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Abstract

We present, a new approach to clustering based on the observation that “it is easier
to criticize than to construct.” Our approach of semi-supervised clustering allows
a user to iteratively provide feedback to a clustering algorithm. The feedback is
incorporated in the form of constraints which the clustering algorithm attempts to
satisfy on future iterations. These constraints allow the user to guide the clusterer
towards clusterings of the data that the user finds more useful. We demonstrate
semi-supervised clustering with a system that learns to cluster news stories from a
Reuters data set.

1 Introduction

Cousider the following problem: you are given 100,000 text documents (e.g., papers, newsgroup articles, or
web pages) and asked to group them into classes or into a hierarchy such that related documents are grouped
together. You are not told what classes or hierarchy to use or what documents are related; you have some
criteria in mind, but may not be able to say exactly what it is. You are creating this taxonomy so that the
documents can be browsed and accessed efficiently, either by yourself or by other people. We refer to this as
the Yahoo! problem.

The Yahoo! problem is ubiquitous. It occurs in many fields and with many different types of “documents.”
The web has created a number of new examples of the Yahoo! problem, but many exist outside of the web.
Librarians, astronomers, biologists — everyone tasked with creating a taxonomy from data faces the Yahoo!
problem.

We propose the following iterative solution to the Yahoo! problem:

1. Give the 100,000 documents to an unsupervised clustering algorithm and have it cluster them.

2. Browse the resulting clusters and tell the system which clusters you like, and which clusters you
don’t like. Don’t do this for all the clusters, just for some of the ones you browsed. Provide feedback
to the system by saying:

e “This document doesn’t belong in here”
e “Move this document to that cluster”
e “These two documents shouldn’t be (or should be) in the same cluster”.

Don’t do this for all, or even many, of the documents; only for the few that look most out of place.



3. After your critique, re-cluster the documents, allowing the clustering algorithm to modify the the
distance metric parameters to try to find a new clustering that satisfies the constraints you provided
in the critique.

4. Repeat this until you are happy with the clustering.

This solution is distinct from both traditional supervised and unsupervised learning. Unsupervised clustering
takes an unlabeled collection of data and, without intervention or additional knowledge, partitions it into
sets of examples such that examples within clusters are more “similar” than examples between clusters.
Much work in unsupervised clustering is dedicated to the problem of manually engineering similarity criteria
that yield good partitioning of data for a given domain.

Supervised learning, on the other hand, assumes that the class structure or hierarchy already is known. It
takes a set of examples with class labels, and returns a function that maps examples to class labels. The
goal of supervised learning is to learn mappings that are accurate enough to be useful when classifying new
examples, and perhaps to learn mappings that allow users to understand the relationships between the data
and the labels, such as which features are important.

Semi-supervised clustering falls between the extremes of totally unsupervised clustering and totally supervised
learning. The main goal of our approach to semi-supervised clustering is to allow a human to “steer” the
clustering process so that examples can be partitioned into a useful set of clusters with minimum time and
human effort. A secondary goal of semi-supervised clustering is to give the user a way to interact and play
with the data so that they can understand it better.!

Our approach to semi-supervised clustering assumes that the human user has in their mind criteria that
enable them to evaluate the quality of a clustering. It does not assume that the user is conscious of what
they think defines a good clustering but that, as with art, they will “know it when they see it.” Most
importantly, semi-supervised clustering never expects a user to write a function that defines the clustering
criterion. Instead, the user interacts with the clustering system, which attempts to learn a criterion that
yields clusters the user is satisfied with.

Semi-supervised clustering with user feedback is closely related to active learning (Cohn et al., 1996). In ac-
tive learning, the learning system attempts to select which data points, if labeled, would be most informative.
In semi-supervised clustering, the human selects the data points, and puts on them a wide array of possible
constraints intead of labels. These two key differences point toward the important situations in which the
semi-supervised approach is preferable. (1) In some clustering problems the desired similarity metric may
be so different from the default that traditional active learning would make many inefficient queries. This
problem also arises when there are many different plausible clusterings. Although less automated, a human
browsing the data would do less work by selecting the feedback data points themself. (2) The intuitive
array of possible constraints are easier to apply than labels, especially when the final clusters are not known
in advance. (3) The very act of human browsing can lead to the discovery of what clusters are desired.
Semi-supervised learning can thus be seen as a method of data exploration and pattern discovery, efficiently
aided by cluster-based summarization.

One of the primary challenges of semi-supervised clustering is finding ways to make use of user feedback
during clustering. The remainder of this paper describes one simple illustrative way in which this may be
accomplished. Other challenges that will be addressed by future research in semi-supervised clustering are
briefly touched on in the discussion section.

2 Clustering

Formally, clustering is the process of partitioning a data set into subsets such that all members of a given
subset are “similar” by some distance measure D. We will denote the distance between two examples 1

'Demiriz et al. (1999) independently introduced a semi-supervised clustering model similar to the one we describe
here. The main distinction between our work and theirs is our use of iterative feedback to acquire labelings; Demiriz
et al. assume that all available labels are given a prior.



and zy as D(z1,22). We can generalize this to refer to the distance between two cluster centers or between
a cluster center and an example.

From a statistical standpoint, clustering may be viewed as a way of doing factor analysis on a mixture
model. In this setting it is assumed that observed data result from sampling a mixture of unknown sources.
Clustering attempts to infer the properties of the sources (the cluster centers or prototypes), and determine
which source is most likely to be responsible for a given example.

The two most popular approaches to clustering are agglomerative clustering and prototype-based clustering.
In agglomerative clustering, each datum is initially placed in its own cluster. The clusters that are most
similar (according to D) are iteratively merged, until the desired number of clusters is reached, or some limit
on data likelihood or distortion is exceeded (see Hofmann & Buhmann (1997), for an in-depth treatment of
agglomerative clustering).

In prototype-based clustering, the final number of clusters is set a priori, and the corresponding prototypes are
found using a form of EM. Each prototype is initialized to some position. Examples are assigned to prototypes
according to their similarity to each prototype (the assignment may be 0-1 or fractional, depending on the
algorithm). Prototypes are then adjusted to maximize the data likelihood, or, equivalently, minimize the
data distortion. The assignment/adjustment process is repeated until no significant changes result (see Meila
and Heckerman (1998) for concise review of prototype-based clustering).

Figure 1: Illustration of semi-supervised clustering. Given an initial clustering, the user specifies two points
that should not have been placed in the same cluster. The system warps its metric, allowing it to find a
clustering that respects the constraint.

3 Semi-supervised clustering

The goodness of any clustering depends on how well the metric D matches the user’s (perhaps unknown)
internal model of the target domain. We propose allowing the user to impose their model on the metric via
the clustering algorithm, by having the user provide the algorithm with feedback, and allowing it to alter the
metric so as to accommodate that feedback. Not only is it easier to critique than to construct, but the user’s
criticism can take many forms — specifying that a particular example does/doesn’t belong in a particular
cluster, that two examples do/don’t belong in the same cluster, or that a particular cluster is good (and
should be preserved) or bad (and should be split up).

Feedback may be incorporated into the metric as constraints to be respected by the clustering algorithm.
Consider two examples 1 and x5 that are constrained by the user feedback to be in separate clusters. When
the clustering algorithm attempts a partitioning which places x; and x» in the same cluster, the metric may
be altered to increase the distance between x; and x5 until one or the other of them falls in a different cluster
(Figure 1). Other constraints may be implemented similarly, shrinking the distance between some example
and a cluster prototype, or increasing the distance between a cluster prototype and all the examples assigned



to it.

3.1 Semi-supervised document clustering

We adopt a statistical approach to document clustering resulting from the naive Bayes model of document
generation (McCallum & Nigam, 1998). Given a vocabulary V', a document is assumed to be a “bag of
words” generated from a multinomial distribution 8. The probability of document d is
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where p(w;|0) is the parameterized probability of word w; being generated, and N (wj,d) is the number of
times w; appears in the document. Each document d forms an estimate of a multinomial distribution 64;
likewise, each cluster ¢ forms an estimate 6. composed from the 8, of its constituent documents.?

We search for optimal clusters, applying EM as follows: for each cluster ¢ and document d, we compute p(d|c)
and apply Bayes rule to compute p(c|d). Each cluster is given partial ownership of a document proportional
to p(c|d). The cluster parameters 6, are recomputed as the weighted sum of their component documents,
and the process is repeated. The algorithm is guaranteed to converge to a locally optimal clustering.

In this probablistic setting, the natural measure of dissimilarity between two documents d; and dy is the
probability that they were generated by the same multinomial; this is proportional to the KL divergence to
the mean of their multinomial distributions: Dy (dy||d2) = |d1|D(d1||Mi2) + |d2|D(d2||M;2), where Mo is
a distribution composed of the mean word probabilities of d; and da, |d| is the length of document d, and
D(d||M) is the standard KL divergence of d to M. The advantage of KL divergence to the mean of the
multinomial distributions is that it is symmetric, unlike standard KL divergence.

To implement our constraints, we augment the standard KL divergence D(d;||d2) with a weighting function
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where v; may be interpreted as indicating the importance of w; for distinguishing d; and d>. Then, given a
constraint that d; and d» must be in separate clusters, we can warp the metric by computing
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and hillclimbing over 7 to increase the effective distance between the two. This gradient tells us the direction
to move the 7’s in order to increase (or decrease) the separation between two documents. (In the current
experiments we constrain the 7’s to be positive, but it might be interesting to relax this and allow some 7’s
to go negative.) These v’s are then used by EM in the analogous distance measure between a document and
a prototype. Thus we inject a learned distance metric into the clustering algorithm by changing the E-step.

Other constraints described in the previous section may be similarly implemented by hillclimbing over the
example-to-cluster and cluster-to-cluster distance. Note that the linear warping we describe will not guar-
antee that all constraints can be satisfied - some clusterings desired by the user may be non-convex and
unrealizable in the space of models supported by naive Bayes. In this case, the hillclimbing will converge
to a weighting that provides a local minimum of constraint violations. Local or nonlinear warpings of the
distance metric, such as the one described by Friedman (1994) and Yianilos (1996) may be of use in these
situations.

2The estimates for word probabilities are derived from the relative word frequencies in the documents. Following
McCallum & Nigam (1998), we smooth with a LaPlacean prior to avoid zero word probabilities.



4 Experiments

In this section, we illustrate the semi-supervised approach on a small document clustering problem. We used
a set, of 25 documents each from five Reuters topic areas: business, health, politics, sports and tech. Starting
from five randomly initialized prototypes, the EM-based clustering algorithm described in the previous
sections found clusters that maximized data likelihood.

Each time clustering converged, we added a constraint. We simulated a human user by identifying two
documents from the same cluster whose sources were different Reuters topics, and constraining them to be
in different clusters.®> For each unsatisfied constraint, we reweighted the divergence by a fixed number of
hillclimbing steps. The cluster prototypes were then re-initialized, and EM training repeated.

4.1 Clustering performance

Figure 2a compares the performance of supervised, unsupervised and semi-supervised learning. For the
supervised learner, classification accuracy is plotted. For unsupervised and semi-supervised learners, cluster
purity is plotted. Cluster purity is the fraction of examples that would be classified correctly if all examples
were assigned the majority label in each cluster.

After only a few constraints have been added, cluster purity increases sharply over that of unsupervised
clustering. It is not clear, however, how to fairly compare the performance of semi-supervised clustering
with that of fully supervised clustering: constraints do not exactly correspond to labeled examples, and it
is uncertain what constitutes a proper test set. In supervised learning, documents used for training are
traditionally excluded from the test set, since their labels are already known. But the semi-supervised model
clusters (and is tested on) the entire corpus, so it is also reasonable to gauge it against a supervised learner
tested the same way. In the figure we show the cluster purity of supervised learning on the training set as
well as its generalization to an independent test set.

The semi-supervised learner reaches its asymptotic performance after about 10 constraints have been
added; the supervised learners require between 3 and 6 times more labeled examples to reach that level
of performance.* It is interesting to note that the performance of the semi-supervised learner actually begins
to decrease after roughly 20 constraints have been added. The Reuters data set contains many documents
which appear under more than one topic (an identical article on Microsoft, for example, appears under
both ‘business’ and ‘tech’). We hypothesize that, in an attempt to separate these unseparable documents,
the learner is pushing its term weightings to unhealthy extremes. Future experiments will investigate this
hypothesis and how best to overcome it.

Preliminary experiments on a different data set consisting of 20,000 USENET articles suggest that semi-
supervised clustering is just as effective with large data sets. More importantly, these experiments show that
semi-supervised clustering is able to cluster the same data according to different orthogonal criteria. This
dataset contains articles on four subjects: aviation simulators, real aviation, auto simulators and real autos.
Semi-supervised clustering can cluster the simulators and real groups together (e.g., aviation simulators
and real aviation) or the auto and aviation groups together (e.g., aviation simulators and auto simulators)
depending on the feedback provided by the user. In both cases it does so at about 80% accuracy with 10
constraints. When the distance metric is not adjusted, the same constraints give an average of only 64%
accuracy. (Purely unsupervised clustering achieves only about 50% accuracy.)

3 A fully-operational semi-supervised clustering system would benefit from a graphical user interface that permits
efficient browsing of the current clusters and supports easy specification of user constraints. See the discussion of
Scatter/Gather in later in this paper.

“To assure ourselves that metric-warping alone wasn’t responsible for the performance disparity, we also incorpo-
rated metric warping into the supervised clusterer, shrinking the divergence between a document and its assigned
cluster. The addition resulted in no significant performance improvement.
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Figure 2: (a) Learning curves for supervised, unsupervised and semi-supervised clustering. For supervised
clustering, cluster purity (measured on the train set) and generalization (measured on an independent test
set) are plotted against the number of labeled examples; for semi-supervised clustering, purity is plotted
against the number of constraints. Averages over 10 runs each, with the upper and lower lines indicating
error bars at one standard deviation. See text for details. (b) Fraction overlap of the top n weighted
words with top n words ranked by information gain on fully-supervised data. As the number of constraints
increases, there is increasing correlation with words that strongly affect class conditional probabilities. Note
that this overlap is achieved with far fewer constraints than the number of labels in the fully-supervised
data.

4.2 Learning term weightings

Adjusting v; warps the metric by adjusting the resolving power of word w;j, essentially identifying which
words are most useful for distinguishing documents. If v; is large, small disparities in the frequency of w;
become important and will tend to separate documents; if 7; is small, large disparities in frequency will be
ignored.

Empirically, this behavior is borne out on the Reuters experiments - words that subjectively appear highly
relevant for distinguishing topics, such as ‘Iraq’, ‘economy’, ‘weapons’ and ‘council’ are given large weight-
ings. We computed the information gain of w; using all document labels (Mitchell 1997), and compared
it with ;. Figure 2b shows the overlap between the top-weighted n% words in the vocabulary with the
same words ranked by information gain. After about a dozen constraints, semi-supervised clustering learns
word weightings with moderate overlap to the word weightings learned by supervised learning from all 125
document labels.

5 Discussion

This paper only scratches the surface of semi-supervised clustering with user feedback. There are still many
issues to be addressed; we touch on a few of these here.

5.1 Constraints vs. Labels

When applying supervised learning to classification problems, it is assumed that the users know the target
classes, and have labeled examples from each target class. In many interesting problems, this is an unrealistic
assumption. A semi-supervised system allows users to give label-like information to the learner without



having to know labels. Although user feedback in semi-supervised clustering serves a similar role as class
labels serve in supervised learning, comparing supervised learning with semi-supervised clustering is an
apples—to—oranges comparison. Semi-supervised clustering usually will be applied to problems where labels
are not readily available. Evaluating clustering systems is difficult and usually subjective. We compare the
performance of semi-supervised clustering to supevised learning using a labelled dataset principally to avoid
this subjectivity.

The performance disparity between supervised and semi-supervised clustering is surprising. While we have
argued that it is easier to provide constraints than labels, constraints also provide less information than
labels. Constraints don’t require the user to know the correct label (or even what labels exist!) — only
the relationship among pairs or sets of labels. There are only 125 possible labels in the small Reuters
dataset, but thousands of possible separation constraints. Yet empirically, even with very few constraints,
the semi-supervised learner is able to perform surprisingly well.

One explanation is in the connection to active learning. As a means of of user feedback, the addition of
a constraint indicates a problem, and effectively acts as counterexamples for the present clustering. Coun-
terexamples are a powerful tool for doing active learning which, in some situations, is much more efficient
than learning from randomly labeled examples (Angluin, 1987). The user, by iteratively directing the clus-
terer’s attention towards points that are incorrectly clustered, gives a semi-supervised clustering system
many advantages of an active learning system.

5.2 Types of User Feedback

As we indicate above, there are many different types of feedback that users might provide to a semi-supervised
clsutering system. One type of feedback is the constraints on individual data points and clusters we used
above. But many other forms of feedback might prove useful, as well. For example, a user might tell the
system that the current clustering is too coarse or too fine. Or the user might point to a cluster and indicate
that the cluster is bad without saying how it is bad. Similarly, a user might indicate that a cluster is good,
suggesting that future re-clusterings of the data should attempt to maintain this cluster. Users might also
give feedback that is not cluster specific, such as telling the system that the entire clustering looks bad, and
that the next clustering should be very different.

Some types of user feedback may require adaptive clustering that cannot easily be handled by the v weighting
scheme we used above. For example, we are working on an approach to finding good — but qualitatively
different — clusterings of the same data by exploiting EM’s weakness for getting trapped in local minima.
Different local minima may capture qualitatively different ways of clustering the data, one of which may
better match the user’s internal preference function than the deepest minima the system can find. In the
long run we hope to develop a general framework for representing user feedback about clusters.

5.3 Other Applications

We believe there are many applications of feedback-driven semi-supervised clustering. Imagine a Yahoo!
hierarchy for web pages that allows the user to tailor the hierarchy to better match their own interests by
providing feedback while browsing. Similarly, consider an automatic email system where a user allows the
system to cluster email into related mailboxes instead of manually specify the mailboxes. Semi-supervised
feedback would allow the user to tailor mailbox clusters to fit their (possibly changing) needs. As a different
example, consider a user clustering proteins into homology groups (groups of proteins with similar structure).
Large proteins have complex structure and could be clustered many different ways. A feedback-driven semi-
supervised clustering system would allow the user to explore many different ways the proteins might be
clustered, and to find clusterings most suitable to their purposes.

5.4 Related work

As indicated above, our model is similar to the model of Demiriz et al. They report how a fixed set of labeled
examples may be used to bias a clustering algorithm; we investigate how a user, interacting with the system,



may efficiently guide the learner to a desired clustering.

Our technique of incorporating user feedback is a cousin to relevance feedback, a technique for information
retrieval (Buckley & Salton, 1995). Given a query and initial set of retrieved documents, relevance feedback
asks the user to tag documents as being more or less relevant to the query being pursued. As the process is
iterated, the retrieval system builds an increasingly accurate model of what the user is searching for.

The question of how a user (or teacher) may best select examples to help a learner identify a target concept
is the focus of much work in computational learning theory. See Goldman and Kearns (1995) for a detailed
treatment of the problem.

The Scatter/Gather algorithm (Cutting et al., 1992) is an interactive clustering algorithm, designed for
information retrieval. The system provides an initial clustering of data. When the user selects a subset of
the clusters for further examination, the system gathers their components and regroups them to form new
clusters. Scatter/Gather aims at pursuing and finding structure in a small part of a corpus. This makes it
an interesting complement to our approach: Scatter/Gather may provide an effective means for browsing
and focusing on clusters of interest, and semi-supervised learning may be an effective means of improving
the quality of those clusters.

Note that we do not compare our performance to that of other purely unsupervised clustering systems such
as AutoClass (Stutz & Cheeseman, 1994), COBWEB (Fisher, 1987) or Iterative Optimization (Fisher, 1996).
The contribution of our work is not to introduce a new clustering algorithm, but an approach that allows
user feedback to guide the clustering. While we have illustrated our approach on a relatively simple system,
we believe it is equally applicable to more sophisticated algorithms, and expect that it will provide similar
improvements over the unsupervised variants.
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