
Semi-supervised Clustering with User Feedba
kDavid CohnJust Resear
h4616 Henry St.,Pittsburgh, PA 15213
ohn�justresear
h.
om Ri
h CaruanaJust Resear
h4616 Henry St.,Pittsburgh, PA 15213
aruana�justresear
h.
om Andrew M
CallumJust Resear
h4616 Henry St.,Pittsburgh, PA 15213m

allum�justresear
h.
omAbstra
tWe present a new approa
h to 
lustering based on the observation that \it is easierto 
riti
ize than to 
onstru
t." Our approa
h of semi-supervised 
lustering allowsa user to iteratively provide feedba
k to a 
lustering algorithm. The feedba
k isin
orporated in the form of 
onstraints whi
h the 
lustering algorithm attempts tosatisfy on future iterations. These 
onstraints allow the user to guide the 
lusterertowards 
lusterings of the data that the user �nds more useful. We demonstratesemi-supervised 
lustering with a system that learns to 
luster news stories from aReuters data set.1 Introdu
tionConsider the following problem: you are given 100,000 text do
uments (e.g., papers, newsgroup arti
les, orweb pages) and asked to group them into 
lasses or into a hierar
hy su
h that related do
uments are groupedtogether. You are not told what 
lasses or hierar
hy to use or what do
uments are related; you have some
riteria in mind, but may not be able to say exa
tly what it is. You are 
reating this taxonomy so that thedo
uments 
an be browsed and a

essed eÆ
iently, either by yourself or by other people. We refer to this asthe Yahoo! problem.The Yahoo! problem is ubiquitous. It o

urs in many �elds and with many di�erent types of \do
uments."The web has 
reated a number of new examples of the Yahoo! problem, but many exist outside of the web.Librarians, astronomers, biologists | everyone tasked with 
reating a taxonomy from data fa
es the Yahoo!problem.We propose the following iterative solution to the Yahoo! problem:1. Give the 100,000 do
uments to an unsupervised 
lustering algorithm and have it 
luster them.2. Browse the resulting 
lusters and tell the system whi
h 
lusters you like, and whi
h 
lusters youdon't like. Don't do this for all the 
lusters, just for some of the ones you browsed. Provide feedba
kto the system by saying:� \This do
ument doesn't belong in here"� \Move this do
ument to that 
luster"� \These two do
uments shouldn't be (or should be) in the same 
luster".Don't do this for all, or even many, of the do
uments; only for the few that look most out of pla
e.



3. After your 
ritique, re-
luster the do
uments, allowing the 
lustering algorithm to modify the thedistan
e metri
 parameters to try to �nd a new 
lustering that satis�es the 
onstraints you providedin the 
ritique.4. Repeat this until you are happy with the 
lustering.This solution is distin
t from both traditional supervised and unsupervised learning. Unsupervised 
lusteringtakes an unlabeled 
olle
tion of data and, without intervention or additional knowledge, partitions it intosets of examples su
h that examples within 
lusters are more \similar" than examples between 
lusters.Mu
h work in unsupervised 
lustering is dedi
ated to the problem of manually engineering similarity 
riteriathat yield good partitioning of data for a given domain.Supervised learning, on the other hand, assumes that the 
lass stru
ture or hierar
hy already is known. Ittakes a set of examples with 
lass labels, and returns a fun
tion that maps examples to 
lass labels. Thegoal of supervised learning is to learn mappings that are a

urate enough to be useful when 
lassifying newexamples, and perhaps to learn mappings that allow users to understand the relationships between the dataand the labels, su
h as whi
h features are important.Semi-supervised 
lustering falls between the extremes of totally unsupervised 
lustering and totally supervisedlearning. The main goal of our approa
h to semi-supervised 
lustering is to allow a human to \steer" the
lustering pro
ess so that examples 
an be partitioned into a useful set of 
lusters with minimum time andhuman e�ort. A se
ondary goal of semi-supervised 
lustering is to give the user a way to intera
t and playwith the data so that they 
an understand it better.1Our approa
h to semi-supervised 
lustering assumes that the human user has in their mind 
riteria thatenable them to evaluate the quality of a 
lustering. It does not assume that the user is 
ons
ious of whatthey think de�nes a good 
lustering but that, as with art, they will \know it when they see it." Mostimportantly, semi-supervised 
lustering never expe
ts a user to write a fun
tion that de�nes the 
lustering
riterion. Instead, the user intera
ts with the 
lustering system, whi
h attempts to learn a 
riterion thatyields 
lusters the user is satis�ed with.Semi-supervised 
lustering with user feedba
k is 
losely related to a
tive learning (Cohn et al., 1996). In a
-tive learning, the learning system attempts to sele
t whi
h data points, if labeled, would be most informative.In semi-supervised 
lustering, the human sele
ts the data points, and puts on them a wide array of possible
onstraints intead of labels. These two key di�eren
es point toward the important situations in whi
h thesemi-supervised approa
h is preferable. (1) In some 
lustering problems the desired similarity metri
 maybe so di�erent from the default that traditional a
tive learning would make many ineÆ
ient queries. Thisproblem also arises when there are many di�erent plausible 
lusterings. Although less automated, a humanbrowsing the data would do less work by sele
ting the feedba
k data points themself. (2) The intuitivearray of possible 
onstraints are easier to apply than labels, espe
ially when the �nal 
lusters are not knownin advan
e. (3) The very a
t of human browsing 
an lead to the dis
overy of what 
lusters are desired.Semi-supervised learning 
an thus be seen as a method of data exploration and pattern dis
overy, eÆ
ientlyaided by 
luster-based summarization.One of the primary 
hallenges of semi-supervised 
lustering is �nding ways to make use of user feedba
kduring 
lustering. The remainder of this paper des
ribes one simple illustrative way in whi
h this may bea

omplished. Other 
hallenges that will be addressed by future resear
h in semi-supervised 
lustering arebrie
y tou
hed on in the dis
ussion se
tion.2 ClusteringFormally, 
lustering is the pro
ess of partitioning a data set into subsets su
h that all members of a givensubset are \similar" by some distan
e measure D. We will denote the distan
e between two examples x11Demiriz et al. (1999) independently introdu
ed a semi-supervised 
lustering model similar to the one we des
ribehere. The main distin
tion between our work and theirs is our use of iterative feedba
k to a
quire labelings; Demirizet al. assume that all available labels are given a priori.



and x2 as D(x1; x2). We 
an generalize this to refer to the distan
e between two 
luster 
enters or betweena 
luster 
enter and an example.From a statisti
al standpoint, 
lustering may be viewed as a way of doing fa
tor analysis on a mixturemodel. In this setting it is assumed that observed data result from sampling a mixture of unknown sour
es.Clustering attempts to infer the properties of the sour
es (the 
luster 
enters or prototypes), and determinewhi
h sour
e is most likely to be responsible for a given example.The two most popular approa
hes to 
lustering are agglomerative 
lustering and prototype-based 
lustering.In agglomerative 
lustering, ea
h datum is initially pla
ed in its own 
luster. The 
lusters that are mostsimilar (a

ording to D) are iteratively merged, until the desired number of 
lusters is rea
hed, or some limiton data likelihood or distortion is ex
eeded (see Hofmann & Buhmann (1997), for an in-depth treatment ofagglomerative 
lustering).In prototype-based 
lustering, the �nal number of 
lusters is set a priori, and the 
orresponding prototypes arefound using a form of EM. Ea
h prototype is initialized to some position. Examples are assigned to prototypesa

ording to their similarity to ea
h prototype (the assignment may be 0-1 or fra
tional, depending on thealgorithm). Prototypes are then adjusted to maximize the data likelihood, or, equivalently, minimize thedata distortion. The assignment/adjustment pro
ess is repeated until no signi�
ant 
hanges result (see Meil�aand He
kerman (1998) for 
on
ise review of prototype-based 
lustering).
o

oo

o o

o

o

o

o

o
o

o

o

o
oo

o

o

o

o

o

o

oo

o

o

o
oo

o o

o

o

o

o

o
o

o

o

o
oo

o

o

o

o

o

o

oo

o

o

o
oo

o o

o

o

o

o

o
o

o

o

o
oo

o

o

o

o

o

o

oo

o

o

Figure 1: Illustration of semi-supervised 
lustering. Given an initial 
lustering, the user spe
i�es two pointsthat should not have been pla
ed in the same 
luster. The system warps its metri
, allowing it to �nd a
lustering that respe
ts the 
onstraint.3 Semi-supervised 
lusteringThe goodness of any 
lustering depends on how well the metri
 D mat
hes the user's (perhaps unknown)internal model of the target domain. We propose allowing the user to impose their model on the metri
 viathe 
lustering algorithm, by having the user provide the algorithm with feedba
k, and allowing it to alter themetri
 so as to a

ommodate that feedba
k. Not only is it easier to 
ritique than to 
onstru
t, but the user's
riti
ism 
an take many forms | spe
ifying that a parti
ular example does/doesn't belong in a parti
ular
luster, that two examples do/don't belong in the same 
luster, or that a parti
ular 
luster is good (andshould be preserved) or bad (and should be split up).Feedba
k may be in
orporated into the metri
 as 
onstraints to be respe
ted by the 
lustering algorithm.Consider two examples x1 and x2 that are 
onstrained by the user feedba
k to be in separate 
lusters. Whenthe 
lustering algorithm attempts a partitioning whi
h pla
es x1 and x2 in the same 
luster, the metri
 maybe altered to in
rease the distan
e between x1 and x2 until one or the other of them falls in a di�erent 
luster(Figure 1). Other 
onstraints may be implemented similarly, shrinking the distan
e between some exampleand a 
luster prototype, or in
reasing the distan
e between a 
luster prototype and all the examples assigned



to it.3.1 Semi-supervised do
ument 
lusteringWe adopt a statisti
al approa
h to do
ument 
lustering resulting from the naive Bayes model of do
umentgeneration (M
Callum & Nigam, 1998). Given a vo
abulary V , a do
ument is assumed to be a \bag ofwords" generated from a multinomial distribution �. The probability of do
ument d isp(d) = Ywj2V p(wj j�)N(wj ;d);where p(wj j�) is the parameterized probability of word wi being generated, and N(wj ; d) is the number oftimes wj appears in the do
ument. Ea
h do
ument d forms an estimate of a multinomial distribution �d;likewise, ea
h 
luster 
 forms an estimate �
 
omposed from the �d of its 
onstituent do
uments.2We sear
h for optimal 
lusters, applying EM as follows: for ea
h 
luster 
 and do
ument d, we 
ompute p(dj
)and apply Bayes rule to 
ompute p(
jd). Ea
h 
luster is given partial ownership of a do
ument proportionalto p(
jd). The 
luster parameters �
 are re
omputed as the weighted sum of their 
omponent do
uments,and the pro
ess is repeated. The algorithm is guaranteed to 
onverge to a lo
ally optimal 
lustering.In this probablisti
 setting, the natural measure of dissimilarity between two do
uments d1 and d2 is theprobability that they were generated by the same multinomial; this is proportional to the KL divergen
e tothe mean of their multinomial distributions: DM (d1jjd2) = jd1jD(d1jjM12) + jd2jD(d2jjM12), where M12 isa distribution 
omposed of the mean word probabilities of d1 and d2, jdj is the length of do
ument d, andD(djjM) is the standard KL divergen
e of d to M . The advantage of KL divergen
e to the mean of themultinomial distributions is that it is symmetri
, unlike standard KL divergen
e.To implement our 
onstraints, we augment the standard KL divergen
e D(d1jjd2) with a weighting fun
tionD0(d1jjd2) = Ywj2V 
j � p(wj j�d1) log�p(wj j�d2)p(wj j�d1)�where 
j may be interpreted as indi
ating the importan
e of wj for distinguishing d1 and d2. Then, given a
onstraint that d1 and d2 must be in separate 
lusters, we 
an warp the metri
 by 
omputing�D0M (d1jjd2)�
j = jd1jp(wj j�d1) log�p(wj j�d1d2)p(wj j�d1) �+jd2jp(wj j�d2) log�p(wj j�d1d2)p(wj j�d2) �and hill
limbing over 
 to in
rease the e�e
tive distan
e between the two. This gradient tells us the dire
tionto move the 
's in order to in
rease (or de
rease) the separation between two do
uments. (In the 
urrentexperiments we 
onstrain the 
's to be positive, but it might be interesting to relax this and allow some 
'sto go negative.) These 
's are then used by EM in the analogous distan
e measure between a do
ument anda prototype. Thus we inje
t a learned distan
e metri
 into the 
lustering algorithm by 
hanging the E-step.Other 
onstraints des
ribed in the previous se
tion may be similarly implemented by hill
limbing over theexample-to-
luster and 
luster-to-
luster distan
e. Note that the linear warping we des
ribe will not guar-antee that all 
onstraints 
an be satis�ed - some 
lusterings desired by the user may be non-
onvex andunrealizable in the spa
e of models supported by naive Bayes. In this 
ase, the hill
limbing will 
onvergeto a weighting that provides a lo
al minimum of 
onstraint violations. Lo
al or nonlinear warpings of thedistan
e metri
, su
h as the one des
ribed by Friedman (1994) and Yianilos (1996) may be of use in thesesituations.2The estimates for word probabilities are derived from the relative word frequen
ies in the do
uments. FollowingM
Callum & Nigam (1998), we smooth with a LaPla
ean prior to avoid zero word probabilities.



4 ExperimentsIn this se
tion, we illustrate the semi-supervised approa
h on a small do
ument 
lustering problem. We useda set of 25 do
uments ea
h from �ve Reuters topi
 areas: business, health, politi
s, sports and te
h. Startingfrom �ve randomly initialized prototypes, the EM-based 
lustering algorithm des
ribed in the previousse
tions found 
lusters that maximized data likelihood.Ea
h time 
lustering 
onverged, we added a 
onstraint. We simulated a human user by identifying twodo
uments from the same 
luster whose sour
es were di�erent Reuters topi
s, and 
onstraining them to bein di�erent 
lusters.3 For ea
h unsatis�ed 
onstraint, we reweighted the divergen
e by a �xed number ofhill
limbing steps. The 
luster prototypes were then re-initialized, and EM training repeated.4.1 Clustering performan
eFigure 2a 
ompares the performan
e of supervised, unsupervised and semi-supervised learning. For thesupervised learner, 
lassi�
ation a

ura
y is plotted. For unsupervised and semi-supervised learners, 
lusterpurity is plotted. Cluster purity is the fra
tion of examples that would be 
lassi�ed 
orre
tly if all exampleswere assigned the majority label in ea
h 
luster.After only a few 
onstraints have been added, 
luster purity in
reases sharply over that of unsupervised
lustering. It is not 
lear, however, how to fairly 
ompare the performan
e of semi-supervised 
lusteringwith that of fully supervised 
lustering: 
onstraints do not exa
tly 
orrespond to labeled examples, and itis un
ertain what 
onstitutes a proper test set. In supervised learning, do
uments used for training aretraditionally ex
luded from the test set, sin
e their labels are already known. But the semi-supervised model
lusters (and is tested on) the entire 
orpus, so it is also reasonable to gauge it against a supervised learnertested the same way. In the �gure we show the 
luster purity of supervised learning on the training set aswell as its generalization to an independent test set.The semi-supervised learner rea
hes its asymptoti
 performan
e after about 10 
onstraints have beenadded; the supervised learners require between 3 and 6 times more labeled examples to rea
h that levelof performan
e.4 It is interesting to note that the performan
e of the semi-supervised learner a
tually beginsto de
rease after roughly 20 
onstraints have been added. The Reuters data set 
ontains many do
umentswhi
h appear under more than one topi
 (an identi
al arti
le on Mi
rosoft, for example, appears underboth `business' and `te
h'). We hypothesize that, in an attempt to separate these unseparable do
uments,the learner is pushing its term weightings to unhealthy extremes. Future experiments will investigate thishypothesis and how best to over
ome it.Preliminary experiments on a di�erent data set 
onsisting of 20,000 USENET arti
les suggest that semi-supervised 
lustering is just as e�e
tive with large data sets. More importantly, these experiments show thatsemi-supervised 
lustering is able to 
luster the same data a

ording to di�erent orthogonal 
riteria. Thisdataset 
ontains arti
les on four subje
ts: aviation simulators, real aviation, auto simulators and real autos.Semi-supervised 
lustering 
an 
luster the simulators and real groups together (e.g., aviation simulatorsand real aviation) or the auto and aviation groups together (e.g., aviation simulators and auto simulators)depending on the feedba
k provided by the user. In both 
ases it does so at about 80% a

ura
y with 10
onstraints. When the distan
e metri
 is not adjusted, the same 
onstraints give an average of only 64%a

ura
y. (Purely unsupervised 
lustering a
hieves only about 50% a

ura
y.)3A fully-operational semi-supervised 
lustering system would bene�t from a graphi
al user interfa
e that permitseÆ
ient browsing of the 
urrent 
lusters and supports easy spe
i�
ation of user 
onstraints. See the dis
ussion ofS
atter/Gather in later in this paper.4To assure ourselves that metri
-warping alone wasn't responsible for the performan
e disparity, we also in
orpo-rated metri
 warping into the supervised 
lusterer, shrinking the divergen
e between a do
ument and its assigned
luster. The addition resulted in no signi�
ant performan
e improvement.



0 10 20 30 40 50 60 70 80
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of constraints (or labeled examples)

cl
us

te
r 

pu
rit

y 
(o

r 
fr

ac
tio

n 
co

rr
ec

t)

supervised (purity)        
supervised (generalization)
unsupervised (purity)      
semi−supervised (purity)   

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

number of constraints

fr
ac

tio
n 

ov
el

ap
 w

ith
 m

ax
 c

ro
ss

−e
nt

ro
py

 w
or

ds

top 1200 words (20%)
top 750 words (11%) 
top 150 words (2.2%)
top 50 words (0.7%) 

Figure 2: (a) Learning 
urves for supervised, unsupervised and semi-supervised 
lustering. For supervised
lustering, 
luster purity (measured on the train set) and generalization (measured on an independent testset) are plotted against the number of labeled examples; for semi-supervised 
lustering, purity is plottedagainst the number of 
onstraints. Averages over 10 runs ea
h, with the upper and lower lines indi
atingerror bars at one standard deviation. See text for details. (b) Fra
tion overlap of the top n weightedwords with top n words ranked by information gain on fully-supervised data. As the number of 
onstraintsin
reases, there is in
reasing 
orrelation with words that strongly a�e
t 
lass 
onditional probabilities. Notethat this overlap is a
hieved with far fewer 
onstraints than the number of labels in the fully-superviseddata.4.2 Learning term weightingsAdjusting 
j warps the metri
 by adjusting the resolving power of word wj , essentially identifying whi
hwords are most useful for distinguishing do
uments. If 
j is large, small disparities in the frequen
y of wjbe
ome important and will tend to separate do
uments; if 
j is small, large disparities in frequen
y will beignored.Empiri
ally, this behavior is borne out on the Reuters experiments - words that subje
tively appear highlyrelevant for distinguishing topi
s, su
h as `Iraq', `e
onomy', `weapons' and `
oun
il' are given large weight-ings. We 
omputed the information gain of wj using all do
ument labels (Mit
hell 1997), and 
omparedit with 
j . Figure 2b shows the overlap between the top-weighted n% words in the vo
abulary with thesame words ranked by information gain. After about a dozen 
onstraints, semi-supervised 
lustering learnsword weightings with moderate overlap to the word weightings learned by supervised learning from all 125do
ument labels.5 Dis
ussionThis paper only s
rat
hes the surfa
e of semi-supervised 
lustering with user feedba
k. There are still manyissues to be addressed; we tou
h on a few of these here.5.1 Constraints vs. LabelsWhen applying supervised learning to 
lassi�
ation problems, it is assumed that the users know the target
lasses, and have labeled examples from ea
h target 
lass. In many interesting problems, this is an unrealisti
assumption. A semi-supervised system allows users to give label-like information to the learner without



having to know labels. Although user feedba
k in semi-supervised 
lustering serves a similar role as 
lasslabels serve in supervised learning, 
omparing supervised learning with semi-supervised 
lustering is anapples{to{oranges 
omparison. Semi-supervised 
lustering usually will be applied to problems where labelsare not readily available. Evaluating 
lustering systems is diÆ
ult and usually subje
tive. We 
ompare theperforman
e of semi-supervised 
lustering to supevised learning using a labelled dataset prin
ipally to avoidthis subje
tivity.The performan
e disparity between supervised and semi-supervised 
lustering is surprising. While we haveargued that it is easier to provide 
onstraints than labels, 
onstraints also provide less information thanlabels. Constraints don't require the user to know the 
orre
t label (or even what labels exist!) | onlythe relationship among pairs or sets of labels. There are only 125 possible labels in the small Reutersdataset, but thousands of possible separation 
onstraints. Yet empiri
ally, even with very few 
onstraints,the semi-supervised learner is able to perform surprisingly well.One explanation is in the 
onne
tion to a
tive learning. As a means of of user feedba
k, the addition ofa 
onstraint indi
ates a problem, and e�e
tively a
ts as 
ounterexamples for the present 
lustering. Coun-terexamples are a powerful tool for doing a
tive learning whi
h, in some situations, is mu
h more eÆ
ientthan learning from randomly labeled examples (Angluin, 1987). The user, by iteratively dire
ting the 
lus-terer's attention towards points that are in
orre
tly 
lustered, gives a semi-supervised 
lustering systemmany advantages of an a
tive learning system.5.2 Types of User Feedba
kAs we indi
ate above, there are many di�erent types of feedba
k that users might provide to a semi-supervised
lsutering system. One type of feedba
k is the 
onstraints on individual data points and 
lusters we usedabove. But many other forms of feedba
k might prove useful, as well. For example, a user might tell thesystem that the 
urrent 
lustering is too 
oarse or too �ne. Or the user might point to a 
luster and indi
atethat the 
luster is bad without saying how it is bad. Similarly, a user might indi
ate that a 
luster is good,suggesting that future re-
lusterings of the data should attempt to maintain this 
luster. Users might alsogive feedba
k that is not 
luster spe
i�
, su
h as telling the system that the entire 
lustering looks bad, andthat the next 
lustering should be very di�erent.Some types of user feedba
k may require adaptive 
lustering that 
annot easily be handled by the 
 weightings
heme we used above. For example, we are working on an approa
h to �nding good | but qualitativelydi�erent | 
lusterings of the same data by exploiting EM's weakness for getting trapped in lo
al minima.Di�erent lo
al minima may 
apture qualitatively di�erent ways of 
lustering the data, one of whi
h maybetter mat
h the user's internal preferen
e fun
tion than the deepest minima the system 
an �nd. In thelong run we hope to develop a general framework for representing user feedba
k about 
lusters.5.3 Other Appli
ationsWe believe there are many appli
ations of feedba
k-driven semi-supervised 
lustering. Imagine a Yahoo!hierar
hy for web pages that allows the user to tailor the hierar
hy to better mat
h their own interests byproviding feedba
k while browsing. Similarly, 
onsider an automati
 email system where a user allows thesystem to 
luster email into related mailboxes instead of manually spe
ify the mailboxes. Semi-supervisedfeedba
k would allow the user to tailor mailbox 
lusters to �t their (possibly 
hanging) needs. As a di�erentexample, 
onsider a user 
lustering proteins into homology groups (groups of proteins with similar stru
ture).Large proteins have 
omplex stru
ture and 
ould be 
lustered many di�erent ways. A feedba
k-driven semi-supervised 
lustering system would allow the user to explore many di�erent ways the proteins might be
lustered, and to �nd 
lusterings most suitable to their purposes.5.4 Related workAs indi
ated above, our model is similar to the model of Demiriz et al. They report how a �xed set of labeledexamples may be used to bias a 
lustering algorithm; we investigate how a user, intera
ting with the system,



may eÆ
iently guide the learner to a desired 
lustering.Our te
hnique of in
orporating user feedba
k is a 
ousin to relevan
e feedba
k, a te
hnique for informationretrieval (Bu
kley & Salton, 1995). Given a query and initial set of retrieved do
uments, relevan
e feedba
kasks the user to tag do
uments as being more or less relevant to the query being pursued. As the pro
ess isiterated, the retrieval system builds an in
reasingly a

urate model of what the user is sear
hing for.The question of how a user (or tea
her) may best sele
t examples to help a learner identify a target 
on
eptis the fo
us of mu
h work in 
omputational learning theory. See Goldman and Kearns (1995) for a detailedtreatment of the problem.The S
atter/Gather algorithm (Cutting et al., 1992) is an intera
tive 
lustering algorithm, designed forinformation retrieval. The system provides an initial 
lustering of data. When the user sele
ts a subset ofthe 
lusters for further examination, the system gathers their 
omponents and regroups them to form new
lusters. S
atter/Gather aims at pursuing and �nding stru
ture in a small part of a 
orpus. This makes itan interesting 
omplement to our approa
h: S
atter/Gather may provide an e�e
tive means for browsingand fo
using on 
lusters of interest, and semi-supervised learning may be an e�e
tive means of improvingthe quality of those 
lusters.Note that we do not 
ompare our performan
e to that of other purely unsupervised 
lustering systems su
has AutoClass (Stutz & Cheeseman, 1994), COBWEB (Fisher, 1987) or Iterative Optimization (Fisher, 1996).The 
ontribution of our work is not to introdu
e a new 
lustering algorithm, but an approa
h that allowsuser feedba
k to guide the 
lustering. While we have illustrated our approa
h on a relatively simple system,we believe it is equally appli
able to more sophisti
ated algorithms, and expe
t that it will provide similarimprovements over the unsupervised variants.Referen
esAngluin, D. (1987) Learning Regular Sets from Queries and Counterexamples, Information and Computa-tion, 75(2):87{106.Bu
kley, C. & Salton, G. (1995) Optimization of Relevan
e Feedba
k Weights. SIGIR 1995.Cheeseman, P., Stutz, J., Self, M., Taylor, W., Goebel, J., Volk, K. & Walker, H. (1989)Automati
 Classi�
ation of Spe
tra from the Infrared Astronomi
al Satellite, NASA Referen
e Publi
ation1217.Cohn, D. Ghahramani, Z. and Jordan, M. (1996) A
tive learning with statisti
al models, Journal ofArti�
ial Intelligen
e Resear
h 4: 129-145.Cutting, D., Karger, D., Pedersen, J. & Tukey, J. (1992) S
atter/Gather: A Cluster-based Approa
hto Browsing Large Do
ument Colle
tions, SIGIR 1992.Demiriz, A., Bennett, K. and Embre
hts, M. (1999) Semi-Supervised Clustering Using Geneti
 Algo-rithms. In Dagli et al, eds., ANNIE 1999.El-Yaniv, R., Fine, & Tishby, N. (1998) Agnosti
 Classi�
ation of Markovian Sequen
es. In M. Jordanet al, eds., Neural Information Pro
essing Systems 10, MIT Press.Fisher, D. (1996) Iterative Optimization and Simpli�
ation of Hierar
hi
al Clusterings, Journal of Arti�
ialIntelligen
e Resear
h, 4:147{179.Fisher, D. (1987) Knowledge A
quisition via In
remental Con
eptual Clustering, Ma
hine Learning 2:139{172.Friedman, J. (1994) Flexible Metri
 Nearest Neighbor Classi�
ation. Stanford University, Department ofStatisti
s Te
h Report.Goldman, S. and Kearns, M. (1995) On the Complexity of Tea
hing. Journal of Computer and SystemS
ien
es 50(1):0{31.Hofmann, T. & Buhmann, J. (1997) Pairwise Data Clustering by Deterministi
 Annealing, IEEE Trans-a
tions on Pattern Analysis and Ma
hine Intelligen
e, 19(1).



M
Callum, A., & Nigam, K. (1998) A Comparison of Event Models for Naive Bayes Text Classi�
ation,AAAI-98 Workshop on \Learning for Text Categorization".Meil�a, M. & He
kerman D. (1998) An Experimental Comparison of Several Clustering and InitializationMethods, in G. Cooper & S. Moral, eds., Un
ertainty in Arti�
ial Intelligen
e, Morgan Kaufmann.Mit
hell, T. (1997) Ma
hine Learning, M
Graw-Hill.Stutz, J., & Cheeseman, P. (1994) AutoClass - a Bayesian Classi�
ation System. In Maximum Entropyand Bayesian Methods, J. Skilling et al., eds., Kluwer.Yalinos, P. (1995) Metri
 learning via normal mixtures, NEC Resear
h Institute Te
hni
al Report.


