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ABSTRACT evaluating clusterings so that it includes satisfying constraints [15],
enforcing constraints during the clustering process [38], or initializ-
ing and constraining the clustering based on labeled examples [6].
In distance-based approaches, an existing clustering algorithm that
uses a particular clustering distortion measure is employed; how-
ever, itis trained to satisfy the labels or constraints in the supervised
data. Several adaptive distance measures have been used for semi-

the distance measure. We propose a probabilistic model for semi_supervisgd clustgring, 'including string-ed'it distance trgined u.sing
supervised clustering based on Hidden Markov Random Fields EXPectation Maximization (EM) [10], KL divergence trained using

(HMRFs) that provides a principled framework for incorporating gradient d_escent [13], Euclidean _dist_ance modif_ied by a shortest-
supervision into prototype-based clustering. The model general- path algorithm [27], or Mahalanobis distances trained using convex

izes a previous approach that combines constraints and EuclidearPPtimization [39]. . I .
distance learning, and allows the use of a broad range of cluster- We propose a pr|n0|p|led probabilistic framewprk basgd on Hid-
ing distortion measures, including Bregman divergences (e.g., Eu- de_n Markov Ran_dom Fields (HMRFS) for seml-s_uperwsed clus-
clidean distance and I-divergence) and directional similarity mea- tering that. Comb'ﬂ?s the constramt-ba;ed and dls.tan.ce-base(.j ap-
sures (e.g., cosine similarity). We present an algorithm that per- proachgs In a L_m'f'ed mod_el. We motivate an obJect_lve function
forms partitional semi-supervised clustering of data by minimiz- for semi-supervised clustering derived from the posterior energy of
ing an objective function derived from the posterior energy of the _the HMR_F framework, and propose a EM-based _pe_\rtltlonal C".JSter'
HMRF model. Experimental results on several text data sets demon!"Y algorithm HMRF-KMEANS to find a (local) minimum of this

strate the advantages of the proposed framework objective function. Previously, we proposed a unified approach to
' semi-supervised clustering that was experimentally shown to pro-

duce more accurate clusters than other methods on several data

1. INTRODUCTION sets [8]. However, this approach is restricted to using Euclidean

Large amounts of unlabeled data are available in many real-life distance as the clustering distortion measure. In this paper, we
data-mining tasks, e.g., uncategorized messages in an automati&how how to generalize that model to handle non-Euclidean mea-
email classification system, genes of unknown functions for doing sures. Our generalization can utilize aBgegman divergencfg],
gene function prediction, etc. Labeled data is often limited and Which includes a wide variety of useful distances, e.g., KL diverg-
expensive to generate, since labeling typically requires human ex-ence. In a number of applications, such as text-clustering using a
pertise. Consequentlgemi-supervised learningvhich uses both vector-space model, a directional similarity measure based on the
labeled and unlabeled data, has become a topic of significant receningle between vectors is more appropriate [1]. Consequently, clus-
interest [11, 24, 33]. In this paper, we focus semi-supervised  tering algorithms that utilize distortion measures appropriate for
clustering where the performance of unsupervised clustering algo- directional data have recently been developed [18, 2]. Our unified
rithms is improved with limited amounts of supervision in the form  semi-supervised clustering framework based on HMRFs is also ap-

Unsupervised clustering can be significantly improved using su-
pervision in the form of pairwise constraints, i.e., pairs of instances
labeled as belonging to same or different clusters. In recent years,
a number of algorithms have been proposed for enhancing clus-
tering quality by employing such supervision. Such methods use
the constraints to either modify the objective function, or to learn

of labels on the data or constraints [38, 6, 27, 39, 7]. plicable to such directional similarity measures.

Existing methods for semi-supervised clustering fall into two ~ To summarize, the proposed approach aids unsupervised cluster-
general categories which we calbnstraint-basedand distance- ing by incorporating labeled data in the following three ways:
based Constraint-based methods rely on user-provided labels or ~ ® Improved initialization, where initial cluster centroids are es-
constraints to guide the algorithm towards a more appropriate data timated from the neighborhoods induced from constraints;
partitioning. This is done by modifying the objective function for e Constraint-sensitive assignment of instances to clusters, where

points are assigned to clusters so that the overall distortion
of the points from the cluster centroids is minimized, while
a minimum number of must-link and cannot-link constraints

Permission to make digital or hard copies of all or part of thisrkvfor are violated; _ o _

personal or classroom use is granted without fee providatidbpies are e lterative distance learning, where the distortion measure is
not made or distributed for profit or commercial advantage aatichpies re-estimated during clustering to warp the space to respect
bear this notice and the full citation on the first page. Toycotherwise, to user-specified constraints as well as to incorporate data vari-

republish, to post on servers or to redistribute to listquires prior specific

> ance.
permission and/or a fee. . .
KDD'04, August 22-25, 2004, Seattle, Washington, USA. We present experimental results on clustering text documents that

Copyright 2004 ACM 1-58113-888-1/04/000855.00. demonstrate the advantages of our approach.



2. BACKGROUND

Observed data

2.1 Motivation of Framework

In this work, we will focus on partitional prototype-based clus-
tering as our underlying unsupervised clustering model, where a
set of data points is partitioned into a pre-specified number of clus-
ters (each cluster having a representative or prototype) so that a
well-defined cost function, involving a distortion measure between
the points and the cluster representatives, is minimized. A popular
clustering algorithm in this category is K-Means [29].

Earlier research on semi-supervised clustering has considered
supervision in the form of labeled points [6] or constraints [38,
39, 5]. In this paper, we will be considering the model where

l1=1

L . - : . o« - -
supervision is provided in the form ahust-linkand cannot-link \\ ptLink
constraints, indicating respectively that a pair of points should be or N
should not be put in the same cluster. For each pairwise constraint, MustLink |

NUES

the model assigns an associated cost of violating that constraint. p

Considering supervision in the form of constraints is more realistic

than requiring class labels in many unsupervised-learning applica-

tions, e.g. clustering for speaker identification in a conversation [5],

or clustering GPS data for !ane-fir!ding [38]: Whille class I.abels may Figure 1: A Hidden Markov Random Field

be unknown, a user can still specify whether pairs of points belong

to same or different clusters. Constraint-based supervision is also

more general than class labels: a set of classified points impliesan )

equivalent set of pairwise constraints, but not vice versa. Fig. 1_sh0WS a SImp_Ie example of an HMRF. The observed Qataset
Our semi-supervised clustering model considers a set of dataX consists of six pointx; ...xe}, which have corresponding

points.X with a specified distortion measuebetween the points. ~ cluster labels{l; ...Ig}. Two must-link constraints are provided

Supervision is provided as a s8f of must-link constraints (with ~ betweenlq,l3) and {1,14), while one cannot-link constraint is pro-

a set of associated violation cosi) and a se{C of cannot-link ~ vided betweenlgls). The task is to partition the six points into

constraints (with associated violation costd). The task is to par-  three clusters. One clustering configuration is shown in Fig. 1. The

tition the data intcK clusters so that the total distortion between Must-linked points,x3 andx, are put in cluster 1; the poind,

the points and the corresponding cluster representatives accordingVNich is cannot-linked to, is assigned to cluster X andxs,

to the given measur® is minimized while a minimum number which are not involved in any constraints, are put in clusters 1 and

of constraints are violated. Since we restrict our attention to hard 3 'eSPectively. _ _ _

clustering, every point is assigned to a single cluster in our model.  E@ch hidden random variablehas an associated set of neigh-
Aword on the notation and terminology used in this paper: bold- P0rs?\li- The must-link constraint3/ and cannot-link constraints

face variables, e.g, represent vectors; calligraphic upper-case al- € define the neighborhood over the hidden labels, such that the

phabets, e.g.x, refer to sets, whose representatives are enumerated"€ighbors of a point; are all points that are must-linked or cannot-

aS{Xi}iN,l (excepty, which always denotes an objective function): linked to it. The rand_om field defined over t_h_e hlt_llde_n vgrlables is

Yo repr%sents thet” component of thel-dimensional vectox;. a.Markov Random Field, where the probability distribution of the

The term “distance measure” is used synonymously with “distor- hidden variables obeys the following Markov property:

tion measure” throughout the paper.

2.2 Hidden Markov Random Field

To incorporate pairwise constraints along with an underlying dis- S0, the probability distribution of the value lpfor the data poink;
tortion measure between points into a unified probabilistic model, depends only on the cluster labels of the points that are must-linked

we consider Hidden Markov Random Fields (HMRFs). An HMRF  Or cannot-linked tox;.
has the following components: Let us consider a particular cluster label configuratioio be the

jointeventL = {li}iNzl' By the Hammersley-Clifford theorem [22],
e A hiddenfield £ = {J; }i’\‘:l of random variables, whose val-  the probability of a label configuration can be expressed as a Gibbs
ues are unobservable. In the clustering framework, the set distribution [21], so that
of hidden variables are the unobserved cluster labels on the
points, indicating cluster assignments. Every hidden variable 1 1
l; takes values from the sét, ...,K}, which are the indices Pr(£)= Z—lexp(—V(L)) - Z—lexp(— > Vag(£) )
of the clusters. Nien

Hidden MRF

Vi, Pr(lif £ —{li}) = Pr(li[{lj : 1 € \G}) @)

e An observablesetX = {x; iN:l of random variables, where ~ where4\( is the set of all neighborhoodg; is a normalizing con-
every random variablg is generated from a conditional prob-  stant, and/ (L) is the overall label configuration potential function,
ability distributionPr (x; |I;) determined by the corresponding ~ Which can be decomposed into the functidfg (L) denoting the
hidden variabld;. The random variable& are conditionally potential for every neighborhodt; in the label configuratiorL.
independent given the hidden variablési.e., Pr(X|£) = Since we are provided with pairwise constraints over the class
Mx.ex Pr(xi|li). Inour framework, the set of observable vari-  labels, we restrict the MRFs over the hidden variable to have pair-
ables for the HMRF corresponds to the given data points.  wise potentials. The prior probability of a configuration of cluster



labelsL then becomeBr (L) = 711 exp(—3iy;V(i,j)), where

fm(xi,xj) if (xi,xj) € M
V(i,j) =19 fc(xi,xj) if (xi,xj)eC (3
0 otherwise

Here, fm(xi,Xj) is a non-negative function that penalizes the vio-
lation of a must-link constraint, anf¢ (x;,X;) is the corresponding
penalty function for cannot-links. Note that the third condition in
the definition o/ (i, j) is necessary since not all points are involved
in the constraints. Intuitively, this form &fr (L) gives higher prob-
abilities to label configurations that satisfy most of the must-link
constraintsM and cannot-link constraints, thereby discouraging
the violation of the user-specified constraints.

2.3 MAP Estimation in HMRFs

Given a particular configuration of the hidden variables (unknown
cluster labels), the variables in the observable field of the HMRF
(the data points) are generated using specified conditional proba-
bility distributions. The conditional probability of the observation
setX = {x}N for a given configuratiorr = {I;}N; is given by
Pr(X|L£), which in the clustering framework is of the form:

Pr(X| L) = p(X. {Mn}h_1) 4)

where p(x,{uh}ﬁzl) is a probability density function parameter-
ized by the cluster representativéjs,}< ;. This function is re-
lated to the clustering distortion measube as we will show in
Section 2.4.

The overall posterior probability of a cluster label configuration
LisPr(L]|X) OPr(L)Pr(Xx|L), consideringPr(X) to be a con-
stantC. Hence, finding the maximum a-posteriori (MAP) configu-
ration of the HMRF becomes equivalent to maximizing the poste-
rior probability:

1

Pr(£|x) = (22

(- 3 V(D) ) P i) O

(]
whereZ, = CZ;. The negative logarithm d?r(£|.X) is known as
posterior energyNote that MAP estimation would reduce to max-
imum likelihood (ML) estimation oPr(.X|L) if Pr(L£) is constant.
However, because our model accounts for dependencies betwee
the cluster labels anBr (L) is not constant, full MAP estimation
of Pr(L|.X) is required.

Since the cluster representatives as well as the cluster labels for,

the points are unknown in a clustering setting, maximizing Eqn.(5)
is an “incomplete-data problem”, for which a popular solution metho
is Expectation Maximizatio(EM) [16]. It is well-known that K-
Means is equivalent to an EM algorithm with hard clustering as-
signments [26, 6, 3]. Section 3.2 describes a K-Means-type hard
partitional clustering algorithm, HMRF-KKANS, that finds a (lo-

cal) maximum of the above function.

The posterior probabilityr(£|.X) in Eqn.(5) has 2 components:
the first factor evaluates each label configuration, corresponding to
cluster assignments of every point, and gives a higher probabil-
ity to a configuration that satisfies more of the given must-link and
cannot-link constraints. A particular label configuration determines
the cluster assignments and hence the cluster representatives. Th
second factor estimates the probability of generating the observed
data points using the conditional distributions, which are parame-
terized by the cluster representatives and depend on the distortio
measure. The overall posterior probability of the cluster label con-
figuration of all the points therefore takes into account both the
cluster distortion measure and the constraints in a principled uni-
fied framework.

n

2.4 Clustering Objective Function

Egn.(5) suggests a general framework for incorporating const-
raints into clustering. Particular choices of the constraint penalty
functionsfy andfc, and the conditional probabilitig® X, {pn}K ;)
would be motivated by the distortion measure appropriate for the
clustering task.

When considering the second term in Eqn.(5), we restrict our
attention to probability densities of the exponential form:

(7 z D(Xi»Mi))

xeX
whereD(xi,,) is the distortion betweer; and,, andZz is a
normalization constant. Different clustering models fall into this
exponential form:

1
—exp

7 ®)

PIX. {Hn} 1) =

e xj andyy, are vectors and is the square of thé&, norm:
the cluster conditional probability is a unit variance Gaus-
sian [26];

xj andy, are probability distributions ani is the KL-diver-
gence: the cluster conditional probability is a multinomial
distribution [17];

Xj and, are vectors of unit length (according to the
norm) andD is one minus the dot-product: the cluster con-
ditional probability is a von-Mises Fisher (vMF) distribution
with unit concentration parameter [2], which is essentially
the spherical analog of a unit variance Gaussian.

We will discuss the connection between specific distortion mea-
sures that we will study in this paper and their corresponding clus-
ter conditional probabilities in more detail in Section 3.1.
Let us now examine the potential functidhin the first term
of Eqn.(5). In previous work, only must-linked points were con-
sidered in the neighborhood of a Markov Random Field with the
generalized Pottpotential function [12, 28]. In this potential func-
tion, the must-link penalty idm (i, xj) = wij 1[Il # |j], wherew;;
is the cost for violating the must-link constraifit j), and1 is the
indicator function {[true] = 1, 1[false] = 0). This function spec-
ifies that the cost of violating a must-link constrajmf, x;) is wjj
irrespective of the distance betwegrandx;.
In a semi-supervised clustering framework where we want to
use the constraint violations to learn the underlying distance mea-
sure, the penalty for violating a must-link constraint betwden
tant points should be higher than that betwemarbypoints. This
ould reflect the fact that if two must-linked points are far apart
ccording to the current distortion measure and are hence put in
different clusters, the measure is inadequate and needs to be modi-
fied to bring those points closer together. So, the must-link penalty
function is chosen to be

fm (Xi,Xj) = wij o (Xi, X)) L[l # 1] )

wheredp is thepenalty scalindunction, which we choose to be a
monotonically increasing function of the distance betwreand
Xj according to the current distortion measure. Specific penalty
functions¢p for different distortion measurel® are described in
gection 3.1

Analogously, the penalty for violating a cannot-link constraint
between two points that amearbyaccording to the current dis-
tance measure should be higher than for tligtantpoints. This

"would encourage the distance learning step to put cannot-linked

points farther apart. The cannot-link penalty function can be ac-
cordingly chosen to be

fe(Xi,Xj) = Wij (Pomax— O (Xi,X})) L[li =1j]

®)



wheredpmax is the maximum value of the scaling functi¢p for

the dataset. This form dfz ensures that the penalty for violating a
cannot-link constraint remains non-negative, since the second term
is never greater than the first. Note that thdgeand fc penalty
functions make the MRF over the hidden variables non-isotropic

where||x| s is the weighted_, norm: ||x||a = VXTAx. Such pa-
rameterization is equivalent to projecting every instaramto a
space spanned y/2: x — AY/2x. Since unparameterized cosine
similarity is a natural measure for prototype-based clustering under

(i.e., the values of the potential between pairs of random variables the assumption that the data is generated by a mixture of von Mises-

in the field are non-uniform), but the overall model is still a valid F_isher_ (VMF) distributions [2]Dcos, (xi, ;) can be thought of asa
HMRE. distortion measure for data generated by a mixture of vMF distribu-

tions in the projected space. Because for realistic high-dimensional
domains computing the full matrid would be extremely expen-
sive computationally, we focus our attention on diagghalvhich

is equivalent to using a vector of weighds= diag(A). Therefore,
from now on we will be referring to the cosine measure in Eqn.(10)

Putting this into Egn.(5) and taking logarithms gives the follow-
ing cluster objective function, minimizing which is equivalent to
maximizing the MAP probability in Eqn.(5), or equivalently, mini-
mizing the posterior energy of the HMRF:

JobF ZXEGXD(Xivp'Ii)+z(xjﬁxj)eMWij¢D(Xi7xj)]1[|i #1j] asDcog, (Xi,Xj). ] ) ) )
_ NN =11+ loaZ (9 To useDcog, (Xi,Xj) as the distortion measure in the clustering
2 (x.x))ec Wij (¢DmaX*¢D(X"XJ)) [l =1j]+log © framework described in Section 2.4, we also use it as the penalty

scaling functionpp (i, Xj) = Dcog (Xi,Xj), which leads to the fol-

whereZ = Z,Z3. Thus, the task is to minimizéy,; over {pn}K_,, lowing objective function:

L, andD (if the latter is parameterized).
Jcos, = z Dcos,(xhl-lli)

3. ALGORITHM XEX
. . . + wiiD Xi, Xj)L[lj £ 11
3.1 Adaptive Distortion Measures (thlz)eM 1Beos 04,2 1 21 -
The choice of a distortion measul for a particular cluster- i _ . .
ing problem depends on the properties of the domain under con- +(X_ XZ)ECW” (Doosmax—Doos, (:x;)) 1lli = 1] + logZ
17

sideration. A number of popular distortion measures, including
Euclidean distance and Kullback-Leibler divergence, belong to a WhereDeog max= 1.
eneral family of functions known aBregman divergencefS]. . .
%\nother popu)Ilar class of distortion meagures includgiesctio%:tl 3.1.2 Parameterized I-Divergence
similarity functions such as normalized dot product (cosine sim-  In certain domains, data is described by probability distributions,
ilarity) and Pearson’s correlation [31]. Selection of the most ap- €.9. text documents can be represented as probability distributions
propriate distortion measure for a clustering task should take into over words generated by a multinomial model [35]. KL-divergence
account intrinsic properties of the dataset. For example, Euclideanis a widely used distance measure for such d@ai (xi,X;j) =
distance is most appropriate for low-dimensional data with distri- zﬁblximlog)’(‘;—z, wherex; andx; are probability distributions over
bution close to the normal distribution, while normalized dot prod-
!JCI best captures similarity of (_jirectional dat_a where differences parameterized KL-divergence multiplying-th component by a
in angles between \{ectors are |mpor§ant,_whlle _ve_cto_r lengths are weightym: Dl (Xi.X;) = Zﬁ,:1VmXim|ng‘—m- It can be shown that
not. For Bregman divergences and directional similarity measures - . Xjm )
like cosine similarity, it has been shown that there exist efficient K- after such pa}r_ame_ter!zatmi(L IS ho 'Of‘gef a Br_egman _dlvergence
Means-type iterative relocation algorithms that minimize the corre- ©Ver Probability distributions, which is undesirable since conver-
sponding clustering cost functions [2, 3. gence is no longer guaranteed for the algorithm described in [13].

For many realistic datasets, off-the-shelf distortion measures may Instead _Of KL-divergence, we employ a related measure, I-diver-
fail to capture the correct notion of similarity in a clustering set- 9€nce, which also belongs to the class of Bregr(rj]an divergences [3].
ting. Unsupervised measures like Mahalanobis distance and Pearl-divérgence has the following fornd; (xi,Xj) = ¥ m_1 Ximl0g g —
son correlation attempt to correct similarity estimates using the zﬁbl(xim—xjm); X andx; no longer need to be probability distri-
global mean and variance of the dataset. However, these mea-butions but can be any non-negative vectors. For probability dis-
sures may still fail to estimate distances accurately if the attributes’ tributions, I-divergence and KL-divergence are equivalent. We pa
true contribution to similarity is not correlated with their variance. rameterize I-divergence by a vector of non-negative weights
Recently, several semi-supervised clustering approaches have bee d d
proposed that incorporate adaptive similarity functions, including Xim
parameterization of Jensen-Shannon divergence [13] and Eutlidea D1, (%, Xj) = Zlamxim log Xim Z am(Xim—Xjm)  (12)
distance [5, 39]. In initial work [8], we have shown how Euclidean m . m=L .
distance can be parameterized and leamed in a principled man- SUch parameterization can be thought of as scaling every at-
ner in a semi-supervised clustering setting. We now turn to two triPute in the original space by a weight contained in the corre-
other popular distortion measures, cosine similarity and Kullback- SPOnding component e and then taking I-divergence in the trans-
Leibler divergence, and describe how their adaptive versions can beformed space. This implies thex, is a Bregman divergence with

used as distortion measures in our HMRF-based framework. respect to the transformed space. ] ,
The clustering framework described in Section 2.4 requires us to

3.1.1 Parameterized Cosine Similarity define an appropriate penalty scaling functigs(x;, ;) to be used

Cosine similarity can be parameterized using a symmetric positivei-n the HMRF potential functions as described in Eqns.(3) and (7-

definite matrixA, which leads to the following distortion measure: 8). Since we CO”S'def unordereq constraint P‘*@GX“XJ’) must_
be symmetric to penalize constraints appropriately. To meet this re-

X! AX| 10 quirement, we will use a sum of weighted I-divergences frpand
~xillallxjla (10) xj to the mean vecto¥ 5. This “I-divergence to the meanDw,,

devents:y4_; xim = 39 _; Xjm = 1. In previous work, Cohn et al.

Dco& (X|,XJ) = 1



is analogous to Jensen-Shannon divergence, which is the symmet- Note that calculating the normalizing constahin Eqn.(9) is

ric “KL-divergence to the mean” [14], and is defined as follows: computationally intensive for most distortion measures, e.g. for co-
sine similarity, this corresponds to computing a Bessel function [2].
o (Xi,Xj) = Dim, (Xi,Xj) So, we make an approximation by considering4dg be constant

d o o throughout the clustering iterations, and hence drop that term from
=Y am(Xmlog——" 4+ Ximlog ——" ) (13 Eqn.(9).
ngl ( m gXim-i-ij m gXim+ij) (13 o .
3.3 Initialization
Good initial centroids are essential for the success of partitional

_ Dy (xi.W D XL 14 clustering algorithms such as K-Means. In previous work, it was
ho= 3 Drbim)+ 5wy D Oxp)l # 1] (14) shown that using limited supervision in the form of labeled points

This formulation leads to the following objective function:

XE€X i Xj)EM X R h L. .
-~ 04%9) results in good initial centroids for partitional clustering [6]. In our
+ Z Wij (DlMamax— DIMa(Xi»XJ))]l“i =lj]+logZz case, supervision is provided as pairwise constraints instead of la-
(.xj)eC beled points. However, we follow the same motivation of inferring

good initial centroids from the constraints.
We try to utilize both the constraints and unlabeled data during
initialization. For this, we follow a two stage initialization process.

The two parameterized distortion measubggs, andDjv, have
underlying generative models: weighted cosine corresponds to a
von-Mises Fisher (vMF) distribution in the projected space, while
I-divergence corresponds to multinomial distributions with rescaled
probabilities. Thus, RixX|L£) in Eqn.(4) is well-defined for the un-
derlying HMRF model in both these cases, and minimizing objec-
tive functions Jeos, and 4, leads to maximizing RZ|.X) for the
corresponding underlying models.

Neighborhood inference: We begin by taking the transitive clo-
sure of the must-link constraints to get connected components con-
sisting of points connected by must-links. Let theré\lmnnected
components, which are used to crehteeighborhoods{?\[p}";:l.
These define the must-link neighborhoods in the MRF over the hid-
3.2 EM Framework den cluster variables.
: . . L Assuming consistency of the constraints, we then infer additional

As discussed in Section 2.2 can be minimized by a K- . : .
Means-type iterative algorithm |?|b|</|RF-KE/ANS The outl)i/ne of constraints from the neighborhoods. We augment the\atith
the algorithm is presented in Fig. 2. The baéic idea of HMRE- the must-link constraints inferred from the transitive closure that
KMEANS is as follows: in the E-step, given the current cluster were not in the initial set. For each pair of neighborhoads

representatives, every data point is re-assigned to the cluster whichigg r?gtrilli;hkaé(?r?s\{[fa?r:tlseszmeneenceirgm-lzla?rko?eg?lr?t;z tgﬁ:jng,\[we add
minimizes its contribution tdy,. In the M-step, the cluster repre- yp P P Y

. K . . and augment the cannot-link sétwith these entailed constraints.
se_n_tat_lves{uh}h:l are re—estlmat_ed from the cluster a§5|gn_ment_s 0 This step corresponds to inferring as much information as possi-
minimize Jop, for the current assignment. The clustering distortion e o6yt the neighborhood structure of the hidden MRF, under the
measurd is updated in the M-step to reduce the objective function assumption of consistency of the constraints '
simultaneously by transforming the space in which data lies. Note From this point onwards in the paper, we will overload nota-
that this corresponds to the generalized EM algorithm [32, 16], tio '

e S - - n and refer to the augmented must-link and cannot-link sets as
where the objective function is reduced but not necessarily mini- o - and ¢ respectively. Note that if we know that the given set of
mized in the M-step. Effectively, the E-step minimiz@sg; over '

. R constraints are noisy, implying that the constraints are not consis-
cluster aSS|gnmentS, the M-step (A) m|n|m|ze_g9bj pver cluster tent, we will not add these additional inferred constraint3£@and
representativesiin}y_;, and the M-step (B) minimizego,; over ¢ and only work with the constraints provided initially.
the parameters of the distortion measbDreThe E-step and the M-
step are repeated till a specified convergence criterion is reached.cjyster selection: The first stage produces neighborhood sets
The specific details of the E-step and M-step are discussed in thea; 13 | These neighborhoods are used as initial clusters for the
following sections. HMRF-MEANS algorithm. IfA = K, A cluster centers are initial-
ized with the centroids of all th& neighborhood sets. K < K,

Algorithm: HMRF-KMEANS N A clusters are initialized from the neighborhoods, and the remain-
Input: Set of data points &' = {x;};_;, number of clusters X, ing K — A clusters are initialized with points obtained by random
set of must-link constraints M = {(x;, x;)}, perturbations of the global centroid af.

set of cannot-link constraints € = {(x;, x;)}, — If A > K, K neighborhoods are selected as initial clusters us-
distance measure D, constraint violation costs WW and W.

L o ing the clustering distortion measure. Farthest-first traversal is a
M - . K . . . e . . . ay .
Output: Disjoint K-partitioning {A} },, of &' such that good heuristic for initialization in prototype-based partitional clus-
objective function Job; in Eqn.(9) is (locally) minimized. . . . . . -
Method: tering algorithms [23]. The goal in farthest-first traversal is to find
K points that are maximally separated from each other in terms of
a given distance function. In our case, we apply a weighted variant
of farthest-first traversal to the centroids of theneighborhoods,
where the weight of each centroid is proportional to the size of the

1. Initialize the K clusters centroids {,u,EL0 )}le, sett«— 0
2. Repeat until convergence
2a. E-step: Given {,u,,(f)}ff:17 re-assign cluster labels

{1 V}IL, on the points {x;}, to minimize Job,- corresponding neighborhood. We consider the weighted distance
2b.  M-step(A): Given cluster labels {I{" ™"}, re-calculate between two centroids to be the distance between them according

cluster centroids {ﬂgf UYL, to minimize Job;. to the distortion measure multiplied by the weights of the two cen-
2c.  M-step(B): Re-estimate distance measure D to reduce Job;. troids. Thus, weighted farthest-first is biased to select centroids that

2d. t «— t+1

are relatively far apart as well as large in size.

_ _ During weighted farthest first selection, the algorithm maintains
Figure 2. HMRF-KMEANS algorithm a set of centroids that have been visited so far. The centroid of the



largest neighborhood is selected as the starting point and added tat has been experimentally demonstrated that for distribution-based
the visited set. At every point in the algorithm, the unvisited cen- clustering, smoothing cluster representatives by a prior using a de-
troid with the farthest weighted distance (smallest weighted simi- terministic annealing schedule leads to considerable improvements
larity) from the visited setis chosen. Ifthereis atie, itisresolved by [17]. With smoothing controlled by a parametgy each cluster
selecting the centroid farthest from the global centroid of the data. representativgy, is estimated as follows wheby, is the distortion

This point is added to the visited set, and the process is continuedmeasure:

till K centroids are visited. Finally, th¢ neighborhood centroids | 1 5 i 1
chosen by weighted farthest-first traversal are set asthtial ufﬁ = (L)Q" +a—) (16)
cluster centroids for HMRF-KMANS. o\ [l n

For directional measures, each cluster representative is the arith-
Overall, this two-stage initialization procedure is able to take into metic mean projected onto unit sphere [2]. Taking the weighting
account both unlabeled and labeled data to obtain cluster represeninto account, centroids are estimated as follows wbeg, is the
tatives that provide a good initial partitioning of the dataset. distortion measure:

3.4 E-step poos) —  DxckXi_ an

In the E-step, assignments of data points to clusters are updated 1Zxex%illa
using the current estimates of the cluster representatives. In simple Since constraints do not take part in cluster representative re-
K-Means there is no interaction between the cluster labels, and theestimation, this step remains the same as in K-Means for Bregman
E-step is a simple assignment of every point to the cluster repre- divergences, and the same assiPKMEANS for weighted cosine
sentative that is nearest to it according to the clustering distortion similarity [18].
measure. In contrast, the HMRF model incorporates interaction be-  Second, if a parameterized variant of a distortion measure is
tween the cluster labels defined by the random field over the hiddenused, e.g.Dcos, Or Dy, shown above, the distortion measure pa-
variables. As a result, computing the assignment of data points to rameters must be updated to decrease the objective function. For
cluster representatives to minimize the objective function is com- certain distance measure parameterizations, minimization via tak-
putationally intractable in any non-trivial HMRF model [36]. ing partial derivatives and solving for the parameter values may be

There exist several techniques for computing cluster assignmentsfeasible, e.g. for Euclidean distance [8]. In general, however, a
that approximate the optimal solution in this framework, e.g., iter- closed-form solution may be unattainable. In such cases, gradi-
ated conditional modes (ICM) [9, 40], belief propagation [34, 36], ent descent provides an alternative avenue for learning distortion
and linear programming relaxation [28]. We follow the ICM ap- measure weights. For the two distortion measures described above,
proach, which is a greedy strategy to sequentially update the clus-Dcos, andDy,, every weighiam would be updated using the update
ter assignment of each point, keeping the assignments for the othefryle a, = am+n Og:r:i , where:

points fixed. a

The algorithm performs cluster assignments in random order for 0Jobj _ OD(Xi, 1)
all points. Each poink; is assigned to the cluster representative 0am xex 0am
My that minimizes the point’s contribution to the objective function aD(xi, X))
Jobj(Xi; Hn): + > WijW’lﬂ[h#'j] (18)

Toni(%i,He) = DX+ 5 Wydp (X)) 1 £ 1) o

obj(Xi s = D(Xi, Wij QD (Xi, X i AD(X X

(% x)eM + Z Wij 6?;::)(—% 1l =1y]
+ 5 Wj(¢omax—p(xi.x}))L=1]  (15) (ex)ec
(3.x)eC For the two particular distortion measures that we are consider-
aD(Xi,Xj)

Optimal assignment for every point is that which minimizes the ing, D¢og, andDy,, gradientsW are the following:
distortion between the point and its cluster representative (first term

o ; L N X2 lIXi112 2, 1% |12
of Jobj) along with incurring a minimal penalty for constraint vio- Dcos, (Xi, Xj) XimXjm||Xi [l a 1% inTAxJ- Ximl %3 lla+ X i [

2% Xj
lations caused by this assignment (second and third termis,df dam = XEIRTE [IxillallX;lla
After all points are assigned, they are randomly re-ordered, and HIATZ A (19)
the assignment process is repeated. This process proceeds until no
point changes its cluster assignment between two successive iter-
ations. ICM is guaranteed to redugg,; or keep it unchanged (if 0D, (Xi,X) _ ximlogxi—m — (%m — Xjm) (20)
Jobj is already at a local minimum) in the E-step [9]. 0am Xjm

Overall, the assignment of points to clusters incorporates pair-  Intuitively, the distance learning step results in modifying the
wise supervision by discouraging constraint violations proportion- distortion measure so that similar data points are brought closer to-
ally to their severity, which guides the algorithm towards a desir- gether, while dissimilar points are pulled apart. This process leads
able partitioning of the data. to a transformed data space, which facilitates partitioning of the
35 M-step unlabeled data that respects supervised constraints provided by the

. . . user and reflects natural variance in the data.
The M-step of the algorithm consists of two parts. First, cluster

representative$pl, }K_, are re-estimated from points currently as-

signed to them to dilaclrease the objective funcfigpin Eqn.(9). It 4. EXPERIMENTS

has recently been shown that for Bregman divergences each clus-

ter representative calculated in the M-step of the EM algorithm is 4.1 Datasets

equivalent to the expectation value over the points in that clus- When clustering sparse high-dimensional data, e.g. text docu-
ter, which is essentially their arithmetic mean [3]. Additionally, ments represented using the vector space model, it is particularly
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Figure 3: Clustering results for D¢os, 0n News-Different-3 dataset Figure 4: Clustering results for D;, on News-Different-3 dataset

difficult to cluster small datasets. This is due to the fact that cluster- IDF weighting, removal of very high-frequency and low-frequency

ing algorithms can easily get stuck in local optima on such datasets,words, etc., following the methodology of Dhillon et al. [18].

which leads to poor clustering quality. In previous studies sith

KMEANS algorithm applied to document collections whose size is 4.2 Clustering Evaluation

small compared to the dimensionality of the word space, ithas been  \ye ysechormalized mutual informatioNMI) as our clustering

observed that there is little relocation of documents between clus- eyajuation measure. NMl is an external clustering validation metric

ters for most initializations, which leads to poor clustering quality  that estimates the quality of the clustering with respect to a given

after convergence of the algorithm [17]. o underlying class labeling of the data: it measures how closely the
This scenario is likely in many realistic applications. For exam-  ¢jystering algorithm could reconstruct the underlying label distri-

ple, when clustering the search results in a web-search engine likepytion in the data [37, 19]. I€ is the random variable denoting

Vivisima', typically the number of webpages that are being clus- the cluster assignments of the points & the random variable

tered is in the order of hundreds. However the dimensionality of genoting the underlying class labels on the points [2], then the NMI
the feature space, corresponding to the number of unique words inmeasure is defined as:

all the webpages, is in the order of thousands. Moreover, each web-

page is sparse, since it contains only a small number of all the pos- NMI = 1(C;K) 1)

sible words. Supervision in the form of pairwise constraints can be (H(C)+H(K))/2

beneficial in such cases and may significantly improve clustering ) ] )

quality. To demonstrate the effectiveness of our semi-supervised Where 1(X;Y) = H(X) —H(X|Y) is the mutual information be-

clustering framework, we consider 3 data sets that have the char-tween the random variablésandY, H(X) is the Shannon entropy

acteristics of being sparse, high-dimensional, and having a small ©f X, andH (X[Y) is the conditional entropy of givenY [14]. NMI

number of points compared to the dimensionality of the space. effectively measures the amount of statistical |nforn_1at|on shared by
We derived 3 datasets from tB8-Newsgroupsollection? This the random variables representing the cluster.aSS|gnments and the

collection has messages harvested from 20 different Usenet news-User-labeled class assignments of the data points.

groups, 1000 messages from each newsgroup. From the original

dataset, a reduced dataset was created by taking a random sub4-3 MethOdC’IOgy

sample of 100 documents from each of the 20 newsgroups. Three We generated learning curves using 20 runs of 2-fold cross-vali-

datasets were created by selecting 3 categories from the reducedliation for each dataset. For studying the effect of constraints in

collection. News-Similar-3consists of 3 newsgroups on similar  clustering, 50% of the dataset is set aside as the test set at any par-

topics €onp. gr aphi ¢s, conp. 0s. ms- Wi ndows, conp. wi ndows. x) ticular fold. The different points along the learning curve corre-
with significant overlap between clusters due to cross-poshilegys-  spond to constraints that are given as input to the semi-supervised
Related-Zonsists of 3 newsgroups on related topica . pol i - clustering algorithm. These constraints are obtained from the train-

tics.msc,talk.politics.guns,andtalk.politics.nmideast). ing set corresponding to the remaining 50% of the data by ran-
News-Different-Zonsists of articles posted in 3 newsgroups that domly selecting pairs of points from the training set, and creating
cover different topicsd] t . at hei smrec. sport. basebal | ,sci. must-link or cannot-link constraints depending on whether the un-
space) with well-separated clusters. The vector-space model of derlying classes of the two points are same or different. Unit con-
News-Similar-3as 300 points in 1864 dimensiomMégws-Related-  straint costs?’ and % were used for all constraints, original and
3 has 300 points in 3225 dimensions, aNdws-Different-had inferred, since the datasets did not provide individual weights for
300 points in 3251 dimensions. Since the overlap between topicsthe constraints. Based on a few pilot studies, gradient stemsize
in News-Similar-aandNews-Related-B significant, they are more  was chosen to have valugs= 1.75 for clustering withDcog, and
challenging datasets thatews-Different-3 n = 1.078 for clustering withD,,; weights were restricted to be

All the datasets were pre-processed by stop-word removal, TF- non-negative. In a realistic setting, these parameters could be tuned
using cross-validation with a hold-out set. The clustering algorithm
http://www.vivisimo.com was run on the whole dataset, but NMI was calculated only on the
Zhttp://www.ai.mit.edu/peoplefjrennie/20Newsgroups test set. The learning curve results were averaged over the 20 runs.
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4.4 Results and Discussion As the results demonstrate, the full HMRF-KMNS algorithm

We compared the proposed HMRF-KMNs algorithm with outperforms the unsupervised K-Means baseline as well as the ab-
two ablations as well as unsupervised K-Means clustering. The lated versions of HMRF-KMANS for both Deos, andD,. Rela-
following variants were compared for distortion measubggs, tive performance of KMANS-I-C and KMeANs-I indicates that
andDy, as representatives for Bregman divergences and directional USing supervision for initializing cluster representatives is highly
measures respectively: beneficial, while the constraint-sensitive cluster assignment step

does not lead to significant additional improvementsigss, . For

Dj,, KMEANS-I-C outperforms KMEANS-I on News-Different-3

rithm that includes use of supervised data in initialization (1) (Fig. 4) andNews-Similar-3Fig. 8) which indicates that incorpo-
rating constraints in the cluster assignment process is useful for

as described in Section 3.3, incorporates constraints in clus- h d Thi ti o Related-&ia. 6
ter assignments (C) as described in Section 3.4, and pen‘orms,t ese datasets. This result is reversedVews-Related-§ig. 6),

distance learning (D) as described in Section 3.5: implying that in some cases using constraints in the E-step may be
- unnecessary, which agrees with previous results on other domains

[6]. However, incorporating supervised data in all the 3 stages of
the algorithm in KMeANS-I-C-D, namely initialization, cluster as-
signment, and distance update, always leads to substantial perfor-
mance improvement.

As can be seen from results for O pairwise constraints in Figs. 3-
8, distance learning is beneficial even in the absence of any pair-
wise constraints, since it is able to capture the relative importance
of the different attributes in the unsupervised data. In the absence of
supervised data or when no constraints are violated, distance learn-
. . ing attempts to minimize the objective function by adjusting the

Figs. 3, 5, and 7 demonstrate the results for experiments where,yeights given the distortion between the unsupervised datapoints
weighted cosine similarityDcos, Was used as the distortion mea-  5nd their corresponding cluster representatives.

sure, while Figs. 4, 6, and 8 summarize experiments where weighted | reajistic application domains, supervision in the form of const-
I-divergenceD,, was used.

e KMEANS-I-C-D is the complete HMRF-KMANS algo-

e KMEANS-I-C is an ablation of HMRF-KMANS that uses
pairwise supervision for initialization and cluster assignments,
but does not perform distance learning;

e KMEANS-Iis afurther ablation that only uses the constraints
to initialize cluster representatives;

e KMEANS s the unsupervised K-Means algorithm.



raints would be in most cases provided by human experts, in which gorithm, as well as two instantiations of that framework for partic-
case it is important that any semi-supervised clustering algorithm ular distortion measures. There are several open issues that would
performs well with a small number of constrains. KkiNs-I-C- be interesting to explore in future work.
D starts outperforming its variants and the unsupervised clustering Investigating alternative approaches to training distortion mea-
baseline early on in the learning curve, and is therefore a very ap- sures in the M-step of our algorithm may lead to improved perfor-
propriate algorithm to use in actual semi-supervised data clustering mance of the algorithm. Our initial results as well as other recent
systems. work on distance learning for clustering [27, 8, 5, 39] suggest that
Overall, our results show that the HMRF-K&MNs algorithm transforming the data space can be highly beneficial for cluster-
effectively incorporates labeled and unlabeled data in three stages,jng quality. Therefore, we conjecture that developing alternative
each of which improves the clustering quality. feature selection or feature extraction approaches, which perform
other types of data space transformation using supervised data, is a
romising direction for future work.
5. RELATED WORK P The wgighted farthest-first algorithm for cluster initialization that
.A related unified model for semi-supervised clustering with co.nst- we have described in Section 3.3 has proven itself very useful. We
raints was recently proposed by Segal et al. [36]. Their model is a jntend to explore theoretical implications of this initialization algo-
unified Markov networkthat combines a binary Markov network rithm in the HMRF model, as well as develop alternative techniques
derived from pairwise protein interaction data and a Naive Bayes that utilize both labeled and unlabeled data for initializing cluster
Markov network modeling gene expression data. Our proposed representatives.
HMRF framework is more general than this formulation, since it While we have used the ICM algorithm for constraint-sensitive
works with a broad class of clustering distortion measures, includ- ¢|yster assignment in the HMRF model, other methods have also
ing Bregman divergences and directional similarity measures. In peen proposed for this task, e.g. loopy belief propagation [36]. Ex-
contrast, the formulation of Segal et al. considers only a Gaussianensive experimental comparison of these strategies would be in-
cluster conditional probability distribution, which corresponds to  formative for future work on iterative reassignment algorithms like
having Mahalanobis distance as the underlying clustering distance y\MRE-KMEANS in the HMRF framework. We also want to run
measure. Additionally, the HMRF-KEANS algorithm performs  experiments to study the sensitivity of the HMRF-KNNs algo-

distance learning in the unified framework, which is not done in the rithm to the constraint violation parameter and W/, as done in
Markov Network model. Segal et al. [36]

The HMRF-KMEANS algorithm proposed in this paper is re- Finall : I
. o y, we want to apply our algorithm to other application do-
lated to the EM algorithm for HMRF model-fitting proposed by mains. One interesting problem in bioinformatics is to improve

Z_hang etal. [491' However,_ HMRF'KMANS pen‘(_)rm_s, an addi- ., the quality of clustering genes with unknown functions by utilizing
tlonal. step of distance 'ea”‘”f‘g Ly M-;tep, Wh'Ch Is not consid- ¢ iraints between the genes derived from domain knowledge. Se-
ered in the HMRF-EM algo_rlthm. The d'SCUSS!On of th?.HMRF.' gal et al. [36] used constraints derived from protein-protein interac-
E.M a_Igorlthm.was also restricted oply tq Gaussian cor_ldltlonal dis- tions while clustering gene expression data using Mahalanobis dis-
tributions, which has been generalized in our formulation. tance as the underlying distortion measure. We want to apply our

There has been other research in semi-supervised clustering fo-
cusing individually on either constraint-based or distance-based sen”fg

supervised clustering. COP-K®ANS is a constraint-based clus-

tering algorithm that has a heuristically motivated objective func-
tion [38]. Our method, on the other hand, has an underlying prob-
abilistic model based on Hidden Markov Random Fields. Bansal

HMRF-KMEANS algorithm to different kinds of gene represen-

tions, for which different clustering distance measures would be
appropriate, e.g., Pearson’s correlation would be an appropriate dis
tortion measure for gene microarray data [20], I-divergence would
be useful for the phylogenetic profile representation of genes [30],

etc. We plan to run experiments for clustering these datasets using
the HMRF-KMEANS algorithm, where the constraints will be in-
ferred from protein interaction databases as well as from function
pathway labels that are known for a subset of the genes.

et al. [4] also proposed a framework for pairwise constrained clus-
tering, but their model performs clustering using only the const-
raints, whereas our formulation uses both constraints and an under:
lying distortion measure between the points.

In recent work on distance-based semi-supervised clustering with
pairwise constraints, Cohn et al. [13] used gradient descent for 7. CONCLUSIONS

weighted Jensen-Shannon divergence in the context of EM cluster- ) ) . )
ing. Xing et al. [39] utilized a combination of gradient descentand ~ We have introduced a theoretically motivated framework for semi-

iterative projections to learn a Mahalanobis distance for K-Means SuPervised clustering that employs Hidden Random Markov Fields
clustering. The Redundant Component Analysis (RCA) algorithm _(HMRFs) to utilize both labeled and unIabeIec_;I data in the clustgr-
used only must-link constraints to learn a Mahalanobis distance us-i"g Process. The framework can be used with a number of dis-
ing convex optimization [5]. Spectral learning is another recent tortion measures, including Bregman divergences and directional
method that utilizes supervision to transform the clustering distance Measures, and it accommodates trainable measures that can be ada-
measure using spectral methods [25]. All these distance learningPted to specific datasets. We introduced the HMRF #Ms al-
techniques for clustering train the distance measure first using only 90rithm that performs clustering in this framework and incorpo-
supervised data, and then perform clustering on the unsupervisedrates supervision in the form of pairwise constraints in all stages
data. In contrast, our method integrates distance learning with the of the clustering algorithm: initialization, cluster assignment, and

clustering process and utilizes both supervised and unsupervisedP@rameter estimation. We presented two instantiations of the al-
data to learn the distortion measure. gorithm based on two particular distortion measures that are popu-

lar for high-dimensional data: KL divergence and cosine similarity.
Experimental evaluation has shown that the algorithm derived from
6. FUTURE WORK the HMRF framework leads to improved cluster quality on realistic

We have presented the general probabilistic framework for incor- textual datasets over unsupervised clustering and ablations of the
porating pairwise supervision into a prototype-based clustering al- proposed approach.
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