
CAIM: Cerca i Anàlisi d’Informació Massiva
FIB, Grau en Enginyeria Informàtica

Slides by Marta Arias, José Luis Balcázar,
Ramon Ferrer-i-Cancho, Ricard Gavaldá

Department of Computer Science, UPC

Fall 2018
http://www.cs.upc.edu/~caim

1 / 72

http://www.cs.upc.edu/~caim


7. Introduction to Network Analysis



Network Analysis, Part I
Today’s contents

1. Examples of real networks
2. What do real networks look like?

I real networks exhibit small diameter
I .. and so does the Erdös-Rényi or random model

I real networks have high clustering coefficient
I .. and so does the Watts-Strogatz model

I real networks’ degree distribution follows a power-law
I .. and so does the Barabasi-Albert or preferential attachment

model
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Examples of real networks

I Social networks
I Information networks
I Technological networks
I Biological networks
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Social networks
Links denote social “interactions”

I friendship, collaborations, e-mail, etc.
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Information networks

Nodes store information, links associate information
I citation networks, the web, p2p networks, etc.
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Technological networks
Man-built for the distribution of a commodity

I telephone networks, power grids, transportation networks,
etc.
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Biological networks

Represent biological systems
I protein-protein interaction networks, gene regulation

networks, metabolic pathways, etc.
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Representing networks

I Network ≡ Graph
I Networks are just collections of “points” joined by “lines”

points lines
vertices edges, arcs math
nodes links computer science
sites bonds physics
actors ties, relations sociology

9 / 72



Types of networks
From [Newman, 2003]

(a) unweighted,
undirected

(b) discrete vertex and
edge types,
undirected

(c) varying vertex and
edge weights,
undirected

(d) directed
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Small-world phenomenon

I A friend of a friend is also frequently a friend
I Only 6 hops separate any two people in the world
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Measuring the small-world phenomenon, I

I Let dij be the shortest-path distance between nodes i and
j

I To check whether “any two nodes are within 6 hops”, we
use:

I The diameter (longest shortest-path distance) as

d = máx
i,j

dij

I The average shortest-path length as

l =
2

n (n+ 1)

∑
i>j

dij

I The harmonic mean shortest-path length as

l−1 =
2

n (n+ 1)

∑
i>j

d−1
ij
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From [Newman, 2003]
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But..

I Can we mimic this phenomenon in simulated networks
(“models”)?

I The answer is YES!
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The (basic) random graph model
a.k.a. ER model

Basic Gn,p Erdös-Rényi random graph model:
I parameter n is the number of vertices
I parameter p is s.t. 0 ≤ p ≤ 1

I Generate and edge (i, j) independently at random with
probability p
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Measuring the diameter in ER networks

Want to show that the diameter in ER networks is small

I Let the average degree be z
I At distance l, can reach zl nodes
I At distance logn

log z , reach all n nodes
I So, diameter is (roughly) O(log n)
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ER networks have small diameter
As shown by the following simulation
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Measuring the small-world phenomenon, II

I To check whether “the friend of a friend is also frequently a
friend”, we use:

I The transitivity or clustering coefficient, which basically
measures the probability that two of my friends are also
friends
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Global clustering coefficient

C =
3× number of triangles

number of connected triples

C =
3× 1

8
= 0.375
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Local clustering coefficient

I For each vertex i, let ni be the number of neighbors of i
I Let Ci be the fraction of pairs of neighbors that are

connected within each other

Ci =
nr. of connections between i’s neighbors

1
2ni (ni − 1)

I Finally, average Ci over all nodes i in the network

C =
1

n

∑
i

Ci
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Local clustering coefficient example

I C1 = C2 = 1/1

I C3 = 1/6

I C4 = C5 = 0

I C = 1
5(1 + 1 + 1/6) = 13/30 = 0.433
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From [Newman, 2003]

22 / 72



ER networks do not show transitivity

I C = p, since edges are added independently
I Given a graph with n nodes and e edges, we can

“estimate” p as
p̂ =

e

1/2 n (n− 1)

I We say that clustering is high if C � p̂
I Hence, ER networks do not have high clustering coefficient

since for them C ≈ p̂
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ER networks do not show transitivity
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So ER networks do not have high clustering, but..

I Can we mimic this phenomenon in simulated networks
(“models”), while keeping the diameter small?

I The answer is YES!
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The Watts-Strogatz model, I
From [Watts and Strogatz, 1998]

Reconciling two observations from real networks:
I High clustering: my friend’s friends are also my friends
I small diameter
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The Watts-Strogatz model, II
I Start with all n vertices arranged on a ring
I Each vertex has intially 4 connections to their closest

nodes
I mimics local or geographical connectivity

I With probability p, rewire each local connection to a
random vertex

I p = 0 high clustering, high diameter
I p = 1 low clustering, low diameter (ER model)

I What happens in between?
I As we increase p from 0 to 1

I Fast decrease of mean distance
I Slow decrease in clustering
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The Watts-Strogatz model, III

For an appropriate value of p ≈ 0.01 (1 %), we observe that the
model achieves high clustering and small diameter
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Degree distribution

Histogram of nr of nodes having a particular degree

fk = fraction of nodes of degree k
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Scale-free networks

The degree distribution of most real-world networks follows a
power-law distribution

fk = ck−α

I “heavy-tail” distribution, implies
existence of hubs

I hubs are nodes with very high
degree
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Random networks are not scale-free!

For random networks, the degree distribution follows the
binomial distribution (or Poisson if n is large)

fk =

(
n

k

)
pk(1− p)(n−k) ≈ zke−z

k!

I Where z = p(n− 1) is the mean degree
I Probability of nodes with very large degree becomes

exponentially small
I so no hubs
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So ER networks are not scale-free, but..

I Can we obtained scale-free simulated networks?
I The answer is YES!
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Preferential attachment

I “Rich get richer” dynamics
I The more someone has, the more she is likely to have

I Examples
I the more friends you have, the easier it is to make new ones
I the more business a firm has, the easier it is to win more
I the more people there are at a restaurant, the more who

want to go
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Barabási-Albert model
From [Barabási and Albert, 1999]

I “Growth” model
I The model controls how a network grows over time

I Uses preferential attachment as a guide to grow the
network

I new nodes prefer to attach to well-connected nodes
I (Simplified) process:

I the process starts with some initial subgraph
I each new node comes in with m edges
I probability of connecting to existing node i is proportional to
i’s degree

I results in a power-law degree distribution with exponent
α = 3
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ER vs. BA

Experiment with 1000 nodes, 999 edges (m0 = 1 in BA model).

random preferential attachment
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In summary..

phenomenon real networks ER WS BA
small diameter yes yes yes yes
high clustering yes no yes yes1

scale-free yes no no yes

1clustering coefficient is higher than in random networks, but not as high
as for example in WS networks
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Network Analysis, Part II
Today’s contents

1. Centrality
I Degree centrality
I Closeness centrality
I Betweenness centrality

2. Community finding algorithms
I Hierarchical clustering

I Agglomerative
I Girvan-Newman

I Modularity maximization: Louvain method
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Centrality in Networks

Centrality is a node’s measure w.r.t. others

I A central node is important and/or powerful
I A central node has an influential position in the network
I A central node has an advantageous position in the

network
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Degree centrality
Power through connections

degree_centrality(i)
def
= k(i)
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Degree centrality
Power through connections

in_degree_centrality(i)
def
= kin(i)
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Degree centrality
Power through connections

out_degree_centrality(i)
def
= kout(i)
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Degree centrality
Power through connections

By the way, there is a normalized version which divides the
centrality of each degree by the maximum centrality value
possible, i.e. n− 1 (so values are all between 0 and 1).

But look at these examples, does degree centrality look OK to
you?
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Closeness centrality
Power through proximity to others

closeness_centrality(i)
def
=

(∑
j 6=i d(i, j)

n− 1

)−1
=

n− 1∑
j 6=i d(i, j)

Here, what matters is to be close to everybody else, i.e., to be
easily reachable or have the power to quickly reach others.
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Betweenness centrality
Power through brokerage

A node is important if it lies in many shortest-paths
I so it is essential in passing information through the network
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Betweenness centrality
Power through brokerage

betweenness_centrality(i)
def
=
∑
j<k

gjk(i)

gjk

Where
I gjk is the number of shortest-paths between j and k, and
I gjk(i) is the number of shortest-paths through i

Oftentimes it is normalized:

norm_betweenness_centrality(i)
def
=

betweenness_centrality(i)(
n−1
2

)
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Betweenness centrality
Examples (non-normalized)
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What is community structure?

47 / 72



Why is community structure important?
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.. but don’t trust visual perception
it is best to use objective algorithms
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Main idea
A community is dense in the inside but sparse w.r.t. the outside

No universal definition! But some ideas are:
I A community should be densely connected
I A community should be well-separated from the rest of the

network
I Members of a community should be more similar among

themselves than with the rest

Most common..
nr. of intra-cluster edges > nr. of inter-cluster edges
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Some definitions
Let G = (V,E) be a network with |V | = n nodes and |E| = m
edges. Let C be a subset of nodes in the network (a “cluster” or
“community”) of size |C| = nc. Then

I intra-cluster density:

δint(C) =
nr. internal edges of C

nc(nc − 1)/2

I inter-cluster density:

δext(C) =
nr. inter-cluster edges of C

nc(n− nc)

A community should have δint(C) > δ(G), where δ(G) is the
average edge density of the whole graph G, i.e.

δ(G) =
nr. edges in G
n(n− 1)/2
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Most algorithms search for tradeoffs between large δint(C) and
small δext(C)

I e.g. optimizing
∑

C δint(C)− δext(C) over all communities
C

Define further:
I mc = nr. edges within cluster C = |{(u, v)|u, v ∈ C}|
I fc = nr. edges in the frontier of C = |{(u, v)|u ∈ C, v 6∈ C}|

I nc1 = 4,mc1 = 5, fc1 = 2

I nc2 = 3,mc2 = 3, fc2 = 2

I nc3 = 5,mc3 = 8, fc3 = 2
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Community quality criteria

I conductance: fraction of edges leaving the cluster fc
2mc+fc

I expansion: nr of edges per node leaving the cluster fc
nc

I internal density: a.k.a. “intra-cluster density” mc
nc(nc−1)/2

I cut ratio: a.k.a. “inter-cluster density” fc
nc(n−nc)

I modularity: difference between nr. of edges in C and the
expected nr. of edges E[mc] of a random graph with the
same degree distribution

1

4m
(mc − E[mc])
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Methods we will cover

I Hierarchical clustering
I Agglomerative
I Divisive (Girvan-Newman algorithm)

I Modularity maximization algorithms
I Louvain method
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Hierarchical clustering
From hairball to dendogram
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Suitable if input network has hierarchical structure
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Agglomerative hierarchical clustering [Newman, 2010]

Ingredients

I Similarity measure between nodes
I Similarity measure between sets of nodes

Pseudocode

1. Assign each node to its own cluster
2. Find the cluster pair with highest similarity and join them

together into a cluster
3. Compute new similarities between new joined cluster and

others
4. Go to step 2 until all nodes form a single cluster
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Similarity measures wij for nodes I

Let A be the adjacency matrix of the network, i.e. Aij = 1 if
(i, j) ∈ E and 0 otherwise.

I Jaccard index:

wij =
|Γ(i) ∩ Γ(j)|
|Γ(i) ∪ Γ(j)|

where Γ(i) is the set of neighbors of node i
I Cosine similarity:2

wij =

∑
k AikAkj√∑

k A
2
ik

√∑
k A

2
jk

=
nij√
kikj

where:
I nij = |Γ(i) ∩ Γ(j)| =

∑
k AikAkj , and

I ki =
∑

k Aik is the degree of node i
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Similarity measures wij for nodes II
I Euclidean distance: (or rather Hamming distance since A

is binary)
dij =

∑
k

(Aik −Ajk)2

I Normalized Euclidean distance:3

dij =

∑
k(Aik −Ajk)2

ki + kj
= 1− 2

nij
ki + kj

I Pearson correlation coefficient

rij =
cov(Ai, Aj)

σiσj
=

∑
k(Aik − µi)(Ajk − µj)

nσiσj

where µi = 1
n

∑
k Aik and σi =

√
1
n

∑
k(Aik − µi)2

2From the equation xy = |x||y| cos θ
3Uses the idea that the maximum value of dij is when there are no

common neighbors and then dij = ki + kj
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Similarity measures for sets of nodes

I Single linkage: sXY = máx
x∈X,y∈Y

sxy

I Complete linkage: sXY = mı́n
x∈X,y∈Y

sxy

I Average linkage: sXY =

∑
x∈X,y∈Y sxy

|X| × |Y |
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Agglomerative hierarchical clustering on Zachary’s
network
Using average linkage
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The Girvan-Newman algorithm
A divisive hierarchical algorithm [Girvan and Newman, 2002]

Edge betweenness
The betweenness of an edge is the nr. of shortest-paths in the
network that pass through that edge

It uses the idea that “bridges” between communities must have
high edge betweenness
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The Girvan-Newman algorithm

Pseudocode

1. Compute betweenness for all edges in the network
2. Remove the edge with highest betweenness
3. Go to step 1 until no edges left

Result is a dendogram
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Definition of modularity [Newman, 2010]
Using a null model

Random graphs are not expected to have community structure,
so we will use them as null models.

Q = (nr. of intra-cluster communities)− (expected nr of edges)

In particular:

Q =
1

2m

∑
ij

(Aij − Pij) δ(Ci, Cj)

where Pij is the expected number of edges between nodes i
and j under the null model, Ci is the community of vertex i, and
δ(Ci, Cj) = 1 if Ci = Cj and 0 otherwise.
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How do we compute Pij?
Using the “configuration” null model

The “configuration” random graph model choses a graph with
the same degree distribution as the original graph uniformly at
random.

I Let us compute Pij
I There are 2m stubs or half-edges available in the

configuration model
I Let pi be the probability of picking at random a stub

incident with i
pi =

ki
2m

I The probability of connecting i to j is then pipj =
kikj
4m2

I And so Pij = 2mpipj =
kikj
2m
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Properties of modularity

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(Ci, Cj)

I Q depends on nodes in the same clusters only
I Larger modularity means better communities (better than

random intra-cluster density)
I Q ≤ 1

2m

∑
ij Aij δ(Ci, Cj) ≤

1
2m

∑
ij Aij ≤ 1

I Q may take negative values
I partitions with large negative Q implies existence of cluster

with small internal edge density and large inter-community
edges
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The Louvain method [Blondel et al., 2008]
Considered state-of-the-art

Pseudocode
1. Repeat until local optimum reached

1.1 Phase 1: partition network greedily using modularity
1.2 Phase 2: agglomerate found clusters into new nodes
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The Louvain method
Phase 1: optimizing modularity

Pseudocode for phase 1

1. Assign a different community to each node
2. For each node i

I For each neighbor j of i, consider removing i from its
community and placing it to j’s community

I Greedily chose to place i into community of neighbor that
leads to highest modularity gain

3. Repeat until no improvement can be done
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The Louvain method
Phase 2: agglomerating clusters to form new network

Pseudocode for phase 2

1. Let each community Ci form a new node i
2. Let the edges between new nodes i and j be the sum of

edges between nodes in Ci and Cj in the previous graph
(notice there are self-loops)
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The Louvain method
Observations

I The output is also a hierarchy
I Works for weighted graphs, and so modularity has to be

generalized to

Qw =
1

2W

∑
ij

(
Wij −

sisj
2W

)
δ(Ci, Cj)

where Wij is the weight of undirected edge (i, j),
W =

∑
ijWij and si =

∑
kWik.
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