
CAIM: Cerca i Anàlisi d’Informació Massiva
FIB, Grau en Enginyeria Informàtica

Slides by Marta Arias, José Luis Balcázar,
Ramon Ferrer-i-Cancho, Ricard Gavaldá

Department of Computer Science, UPC

Fall 2018
http://www.cs.upc.edu/~caim

1 / 31

http://www.cs.upc.edu/~caim

3. Implementation

Query answering

A bad algorithm:

input query q;
for every document d in database

check if d matches q;
if so, add its docid to list L;

output list L (perhaps sorted in some way);

Query processing time should be largely independent of
database size.
Probably proportional to answer size.

3 / 31

Central Data Structure
From terms to documents

A vocabulary or lexicon or dictionary, usually kept in main
memory, maintains all the indexed terms (set, map. . .); and,
besides. . .

The Inverted File
The crucial data structure for indexing.

I A data structure to support the operation:
I “given term t, get all the documents that contain it”.

I The inverted file must support this operation (and variants)
very efficiently.

I Built at preprocessing time, not at query time: can afford to
spend some time in its construction.

4 / 31

The inverted file: Variant 1

5 / 31

The inverted file: Variant 2

6 / 31

The inverted file: Variant 3

7 / 31

Postings
The inverted file is made of incidence/posting lists

We assign a document identifier, docid to each document.
The dictionary may fit in RAM for medium-size applications.

For each indexed term
a posting list: list of docid’s (plus maybe other info) where the
term appears.

I Wonderful if it fits in memory, but this is unlikely.
I Additionally: posting lists are

I almost always sorted by docid
I often compressed: minimize info to bring from disk!

8 / 31

Implementation of the Boolean Model, I
Simplest: Traverse posting lists

Conjunctive query: a AND b

I intersect the posting lists of a and b;
I if sorted: can do a merge-like intersection;
I time: order of the sum of the lengths of posting lists.

intersect(input lists L1, L2, output list L):
while (not L1.end() and not L2.end())

if (L1.current() < L2.current()) L1.advance();
else if (L1.current() > L2.current()) L2.advance();
else { L.append(L1.current());

L1.advance(); L2.advance(); }

9 / 31

Implementation of the Boolean Model, II
Simplest

I Similar merge-like union for OR.
I Time: again order of the sum of lengths of posting lists.

I Alternative: traverse one list and look up every docid in the
other via binary search.

I Time: length of shortest list times log of length of longest.

Example:
I |L1| = 1000, |L2| = 1000:

I sequential scan: 2000 comparisons,
I binary search: 1000 ∗ 10 = 10, 000 comparisons.

I |L1| = 100, |L2| = 10, 000:
I sequential scan: 10, 100 comparisons,
I binary search: 100 ∗ log(10, 000) = 1400 comparisons.

10 / 31

Implementation of the Boolean Model, III
Sublinear time intersection: Skip pointers

I We’ve merged 1. . . 19 and 3. . . 26.
I We are looking at 36 and 85.
I Since pointer(36)=62 < 85, we can jump to 84 in L1.

11 / 31

Implementation of the Boolean Model, IV
Sublinear time intersection: Skip pointers

I Forward pointer from some elements.
I Either jump to next segment, or search within next

segment (once).
I Optimal: in RAM,

√
|L| pointers of length

√
|L|.

I Difficult to do well, particularly if the lists are on disk.
12 / 31

Query Optimization and Cost Estimation, I

Queries can be evaluated according to different plans
E.g. a AND b AND c as

I (a AND b) AND c

I (b AND c) AND a

I (a AND c) AND b

E.g. (a AND b) OR (a AND c) also as

I a AND (b OR c)

The cost of an execution plan depends on the sizes of the lists
and the sizes of intermediate lists.

13 / 31

Query Optimization and Cost Estimation, II
Example

Query: (a AND b) OR (a AND c AND d).

Assume: |La| = 3000, |Lb| = 1000, |Lc| = 2500, |Ld| = 300.

I Three intersections plus one union, in the order given: up
to cost 13600.

I Instead, ((d AND c) AND a): reduces to up to cost 11400.
I Rewrite to a AND (b OR (c AND d)): reduces to up to cost

8400.

14 / 31

Implementation of the Vectorial Model, I
Problem statement

Fixed similarity measure sim(d, q):

Retrieve
documents di which have a similarity to the query q

I either
I above a threshold simmin, or
I the top r according to that similarity, or
I all documents,

I sorted by decreasing similarity to the query q.

Must react very fast (thus, careful to the interplay with disk!),
and with a reasonable memory expense.

15 / 31

Implementation of the Vectorial Model, II
Obvious nonsolution

Traverse all the documents, look at their terms in order to
compute similarity, filter according to simmin, and sort them. . .

. . . will not work.

16 / 31

Implementation of the Vectorial Model, III
Observations

Most documents include a small proportion of the available
terms.

Queries usually include a humanly small number of terms.

Only a very small proportion of the documents will be relevant.

A priori bound r on the size of the answer known.

Inverted file available!

17 / 31

Implementation of the Vectorial Model, IV
Idea

Invert the loops:

I Outer loop on the terms t that appear in the query.

I Inner loop on documents that contain term t.
I the reason for inverted index!

I Accumulate similarity for visited documents.

I Upon termination, normalize and sort.

Many additional subtleties can be incorporated.

18 / 31

Index compression, I
Why?

A large part of the query-answering time is spent

bringing posting lists from disks to RAM.

Need to minimize amount of bits to transfer.

Index compression schemes use:

I Docid’s sorted in increasing order.
I Frequencies usually very small numbers.
I Can do better than e.g. 32 bits for each.

19 / 31

Index compression, II

Topic for self-study. At least:

I Unary self-delimiting code.
I Gap compression + Elias Gamma code.
I Continuation bit.
I Typical compression ratios.

E.g. books listed in the Presentation part of these notes.

20 / 31

	3. Implementation

