have transitions
towards states in the same subgrup of I
2. replace G in Il,e by the set of formed subgrups
endfor

until Mpew =11

o .

José Miguel Rivero Lexical Analysis —p. 31/2?

DFA Minimization Algorithm

fCompute successive partitions of the set of states. T

Pre: S is the set of DFA states
So is the DFA initial state

F is the set of DFA final states

Post: DFA’ accepts the same language than DFA

having the minimum number of states

o .

José Miguel Rivero Lexical Analysis — p. 30/22

DFA Minimization Algorithm

fNow build the automata DF A’: T

1. Its states are defined choosing a representative for
each group

2. Transitions in DF A’ will correspond to the transitions
between the representative states in the DF A

3. The initial state of DF A" will be the representative of
the group containing s

4. The final states will be those having representatives
in F

[ore .

José Miguel Rivero Lexical Analysis — p. 32/2?

Example

" Minimization of the DFA that recognizes (a[b)*abb]
DFA: b
B o= Op=C

a

Comments Partitions
non-final / final states

\ (ABCD) | ® |
A,B,C =P (ABCD) but D = (E)
| (aBo) (D)] ® |

A, C —=* (ABC) but B —b (D)

o) B o] ® |
\EIB final partition J

José Miguel Rivero ~ Lexical Analysis — p. 33/22

Another way to construct DFA (re)
| N

Avoids determinating the NFA(re), and applying
subsequently the minimization algorithm.
Carry out these two steps in one

» Not always obtain the minimum DFA(re) but is a good
technique in most cases

» Comment very briefly ...

o .

José Miguel Rivero Lexical Analysis — p. 35/2?

Example

Dtran:
symbol
state | @ | b DFAin’ b
AC | B | AC %\
B B D H% a @ b @ b @
D | B | FE a : a
E | B|AC

o .

José Miguel Rivero Lexical Analysis — p. 34/22

Decision Algorithm for w € DFA(re)

Pre: sgp is the initial state of the automata DFA
F is the set of final states of DFA

eof is the ending symbol of w

s = 50;
a := NextSymbol();
while a = eof do

s := Dtranls, al;

a := NextSymbol();

endwhile

Post: DFA accepts w iff s€F

» Temporal cost: O(Jwl|)

» Spatial cost (size of Dtran):
O((number of states of the DFA) * (number of symbols of ©2)) = O(2/7¢l)

ﬁnn

José Miguel Rivero Lexical Analysis — p. 36/2?

Compression Techniques Compression Techniques

B | B

» Different implementations for the DFA transition » One dimensional vector of states.

function: the most direct using a transition table. For each state we have the list of defined transitions
o size(Diran) — #states - | X plus the default transition in case of error.

size() = #states | X Very easy but make worse the time of compute
» Usually: a transition

1. the number of states is very high, and » Other techniques seek to exploit, for each state,

2. for each state: most of transitions are contiguous empty squares before the first and
undefined, or go to the same state after the last symbol with transition.
So this huge table may be quite empty (sparse table) » Use several additional tables

s Improves the time to compute a transition
» Wasted space is much lower

\EIB J \E'B J

José Miguel Rivero Lexical Analysis — p. 37/22 José Miguel Rivero Lexical Analysis — p. 38/22

Compression Techniques Comparing Both Approaches

B |

Summing up costs:

B

Two or more rows can be overlapped when transitions
defined in both don’t match.

. NFA | O(re| - Jw]) | O(|re])
base if check[base[s] + a] =s then
— (s 3 = nedlbasls + DFA O(|w)) o(2lrely
se
+a next(s, @) = error

+b

\ 1 In general, when both methods are feasible (the DFA spatial
next | A - A cost is reasonable) the following could be concluded:

check | [s[s[s[s] [s[s[s] ... [s]s]s] ..] NFA is suitablo when [re| 1
is suitable when |re
L] tran(s, @) =t tran(s', b) = error DFA is suitable when |re| 11 or |w| 11

\EIB J @'B J

José Miguel Rivero Lexical Analysis — p. 39/2? José Miguel Rivero Lexical Analysis — p. 40/2?

Lazy Finite Automata
N

» Combines: space requirements of NFA with
advantage in time of DFA

» Works like an indeterministic automaton, computing
only the subsets of states that are needed.
These subsets (and their transitions) are stored in a
cache so it is not required to recompute them again.
To sum up:

» Lower requirements of space:
size of NFA transition table (O(|re|)) + size of cache

s Transitions for non used states are not computed
s Nearly as fast as DFA

o .

José Miguel Rivero Lexical Analysis — p. 41/22

Problem Description (v0)
—

Given a list of regular expressions rey, ..., re, describing
the n different tokens that can be recognized, and a word
w (the source program), it must be found a partition
vvs - - - v, Of w such that each subword v; is in the
language of some re;.

B

Example 1:
er1 = beca
erg = a*bc
w = bcabe

solution #1: v; = bca € L(ery) and ve = be € L(ers)
solution #2: vy = bc € L(erz) and vy = abc € L(ers)

S0 more precisely...

]

José Miguel Rivero Lexical Analysis — p. 43/2?

\EIB

The Problem of Lexical Analysis

Problem description

Criteria to remove ambiguities
Examples

An algorithm for lexical analysis
Lexical errors

o o o o 0 @

Be careful with the language!

o .

José Miguel Rivero Lexical Analysis — p. 42/22

Problem Description (v1)

—

Given a list of regular expressions res, ..., re, and a word
w, it must be found a partition vyvs - - - v, Of w such that
each word v; is the longest successive prefix in the
language of some re;.

B

Example 1:
er1 = beca
erg = a*be
w = beabe

solution: vy = bca € L(er1) and vy = be € L(ery)

[ore .

José Miguel Rivero Lexical Analysis — p. 44/2?

Problem Description (v1)

B

fGiven a list of regular expressions rey,...,re, and a word
w , it must be found a partition vyvs - - - v, of w such that
each word v; is the longest successive prefix in the
language of some re;.

Example 2:
ery = a(blc)
erys = a*c
erg=1> w = acb

solution #1: vy =ac € L(er;) and vy =b € L(ers)
solution #2: vy =ac € L(ery) and vy =b € L(ers)

S0 even more precisely...

\iFIB

José Miguel Rivero ~ Lexical Analysis - p. 44/2?

Problem Description (v2)
—

Given a list of regular expressions req,...,re, and a word
w, it must be found a partition vyvs - - - v, of w such that
each word wv; is the longest successive prefix in the
language of some re;.

If some longest prefix v; is in the language of more than
one token, the regular expression with the lowest index will
be selected.

B

These restrictions may make impossible to find a solution
even when a partition exists:

Example 3:

ery = a*b

erg = aa

ers = be w = aabe

o .

José Miguel Rivero Lexical Analysis — p. 45/2?

Problem Description (v2)

B

fGiven a list of regular expressions rey,...,re, and a word
w, it must be found a partition vyvs - - - v, Of w such that
each word v; is the longest successive prefix in the
language of some re;.
If some longest prefix v; is in the language of more than
one token, the regular expression with the lowest index will
be selected.

Example 2:
er1 = a(blc)
ers = a*c
erg = b
w = ach

solution: vy =ac € L(ery) and vy =b € L(ers)

o .

José Miguel Rivero Lexical Analysis — p. 45/22

Problem Description

| |

Given a list of regular expressions rey, ..., re, and a word
w =vw', it must be found the longest prefix v of w s.t.
v e L(rej).

If v € L(re;) for more than one re;, the regular expression
with the lowest index ; will be selected.

The lexical analyzer, the function nextToken (), returns
both the prefix v and the index ; indicating the recognized
token.

The next call to nextToken () makes the same with the
remaining input w’.

[ore .

José Miguel Rivero Lexical Analysis — p. 46/2?

\EIB

\EIB

Criteria to Remove Ambiguities

Recognize always the longest prefix |

Specify the regular expressions corresponding to
keywords before (lowest i) than the identifiers: any
keyword is also a word in the language of the identifiers,
but must be recognized as keyword.

Example of some tokens specified in PCCTS:

#token PROGRAM "PROGRAM"
#token VARS "YARS"
#token COMMA "
#token INT_CONST "[0-9]+"

#token IDENT "[A-Za-z] [A-Za-z0-9] "

]

José Miguel Rivero Lexical Analysis — p. 47/22

Non linearity

B

Example:
er1 = b*a*c
ery =a
ers =b w= |a|a|a|a|a|a|a|a|a|a|a|a|a|a|a|a|a|a|a|ﬂ

Remember the position ending an accepted prefix, and
the number of the DFA involved.

If success in finding a longer one, update that
information; otherwise, come back to the last successful
point.

To avoid non-linearity, and once some accepted prefix
has been detected, it can be imposed that each new
symbol also form a new longer recognized prefix

]

José Miguel Rivero Lexical Analysis — p. 49/2?

Some Examples

B

With the input "whilei>5 . " it will not be obtained
the keyword while followed by the identifier i

® With "1if(. " it will not be recognized the identifier
"if". The keyword "if" takes precedence

® With "ab24.8 ..." it will not be recognized the
identifier "ab" followed by the real "24.8" (unless the
identifiers can only include alphabetical characters)

® With"10..20 ..."itwill be obtained the integer
"10" because, after trying to recognize a longer prefix
(a real beginning with "10. "), it fails in the second " ..
In successive calls, the tokens double-dot and another
integer will retrieved.

= This introduce non-linearity! :-((

o .

José Miguel Rivero Lexical Analysis — p. 48/22

Lexical Analysis Algorithm

fExercise. Suppose that the symbols of w are in an array IN[1..m], and T
the n DFA transition functions corresponding to the n tokens are §; (Dtran,).
Write an algorithm that partition the input —working over the DFA
recognition algorithm for each token—, and obtain successive prefixes
v = IN|[f]---INJ[l] matching some token a (v € L(re,)).

The initial and final states of DFA; are Ini; and the set F;. When a DFA;
does not define transition for state ¢ and symbol IN[p], then 6;(¢, IN[p])
returns the value Err;.

The partition algorithm successively returns the pair of indexes (f,) and
the number a of the DFA, such that:

® theword IN[f]---IN[l] is the longest prefix of IN[f]---IN[m]
matching some re;

® ¢ is the minimal value of the i’s for the re;’s that accept this longest
ﬁns prefix. If no prefix exists, a lexical error is generated

]

José Miguel Rivero Lexical Analysis — p. 50/2?

\iFIB

\iFIB

Lexical Analysis Algorithm
gaﬁI:rs':ted feg;lis;’d T

mkfn token (bi DFA)
| . 1% %1 \'\

f | P

Err

1

DFA

o
ik
]

José Miguel Rivero ~ Lexical Analysis - p. 51/2?

Lexical Analysis Algorithm

=151
Vi:l<i<n:g:=Inij; // Initial states
while f < m do
while p < m do
Vi:l<i<mn:g;:=68(q;, Wpl) p:=p+1;
if 3i:1<i<mn:qg; €F; then

// State Transitions
// Some final state
l:=p—1; a = smallest i such thatq; € F;;
elseif Vi:1<i<m:q; €Err; then
if 1 > f then

// All Err; states

Generate token of type a with word IN[f..1]
p = f:=1+1 l:=f—-1
Vi:l<i<mn:g;:=Ini;
else
Generate and Recover from a Lezical Error
endif
endif
endwhile
if 1> f then
Generate token of type a with word IN[f..1]
p = fi=1+1; Li=f-1;
Vi:l<i<n:g;:=Inij;
else
Generate and Recover from a Lexical Error

endif
endwhile

José Miguel Rivero Lexical Analysis — p. 52/2?

Lexical Analysis Algorithm (v0)
f pi=fi=11=0;

Vi:1<i<mn:gq; = Inig // Initial states
while p<m do
Vi:1<i<n:q :=0d(q, INp]); p:=p+1;

if Ji:1<i<n:q €F; then

// State Transitions
// Some final state
l:=p—1; a= smallest i such thatq; € F;;
elseif Vi:1<i<mn:q €Err; then
if > f then

// All Err; states

Generate token of type a with word IN[f..l]
p=f=1+1 l:=f-1
Vi:l<i<n:gqg :=Ini;;

else

Generate and Recover from a Lexical Error

endif
endif
\EIB endwhile J
if [< f then Generate a Lexical error endif

José Miguel Rivero Lexical Analysis — p. 52/22

Lexical Analysis Algorithm
| -

Recover from a Lexical Error :

pi=f=f+L L=f-1
Vi:1<i<mn:qg:=Inig;

[ore .

José Miguel Rivero Lexical Analysis — p. 52/2?

Lexical Errors

. B

» Context: the lexical analyzer is looking for the longest
prefix v of the input w , s.t. v € L(re;) for some i

ow does a lexical error occur?

Suppose that on symbol « there is no defined transition
from any of the current states ¢; of the set of DFA’s.
In that case the last valid prefix has to be returned

» What does it happen if no previous valid prefix had
been found? The input w cannot be partitioned

o .

José Miguel Rivero Lexical Analysis — p. 53/22

Be Careful with the Language!

fAccurater define the tokens and the syntax of a language. T
Some strange situations:

in Fortran IV, the construction o 5 T = 1,25
is the header of a loop. Changing 1,25 by 1.25 it
represents an assignment to the variable Do51

» if real numbers can have an empty fractional part, then
the array range 10..40 will be incorrectly analyzed

also in Fortran 1V, labels are required to start at the first
column = not free-format

while b < 10:
print b
a, b =D, atb

o]

José Miguel Rivero Lexical Analysis — p. 55/2?

in Python

o

\jFIB

Lexical Error Recovery

B

Panic mode: ignoring the first character of w —and
successive if necessary— until some prefix can be
recognized

Only strange characters (not in) can be removed:
e, ¢, '@’ ... inlanguages like C or Python

Corrections are allowed: insert a character, replace a
character by a different one, swap adjacent characters
(wihle canbeturnedinto while).

It is a rare technique

]

José Miguel Rivero Lexical Analysis — p. 54/22

