No Feasible Interpolation for TC"-Frege Proofs

MARIA LuisA BONET *

Abstract

The interpolation method has been one of the main tools
for proving lower bounds for propositional proof systems.
Loosely speaking, if one can prove that a particular proof
system has the feasible inierpolation property, then a
generic reduction can (usually) be applied to prove lower
bounds for the proof system, sometimes assuming a
(usually modest) complezity-theoretic assumption. In
this paper, we show that this method cannot be used
to oblain lower bounds for Frege systems, or even for
TCC-Frege systems. More specifically, we show that
unless factoring is feasible, neither Frege nor T'C® - Frege
has the feasible interpolation property. In order to carry
out our argument, we show how fo carry out proofs
of many elementary arioms/theorems of arithmetic in
polynomial-size TC°-Frege. In particular, we show
how to carry out the proof for the Chinese Remainder
Theorem, which may be of independent interest. As a
corollary, we obtain that TCP-Frege as well as any
proof system that polynomially simulates it, is not
automatizable (under a hardness assumption).

1 Introduction

In recent years, the interpolation method has been
one of the most promising approaches for proving lower
bounds for propositional proof systems and for bounded
arithmetic. The basic idea behind the interpolation
method 1s as follows.

We begin with an unsatisfiable statement of the form
F(z,y,2) = Ao(z,2) A A1(y,z), where z denotes a
vector of shared variables, and z and y are vectors of
private variables for formulas 4, and A; respectively.
Since F is unsatisfiable, it follows that for any truth
assignment a to z, either Ao(z,a) is unsatisfiable
or A;(y, @) is unsatisfiable. An interpolation function

*Department of LSI, Universidad Politécnica de Cataluna,
Barcelona, Spain, bonet@goliat.upc.es. Research partly sup-
ported by EU HCM network console.

!Department of Computer Science, University of Arizona,
toni@cs.arizona.edu. Research supported by NSF Grant
CCR-9457782, US-Israel BSF Grant 95-00238, and Grant
INT-9600919/ME-103 from NSF and MSMT (Czech Republic)

{Department of Applied Math, Weizmann Institute, ran-
raz@wisdom.weizmann.ac.il. Research supported by US-Israel
BSF Grant 95-00238

0272-5428/97 $10.00 © 1997 IEEE

TONIANN Prrasst f

RAN Raz #

associated with F' is a boolean function that takes such
an assignment o as mput, and outputs 0 only if Ay is
unsatisfiable, and 1 only if A; is unsatisfiable. (Note
that both Ay and A; can be unsatisfiable in which case
either answer will suffice).

How hard 1s it to compute an interpolation function
for a given unsatisfiable statement F as above 7 It
has been shown, among other things, that interpolation
functions are not always computable in polynomial-time
unless P = NPNco— NP [M1, M2, M3]. Nevertheless,
it is possible that such a procedure exists for some
special cases. In particular, a very interesting and
fruitful question is whether one can find (or whether
there exists) a polynomial-size circuit for an inter-
polation function, in the case where F has a short
refutation in some proof system S. We say that a proof
systemn S admits feasible interpolation if whenever S
has a polynomial-size refutation of a formula F (as
above), an interpolation function associated with F
has a polynomial-size circuit.

There is also a monotone version of the interpolation
idea. Namely, F* = Ap(x,z) A Ay(y,z) is monotone
if the variables of z occur only positively in A; and
only negatively in Ag. In this case, we are interested
in finding a polynomial-size monotone circuit for an
interpolant function, and we say that a proof system
S admits monotone feasible interpolation if whenever
S has a polynomial-size refutation of a monotone F', a
monotone interpolation function associated with F' has
a monotone polynomial-size circuit.

Beautiful connections exist between circuit complex-
ity, and proof systems having feasible interpolation, in
both (monotone and non-monotone) cases:

In the monotone case, it was proved that a (suf-
ficiently strong) proof system S, that admits mono-
tone feasible interpolation, cannot have polynomial-size
proofs for all tautologies. This was presented by the
sequence of papers [IPU, BPR, K1], and was first used
in [BPR] to prove lower bounds for propositional proof
systems. (The idea is also implicit in [Razb2]).

In short, the statement F that is used is the Clique
interpolation formula, Ao(g,%) A A1(g,y), where Aq
states that g is a graph containing a clique of size
k (where the clique is described by the z variables),
and A; states that g is a -graph that can be colored
with k& — 1 colors (where the coloring is described

by the y variables). By the pigeonhole principle,
this formula is unsatisfiable. However, an associated
monotone interpolation function would take as input
a graph g, and distinguish between graphs containing
cliques of size k from those that can be colored with
k — 1 colors. By [Razbl, AB] such a circuit is of
exponential size. Thus, exponential lower bounds
follow for any propositional proof system S that admits
feasible monotone interpolation.

In the non-monotone case, it was shown in [Razb2]
that assuming a cryptographic assumption, if a (suf-
ficiently strong) proof system S admits feasible inter-
polation then § cannot have polynomial-size proofs
of all tautologies. In short, it was shown that a
(non-monotone) interpolation function, associated with
a certain statement expressing P # NP, is computable
by polynomial-size circuits only if there do not exist
pseudorandom number generators. Therefore, lower
bounds follow for any (sufficiently strong) propositional
proof system that admits feasible interpolation (condi-
tional on the cryptographic assumption that there exist
pseudorandom number generators).

Many researchers have used these ideas to prove lower
bounds for propositional proof systems. In particular,
in the last five years, lower bounds have been shown
for all of the following systems using the interpolation
method: Resolution [BPR], Cutting Planes [IPU, BPR,
Pud, CH], generalizations of Cutting Planes [BPR, K1,

K2], relativized bounded arithmetic [Razb2], Hilbert’s

Nullstellensatz [PS], the polynomial calculus [PS], and
the Lovasz-Schriver proof system [Pud3].

One of the most important questions in propositional
proof complexity is to show that there is a family
of propositional tautologies requiring super-polynomial-
size proofs in a Frege or Extended Frege proof system.
The problem is still open, and it is thus a very important
question to understand whether or not the interpolation
method can be applied to prove lower bounds for these
systems, as well as for weaker systems.

1.1 Automatizability

As explained in the previous paragraphs, the existence
of feasible interpolation for a particular proof system S
gives rise to lower bounds for S. Feasible interpolation,
moreover, is a very important paradigm for proof
complexity (in general) for several other reasons. In
this section, we wish to explain how the lack of feasible
interpolation for a particular proof system S implies
that S is not automatizable.

We say that a proof system S is automatizable if
there exists a deterministic procedure D that takes as
input a formula f and returns an S-refutation of f (if
one exists) in time polynomial in the size of the shortest

255

S-refutation of f. Automatizability is a crucial concept
for automated theorem proving: in proof complexity we
are mostly interested in the length of the shortest proof,
whereas in theorem proving it is also essential to be able
to find the proof. While there are seemingly powerful
systems for the propositional calculus (such as Extended
Resolution or even ZFC), they are scarce in theorem
proving because it seems difficult to search efficiently
for a short proof in such systems. In other words, there
seemns to be a tradeoff between proof simplicity and
automatizability — the simpler the proof system, the
easier 1t is to find the proof.

In this section, we formalize this tradeoff in a certain
sense. In particular, we show that if S has no feasible
interpolation then S is not automatizable. This was
first observed by Russell Impagliazzo [Im]. The idea is
to show that if S is automatizable (using determinis-
tic procedure D), then S has feasible interpolation:
Suppose that Ag(z,z) A A1(y,z) is the interpolant
statement, and let a be an assignment to z. Then we
can run D on Ag(z, a)AA;(y, o) to obtain a refutation
of size 5. Next, we run D on Ag(z,a) and return 0 if
and only if D produces a refutation of Ag(zx,) within
time T(s) (where T(s) is the time for D to produce
a refutation for a formula that has a refutation of size
s). This works because in the case where A;(y,qa) is
satisfiable with satisfying assignment -y, we can plug ¥
into the refutation of Ao¢(x,a) A Ai(y,a) to obtain a
refutation of Ao(z,a) of size s.

Thus, feasible interpolation is a sirnple measure that
formalizes the complexity/search tradeoff: the existence
of feasible interpolation implies super-polynomial lower
bounds (sometimes modulo complexity assumptions),
whereas the nonexistence of feasible interpolation 1m-
plies that the proof system cannot be automatized.

1.2 Interpolation and one way functions

How can one prove that a certain propositional proof
system S does not admit feasible interpolation 7 One
idea, due to Krajicek and Pudlak [KP], is to use one
way permutations in the following way. Let h be a
one way permutation and let Ag(z,2), A1(y, z) be the
following formulas.

The formula Ao :
h(z) = z, AND the i** bit of z is 0.

The formula A4, :
h(y) = z, AND the ¢** bit of y is 1.

Since h is one to one, Ao(z, 2)AA1(y,) is unsatisfiable.
Assume that Ao, A: can be formulated in the proof
system S, and that in S there exists a polynomial-size
refutation for Ag(z,z) A A1(y,z). Then, if S admits
a feasible interpolation theorem it follows that given

an assignment a to z there exists a polynomial-size
circuit that decides whether Ag(z,a) is unsatisfiable
or Ai(y,«) is unsatisfiable. Obviously, such a circuit
breaks the #t# bit of the input for 2. Since Aqg, A; can
be constructed for any 7, all bits of the input for A can
be broken. Hence, assuming that the input for A is
secure, and that in the proof system S there exists a
polynomial-size refutation for Ay A A;, it follows that
S does not have a feasible interpolation theorem.

A major step towards the understanding of feasible
interpolation was made by Krajicek and Pudlak [KP].
They considered formulas Ag, A1 based on the RSA
cryptographic scheme, and showed that unless RSA is
not secure, Extended Frege systems do not have feasible
interpolation. It has been open, however, whether or
not the same negative results hold for Frege systems,
and for weaker systems such as bounded depth threshold
logic or bounded depth Frege.

1.3 Our results

In this paper, we prove that Frege systems, as well
as constant-depth threshold logic (referred to below
as T'C°-Frege), do not admit feasible interpolation,
unless factoring is computable by polynomial-size cir-
cuits. Thus our result significantly extends [KP] to
weaker proof systems. In addition, our cryptographic
assumption is weaker.

To prove our result, we use a variation of the ideas
of [KP]. As observed by Naor [Naj, the cryptographic
primitive needed here is not one way permutation as in
[KP], but the more general structure of bit commitment.
Our formulas Ag, A; are based on the Diffie-Hellman
secret key exchange scheme [DH]. For simplicity, we
state the formulas only for the least significant bit. (Our
argument works for any bit).

Fix a number P (not necessarily a prime) of length
n, and let g be a generator of the group Z3. Our
propositional statement DHp , will be

DHp, = Ao(X,Y,a,b) A A1 (X,Y, ¢, d).

The common variables are two integers X,Y. The
private variables for Ag are integers a, b, and the private
variables for A; are integers ¢, d.

Informally, Ao(X,Y,a,b) will say that g°modF = X,
g¢*modP = Y, and that g*®modP is even. Similarly,
Ai(X,Y,c,d) will say that g°modP = X, ¢*modP =
Y, and g°®modP is odd. The statement Ag A A4; is
unsatisfiable since (informally) if Ag, A; are both true
we have

(9°*modP) = (9°modP)*modP = X modP =

(9°modP)’modP = g**modP = (g modP)°modP =

256

Y ®modP = (g®modP)°*modP = g**modP.

We will show that the above informal proof can be made
formal with a (polynomial-size) T'C?-Frege proof. On
the other hand, an interpolant function computes one
bit of the secret key exchanged by the Diffie-Hellman
procedure. Thus, if 7°C°-Frege admits feasible in-
terpolation, then all bits of the secret key exchanged
by the Diffie-Hellman procedure can be broken using
polynomial-size circuits, and hence the Diffie-Hellman
cryptographic scheme is not secure. Note, that it
was proved that for P = p; - p2, where p;,p; are
both primes, breaking the Diffie-Hellman eryptographic
scheme is harder than factoring P ! [Sh, Mc].

It will require quite a bit of work to formalize the
above argument in TC®-Frege. In particular, it will
require a T'CY-Frege proof for the Chinese-Reminder-
Theorem, and T'C°-Frege proofs for the main facts of
basic arithmetic.

1.4 TCP°-Frege systems

For clarity, we will work with a specific bounded-
depth threshold logic system, that we call TC®-Frege.
However, any reasonable definition of such a system
should also suffice. Our system is a sequent-calculus
logical system where formulas are built up using the
connectives V, A, Thg, =, and &. (Thi(z) is true if
and only if the number of 1’s in z is at least k, and
®1(z) is true if and only if the number of 1’s in z is
odd.)

Our system is essentially the one introduced in [MP].
(Which is, in turn, an extension of the system PTK
introduced by Buss and Clote [BC, Section 10].) The
full description of our proof system is omitted in this
version of the paper.

Intuitively, a family of formulas fi, f2, fs,... has
polynomial-size TC?-Frege proofs if each formula has a
proof of size polynomial in the size of the formula,
and such that every line in the proof is a TC°
formula. For simplicity, we will usually omit the
words: “polynomial-size”. I.e, whenever we say that a
family has TCY-Frege proofs, we actually mean to say
“polynomial-size TC°-Frege proofs”.

1.5 Section description

The paper is organized as follows. In Section 2, we
define the T'C°-formulas used for the proof. In Section
3, we define precisely the interpolation formulas which
are based on the Diffie-Hellman cryptographic scheme.
In Sections 4 and 5 we give a sketch of the proof, and
we conclude with a short discussion in Section 6.

2 The TC?-formulas

In this section we will describe some of the TC?°-
formulas needed to formulate and to refute the Diffie-
Hellman formula. For simplicity of the description, let
us assume that the number P, used for the Diffie-
Hellman formula, is fixed, and that we also have a fixed
number N which is an upper bound for the length of
all numbers used in the refutation of the Diffie-Hellman
formula. The number N will be used to define some of
the formulas below. After seeing the statement and the
refutation of the Diffie-Hellman formula, it will be clear
that it is enough to take N to be a small polynomial in
the length of the number P.

2.1 Addition and subtraction

We will use the usual carry-save ACY9-formulas to
add two mn-bit numbers. Let ¢ = z,,..,2; and
Y = Ya,.-y1 be two numbers. Then z + y will
denote the following AC?-formula: There will be n+ 1
output bits, z,41,...,21. The bit z will equal the
mod 2 sum of C;, z; and y;, where C; is the carry
bit. Intuitively, C; is 1 if there is some bit position
less than 7 that generates a carry that is propagated
by all later bit positions until bit ¢. Formally, C;
is computed by OR(Rii-1y,..., Ri1), where R;; =
AND(Pi_y,..., Pj31,Gj), where Py Mods(zr, yi),
and G; = AND(zj,y;). (Gj is 1 if the j** bit position
generates a carry, and P is 1 if the k*® bit position
propagates but does not generate a carry.)

As for subtraction, let us show how to compute z =
[z — y|. Think of 2,y as N-bit numbers. Let s =
z 4+ T+ 1, and similarly let ¢t = y+ T + 1, where 7 is
the negation of the N bits of y, and T is the negation
of the N bits of #. Denote s = sy41,Sn, ..., 51, and
note that s is equal to 2V + (z — y), and similarly ¢ is
equal to 2V + (y—1z). If sy+1 = 1, then we know that
z =y >0 and thus s = z. Otherwise, if syy; = 0,
then we know that y —z > 0 and thus ¢ = 2. Thus, for
any i, we can compute z; by (sy+1As;)V(—syt1AL).

2.2 Iterated addition

We will now describe the TC?-formula SUM |z, ..., Tm]
that inputs m numbers, each n bits long, and outputs
their sum 21 + @2 + ... + &m (see [CSV]). We assume
that m < N. The main idea is to reduce the addition
of m numbers to the addition of two numbers. Let
r; be z;p,...,x;1 (in binary representation). Let ! =
[logaN]. Let r = &, and assume (for simplicity) that
r is integer.

Divide each z; into » blocks where each block has 2]
bits, and let S; ;. be the number in the £** block of z;.

257

That is,
2l

Sik = Zzi,(k-l)-21+j (971
j=t
Now, each S;; has 2/ bits. Let L; be the low-order
half of Sj and let H;; be the high order half. That
is, Sip = Hip - 2+ Li.

Denote
m r
H= Z Z Hz',)c . 21 . 2(k—1)21,

fue] fe=]

m r
L= Z Lig- o(k-1)21
i=1 k=1
Then,

21+ .t Tm = f:isi,k Lo(k=1)20 o

i=l k=1

” m r
Hi,k'21'2(k-l)2l+zz[4i,k'2(k—1)21 - H+L.

i=1 k=1

m
i=1 k=1
Hence, we just have to show how to compute the
numbers H,L. Let us show how to compute L, the
computation of H is similar.

Denote Lg = Y ;~; Lix. Then

L=Y Lp-20-1%,
k=1

Since each L, is of length [, each Lg is of length at
most [+ log, m, which is at most 2/. Hence, the bits
of L are just the bits of the Li-s combined. That is,
L=1L; Le_y,....Ly.

As for the computation of the Li-s, note that
since each Ly is a poly-size sum of logarithmic length
numbers, it can be computed using poly-size threshold
gates.

2.3 Modulo arithmetic

Next, we describe our TCy-formulas that compute the
remainder and the largest divisor (respectively) of a
number z modulo p (where the number p is fixed,
and is not an input for the formula). That is,
suppose that z = kp+r, where 0 < » < p. Then our
formula, [z], will output 7, and our formula div,(z)
will output k. The formulas are computed as follows.

Let 2 = 2z,,...,21; i.e., 2 = 31,21z, For each
i < n, we will have hardwired k; and r; such that
2 = p-ki +r;, where 0 < r; < p. We will also have
hardwired the values p, 2p, ..., np.

z satisfies
n n
z= z 21y = Z(p chici+rici)z =
=1 i=1

n n
p: E kio1-z; + E Tio1 %,
1=’ i=1

Denote s = Y iy Ti-1 -z, and let ! be such that
l-p<s< (I+1)-p (I can be computed just by
checking all the possibilities). Then [z], = s—1-p, and
can therefore be computed by

(zlp = SUMLy[rie1 -]~ p - L.

divp(z) is computed by SUML [ki_y - 2] + 1.

2.4 Product and iterated product

We will write z -y to denote the formula
SUM; ;[21*+7-2z;y;], computing the product of two
n-bit numbers z and y. By 2i+j‘2:ciyj we mean
20+3-2 if both z; and y; are true, and 0 otherwise.

Lastly, we will describe our 7C?-formula for comput-
ing the iterated product of m numbers. This formula is
basically the original formula of [BCH], and articulated
as a TC°-formula in [M].

The iterative product, PROD|zy, ..., 2,n] gives the
product of zy,...,zm, where each z; is of length n,
and we assume that m,n are both bounded by N.
The basic idea is to compute the product modulo small
primes using iterated addition, and then to use the
constructive Chinese Remainder Theorem to construct
the actual product from the product modulo small
primes.

Let @ be the product of the first ¢t primes q1, ..., g,
where ¢ is the first integer that gives a number @Q of
length larger than N2. Since gi,...,q: are all larger
than 2, ¢ is at most N2, and by the well known bounds
for the distribution of prime numbers the length of each
g; is at most O(log N). For each g;, let g; be a fixed
generator for Z;j. Also, for each ¢;, let u; < Q be a
fixed number with the property that u;modg; = 1 and
for all i # j, ujmodg; = 0 (such a number exists by
the Chinese Reminder Theorem). PROD|zy,..., 2] Is
computed as follows.

1. First we compute r;; = [z],;, for all 7, 5. This is
calculated using the modulo arithmetic described
earlier.

2. For each 1 < 5 < t we will

ri = ([Ti%; ri,j)modg; as follows.

compute

a. Compute a;; such that (g;‘j)modqj =T
This is done by a table lookup.

b. Calculate ¢; = SUM[Z [ai](4,-1)-

c. Compute r; such that g;”modg; = rj. This
is another table lookup.

3. Finally compute
PROD|z1,...,zm] = SUMJ.‘:I[uj rilg-

We will hardwire the values u; - k for all & < g¢;.
Thus, this computation is obtained by doing a table
lookup to compute u; - r; followed by an iterated
sum followed by a mod @ calculation.

2.5 Equality, and inequality

Often we will write £ = y, where = and y are both
vectors of variables or formulas: z = z,,...,21, and
Y= Yn,-,y1- When we write £ = y, we mean the
formula A;(—z; V yi) A (z: V —y;i). We apply the same
conventions when writing #, <, <,>, 2.

3 The Diffie-Hellman Formula

We are now ready to formally define our propositional
statement DHp,, for an n-bits integer P, and a
generator g of the group Zp. DHp, will be the
conjunction of A and A;. The common variables
for the formulas will be X,Y, and for every ¢ < 2n,
we will also add common variables for X2 modP, and
for Y2 'modP (that is, whenever we write X2 modP
or Y2'modP we mean to these new common variables,
and not to some expressions in X or Y). For every
i < 2n, we will also use the number g2 modP. Note
that since ¢ is fixed, we can think of the numbers
gmodP, g>modP, g*modP, ..., g* modP as hardwired.

For e € {0,1}, denote by g2"¢ (respectively, X2e,
Y?"¢) the following: ¢* modP (respectively X* modP,
Y?'modP) if e = 1, and 1 if ¢ = 0. The formula
Ao(X,Y,a,b) will be the conjunction of the following
TCO -formulas:

- PROD; [gz"ﬂ=]P = X.

(Which means g®modP = X .)

2. For every j <n,
PROD; [gzﬁj'“‘] = X% modP.
P

{(Which means (g"’j)“modP = ijmodP.) Note
that from this it is easy to prove for e € {0,1},

PROD, [§?7] = x*

258

3. Similar formulas for g¢’modP and for

(gzj)bmodP =Y modP.

Y,

PROD;,; [¢**"*%] = EVEN.
P
(Which means g**modP is even.)

Similarly, the formula A;(X,Y,c,d) will be the
conjunction of the above formulas, but with a replaced

by ¢, b replaced by d, and the last item states that
9°%modP is odd.

4 A TC’-Fregerefutationfor DHp,

We want to describe a TC®-Frege refutation for DHp .
As mentioned above the proof proceeds as follows.

1. Using Ao, show that g**modP = X modP .
. Using A;, show that X*modP = g®*modP.
. Show that g®®modP = g**modP .
. Using Ag, show that ¢g**modP = Y modP .
. Using A;, show that Y modP = g% modP.
Show that g%modP = g*4modP.

= N

We can conclude from the above steps that A, and
Ay imply that g%*modP = g°modP, but now we can
reach a contradiction since Ag states that g®®modP is
even, while A4, states that g°*modP is odd.

We formulate ¢**modP as

PROD; ; [g2‘+i-a.-~bj] o

and X’modP as
. 25 .p.
PROD; (X :]P

Thus, step 1 is formulated as

PROD;; [¢*"%] = PROD; [x2)
P P
and so on.
Steps 1,2,4,6 are all virtually identical. Steps 3 and
6 follow easily because our formulas defining g% make
symmetry obvious. Thus the key step is to show how
to prove ¢**modP = XtmodP , which is formulated as

. 2'+j~ai~bj -) 21'_’71,
PROD;; [g]P PROD; [x]P
We will build up to the proof that g**modP equals

X®modP by first proving many lemmas concerning our
basic TC°-formulas.

259

In the following lemmas, z, y and z will usually
be numbers. Each one of them will denote a vector
of n variables or formulas (representing the number),
where » < N and z; (respectively y;, z;) denotes
the i** variable of = (representing the i'* bit of the
number z). When we need to talk about more than
three numbers, we will write zy,...,2,, to represent a
sequence of m n-bit numbers, (where m,n < N'), and
now z;; is the ji* variable of z; (representing the j**
bit in the i** number).

Recall that whenever we say below “there are T'C°-
Frege proofs” we actually mean to say “there are
polynomial-size TC°-Frege proofs” .

Some trivial properties like 2 = yAy=z -z = =
are not stated here. Also, in this version of the paper,
most of the proofs are omitted.

4.1 Some basic properties of arithmetic

Lemma 1 For every x,y, there are TCP-Frege proofs
ofe+y=y+ec.

Lemma 2 Forevery z,y, z, there are TCP - Frege proofs
ofz+(y+z)=(z+y)+z

Lemma 3 For every z,y, there are TCC-Frege proofs
of(z+y)—y=r=.

Lemma 4 For every z,y, such that z > y, there are
TC®-Frege proofs of (x — Y+y==z.

Lemma 5 Forevery z,y, z, there are TC® - Frege proofs
oft+z=y+z—z=y.

Lemma 6 Forevery z,y, z, there are TCO - Frege proofs
ofe<y—aztz<y+ez. '

Lemma 7 Forevery z,y, z, there are TC® - Frege proofs
ofe<yAy<z—z<cz.

Lemma 8 For every z, there are TCC-Frege proofs of
z = SUM;[2 1]

Lemma 9 For every zy, ..., 2z, and every fized permu-
tation a, there are TC®-Frege proofs of

SUM|zy,...;2m] = SUM[za(1), +vevs Za(m)]-
(That is, the iterated sum is symmetric.)

Lemma 10 For every z, there are TC®-Frege proofs

of
SUM[Z] =z.

Lemma 11 For every zi,...,z,, there are TCO -Frege
proofs of

SUM|[zy,...;2m) = 21 + SUM[z3, ..., 2]

Lemma 12 For every 21,...,Zm, there are TCP-Frege
proofs of

SUM[ZI + 22,23, --'1zm] = SUM[ZI;Z21 3] zm]'

Lemma 13 Forevery z1, ..., zm, and every L < k < m,
there are T'C -Frege proofs of

SUM(z1, ..., zk~1, SUM 2k, ..., 2m]] = SUM |21, ..., Zm].

Lemma 14 For every z,y,z, there are TCP-Frege
proofs of
z (y+2)=z-y+z 2z

Lemma 15 For every zi,...,zm, and every z, there
are T'C® -Frege proofs of

-SUM[z1,...,2m) = SUM[z - 21, ..., 2 2m).

Lemma 16 For every z,y,z, there are T'CC-Frege
proofs of
2 (y-0)=(2-y) =

4.2 Some basic properties of the modulo
arithmetic

Lemma 17 Let z be an n-bit number, and let p be
a fized number. For each i < n, let ry = [2°=1], if
zi =1, and r; = 0 otherwise, and let k; = div, (2!~1) if
2; = 1 and k; = 0 otherwise, where the numbers [2"'1],,,
divy(2°=1) are hard-coded actual numbers. Then there
are TC®-Frege proofs of

z= SUM;[T.‘ +p-k,'].

Lemma 18 For every z and every fized p, there are
TC?-Frege proofs of

z = [2]p + divp(2) - p.

Also, the following uniqueness property has a TC® -Frege
proof: If z =z +y-p where 0 < 2 < p, then 2 = [2],
and y = divp(z).

Lemma 19 For every z,k and every fized p, there are
TC? -Frege proofs of

[z]p

Lemma 20 For every z,y and every fized p, there are
TC" -Frege proofs of

[z + ylp = [[2], + [Y]plp-

Lemma 21 Forevery zy, ..., z2m and every fized p, there
are TC®-Frege proofs of

[+ & 'P]p'

SUM |z, ..., zm]p = [[21]p + SUM 22, ..., Zm]plp-

260

Lemma 22 For every z,y,z and every fized p, there
are TCO -Frege proofs of
(2 +2)p = [y + z]p — [z]p = [t]p-
Lemma 23 For every z,y and every fized p, there are
TC® -Frege proofs of
[z ylp = [z [U]ple-

Lemma 24 Let. A,B,C be fized numbers such that
A = BC. Then for every z, there are TC?-Frege proofs

of

[z]g = [[2]als-

4.3 Some basic properties of iterative
product

Lemma 25 For every 2zi,...,2m, and every fized per-
mutation o, there are TC® -Frege proofs of

PROD[z1, veuy zm] - PROD[ZO,(G), ey za(m)].
(That is, the iterated product is symmetric.)

Lemma 26 Forevery zy,...,2m, and every L <k < m,
there are TGO -Frege proofs of

PRODI[z1, ...,] = PROD|z,, ..., z6—1, PROD{zx, ..., 2m]].

4.4 The Chinese-Reminder-Theoremand
other properties of iterative product

The heart of our proof is a TCC-Frege proof for the
following lemma, which gives the hard direction of the
Chinese-Reminder-Theorem (a TCP-Frege proof for the
other direction is simpler).

Lemma 27 Let R,S be two integers, such that for
every j, [Rly, = [Sle;. Then there are TCC-Frege proofs

of

[Rlq = [Slq-
(where g1, ..., q: are the fized primes used for the PROD
formula (ie., the first t primes), and Q is thewr
product.)

We are now able to prove the following lemmas

Lemma 28 For every z, there are TC-Frege proofs
of
PROD[z] = =.

Lemma 29 For every zi,z3, there are TCP-Frege
proofs of
PROD[z, 23] = 21 - 23.

4.5 A refutation for DHp,

Using the previous lemmas, we are now able to prove
the following:

Lemma 30 For every z1,...,2m, etery k < m—1 and
every fized p, there are TC®-Frege proofs of

PRODIz, ...,2m]p =

PROD[ZI, ey 2k PROD[Zk+1, ves

»Zmlplp-
Lemma 31 For every 211,...,2m,m' and every fized p,
there are TCP-Frege proofs of

PROD; j[z:;], = PROD;[PROD; [Zi,j]p]p-

Let us now show how to prove ¢g**modP = X*modP.
We have to prove

. 2-’-1-.1',4'.,1,. - . 23y,
PROD;; g d , = PROD; [X]P
But this follows by ,

PROD, [¢*""*+%|

5 Proofs oflemmas

Proof of Lemma 26 Recall that we have hard-coded
the numbers u;, such that u;modg; = 1 and for all
i # j, ujmodg; = 0. For all primes ¢; dividing @,
and for all m, 1 < m < g;, we can verify the following
statements: [u; - m];, = m, and for all ¢ # j, [u; -
m],, = 0. (Note that these statements are variable-free
and hence they can be easily proven by doing a formula
evaluation.)

Recall that for any k, the iterated product of the
numbers zg, ..., 2, is calculated as follows:

PROD[ZIC; ey z"l] = SUM}:I[“} ! r‘s'k,“,”‘]]Qi
where r[™ is computed like r; as defined in Sec-
tion 2.4, but using »;; only for i such that k < i< m,

In the same way,

PROD[Z1, vy By PROD[Z],, ceny zm]] =
SUMJ? [u] T‘[l' nk—1 [kl 1m]]]
[1,. k=1,[k,. m]] .

where r; is calculated as before by the

following steps:

1. For ¢ < k, calculate r; ; =], , and also calculate
Twj = PROD[Z’:, o azm]

261

For i < k calculate a;; such that (g;"')modq; =
rij, and also a.; such that (g;"?)modg; = r, ;
by table-lookup.

Calculate c'- = SUM[aLj, vy Bt gy a,,_,-](qj_l) .

Calculate rgl' wk=1,[k,..,m]]

1, k=1,]k,
T

such that g‘gmodqj =
™I by table-lookup.

Therefore, all we have to do is to show that

SUMt-l[uJ v vm]]q SU -1 [u 7'[1’ k=1 [k, lm]]] .
Hence, all we need to do to prove Lemma 26 is to show
the following claim:

Claim 32 For every j, r [ook =11k, m]] 7.[1, am]

The first step is to prove the following claim:
Claim 33 PROD([zk, .., Zm)g; = ri ™.
Claim 33 is proven as follows.

PRODI[z, ..., zmlg; =

[SUM{. [u: - "Ek"“'m]]Q]q,‘ = SUM{_ [y 'T;['k""'m]]qj =
[l - i ™, + SUMigeslus - vl ™ 1y, =
) 1, = fb

The second equality follows by Lemma 24; the third
equality follows by Lemma 21, and Lemma 9. To
prove the fourth equality, we need to use the fact
that [u; - r[el = r[k’ ™ " and also for all i # j,
[us - [k’ ’m]] =0. These facts can be easily proved
just by checking all possibilities for "™ (proving
the statement for each possibility is easy, because these
statements are variable-free and hence they can be
easily proven by doing a formula evaluation). In order
to prove the fourth equahty formally, we can show that
SU Migj[u; - vi¥™), . equals zero by induction on the
number of terms in the sum.

We can now turn to the proof of Claim 32,
The quantity rgl’] is obtained by doing a ta~
ble lookup to find the value equal to g;’modg;,
where ¢; = SUM[2,[ai;)(q;-1). Similarly, the quan-

tity 7'51’ wk=Llkmll g obtained by doing a table

Iookup to find the value equal to yJ modq,, where
C = UM[GU,az,;, o B l,Jya*,j](q,- 1)

Hence, it is enough to prove that ¢; =
previous lemmas

¢

;. Using

= [SUM/ ai jl(g;-1) + SUMZL [0 3)g;- 1)) (g;-1)-

¢ = [SUMik-—-_ll[aiJ](qJ'-l) + ax jl(g;-1)-
Thus, it suffices to show that

SUM:Z,C [ai,j](qj_l) = a*,]-.

Recall that a. ; is the value obtained by table-lookup

such that (g;“")modqj = 7., and by Claim 33, we have

k... k... . .
o Now rg- ' ’m], in turn, is the value

obtained by table-lookup to equal (gf)modqj, where
d = SUMZ, [aij)(g;-1)-

Now it is easy to verify that our table-lookup is one-
to-one. That is, for every z,y,z < ¢;, if gjmodg; = z,
and g}”-’modqj = z, then =z = y. Using this property
(with z = SUMZ [ai j](g;-1), y=axj and z =1, ; =

that r.; = rg-

SUMﬂk[ailj}(qj_l) = -

a

Proof of Lemma 27 Without loss of generality, we can
assume that 0 < R, S <@ -1, and prove that R = §.
Otherwise, define R’ = [R]g, and 5’ = [S]g, and use
Lemma 24 to show that for every j, [R']y, = [S']y;-
Since 0 < R/, 5" < @ — 1, we can then conclude that

[Rlg=R =S = [Slq.

For every k, let Qk denote Hle g;. Note that the
numbers ; can be hardwired, and that one can easily
prove the following statements. (These statements are
variable-free and hence they can be easily proven by
doing a formula evaluation.)

for every 7, Q41 = Qi - ¢Git1-

The proof of the lemma is by induction on t (the
number of g;-s). For t =1, Q@ = ¢;, and the lemma
is trivial. Now @ = @;. Assume by the induction
hypothesis that

[R]Q:—l = [S]Qt—l :

Denote, Dr = din;-x[R]’ and Ds = din(—l[S]'
Then by Lemma 18,

R=Dgr Qi-1+ [R]g,_,s
and
S = DS) Qt——l + [S]Qg_l)
and since we know that [R],, = [S],,, we have
[DR Q-1+ [R]Qt—l]qt = [DS : Ql-.-l + [S]Qt—l]Qt7

and by [R]q,_, = [S]lg._,, and Lemma 22

[Dr - Qi-1lg, = [Ds - Q¢—1]q,-

Since R,S are both lower than @, it follows that
Dp, Dg are both lower than ¢;. Hence, by Claim 34
Dp = Ds. Therefore, we can conclude that

R= DR : Qt—l + [R]Qt—l = DS) Qi—l + [S]Qt—x =S.
(W}

Claim 34 Forevery i, ifdi,d2 < i, and [d1-Qi-1]q; =
[dz g Qi._1]q‘r then d1 = dz .

Proof Since di,d2 < g¢;, there are only O(logn)
possibilities for dy,ds. Therefore, one can just check all
the possibilities for dy,ds. Proving the statement for
each possibility is easy, because these statements are
variable-free and hence they can be easily proven by
doing a formula evaluation.

Alternatively, one can define the function f(z) = [z -
Qi_1]y;, in the domain {0, ...,¢:}, and prove that f(z)
is onto the range {0,...,¢;}. Then, by applying the
propositional pigeonhole principle, which is efficiently
provable in TC?-Frege, it follows that f is one to one.

O

Proof of Lemma 28 Recall that PROD/z} is calcu-
lated as follows::

PROD[z] = SUM;_,[u; - rlq,

where r; is computed by r; = [2],;-

By Claim 33, for every i, PRODIz],, = ri. We thus
have for every i, PROD/z],; = [z]g;. The proof of the
lemma now follows by Lemma 27.

O

Proof of Lemma 29 Let us prove that for every ¢,
[PROD(z1, za]lq; = [21 - 22y,

The proof of the lemma then follows by Lemma 27. By
two applications of Lemma 23 it is enough to prove for
every 1,

[PROD[z1, z2]lg; = [[z1lg, - [22]:):-
Recall that PROD|z;, z4] is calculated as follows:
PROD[z,, 2] = SUM}_, [u; - i F]q,

where 1'% is computed like r; as defined in Section 2.4.

By Claim 33, for every ¢,
PROD[zl, Z2]q.' = r?’zl_

Recall that [z1],, = r1,i, and [22],, = r2;. Therefore,
all we have to prove is that for every 1,

= ey el

262

By the definitions:
ag,s

(9;

Py (gf"‘)modq,', and rp; =

)modg; , and therefore,

B31,i

[r1,i - r2,dqs = [(g; " ymodg; - (g{**)ymody;],, .

Also,
SUM(ay,;,03,)q, -
1"[-1’2] — (g‘ [al, az](q' U)modq,'.
Therefore, one can just check all the possibilities for

a1,i,a2,-
a

Proof of Lemma 30
PROD[ZI, ey Rk PROD[zk+1, ey Zm]p]p -

PROD[PRODIz, .., 2], PROD[z4 41, ., zmlyly =
[PROD[z1, .., 4] - PROD{zp 41, s zmlply =
[PROD|z, .., 2] - PROD|2g 41, .., 2m]lp =

PROD[PROD|[z, .., 2}, PROD[zx 41, .., 2m]lp =

PROD[z, .., 2k, PROD(zi41, .., zm]lp =
PRODI[z1, .., 2k, 241, o Zmlp-

The lemmas used for each equality in turn are:
Lemmas 26,29, 23,29,26, and 26.]

Proof of Lemma 31 By an iterative application of
the previous lemma.
n

6 Discussion

We have shown that TCP-Frege does not have feasible
interpolation, assuming that factoring is not efficiently
computable. This implies (under the same assump-
tions) that T'C°-Frege as well as any system that can
polynomially-simulate T'C°®-Frege is not automatizable.
It is interesting to note that our proof and even
the definition of the Diffie-Hellman formula itself is
nonuniform, essentially due to the nonuniform nature
of the iterated product circuits that we use. It would
be interesting to know to what extent our result holds
in the uniform T'C°® proof setting.

7 Acknowledgments

We are very grateful to Omer Reingold and Moni Naor for
collaboration at early stages of this work, and in particular for
suggesting the use of the Difie-Hellman cryptographic scheme.
We also would like to thank Uri Feige for conversations and for
his insight about extending this result to bounded-depth Frege.
Part of this work was done at Dagstuhl, during the Complexity
of Boolean Functions workshop (1997).

263

References

[AB] Alon N, and Boppana R., ” The Monotone Gircuit Complexity
of Boolean Functions”, Combinatorica, Vol 7, No. 1, pp. 1-22,
1987.

Buss, S., Clote, P. “Cutting planes, connectivity and
threshold logic,” Archive for Mathematical Logic, vol. 35
(1996), pp. 33-62.

[BCH] Beame, P, Cook, S., and Hoover, J. “ Log depth circuits
for division and related problems,” $IAM J. Comput, vol. 15
(1986), pp. 996-1003.

[BPR] Bonet, M., Pitassi, T., and Raz, R. “Lower bounds for
Cutting Planes proofs with small coefficients,” Proceedings
of the ACM Symposium on the Theory of Computing, 1995,
pp. 575-584. Also to appear in Journal of Symbolic Logic.

(BC]

[CH] Cook, S., and Haken, A., “An Exponential Lower Bound for

the Size of Monotone Real Circuits,” accepted for JCSS.

[CSV] Chandra, A.K., Stockmeyer, L., and Vishkin, U., “Constant
depth reducibility,” SIAM J. on Computing, Vol 13(2), 1984,
pp. 423-439.

Diffie, W., and Hellman, M., “New directions in cryptogra-
phy,” IEEE Trans. Inform. Theory, Vol. 22(6), 1976, pp.
644-654.

Impagliazzo, R., Personal communication.

[DH]

{Im]

[IPU] Impagliazzo, R., Pitassi, T., Urquhart, A., “Upper and lower
bounds for tree-like Cutting Planes proofs,” Proceedings from

the JEEE Symposium on Logic in Computer Science, 1994.
K1}

Kraji¢ek J., “Interpolation theorems, lower bounds for proof
systems and independence results for bounded arithmetic”,

to appear in the Journal of Symbolic Logic.

[K2] Krajitek J., .“Discretely ordered modules as a first-order

extension of the cutting planes proof system,” submitted.

Kraji¢ek J., and Pudldk , P. "“Some consequences of
cryptographical conjectures for S; and EF,” Logic and
Computational Complezity Ed. D. Leivant, Springer-Verlag,
Lecture Notes in Computer Science, Vol. 960, (1995),
pPp.210-220.

Maciel, Alexis, “Threshold circuits of small majority depth,”
Ph.D. Thesis, McGill University, February 1995.

McCurley, K., “A key distribution system equivalent to
factoring,” J. of Cryptology, Vol 1, 1988, pp. 95-105.

Mundici, D., “Complexity of Craig’s interpolation, Funda-
menta Informaticae, 5, pp. 261.273.

[KP]

M]
Mc]
M1]

[M2] Mundici, D., “A lower bound for the complexity of Craig’s
interpolants in sentential logic,” Archsv fur Math. Logik, 23,

pp. 27-36.

Mundici, D., “Tautologies with a unique Craig interpolant,
uniform vs. non-uniform complexity, Annals of Pure and
Applied Logic, 27, pp. 265-273.

Maciel, A., and Pitassi, T. “Normal forms for AC®[p]-Frege
proofs,” Proceedings of STOC, 1997,

Naor, M., Personal communication.

(M3]

(MP]

[Na]
{Pud] Pudldk , P., “Lower bounds for resolution and cutting planes
proofs and monotone computations,” J. Symbolic Logic, to

appear.

Pudldk , P, and Sgall, J., “Algebraic models of computation
and interpolation for algebraic proof systems,” submitted.

[Ps]

[Pud3] Pudldk , P., Personal communication.

[Razbl] Razborov A., "Lower Bounds for the Monotone Complexity
of some Boolean Functions”, Dokl. Ak. Nauk. SSSR, Vol 231,
pp. 798-801, 1985 (in Russian). English translation in Sov.
Math. Dokl. Vol 31, pp. 354-.357, 1985.

[Razb2] Razborov, A., “Unprovability of lower bounds on the circuit
size in certain fragments of bounded arithmetic,” [Izvestiya
of the R.A.N., 59(1) pp.201-224, 1995.

Shmuely, Z., “Composite Diffie-Hellman public-key generating
systems are hard to break,” Tecknical Report No. 356,
Computer Science Department, Technion, Israel, 1985.

sh]

