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Semi-supervised Clustering by SeedingSugato Basu sugato�s.utexas.eduDepartment of Computer Sienes, University of Texas, Austin, TX 78712Arindam Banerjee abanerje�ee.utexas.eduDepartment of Eletrial and Computer Engineering, University of Texas, Austin, TX 78712Raymond Mooney mooney�s.utexas.eduDepartment of Computer Sienes, University of Texas, Austin, TX 78712AbstratSemi-supervised lustering uses a smallamount of labeled data to aid and bias thelustering of unlabeled data. This paper ex-plores the use of labeled data to generateinitial seed lusters, as well as the use ofonstraints generated from labeled data toguide the lustering proess. It introduestwo semi-supervised variants of KMeans lus-tering that an be viewed as instanes of theEM algorithm, where labeled data providesprior information about the onditional dis-tributions of hidden ategory labels. Experi-mental results demonstrate the advantages ofthese methods over standard random seedingand COP-KMeans, a previously developedsemi-supervised lustering algorithm.1. IntrodutionIn many learning tasks, there is a large supply of unla-beled data but insuÆient labeled data sine it an beexpensive to generate. Semi-supervised learning om-bines labeled and unlabeled data during training toimprove performane. Semi-supervised learning is ap-pliable to both lassi�ation and lustering. In super-vised lassi�ation, there is a known, �xed set of ate-gories and ategory-labeled training data is used to in-due a lassi�ation funtion. In semi-supervised las-si�ation, training also exploits additional unlabeleddata, frequently resulting in a more aurate lassi�-ation funtion (Blum & Mithell, 1998; Ghahramani& Jordan, 1994). In unsupervised lustering, an unla-beled dataset is partitioned into groups of similar ex-amples, typially by optimizing an objetive funtionthat haraterizes good partitions. In semi-supervisedlustering, some labeled data is used along with the

unlabeled data to obtain a better lustering. This pa-per explores the use of labeled data to generate seedlusters that initialize a lustering algorithm, as wellas the use of onstraints generated from the labeleddata to guide the lustering proess. Proper seedingbiases lustering towards a good region of the searhspae, thereby reduing the hanes of it getting stukin poor loal optima, while simultaneously produinga lustering similar to the user-spei�ed labels.If the initial labeled data represent all the relevantategories, then both semi-supervised lustering andsemi-supervised lassi�ation algorithms an be usedfor ategorization. However in many domains, knowl-edge of the relevant ategories is inomplete. Unlikesemi-supervised lassi�ation, semi-supervised luster-ing an group data using the ategories in the initiallabeled data, as well as extend and modify the existingset of ategories as needed to reet other regularitiesin the data.This paper introdues two semi-supervised variants ofKMeans lustering (MaQueen, 1967) that use ini-tial labeled data for seeding. We motivate the al-gorithms using the Expetation Maximization (EM)framework (Dempster et al., 1977), showing that seed-ing an be explained using the onditional distribu-tion of hidden ategory labels. We present resultsof experiments demonstrating the advantages of ourmethods over standard random seeding and COP-KMeans (Wagsta� et al., 2001), an alternative semi-supervised KMeans algorithm.2. BakgroundKMeans is a lustering algorithm based on iterativereloation that partitions a dataset intoK lusters, lo-ally minimizing the average squared distane betweenthe data points and the luster enters. For a set of



data points X = fx1; � � � ; xNg; xi 2 Rd , the KMeansalgorithm reates a K-partitioning 1 fXlgKl=1 of X sothat if f�1; � � � ; �Kg represent the K partition enters,then the following objetive funtionJkmeans = KXl=1 Xxi2Xl kxi � �lk2 (1)is loally minimized.2.1 COP-KMeans algorithmCOP-KMeans (Wagsta� et al., 2001) is a semi-supervised variant of KMeans, where initial bak-ground knowledge, provided in the form of onstraintsbetween instanes in the dataset, is used in the lus-tering proess. There are two types of onstraints,must-link (two instanes have to be together in thesame luster) and annot-link (two instanes have tobe in di�erent lusters), whih are used in the lus-tering proess to generate a partition that satis�es allthe given onstraints. In this paper, we have developedtwo semi-supervised variants of KMeans and omparedthem to COP-KMeans.2.2 SPKMeans algorithmIn the Spherial KMeans (SPKMeans) algorithm,standard KMeans is applied to data vetors that havebeen normalized to have unit L2 norm, i.e., the datapoints lie on a unit sphere (Dhillon et al., 2001). As-suming kxik = k�lk = 1; 8i; l in Eqn. 1, we getkxi � �lk2 = 2� 2xTi �l. Then, the lustering probleman be equivalently formulated as that of maximizingthe objetive funtion:Jspkmeans = KXl=1 Xxi2Xl xTi �l (2)The SPKMeans algorithm gives a loal maximum ofthis objetive funtion. The SPKMeans algorithm hasomputational advantages for sparse high dimensionaldata vetors, whih are very ommon in domains liketext lustering. For this reason, we have used SP-KMeans in our experiments.3. AlgorithmsIn this setion, we explain how semi-supervision anbe inorporated into the KMeans algorithm by seed-ing and propose two variants of the KMeans algorithmthat use the seeds; then we give the mathematial mo-tivation behind the two proposed algorithms.

Algorithm: Seeded-KMeansInput: Set of data points X = fx1; � � � ; xNg; xi 2 Rd ,number of lusters K, set S = [Kl=1Sl of initial seedsOutput: Disjoint K partitioning fXlgKl=1 of X suh thatKMeans objetive funtion is optimizedMethod:1. intialize: �(0)h  1jShjPx2Sh x; forh = 1; : : : ;K; t 02. Repeat until onvergene2a. assign luster: Assign eah data point x to theluster h� (i.e. set X (t+1)h� ), for h� = argminh kx� �(t)h k22b. estimate means: �(t+1)h  1jX (t+1)h jPx2X (t+1)h x2. t (t+ 1)Figure 1. Seeded-KMeans algorithmAlgorithm: Constrained-KMeansInput: Set of data points X = fx1; � � � ; xNg; xi 2 Rd ,number of lusters K, set S = [Kl=1Sl of initial seedsOutput: Disjoint K partitioning fXlgKl=1 of X suh thatthe KMeans objetive funtion is optimizedMethod:1. intialize: �(0)h  1jShjPx2Sh x; forh = 1; : : : ;K; t 02. Repeat until onvergene2a. assign luster: For x 2 S, if x 2 Sh assign x to theluster h (i.e., set X (t+1)h ). For x 62 S, assign x to theluster h� (i.e. set X (t+1)h� ), for h� = argminh kx� �(t)h k22b. estimate means: �(t+1)h  1jX (t+1)h jPx2X (t+1)h x2. t (t+ 1)Figure 2. Constrained-KMeans algorithm3.1 SeedingGiven a dataset X , as previously mentioned, KMeanslustering of the dataset generates a K-partitioningfXlgKl=1 of X so that the KMeans objetive is loallyminimized. Let S � X , alled the seed set, be the sub-set of data-points on whih supervision is provided asfollows: for eah xi 2 S, the user provides the lusterXl of the partition to whih it belongs. We assumethat orresponding to eah partition Xl of X , there istypially atleast one seedpoint xi 2 S. Note that weget a disjoint K-partitioning fSlgKl=1 of the seed setS, so that all xi 2 Sl belongs to Xl aording to thesupervision. This partitioning of the seed set S formsthe seed lustering and is used to guide the KMeansalgorithm.3.2 Two Semi-supervised KMeans AlgorithmsIn Seeded-KMeans, the seed lustering is used to ini-tialize the KMeans algorithm. Thus, rather than ini-tializing KMeans from K random means, the mean ofthe lth luster is initialized with the mean of the lthpartition Sl of the seed set. The seed lustering is only1K disjoint subsets of X , whose union is X



used for initialization, and the seeds are not used inthe following steps of the algorithm. The algorithm ispresented in detail in Fig. 1.In Constrained-KMeans, the seed lustering is usedto initialize the KMeans algorithm as desribed forthe Seeded-KMeans algorithm. However, in the sub-sequent steps, the luster memberships of the datapoints in the seed set are not re-omputed in theassign luster steps of the algorithm { the lusterlabels of the seed data are kept unhanged, and onlythe labels of the non-seed data are re-estimated. Thealgorithm is given in detail in Fig. 2.Constrained-KMeans seeds the KMeans algorithmwith the user-spei�ed labeled data and keeps thatlabeling unhanged throughout the algorithm. InSeeded-KMeans, the user-spei�ed labeling of the seeddata may be hanged in the ourse of the algorithm.Constrained-KMeans is appropriate when the initialseed labeling is noise-free, or if the user does not wantthe labels on the seed data to hange, whereas Seeded-KMeans is appropriate in the presene of noisy seeds.This and other aspets of these two algorithms arestudied in detail through experiments in Se. 4.3.3 Semi-supervised KMeans as EMThe EM algorithm is a very general method of �nd-ing the maximum-likelihood estimate of the parame-ters of an underlying distribution, or, more generally,a probabilisti data generation proess, from a set ofobserved data that has inomplete or missing values.If X denotes the observed data, � denotes the ur-rent estimate of the parameter values and Z denotesthe missing data, then, in the E-step, the EM algo-rithm omputes the expeted value of the omplete-data log-likelihood log p(X ;Zj�) over the distributionp(ZjX ;�) (Bilmes, 1997). As we shall demonstrate,the semi-supervision provided to the KMeans algo-rithm essentially determines this onditional distribu-tion over whih the expetation is omputed. We shalltake a loser look at the assumptions one makes onthis distribution in the EM framework for solving theKMeans problem so that the e�et of semi-supervisionwill beome evident.The KMeans lustering algorithm is essentially an EMalgorithm on a mixture of K Gaussians under ertainassumptions. The data-generation proess in KMeansis assumed to be as follows { �rst, one Gaussian ishosen out of the K following their prior probabil-ity distribution; then, a data-point is sampled fol-lowing the distribution of the hosen Gaussian. LetX = fx1; � � � ; xNg be the set of data-points we wantto luster with eah xi 2 Rd . The missing data Z is the

luster assignment of the data-points. It takes valuesin f1; � � � ;Kg and is always onditioned on the data-point under onsideration. We denote (Z = l) by zl.For deriving KMeans, we assume that the prior distri-bution � of the Gaussians is uniform, i.e., �l = 1=K;8l,and that eah Gaussian has identity ovariane. Then,the parameter set � onsists of just the K means�1; � � � ; �K . With these assumptions, one an showthat (Bilmes, 1997):EZjX ;�[log p(X ;Zj�)℄= KXl=1 NXi=1 log(�l � 1(2�)d=2 e�kxi��lk2) p(zljxi;�)= � KXl=1 NXi=1 kxi � �lk2 p(zljxi;�) +  (3)where  is a onstant. Further assuming thatp(zljxi;�) =8<:1 if l = argminh kxi � �hk2;0 otherwise, (4)and replaing it in Eqn. 3, we note that the expetationterm omes out to be the negative of the well-knownKMeans objetive funtion with an additive onstant.2Thus, the problem of maximizing the expetation ofthe omplete-data log-likelihood under these assump-tions is same as that of minimizing the KMeans ob-jetive funtion. Keeping in mind the assumption inEqn. 4, the KMeans objetive an be written asJkmeans = KXl=1 NXi=1 kxi � �lk2 p(zljxi; �l) (5)The only \missing data" for the KMeans problem arethe onditional distributions p(zljxi; �l). Knowledgeof these distributions solves the problem, but normallythere is no way to ompute it. In the semi-supervisedlustering framework, the user provides informationabout some of the data points that spei�es theorresponding onditional distributions.Example: If xi and xj are two data-points with amust-link onstraint between them (Se. 2.1), thenp(zljxi; �l) and p(zljxj ; �l) are identially distributed.In fat, all data-points in the transitive losure ofa onneted set of must-link onstraints will beidentially distributed.Thus, semi-supervision essentially provides informa-tion about the onditional distributions p(zljxi; �l).2The assumption in Eqn. 4 an also be derived by as-suming the ovariane of the Gaussians to be �Iand letting�! 0+ (Kearns et al., 1997).



In standard KMeans without any initial supervision,the K means are hosen randomly in the initial M-step and the data-points are assigned to the nearestmeans in the subsequent E-step. As explained above,every point xi in the dataset has K possible ondi-tional distributions assoiated with it (eah satisfyingEqn. 4) orresponding to the K means to whih it anbelong. This assignment of data point xi to a randomluster in the �rst E-step is similar to piking one on-ditional distribution at random from the K possibleonditional distributions.In Seeded-KMeans, the initial supervision is equivalentto speifying the onditional distributions p(zljxi; �l)for the seed points xi 2 S. The spei�ed onditionaldistributions of the seed data are just used in the ini-tial M-step of the algorithm, and p(zljxi; �l) is re-estimated for all xi 2 X in the following E-steps ofthe algorithm.In Constrained-KMeans, the initial M-step is same asSeeded-KMeans. The di�erene is that for the seeddata points, the initial labels, i.e., the onditional dis-tributions p(zljxi; �l), are kept unhanged throughoutthe algorithm, whereas the onditional distribution forthe non-seed points are re-estimated at every E-step.In our experiments, we will be using the SPKMeansframework (Se. 2.2). In this framework, sine everypoint lies on the unit sphere so that kxik = k�lk = 1,the expetation term in Eqn. 3 beomes equivalent toEZjX ;�[log p(X ;Zj�)℄ = KXl=1 NXi=1 xTi �l p(zljxi;�) + So, maximizing the SPKMeans objetive funtionis equivalent to maximizing the expetation of theomplete-data log-likelihood in the E-step of the EMalgorithm.4. ExperimentsIn our experiments, we used 2 data sets { CMU20 Newsgroups data and Yahoo! News data. Foreah dataset, we ran 4 algorithms { Seeded-KMeans,Constrained-KMeans, COP-KMeans, and Random-KMeans. In Random-KMeans, the K means were ini-tialized by taking the mean of the entire data and ran-domly perturbing it K times (Fayyad et al., 1998).This tehnique of initialization has given good resultsin unsupervised KMeans in previous work (Dhillonet al., 2001). We ompared the performane ofthese methods on the 2 datasets with varying seedingand noise levels, using 10-fold ross validation. Foreah dataset, SPKMeans was used as the underlyingKMeans algorithm for all the 4 KMeans variants.

4.1 DatasetsThe 20 Newsgroups dataset (20 Newsgroups) is a ol-letion of 20,000 messages, olleted from 20 di�er-ent Usenet newsgroups { 1000 messages from eah ofthe 20 newsgroups were hosen, and the dataset waspartitioned by newsgroup name.3 In our experiments,we used the MC toolkit4 for reating the vetor spaemodel for text douments. For the 20 Newsgroupsdataset, MC generated a voabulary of 21,631 words{ eah message is represented as a (sparse) vetor ina 21,631 dimensional spae, with TFIDF weighting.The Yahoo! News K-series (Yahoo! News) dataset5 isa olletion of 2340 Yahoo! news artiles belongingto one of 20 di�erent Yahoo! ategories. The ve-tor spae model of the K1 set from the Yahoo! K-series has 12,229 words { the data-points reside in a12,229 dimensional spae and are TFIDF weighted.For the text datasets, \non-ontent-bearing" stop-words, high-frequeny words and low-frequeny wordswere removed, following the methodology of Dhillon etal. (2001).From the original 20 Newsgroups dataset, some otherdatasets were generated: (1) Small-20 Newsgroups{ ontains a random subsample of 100 doumentsfrom eah of the 20 newsgroups (2) Different-3Newsgroups { selets 3 very di�erent newsgroupsfrom the original 20 Newsgroups dataset (alt.atheism,re.sport.baseball, si.spae) (3) Same-3 Newsgroups{ selets 3 very similar newsgroups from the original20 Newsgroups dataset (omp.graphis, omp.os.ms-windows, omp.windows.x). The dataset Small-20Newsgroups was reated to study the e�et ofdataset size on the performane of the algorithms.Different-3 Newsgroups and Same-3 Newsgroupswere generated to study the e�et of data separabilityon the algorithms.4.2 Evaluation MeasuresWe have used two evaluation measures in our exper-iments. One is the objetive funtion of KMeans {for SPKMeans, the higher the objetive funtion, thebetter is the performane. This measure does nottake into aount the user-labeling of the data. Theother measure is mutual information (MI), whih de-termines the amount of statistial information sharedby the random variables representing the luster andthe (user-labeled) lass assignments of the data points.In this work, MI is omputed following the methodol-ogy of Strehl et al. (2000).3http://www.ai.mit.edu/people/jrennie/20 newsgroups4http://www.s.utexas.edu/users/jfan/dm5ftp://ftp.s.umn.edu/users/boley/PDDPdata
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Figure 3. Comparison of MI of algorithms on 20Newsgroups data, noise fration = 04.3 Learning urves with ross validationFor all the algorithms, on eah dataset, we have gener-ated learning urves with 10-fold ross-validation. Forstudying the e�et of seeding, 10% of the dataset isset aside as the test set at any partiular fold. Thetraining sets at di�erent points of the learning urveare obtained from the remaining 90% of the data byvarying the seed fration from 0.0 to 1.0 in steps of 0.1,and the results at eah point on the learning urve areobtained by averaging over 10 folds. The lustering al-gorithm is run on the whole dataset, but the MI mea-sure is alulated only on the test set. For studying thee�ets of noise in the seeding, similar learning urvesare generated by keeping a �xed fration of seedingand varying the noise fration.4.4 Seed and Noise generationIn Seeded-KMeans and Constrained-KMeans, theseeds at any point on the learning urve were se-leted from the dataset aording to the orrespondingseed fration. In COP-KMeans, the must-link and theannot-link onstraints are generated from the spei-�ed seeds. The K luster enters are hosen randomly,but as eah one is hosen, any must-link onstraintsthat it partiipates in are enfored, i.e., all items thatthe hosen instane must link to are assigned to thenew luster, so that they annot later be hosen as theenter of another luster (Wagsta� et al., 2001).In a real-life appliation, sine the semi-supervisionwill be provided by a human user, there is a hanethat the supervision may be erroneous in some ases.We simulate suh labeling noise in our experiments byhanging the labels of a fration of the seed examplesto a random inorret value.

5. Analysis of ResultsMI with respet to seeding: For the zero-noisease, the semi-supervised algorithms perform betterthan the unsupervised algorithm in terms of the MImeasure (Figs. [3,4,5℄), irrespetive of the size of thedataset. Constrained-KMeans performs at least asgood as the Seeded-KMeans, sine the former uses theorret user bias introdued by the user-labeled seedsthroughout the exeution of the algorithm in the zero-noise ase. Though both Constrained-KMeans andCOP-KMeans treat the seeds as onstraints, the fatthat Constrained-KMeans uses all the seeds to initial-ize lusters, as opposed to COP-KMeans whih doesnot neessarily do that, results in the former havingbetter performane in most ases, with zero-noise. Infat, the e�et of seeding seems to be so importantthat in some ases (Fig. 4), Seeded-KMeans performssigni�antly better than COP-KMeans.Objetive funtion with respet to seeding:Though the MI measure inreases with an inreasein seed fration for the semi-supervised algorithms,the behavior of the objetive funtion will depend onwhether the user bias provided by the user-labeledseeds is onsistent with the assumptions of KMeans. Ifthe ategory struture reated by the user-labeling ofthe dataset satis�es the KMeans assumptions, then thedata partition indued by seeding will be lose to theoptimal partition, and KMeans is known to onvergeto a good loal optimum in this ase (Fig. 6) (Devroyeet al., 1996). On the other hand, if the user bias isinonsistent with the KMeans assumptions, then on-strained seeding will result in onvergene to a sub-optimal solution (Fig. 7). Note that sine Seeded-KMeans does not neessarily maintain the same as-signments for the seed points in subsequent iterations,its objetive funtion does not derease due to onitin bias; however, sine Constrained-KMeans and COP-KMeans keep the seeds as onstraints, their obje-tive funtion dereases with inrease in seeding. SineRandom-KMeans never uses the seeds, its behavior isindependent of this onit.Dataset separability: Semi-supervision gives sub-stantial improvement over unsupervised lustering fordatasets that are diÆult to luster, in the sensethat there is a lot of overlap between the lus-ters, e.g., Same-3 Newsgroups, (Fig. 8), whereas fordatasets that are easily separable, e.g., Different-3Newsgroups (Fig. 9), the improvement over Random-KMeans is marginal. If the dataset is easily separable,then there are not many bad loal minima and evenRandom-KMeans an easily �nd the luster struture.However, for datasets with overlapping luster stru-
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Figure 4. Comparison of MI of algorithms on Small-20Newsgroups data, noise fration = 0
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Figure 5. Comparison of MI of algorithms on Yahoo! data,noise fration = 0ture, seeding seems to be an important fator in help-ing the algorithm �nd a good lustering. The MI mea-sure for the separable dataset is in general muh higherthan for the overlapping dataset even with high seed-ing, beause the latter one is a harder problem to solve.Performane with inomplete seeding: We alsoran initial experiments with inomplete seeding, whereseeds are not spei�ed for every luster { from Fig. 10,it an be seen that the MI metri did not dereasesubstantially with inrease in the number of unseededategories, showing that the semi-supervised lusteringalgorithms ould extend the seed lusters and generatemore lusters, in order to �t the regularity of the data.Performane with respet to noise: As noise is in-reased, the performane of Constrained-KMeans andCOP-KMeans starts to degrade ompared to Seeded-KMeans. COP-KMeans and Constrained-KMeanskeep using the same noisy seeds in every subsequent
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Figure 6. Comparison of objetive funtions of algorithmson Small-20 Newsgroups data, noise fration = 0
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Figure 8. Comparison of MI of algorithms on Same-3Newsgroups data, noise fration = 0
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Figure 10. Comparison of MI of algorithms on 20Newsgroups data, seed fration = 0.1

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 0.1 0.2 0.3 0.4 0.5

M
I m

et
ric

Noise fraction

Seeded-KMeans
Constrained-KMeans

COP-KMeans
Random-KMeans

Figure 11. Comparison of MI of algorithms on Small-20Newsgroups data, seed fration = 0.57. Future WorkThe onnetion with the general EM framework andthe interpretation of semi-supervision in terms of on-ditional distributions widens the appliability of theproposed methods to a variety of lustering problems.The most important of these is the onept of proba-bilisti or soft seeding { where semi-supervision givesthe algorithm the probabilities of the seeds belong-ing to the various luster labels, rather than expliitlystating whih luster it belongs to. In terms of theonditional distribution, we do not need the assump-tion in Eqn. 4 anymore, sine the onditional distribu-tions an now be any multinomial distribution de�nedover the K luster labels. Semi-supervision by prob-abilisti seeding ould be appliable to many learningtasks, suh as volano detetion in planet-surfae im-ages (Smyth et al., 1994).
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