
Semi-supervised Clustering with User FeedbakDavid CohnJust Researh4616 Henry St.,Pittsburgh, PA 15213ohn�justresearh.om Rih CaruanaJust Researh4616 Henry St.,Pittsburgh, PA 15213aruana�justresearh.om Andrew MCallumJust Researh4616 Henry St.,Pittsburgh, PA 15213mallum�justresearh.omAbstratWe present a new approah to lustering based on the observation that \it is easierto ritiize than to onstrut." Our approah of semi-supervised lustering allowsa user to iteratively provide feedbak to a lustering algorithm. The feedbak isinorporated in the form of onstraints whih the lustering algorithm attempts tosatisfy on future iterations. These onstraints allow the user to guide the lusterertowards lusterings of the data that the user �nds more useful. We demonstratesemi-supervised lustering with a system that learns to luster news stories from aReuters data set.1 IntrodutionConsider the following problem: you are given 100,000 text douments (e.g., papers, newsgroup artiles, orweb pages) and asked to group them into lasses or into a hierarhy suh that related douments are groupedtogether. You are not told what lasses or hierarhy to use or what douments are related; you have someriteria in mind, but may not be able to say exatly what it is. You are reating this taxonomy so that thedouments an be browsed and aessed eÆiently, either by yourself or by other people. We refer to this asthe Yahoo! problem.The Yahoo! problem is ubiquitous. It ours in many �elds and with many di�erent types of \douments."The web has reated a number of new examples of the Yahoo! problem, but many exist outside of the web.Librarians, astronomers, biologists | everyone tasked with reating a taxonomy from data faes the Yahoo!problem.We propose the following iterative solution to the Yahoo! problem:1. Give the 100,000 douments to an unsupervised lustering algorithm and have it luster them.2. Browse the resulting lusters and tell the system whih lusters you like, and whih lusters youdon't like. Don't do this for all the lusters, just for some of the ones you browsed. Provide feedbakto the system by saying:� \This doument doesn't belong in here"� \Move this doument to that luster"� \These two douments shouldn't be (or should be) in the same luster".Don't do this for all, or even many, of the douments; only for the few that look most out of plae.



3. After your ritique, re-luster the douments, allowing the lustering algorithm to modify the thedistane metri parameters to try to �nd a new lustering that satis�es the onstraints you providedin the ritique.4. Repeat this until you are happy with the lustering.This solution is distint from both traditional supervised and unsupervised learning. Unsupervised lusteringtakes an unlabeled olletion of data and, without intervention or additional knowledge, partitions it intosets of examples suh that examples within lusters are more \similar" than examples between lusters.Muh work in unsupervised lustering is dediated to the problem of manually engineering similarity riteriathat yield good partitioning of data for a given domain.Supervised learning, on the other hand, assumes that the lass struture or hierarhy already is known. Ittakes a set of examples with lass labels, and returns a funtion that maps examples to lass labels. Thegoal of supervised learning is to learn mappings that are aurate enough to be useful when lassifying newexamples, and perhaps to learn mappings that allow users to understand the relationships between the dataand the labels, suh as whih features are important.Semi-supervised lustering falls between the extremes of totally unsupervised lustering and totally supervisedlearning. The main goal of our approah to semi-supervised lustering is to allow a human to \steer" thelustering proess so that examples an be partitioned into a useful set of lusters with minimum time andhuman e�ort. A seondary goal of semi-supervised lustering is to give the user a way to interat and playwith the data so that they an understand it better.1Our approah to semi-supervised lustering assumes that the human user has in their mind riteria thatenable them to evaluate the quality of a lustering. It does not assume that the user is onsious of whatthey think de�nes a good lustering but that, as with art, they will \know it when they see it." Mostimportantly, semi-supervised lustering never expets a user to write a funtion that de�nes the lusteringriterion. Instead, the user interats with the lustering system, whih attempts to learn a riterion thatyields lusters the user is satis�ed with.Semi-supervised lustering with user feedbak is losely related to ative learning (Cohn et al., 1996). In a-tive learning, the learning system attempts to selet whih data points, if labeled, would be most informative.In semi-supervised lustering, the human selets the data points, and puts on them a wide array of possibleonstraints intead of labels. These two key di�erenes point toward the important situations in whih thesemi-supervised approah is preferable. (1) In some lustering problems the desired similarity metri maybe so di�erent from the default that traditional ative learning would make many ineÆient queries. Thisproblem also arises when there are many di�erent plausible lusterings. Although less automated, a humanbrowsing the data would do less work by seleting the feedbak data points themself. (2) The intuitivearray of possible onstraints are easier to apply than labels, espeially when the �nal lusters are not knownin advane. (3) The very at of human browsing an lead to the disovery of what lusters are desired.Semi-supervised learning an thus be seen as a method of data exploration and pattern disovery, eÆientlyaided by luster-based summarization.One of the primary hallenges of semi-supervised lustering is �nding ways to make use of user feedbakduring lustering. The remainder of this paper desribes one simple illustrative way in whih this may beaomplished. Other hallenges that will be addressed by future researh in semi-supervised lustering arebriey touhed on in the disussion setion.2 ClusteringFormally, lustering is the proess of partitioning a data set into subsets suh that all members of a givensubset are \similar" by some distane measure D. We will denote the distane between two examples x11Demiriz et al. (1999) independently introdued a semi-supervised lustering model similar to the one we desribehere. The main distintion between our work and theirs is our use of iterative feedbak to aquire labelings; Demirizet al. assume that all available labels are given a priori.



and x2 as D(x1; x2). We an generalize this to refer to the distane between two luster enters or betweena luster enter and an example.From a statistial standpoint, lustering may be viewed as a way of doing fator analysis on a mixturemodel. In this setting it is assumed that observed data result from sampling a mixture of unknown soures.Clustering attempts to infer the properties of the soures (the luster enters or prototypes), and determinewhih soure is most likely to be responsible for a given example.The two most popular approahes to lustering are agglomerative lustering and prototype-based lustering.In agglomerative lustering, eah datum is initially plaed in its own luster. The lusters that are mostsimilar (aording to D) are iteratively merged, until the desired number of lusters is reahed, or some limiton data likelihood or distortion is exeeded (see Hofmann & Buhmann (1997), for an in-depth treatment ofagglomerative lustering).In prototype-based lustering, the �nal number of lusters is set a priori, and the orresponding prototypes arefound using a form of EM. Eah prototype is initialized to some position. Examples are assigned to prototypesaording to their similarity to eah prototype (the assignment may be 0-1 or frational, depending on thealgorithm). Prototypes are then adjusted to maximize the data likelihood, or, equivalently, minimize thedata distortion. The assignment/adjustment proess is repeated until no signi�ant hanges result (see Meil�aand Hekerman (1998) for onise review of prototype-based lustering).
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Figure 1: Illustration of semi-supervised lustering. Given an initial lustering, the user spei�es two pointsthat should not have been plaed in the same luster. The system warps its metri, allowing it to �nd alustering that respets the onstraint.3 Semi-supervised lusteringThe goodness of any lustering depends on how well the metri D mathes the user's (perhaps unknown)internal model of the target domain. We propose allowing the user to impose their model on the metri viathe lustering algorithm, by having the user provide the algorithm with feedbak, and allowing it to alter themetri so as to aommodate that feedbak. Not only is it easier to ritique than to onstrut, but the user'sritiism an take many forms | speifying that a partiular example does/doesn't belong in a partiularluster, that two examples do/don't belong in the same luster, or that a partiular luster is good (andshould be preserved) or bad (and should be split up).Feedbak may be inorporated into the metri as onstraints to be respeted by the lustering algorithm.Consider two examples x1 and x2 that are onstrained by the user feedbak to be in separate lusters. Whenthe lustering algorithm attempts a partitioning whih plaes x1 and x2 in the same luster, the metri maybe altered to inrease the distane between x1 and x2 until one or the other of them falls in a di�erent luster(Figure 1). Other onstraints may be implemented similarly, shrinking the distane between some exampleand a luster prototype, or inreasing the distane between a luster prototype and all the examples assigned



to it.3.1 Semi-supervised doument lusteringWe adopt a statistial approah to doument lustering resulting from the naive Bayes model of doumentgeneration (MCallum & Nigam, 1998). Given a voabulary V , a doument is assumed to be a \bag ofwords" generated from a multinomial distribution �. The probability of doument d isp(d) = Ywj2V p(wj j�)N(wj ;d);where p(wj j�) is the parameterized probability of word wi being generated, and N(wj ; d) is the number oftimes wj appears in the doument. Eah doument d forms an estimate of a multinomial distribution �d;likewise, eah luster  forms an estimate � omposed from the �d of its onstituent douments.2We searh for optimal lusters, applying EM as follows: for eah luster  and doument d, we ompute p(dj)and apply Bayes rule to ompute p(jd). Eah luster is given partial ownership of a doument proportionalto p(jd). The luster parameters � are reomputed as the weighted sum of their omponent douments,and the proess is repeated. The algorithm is guaranteed to onverge to a loally optimal lustering.In this probablisti setting, the natural measure of dissimilarity between two douments d1 and d2 is theprobability that they were generated by the same multinomial; this is proportional to the KL divergene tothe mean of their multinomial distributions: DM (d1jjd2) = jd1jD(d1jjM12) + jd2jD(d2jjM12), where M12 isa distribution omposed of the mean word probabilities of d1 and d2, jdj is the length of doument d, andD(djjM) is the standard KL divergene of d to M . The advantage of KL divergene to the mean of themultinomial distributions is that it is symmetri, unlike standard KL divergene.To implement our onstraints, we augment the standard KL divergene D(d1jjd2) with a weighting funtionD0(d1jjd2) = Ywj2V j � p(wj j�d1) log�p(wj j�d2)p(wj j�d1)�where j may be interpreted as indiating the importane of wj for distinguishing d1 and d2. Then, given aonstraint that d1 and d2 must be in separate lusters, we an warp the metri by omputing�D0M (d1jjd2)�j = jd1jp(wj j�d1) log�p(wj j�d1d2)p(wj j�d1) �+jd2jp(wj j�d2) log�p(wj j�d1d2)p(wj j�d2) �and hilllimbing over  to inrease the e�etive distane between the two. This gradient tells us the diretionto move the 's in order to inrease (or derease) the separation between two douments. (In the urrentexperiments we onstrain the 's to be positive, but it might be interesting to relax this and allow some 'sto go negative.) These 's are then used by EM in the analogous distane measure between a doument anda prototype. Thus we injet a learned distane metri into the lustering algorithm by hanging the E-step.Other onstraints desribed in the previous setion may be similarly implemented by hilllimbing over theexample-to-luster and luster-to-luster distane. Note that the linear warping we desribe will not guar-antee that all onstraints an be satis�ed - some lusterings desired by the user may be non-onvex andunrealizable in the spae of models supported by naive Bayes. In this ase, the hilllimbing will onvergeto a weighting that provides a loal minimum of onstraint violations. Loal or nonlinear warpings of thedistane metri, suh as the one desribed by Friedman (1994) and Yianilos (1996) may be of use in thesesituations.2The estimates for word probabilities are derived from the relative word frequenies in the douments. FollowingMCallum & Nigam (1998), we smooth with a LaPlaean prior to avoid zero word probabilities.



4 ExperimentsIn this setion, we illustrate the semi-supervised approah on a small doument lustering problem. We useda set of 25 douments eah from �ve Reuters topi areas: business, health, politis, sports and teh. Startingfrom �ve randomly initialized prototypes, the EM-based lustering algorithm desribed in the previoussetions found lusters that maximized data likelihood.Eah time lustering onverged, we added a onstraint. We simulated a human user by identifying twodouments from the same luster whose soures were di�erent Reuters topis, and onstraining them to bein di�erent lusters.3 For eah unsatis�ed onstraint, we reweighted the divergene by a �xed number ofhilllimbing steps. The luster prototypes were then re-initialized, and EM training repeated.4.1 Clustering performaneFigure 2a ompares the performane of supervised, unsupervised and semi-supervised learning. For thesupervised learner, lassi�ation auray is plotted. For unsupervised and semi-supervised learners, lusterpurity is plotted. Cluster purity is the fration of examples that would be lassi�ed orretly if all exampleswere assigned the majority label in eah luster.After only a few onstraints have been added, luster purity inreases sharply over that of unsupervisedlustering. It is not lear, however, how to fairly ompare the performane of semi-supervised lusteringwith that of fully supervised lustering: onstraints do not exatly orrespond to labeled examples, and itis unertain what onstitutes a proper test set. In supervised learning, douments used for training aretraditionally exluded from the test set, sine their labels are already known. But the semi-supervised modellusters (and is tested on) the entire orpus, so it is also reasonable to gauge it against a supervised learnertested the same way. In the �gure we show the luster purity of supervised learning on the training set aswell as its generalization to an independent test set.The semi-supervised learner reahes its asymptoti performane after about 10 onstraints have beenadded; the supervised learners require between 3 and 6 times more labeled examples to reah that levelof performane.4 It is interesting to note that the performane of the semi-supervised learner atually beginsto derease after roughly 20 onstraints have been added. The Reuters data set ontains many doumentswhih appear under more than one topi (an idential artile on Mirosoft, for example, appears underboth `business' and `teh'). We hypothesize that, in an attempt to separate these unseparable douments,the learner is pushing its term weightings to unhealthy extremes. Future experiments will investigate thishypothesis and how best to overome it.Preliminary experiments on a di�erent data set onsisting of 20,000 USENET artiles suggest that semi-supervised lustering is just as e�etive with large data sets. More importantly, these experiments show thatsemi-supervised lustering is able to luster the same data aording to di�erent orthogonal riteria. Thisdataset ontains artiles on four subjets: aviation simulators, real aviation, auto simulators and real autos.Semi-supervised lustering an luster the simulators and real groups together (e.g., aviation simulatorsand real aviation) or the auto and aviation groups together (e.g., aviation simulators and auto simulators)depending on the feedbak provided by the user. In both ases it does so at about 80% auray with 10onstraints. When the distane metri is not adjusted, the same onstraints give an average of only 64%auray. (Purely unsupervised lustering ahieves only about 50% auray.)3A fully-operational semi-supervised lustering system would bene�t from a graphial user interfae that permitseÆient browsing of the urrent lusters and supports easy spei�ation of user onstraints. See the disussion ofSatter/Gather in later in this paper.4To assure ourselves that metri-warping alone wasn't responsible for the performane disparity, we also inorpo-rated metri warping into the supervised lusterer, shrinking the divergene between a doument and its assignedluster. The addition resulted in no signi�ant performane improvement.
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Figure 2: (a) Learning urves for supervised, unsupervised and semi-supervised lustering. For supervisedlustering, luster purity (measured on the train set) and generalization (measured on an independent testset) are plotted against the number of labeled examples; for semi-supervised lustering, purity is plottedagainst the number of onstraints. Averages over 10 runs eah, with the upper and lower lines indiatingerror bars at one standard deviation. See text for details. (b) Fration overlap of the top n weightedwords with top n words ranked by information gain on fully-supervised data. As the number of onstraintsinreases, there is inreasing orrelation with words that strongly a�et lass onditional probabilities. Notethat this overlap is ahieved with far fewer onstraints than the number of labels in the fully-superviseddata.4.2 Learning term weightingsAdjusting j warps the metri by adjusting the resolving power of word wj , essentially identifying whihwords are most useful for distinguishing douments. If j is large, small disparities in the frequeny of wjbeome important and will tend to separate douments; if j is small, large disparities in frequeny will beignored.Empirially, this behavior is borne out on the Reuters experiments - words that subjetively appear highlyrelevant for distinguishing topis, suh as `Iraq', `eonomy', `weapons' and `ounil' are given large weight-ings. We omputed the information gain of wj using all doument labels (Mithell 1997), and omparedit with j . Figure 2b shows the overlap between the top-weighted n% words in the voabulary with thesame words ranked by information gain. After about a dozen onstraints, semi-supervised lustering learnsword weightings with moderate overlap to the word weightings learned by supervised learning from all 125doument labels.5 DisussionThis paper only srathes the surfae of semi-supervised lustering with user feedbak. There are still manyissues to be addressed; we touh on a few of these here.5.1 Constraints vs. LabelsWhen applying supervised learning to lassi�ation problems, it is assumed that the users know the targetlasses, and have labeled examples from eah target lass. In many interesting problems, this is an unrealistiassumption. A semi-supervised system allows users to give label-like information to the learner without



having to know labels. Although user feedbak in semi-supervised lustering serves a similar role as lasslabels serve in supervised learning, omparing supervised learning with semi-supervised lustering is anapples{to{oranges omparison. Semi-supervised lustering usually will be applied to problems where labelsare not readily available. Evaluating lustering systems is diÆult and usually subjetive. We ompare theperformane of semi-supervised lustering to supevised learning using a labelled dataset prinipally to avoidthis subjetivity.The performane disparity between supervised and semi-supervised lustering is surprising. While we haveargued that it is easier to provide onstraints than labels, onstraints also provide less information thanlabels. Constraints don't require the user to know the orret label (or even what labels exist!) | onlythe relationship among pairs or sets of labels. There are only 125 possible labels in the small Reutersdataset, but thousands of possible separation onstraints. Yet empirially, even with very few onstraints,the semi-supervised learner is able to perform surprisingly well.One explanation is in the onnetion to ative learning. As a means of of user feedbak, the addition ofa onstraint indiates a problem, and e�etively ats as ounterexamples for the present lustering. Coun-terexamples are a powerful tool for doing ative learning whih, in some situations, is muh more eÆientthan learning from randomly labeled examples (Angluin, 1987). The user, by iteratively direting the lus-terer's attention towards points that are inorretly lustered, gives a semi-supervised lustering systemmany advantages of an ative learning system.5.2 Types of User FeedbakAs we indiate above, there are many di�erent types of feedbak that users might provide to a semi-supervisedlsutering system. One type of feedbak is the onstraints on individual data points and lusters we usedabove. But many other forms of feedbak might prove useful, as well. For example, a user might tell thesystem that the urrent lustering is too oarse or too �ne. Or the user might point to a luster and indiatethat the luster is bad without saying how it is bad. Similarly, a user might indiate that a luster is good,suggesting that future re-lusterings of the data should attempt to maintain this luster. Users might alsogive feedbak that is not luster spei�, suh as telling the system that the entire lustering looks bad, andthat the next lustering should be very di�erent.Some types of user feedbak may require adaptive lustering that annot easily be handled by the  weightingsheme we used above. For example, we are working on an approah to �nding good | but qualitativelydi�erent | lusterings of the same data by exploiting EM's weakness for getting trapped in loal minima.Di�erent loal minima may apture qualitatively di�erent ways of lustering the data, one of whih maybetter math the user's internal preferene funtion than the deepest minima the system an �nd. In thelong run we hope to develop a general framework for representing user feedbak about lusters.5.3 Other AppliationsWe believe there are many appliations of feedbak-driven semi-supervised lustering. Imagine a Yahoo!hierarhy for web pages that allows the user to tailor the hierarhy to better math their own interests byproviding feedbak while browsing. Similarly, onsider an automati email system where a user allows thesystem to luster email into related mailboxes instead of manually speify the mailboxes. Semi-supervisedfeedbak would allow the user to tailor mailbox lusters to �t their (possibly hanging) needs. As a di�erentexample, onsider a user lustering proteins into homology groups (groups of proteins with similar struture).Large proteins have omplex struture and ould be lustered many di�erent ways. A feedbak-driven semi-supervised lustering system would allow the user to explore many di�erent ways the proteins might belustered, and to �nd lusterings most suitable to their purposes.5.4 Related workAs indiated above, our model is similar to the model of Demiriz et al. They report how a �xed set of labeledexamples may be used to bias a lustering algorithm; we investigate how a user, interating with the system,



may eÆiently guide the learner to a desired lustering.Our tehnique of inorporating user feedbak is a ousin to relevane feedbak, a tehnique for informationretrieval (Bukley & Salton, 1995). Given a query and initial set of retrieved douments, relevane feedbakasks the user to tag douments as being more or less relevant to the query being pursued. As the proess isiterated, the retrieval system builds an inreasingly aurate model of what the user is searhing for.The question of how a user (or teaher) may best selet examples to help a learner identify a target oneptis the fous of muh work in omputational learning theory. See Goldman and Kearns (1995) for a detailedtreatment of the problem.The Satter/Gather algorithm (Cutting et al., 1992) is an interative lustering algorithm, designed forinformation retrieval. The system provides an initial lustering of data. When the user selets a subset ofthe lusters for further examination, the system gathers their omponents and regroups them to form newlusters. Satter/Gather aims at pursuing and �nding struture in a small part of a orpus. This makes itan interesting omplement to our approah: Satter/Gather may provide an e�etive means for browsingand fousing on lusters of interest, and semi-supervised learning may be an e�etive means of improvingthe quality of those lusters.Note that we do not ompare our performane to that of other purely unsupervised lustering systems suhas AutoClass (Stutz & Cheeseman, 1994), COBWEB (Fisher, 1987) or Iterative Optimization (Fisher, 1996).The ontribution of our work is not to introdue a new lustering algorithm, but an approah that allowsuser feedbak to guide the lustering. While we have illustrated our approah on a relatively simple system,we believe it is equally appliable to more sophistiated algorithms, and expet that it will provide similarimprovements over the unsupervised variants.ReferenesAngluin, D. (1987) Learning Regular Sets from Queries and Counterexamples, Information and Computa-tion, 75(2):87{106.Bukley, C. & Salton, G. (1995) Optimization of Relevane Feedbak Weights. SIGIR 1995.Cheeseman, P., Stutz, J., Self, M., Taylor, W., Goebel, J., Volk, K. & Walker, H. (1989)Automati Classi�ation of Spetra from the Infrared Astronomial Satellite, NASA Referene Publiation1217.Cohn, D. Ghahramani, Z. and Jordan, M. (1996) Ative learning with statistial models, Journal ofArti�ial Intelligene Researh 4: 129-145.Cutting, D., Karger, D., Pedersen, J. & Tukey, J. (1992) Satter/Gather: A Cluster-based Approahto Browsing Large Doument Colletions, SIGIR 1992.Demiriz, A., Bennett, K. and Embrehts, M. (1999) Semi-Supervised Clustering Using Geneti Algo-rithms. In Dagli et al, eds., ANNIE 1999.El-Yaniv, R., Fine, & Tishby, N. (1998) Agnosti Classi�ation of Markovian Sequenes. In M. Jordanet al, eds., Neural Information Proessing Systems 10, MIT Press.Fisher, D. (1996) Iterative Optimization and Simpli�ation of Hierarhial Clusterings, Journal of Arti�ialIntelligene Researh, 4:147{179.Fisher, D. (1987) Knowledge Aquisition via Inremental Coneptual Clustering, Mahine Learning 2:139{172.Friedman, J. (1994) Flexible Metri Nearest Neighbor Classi�ation. Stanford University, Department ofStatistis Teh Report.Goldman, S. and Kearns, M. (1995) On the Complexity of Teahing. Journal of Computer and SystemSienes 50(1):0{31.Hofmann, T. & Buhmann, J. (1997) Pairwise Data Clustering by Deterministi Annealing, IEEE Trans-ations on Pattern Analysis and Mahine Intelligene, 19(1).
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