Ontologies

- The goal of the science of Ontologies is to study the categories that exist in a domain
- The result of this study is what it is called an ontology
- An ontology is a catalog of all the kind of things that we assume that exist in a domain D from the perspective of someone that uses the language L to talk about D
- The elements in an ontology represent predicates, constants, concepts and relations that belong to a language L when used to communicate information about D
- An ontology is a vocabulary

Logic gives the means to obtain deductions from the information represented in an ontology
- Logic itself is semantically neutral, it is its combination with an ontology what gives to a logic formalism the capacity to express meaning, for example:

$$
P \rightarrow Q
P
\hline
Q$$

This reasoning talks about nothing unless a meaning is given to each atom ($P =$ it rains, $Q =$ I get wet)

The development of ontologies starts with philosophy
- Aristotle coined the term Category as the word to describe the different classes that divide the things from the world
- The term ontology is relatively modern (XIX cent.), derives from greek Ontos (being) and Logos (word) (literally the words to talk about things)
- This term became to be used to distinguish categorization of the being from categorization of living beings in biology
- In fact many areas of science use categorization (Philosophy, biology, medicine, linguistics, ...)

Ontologies - Motivations

Why it is interesting to use ontologies?

- **Allows to share the interpretation of the structure of the information of a domain among people/agents**
 Defining a common ontology of a domain allows any group of agents to understand each other without ambiguity, they all know what they are talking about.

- **Allows to reuse knowledge**
 Describing a domain with an ontology allows to share the definition with other programs that need to use that knowledge.

- **Allows to make explicit our conception of the domain**
 The task of formalizing the knowledge of a domain using an ontology helps to think about our conception of the information of the domain and helps others to understand our vision of the domain.

Separates the knowledge of the domain from the procedural and problem solving knowledge

Allows to separate the techniques and algorithms used to solve the problem from knowledge of the problem.

Allows to analyze the knowledge of the domain

Once we have a formal description of the knowledge, it can be analyzed by means of logical formal methods (to know if it is consistent, complete, ...)

Elements of an ontology

- In the area of Artificial Intelligence an ontology will be an explicit formal description of the concepts of a domain (Classes)
- These classes will be described by properties that represent characteristics, attributes and relations among the classes.
- Additionally these characteristics will have constraints (data type, cardinality, ...)
- We will have also instances (identifiable elements) that will represent the actual elements of the domain.
To develop an ontology for a domain requires:
- To define the classes that the domain has
- To organize the classes in a hierarchical taxonomy
- To define the properties of each class and define their constraints
- To assign values to the properties to define instances

Methodologies for developing Ontologies

There is not a unique methodology to develop ontologies, we will use an informal one:

We have to notice that:
1. There is no correct way to model a domain. The best solution depends on the actual application/problem
2. The development of an ontology is an iterative process
3. The elements in the ontology should be close to the concepts and relations used to describe the domain (usually are names and verbs that appear in sentences describing the domain)

Phases of development of an ontology

Phase 1: Determine the domain and the coverage of the ontology
- How much of the domain will cover the ontology?
- What will be the use of the ontology?
- What kind of questions will the ontology to answer?
- Who will use and maintain the ontology?

Phase 2: Consider the reuse of existing ontologies

An ontology is developed to communicate domain knowledge hence the ability to share the description is one of the goals. It is not necessary to repeat a development that is already done, if an ontology about our domain exists we can add it to our ontology to reduce development time
Phases of development of an ontology

○ Phase 3: Enumerate the important terms in the ontology
 A list of terms that are used to describe elements of the domain has to be collected, one easy way to do this is to find sentences that can be used to ask questions about the domain or to explain information of the domain to somebody.
 • What properties have these terms?
 • What do we want to say about them?

○ Phase 4: Define the classes and their hierarchy
 We can use different approaches
 • Top down: The more general concepts are defined and then specialized
 • Bottom up: The more specific concepts are defined and then grouped by their common properties generalizing
 • A combination of both: The more relevant concepts are defined and specialized and generalized to complete the ontology
 None of these approaches are essentially better and it depends on the domain

○ Phase 5: Define the properties of the classes
 • The structure of the classes has to be described
 • A list of characteristics will be collected and it will be determined to which classes corresponds each characteristic
 • There are many kinds of properties
 • Descriptive properties, qualities
 • Identifying properties, names
 • Composing parts
 • Relations to instances of other classes
 • A property should be assigned to the more general class and the other classes will inherit it
Phases of development of an ontology

- **Phase 6:** Define the characteristics of the properties
 - Cardinality (number of values allowed)
 - Data type, values
 - Default value
 - Mandatory
 - If it is a relation define cardinality and range

- **Phase 7:** Create instances
 If it is necessary (sometime it will be) create the base instances that will need the domain ontology

Tips for developing ontologies (1)

- Do not include singular and plural names of the same term (the best policy is to use only singular or plural names)
- A name is not the class, the distinction between the name and the class has to be clear. We can have synonyms, but all refer to the same class
- Make sure that the hierarchy is well built and correct
- Be careful with the transitive relations
- Avoid cycles in the hierarchy

Tips for developing ontologies (2)

- The classes from a level in the hierarchy should have the same generality
- There is no criteria for the number of classes in a level, but experience indicates that a number between two and twelve is the usual, more classes indicates that more structure is needed
- When to add more classes?
 It is hard to use hierarchies that are too wide or too deep, a compromise should be the best, some tips are:
 - The new classes have additional properties that the superclass has not
 - They have different constraints than the superclass
 - They appear in different relations than the superclass
Tips for developing ontologies (3)

- How to decide when to use a property or a new class?
 Sometimes an attribute is important enough to consider that different values correspond to different classes.

- How to decide what level is the level of the instances?
 It is necessary to assess the minimum level of granularity needed for the domain.

- Limit the coverage of the ontology
 - It is not necessary that the ontology includes all the possible classes from the domain, only enough to cover the necessities of the problem.
 - It is also not necessary to include all possible attributes/constraints/relations.