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7. Introduction to Network Analysis



Network Analysis, Part |

Today’s contents

1. Examples of real networks

2. What do real networks look like?
» real networks exhibit small diameter
» .. and so does the Erdds-Rényi or random model
» real networks have high clustering coefficient
» .. and so does the Watts-Strogatz model
» real networks’ degree distribution follows a power-law

» .. and so does the Barabasi-Albert or preferential attachment
model

/72



Examples of real networks

Social networks
Information networks

v

v

v

Technological networks
Biological networks

v
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Social networks
Links denote social “interactions”

» friendship, collaborations, e-mail, etc.
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Information networks

Nodes store information, links associate information
» citation networks, the web, p2p networks, etc.
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Technological networks

Man-built for the distribution of a commodity

» telephone networks, power grids, transportation networks,
etc.

Xarxa de Metro
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Biological networks

Represent biological systems

» protein-protein interaction networks, gene regulation
networks, metabolic pathways, etc.
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Representing networks

» Network = Graph
» Networks are just collections of “points” joined by “lines”

A/node
\ - points lines
vertices edges, arcs math
/ .~ edge nodes links computer science
sites bonds physics
\ actors ties, relations  sociology
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Types of networks

From [Newman, 2003]

(b)

(a) unweighted,
undirected

(b) discrete vertex and
edge types,
undirected

(c) varying vertex and
edge weights,
undirected

(d) directed
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Small-world phenomenon

» A friend of a friend is also frequently a friend
» Only 6 hops separate any two people in the world
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Measuring the small-world phenomenon, |

» Let d;; be the shortest-path distance between nodes ¢ and

J
» To check whether “any two nodes are within 6 hops”, we
use:

» The diameter (longest shortest-path distance) as
d = mix d;;
3
» The average shortest-path length as
2
I= n(n+1) ;d”
» The harmonic mean shortest-path length as

2
Tl 2 Nt
n(n—l—l); B
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From [Newman, 2003]

network type n " 3 i o | o ct r | Ref(s).
film actors undirected 449913 25516482 | 113.43 3.48 23 0.20 0.78 0.208 | 20, 416
company directors undirected T6T3 55392 14.44 4.60 0.59 0.88 0.276 | 105, 323
math coauthorship undirected 253339 496 489 3.92 T.57 0.15 0.34 0.120 | 107, 182
physics coauthorship undirected 52909 245 300 9.27 6.19 0.45 0.56 0.363 | 311, 313

= | biology coauthorship | undirected 1520251 11803064 15.53 4.92 0.088 | 0.60 0127 | 311, 313

3 lepk call graph di 1 47000000 80000000 3.16 2.1 8,9
email messages directed 59912 86300 144 4.95 1.5/2.0 0.16 136
email address books directed 16881 57029 3.38 5.22 017 0.13 0.092 | 321
student relationships | undirected 573 477 1.66 16.01 0.005 | 0.001 —0.020 | 45
sexual contacts di i 2810 3.2 265, 266

o | WWW nd.edu directed 269 504 1497135 5.55 11.27 2.1/2.4 0.11 0.29 —0.067 | 14,34

é WWW Altavista directed 203549046 | 2130000000 1046 | 16.18 | 2.1/27 74

E | citation network directed 783339 6716198 857 3.0/ 351

-:«: Roget’s Thesaurus directed 1022 5103 4.99 4.87 0.13 0.15 0.157 | 244

" | word co-occurrence di; 1 460902 17000000 70.13 2.7 0.44 119, 157
Internet undirected 10697 31992 5.98 3.31 25 | 0.035 | 0.39 —0.189 | 86, 148

= | power grid undirected 4941 6594 267 | 18.99 0.10 0.080 —0.003 | 416

‘| train routes undirected 58T 19603 66.79 2.16 0.69 —0.033 | 366

2 | software packages directed 1439 1723 120 | 242 | 16/1.4 | 0070 | 0082 | —0.016 | 318

"5 software classes directed 1377 2213 161 1.51 0.033 | 0.012 —0.119 | 395

= ic circuits i 24097 53248 434 | 1103 3.0 | 0010 | 0.030 | —0.154 | 155
peer-to-peer network di; 1 BR0 1206 1.47 4.28 21 | 0.012 | 0.011 —0.366 | 6, 354
metabolic network undirected 765 3686 9.64 2.56 22 0.090 | 0.87 —0.240 | 214

E protein interactions undirected 2115 2240 212 6.80 24 | 0072 | 0071 | 0156 | 212

2| marine food web directed 135 598 4.43 2.05 0.16 0.23 —0.263 | 204

E freshwater food web directed 92 937 10.84 1.90 0.20 0.087 | —0.326 | 272
neural network directed 307 2359 7.68 3.97 0.18 0.28 —0.226 | 416, 421
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But..

» Can we mimic this phenomenon in simulated networks
(“models™)?

» The answer is YES!
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The (basic) random graph model
a.k.a. ER model

Basic G, , Erdés-Rényi random graph model:
» parameter n is the number of vertices
» parameterpisst. 0<p<1

» Generate and edge (i, j) independently at random with
probability p
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Measuring the diameter in ER networks

Want to show that the diameter in ER networks is small

v

Let the average degree be =

At distance [, can reach z! nodes
At distance ll‘gij, reach all n nodes
So, diameter is (roughly) O(logn)

v

v

v
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ER networks have small diameter

As shown by the following simulation
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Measuring the small-world phenomenon, I

» To check whether “the friend of a friend is also frequently a
friend”, we use:
» The transitivity or clustering coefficient, which basically
measures the probability that two of my friends are also
friends

f2
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Global clustering coefficient

_ 3 x number of triangles
~ number of connected triples

=0.375
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Local clustering coefficient

» For each vertex i, let n; be the number of neighbors of i

» Let C; be the fraction of pairs of neighbors that are
connected within each other

nr. of connections between i’s neighbors

Ci =
%ni (’I’Ll — 1)

» Finally, average C; over all nodes i in the network

1
C:nzz:ci
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Local clustering coefficient example

. . >01202:1/1
> C3:1/6
3 » Oy =C5=0

v

C=3%(1+1+1/6)=13/30=0.433
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From [Newman, 2003]

network type n " 3 i o | o ct r | Ref(s).
film actors undirected 449913 25516482 | 113.43 3.48 23 0.20 0.78 0.208 | 20, 416
company directors undirected T6T3 55392 14.44 4.60 0.59 0.88 0.276 | 105, 323
math coauthorship undirected 253339 496 489 3.92 T.57 0.15 0.34 0.120 | 107, 182
physics coauthorship undirected 52909 245 300 9.27 6.19 0.45 0.56 0.363 | 311, 313

= | biology coauthorship | undirected 1520251 11803064 15.53 4.92 0.088 | 0.60 0127 | 311, 313

3 lepk call graph di 1 47000000 80000000 3.16 2.1 8,9
email messages directed 59912 86300 144 4.95 1.5/2.0 0.16 136
email address books directed 16881 57029 3.38 5.22 017 0.13 0.092 | 321
student relationships | undirected 573 477 1.66 16.01 0.005 | 0.001 —0.020 | 45
sexual contacts di i 2810 3.2 265, 266

o | WWW nd.edu directed 269 504 1497135 5.55 11.27 2.1/2.4 0.11 0.29 —0.067 | 14,34

é WWW Altavista directed 203549046 | 2130000000 1046 | 16.18 | 2.1/27 74

E | citation network directed 783339 6716198 857 3.0/ 351

-:«: Roget’s Thesaurus directed 1022 5103 4.99 4.87 0.13 0.15 0.157 | 244

" | word co-occurrence di; 1 460902 17000000 70.13 2.7 0.44 119, 157
Internet undirected 10697 31992 5.98 3.31 25 | 0.035 | 0.39 —0.189 | 86, 148

= | power grid undirected 4941 6594 267 | 18.99 0.10 0.080 —0.003 | 416

‘| train routes undirected 58T 19603 66.79 2.16 0.69 —0.033 | 366

2 | software packages directed 1439 1723 120 | 242 | 16/1.4 | 0070 | 0082 | —0.016 | 318

"5 software classes directed 1377 2213 161 1.51 0.033 | 0.012 —0.119 | 395

= ic circuits i 24097 53248 434 | 1103 3.0 | 0010 | 0.030 | —0.154 | 155
peer-to-peer network di; 1 BR0 1206 1.47 4.28 21 | 0.012 | 0.011 —0.366 | 6, 354
metabolic network undirected 765 3686 9.64 2.56 22 0.090 | 0.87 —0.240 | 214

E protein interactions undirected 2115 2240 212 6.80 24 | 0072 | 0071 | 0156 | 212

2| marine food web directed 135 598 4.43 2.05 0.16 0.23 —0.263 | 204

E freshwater food web directed 92 937 10.84 1.90 0.20 0.087 | —0.326 | 272
neural network directed 307 2359 7.68 3.97 0.18 0.28 —0.226 | 416, 421
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ER networks do not show transitivity

» C = p, since edges are added independently

» Given a graph with n nodes and e edges, we can

“estimate” p as
(&

P= 1/2n(n—-1)
» We say that clustering is high if C' > p

» Hence, ER networks do not have high clustering coefficient
since for them C' ~ p
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ER networks do not show transitivity

Table 1: Clustering coefficients, C, for a number of different networks; n is

the number of node, z is the mean degree. Taken from [146].
Network n z C C for
measured | random graph
Internet [153] 6,374 3.8 0.24 0.00060
World Wide Web (sites) [2] 153,127 | 35.2 0.11 0.00023
power grid [192] 4911 | 27 | 0.080 0.00054
biology collaborations [140] 1,520,251 | 15.5 0.081 0.000010
mathematics collaborations [141] || 253,339 | 3.9 0.15 0.000015
film actor collaborations [149] 449913 | 1134 0.20 0.00025
company directors [149] 7,673 14.4 0.59 0.0019
word co-occurrence [90] 460,902 | 70.1 0.44 0.00015
neural network [192] 282 14.0 0.28 0.049
metabolic network [69] 315 28.3 0.59 0.090
food web [138] 134 8.7 0.22 0.065
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So ER networks do not have high clustering, but..

» Can we mimic this phenomenon in simulated networks
(“models”), while keeping the diameter small?

» The answer is YES!
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The Watts-Strogatz model, |

From [Watts and Strogatz, 1998]

Reconciling two observations from real networks:
» High clustering: my friend’s friends are also my friends
» small diameter
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The Watts-Strogatz model, Il

» Start with all n vertices arranged on a ring
» Each vertex has intially 4 connections to their closest
nodes
» mimics local or geographical connectivity
» With probability p, rewire each local connection to a
random vertex
» p = 0 high clustering, high diameter
» p =1 low clustering, low diameter (ER model)
» What happens in between?
» As we increase p from 0 to 1

» Fast decrease of mean distance
» Slow decrease in clustering

Regular: Small World: Random:
High L. High C Low L, High C Low L, Low C

Increasingly random connectivity
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The Watts-Strogatz model, Il

For an appropriate value of p ~ 0.01 (1 %), we observe that the
model achieves high clustering and small diameter

1;? TmToTTn [5] 'E',"'E']'l n' I:[l ) —
o8| ° C(p)/ C(0) © ]
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Degree distribution

Histogram of nr of nodes having a particular degree

random networks real networks (power—law, scale-free)
mostnodes are
@ average linked @«
@ €
s s
o o
c c
B B
@ o
o fu)
[S S
3 =3
= (=
<- node degree -> highly linked <- node degree - highly linked

fr = fraction of nodes of degree &
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Scale-free networks

The degree distribution of most real-world networks follows a
power-law distribution

fr=ck™®

'\ » “heavy-tail” distribution, implies

| spikes existence of hubs
\

\\ » hubs are nodes with very high
L degree
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Random networks are not scale-free!

For random networks, the degree distribution follows the
binomial distribution (or Poisson if n is large)

k_—z
_ n k _ (nfk) ~ Ze
fr <k>p (1-p) i

» Where z = p(n — 1) is the mean degree

» Probability of nodes with very large degree becomes
exponentially small

» S0 no hubs
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So ER networks are not scale-free, but..

» Can we obtained scale-free simulated networks?
» The answer is YES!
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Preferential attachment

» “Rich get richer” dynamics
» The more someone has, the more she is likely to have
» Examples

» the more friends you have, the easier it is to make new ones

» the more business a firm has, the easier it is to win more

» the more people there are at a restaurant, the more who
want to go

33/72



Barabasi-Albert model
From [Barabasi and Albert, 1999]

» “Growth” model

» The model controls how a network grows over time
» Uses preferential attachment as a guide to grow the

network

» new nodes prefer to attach to well-connected nodes
» (Simplified) process:

» the process starts with some initial subgraph

» each new node comes in with m edges

» probability of connecting to existing node i is proportional to
1’'s degree

» results in a power-law degree distribution with exponent
a=3
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ER vs. BA

Experiment with 1000 nodes, 999 edges (mo = 1 in BA model).

preferential attachment
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In summary..

phenomenon real networks ER WS BA

small diameter yes yes yes yes
high clustering yes no yes yes'
scale-free yes no no yes

Tclustering coefficient is higher than in random networks, but not as high

as for example in WS networks
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Network Analysis, Part

Today’s contents

1. Centrality
» Degree centrality
» Closeness centrality
» Betweenness centrality
2. Community finding algorithms
» Hierarchical clustering
» Agglomerative
» Girvan-Newman
» Modularity maximization: Louvain method
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Centrality in Networks

Centrality is a node’s measure w.r.t. others

» A central node is important and/or powerful
» A central node has an influential position in the network

» A central node has an advantageous position in the
network

Y
X X o—0O0—0—C0-0
X Y
Y Y X
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Degree centrality

Power through connections

degree_centrality(i) =l k(7)
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Degree centrality

Power through connections

in_degree_centrality(i) def Ein (1)

©

L]

®@@
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Degree centrality

Power through connections

out_degree_centrality(i) et Eout(7)

0

o)

.@.
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Degree centrality

Power through connections

By the way, there is a normalized version which divides the
centrality of each degree by the maximum centrality value
possible, i.e. n — 1 (so values are all between 0 and 1).

N - TN
02 (0.12)
02 @2\/ N
TN
02) e
. (0.12 /0.25\) \0.12\
/\\\ \ X N
10.25
& o
— — ™
(02) o) (on)
\ N2 7

But look at these examples, does degree centrality look OK to
you?
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Closeness centrality

Power through proximity to others

N —1
oo def Zj;éi d(i, j) n—1
closeness_centrality(i) = | ———— =
no1 > (i)
VA — e
€) o) 00
(o7) .
W v @ o
N\ N ) J
&Y (053)
09) ozs)  (039)
2 NGO/

Here, what matters is to be close to everybody else, i.e., to be
easily reachable or have the power to quickly reach others.
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Betweenness centrality

Power through brokerage

A node is important if it lies in many shortest-paths
» S0 it is essential in passing information through the network

Q)/ @)

N8 i}
OO ; (o)
ORO,

A
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Betweenness centrality

Power through brokerage

(4)

d
betweenness_centrality(i) =y Z 9iktt)
i<k ik

Where
> g;i is the number of shortest-paths between j and &, and
> g;x(t) is the number of shortest-paths through :

Oftentimes it is normalized:

def betweenness_centrality(i)

(")

norm_betweenness_centrality(i) =
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Betweenness centrality

Examples (non-normalized)

A
R
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What is community structure?
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Why is community structure important?
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.. but don’t trust visual perception

it is best to use objective algorithms
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Main idea

A community is dense in the inside but sparse w.r.t. the outside

No universal definition! But some ideas are:

» A community should be densely connected

» A community should be well-separated from the rest of the
network

» Members of a community should be more similar among
themselves than with the rest

Most common..
nr. of intra-cluster edges > nr. of inter-cluster edges
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Some definitions
Let G = (V, E) be a network with |[V| = n nodes and |E| =m
edges. Let C' be a subset of nodes in the network (a “cluster” or
“‘community”) of size |C| = n.. Then
» intra-cluster density:.

nr. internal edges of C
9uni(C) = Nne(ne —1)/2

» inter-cluster density:

nr. inter-cluster edges of C
5eazt(c) - g

ne(n —ne)

A community should have 6;,,(C) > §(G), where 6(G) is the
average edge density of the whole graph G, i.e.

_ nr.edgesinG
2@ = n(n—1)/2
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Most algorithms search for tradeoffs between large §;,:(C) and
small §¢.:(C)

> e.g. optimizing > dint(C) — dext (C) over all communities
C
Define further:
» m. = nr. edges within cluster C' = |{(u,v)|u,v € C}|
» f.=nr. edges in the frontier of C' = |{(u,v)|u € C,v & C}|

> Ny :47mc1 :57f01 =2
> Ney, =3, Mgy =3, fo, =2

> Ny =0, Mgy =8, foy =2
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Community quality criteria

» conductance: fraction of edges leaving the cluster meifc

» expansion: nr of edges per node leaving the cluster j:—
» internal density: a.k.a. “intra-cluster density” W

» cut ratio: a.k.a. “inter-cluster density” Je

ne(n—mne)
» modularity: difference between nr. of edges in C' and the
expected nr. of edges E[m,] of a random graph with the
same degree distribution

1
m(mc — E[m,])

53/72



Methods we will cover

» Hierarchical clustering

» Agglomerative
» Divisive (Girvan-Newman algorithm)

» Modularity maximization algorithms
» Louvain method
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Hierarchical clustering

From hairball to dendogram

Agglomerative

Divisive
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Suitable if input network has hierarchical structure
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Agglomerative hierarchical clustering [Newman, 2010]

Ingredients

» Similarity measure between nodes
» Similarity measure between sets of nodes

Pseudocode

1. Assign each node to its own cluster

2. Find the cluster pair with highest similarity and join them
together into a cluster

3. Compute new similarities between new joined cluster and
others

4. Go to step 2 until all nodes form a single cluster
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Example
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Example

iteration 002
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Example

iteration 003
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Example
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Example

iteration 005
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Example

iteration 006
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Example
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Example

iteration 008
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Example

iteration 009
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Example

iteration 010
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Example

iteration 011
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Example

iteration 012
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Example
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Example

iteration 014
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Example

iteration 015
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Example

iteration 016
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Example

iteration 017
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Example

iteration 018
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Example

iteration 019
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Example

iteration 020
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Example

iteration 021
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Example

iteration 022
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Example

iteration 023
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Example
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Similarity measures w;; for nodes |

Let A be the adjacency matrix of the network, i.e. A;; = 1 if
(i,7) € E and 0 otherwise.

» Jaccard index:

)T
GG

where I'(i) is the set of neighbors of node i
» Cosine similarity:?

Aip Ap; N
Wy = 2o Air Ak, _ My

;= —
NSNS
where:

> ni; = |T() NT(G)| = >, AixAxj, and
» k; =, Aix is the degree of node i
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Similarity measures w;; for nodes |l
» Euclidean distance: (or rather Hamming distance since A
is binary)
dij = Z(Azk — Ajp)?
k

» Normalized Euclidean distance:®

>on(Aik — Aj)? | _ o M

dii =
J ki—i-kj kz‘—i-kj

» Pearson correlation coefficient

cov(A;, Aj) _ Do (Aie — ) (Ajre — )

00 no;o;

Tij =

where y; = 2 37, A and o; = \/% Yo (Aik — 115)?

2From the equation xy = |x||y| cos @
3Uses the idea that the maximum value of d;; is when there are no
common neighbors and then d;; = k; + k;
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Similarity measures for sets of nodes

» Single linkage: sxy = méax_ sz
zeX,yeyY

» Complete linkage: sxy = min sy
rzeX,yeY

ZxEX,yGY Say

» Average linkage: sxy = X[ x V]
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Agglomerative hierarchical clustering on Zachary’s

network

Using average linkage
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The Girvan-Newman algorithm

A divisive hierarchical algorithm [Girvan and Newman, 2002]

Edge betweenness

The betweenness of an edge is the nr. of shortest-paths in the
network that pass through that edge

It uses the idea that “bridges” between communities must have
high edge betweenness
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The Girvan-Newman algorithm

Pseudocode

1. Compute betweenness for all edges in the network

2. Remove the edge with highest betweenness
3. Go to step 1 until no edges left

Result is a dendogram

BOC D ( R=g-]
32025283334302431 92321191616526322710 4 14 2 1
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Definition of modularity [Newman, 2010]

Using a null model

Random graphs are not expected to have community structure,
so we will use them as null models.

@ = (nr. of intra-cluster communities) — (expected nr of edges)

In particular:

Q= -3 (A4y - Py) 6(C1, Cy)

C2m &
ij
where P;; is the expected number of edges between nodes

and j under the null model, C; is the community of vertex 4, and
4(C;,Cy) = 1if C; = C; and 0 otherwise.
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How do we compute P;;?

Using the “configuration” null model

The “configuration” random graph model choses a graph with
the same degree distribution as the original graph uniformly at
random.

>

>

Let us compute P;;

There are 2m stubs or half-edges available in the
configuration model

Let p; be the probability of picking at random a stub
incident with i

pi=g
The probability of connecting i to j is then pip; = 5%
kik;

And so Pij = Zmpipj =

2m
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Properties of modularity

1 ik
Q=g (Aiﬂ ~ om

ij

> 8(Cy,Cj)

» () depends on nodes in the same clusters only

» Larger modularity means better communities (better than
random intra-cluster density)

> Q< 5 2 Aig 0(Ci, Cy) < g >0 Aig < 1

» () may take negative values

» partitions with large negative @) implies existence of cluster
with small internal edge density and large inter-community
edges
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The Louvain method [Blondel et al., 2008]

Considered state-of-the-art

Community

"
¥
\Aggvega\mn

2ndpass 26 24

& e
(Q 3 )

Pseudocode

1. Repeat until local optimum reached

1.1 Phase 1: partition network greedily using modularity
1.2 Phase 2: agglomerate found clusters into new nodes
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The Louvain method

Phase 1: optimizing modularity

Pseudocode for phase 1

1. Assign a different community to each node
2. For each node i

» For each neighbor j of i, consider removing i from its
community and placing it to j’s community

» Greedily chose to place i into community of neighbor that
leads to highest modularity gain

3. Repeat until no improvement can be done
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The Louvain method

Phase 2: agglomerating clusters to form new network

Pseudocode for phase 2

1. Let each community C; form a new node i

2. Let the edges between new nodes i and j be the sum of
edges between nodes in C; and Cj in the previous graph
(notice there are self-loops)
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The Louvain method

Observations

» The output is also a hierarchy

» Works for weighted graphs, and so modularity has to be
generalized to

e S (- ) e

where W;; is the weight of undirected edge (4, j),
W = Zij Wij and s; = Zk Wik
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