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Clustering Methods
and Algorithms

Cluster analysis is the process of classifying objects into subsets that have meaning
in the context of a particular problem. The objects are thereby organized into an
efficient representation that characterizes the population being sampled. In this
chapter we present the clustering methods themselves and explain algorithms for
performing cluster analysis. Section 3.1 lists the factors involved in classifying
objects, and in Sections 3.2 and 3.3 we explain the two most common types of
classification. Computer software for cluster analysis is described in Section 3.4.
Section 3.5 outlines a methodology for using clustering algorithms to the best
advantage. This chapter focuses on the act of clustering itself by concentrating
on the inputs to and outputs from clustering algorithms. The need for the formal
validation methods in Chapter 4 will become apparent during the discussion.

3.1 GENERAL INTRODUCTION

A clustering is a type of classification imposed on a finite set of objects. As
explained in Section 2.2, the relationship between objects is represented in a
proximity matrix in which rows and columns correspond to objects. If the objects
are characterized as patterns, or points in a d-dimensional metric space, the proximi-
ties can be distance between pairs of points, such as Euclidean distance. Unless
a meaningful measure of distance, or proximity, between pairs of objects has
been established, no meaningful cluster analysis is possible. The proximity matrix
is the one and only input to a clustering algorithm.
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Clustering is a special kind of classification. See Kendall (1966) for discussion
on the relationship between classification and clustering. Figure 3.1 shows a tree
of classification problems as suggested by Lance and Williams (1967). Each leaf
in the tree in Figure 3.1 defines a different genus of classification problem. The
nodes in the tree of Figure 3.1 are defined below.

a. Exclusive versus nonexclusive. An exclusive classification is a partition
of the set of objects. Each object belongs to exactly one subset, or cluster. Nonexclu-
sive, or overlapping, classification can assign an object to several classes. For
example, a grouping of people by age or sex is exclusive, whereas a grouping
by disease category is nonexclusive because a person can have several diseases
simultaneously. Shepard and Arabie (1979) provide a review of nonexclusive or
overlapping clustering methods. This chapter treats only exclusive classification.
Fuzzy clustering is a type of nonexclusive classification in which a pattern is
assigned a degree of belongingness to each cluster in a partition and is explained
1n Section 3.3.8.

b. Intrinsic versus extrinsic. An intrinsic classification uses only the proximity
matrix to perform the classification. Intrinsic classification is called ‘‘unsupervised
learning™ in pattern recognition because no category labels denoting an a priori
partition of the objects are used. (See Appendix A for an introduction to pattern
recognition.) Extrinsic classification uses category labels on the objects as well

Classifications

Non-Exclusive

(Overlapping) Exclusive

Extrinsic Intrinsic

{Unsupervised)

{(Supervised)

Hierarchical Partitional

Figure 3.1 Tree of classification types.
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as the proximity matrix. The problem is then to establish a discriminant surface
that separates the objects according to category. In other words, an extrinsic classifier
relies on a *‘teacher,”” whereas an intrinsic classifier has only the proximity matrix.

One way to evaluate an intrinsic classification is to see how the cluster
labels, assigned to objects during clustering, match the category labels, assigned
a priori. For example, suppose that various indices of personal health were collected
from smokers and nonsmokers. An intrinsic classification would group the individu-
als based on similarities among the health indices and then try to determine whether
smoking was a factor in the propensity of individuals toward various diseases.
An extrinsic classification would study ways of discriminating smokers from non-
smokers based on health indices. We are concerned only with intrinsic classification
in this book; intrinsic classification is the essence of cluster analysis.

c. Hierarchical versus partitional. Exclusive, intrinsic classifications are sub-
divided into hierarchical and partitional classifications by the type of structure
imposed on the data. A hierarchical classification is a nested sequence of partitions
and is explained in Section 3.2, whereas a partitional classification is a single
partition and is defined in Section 3.3. Thus a hierarchical classification is a special
sequence of partitional classifications. We will use the term clustering for an
exclusive, intrinsic, partitional classification and the term hierarchical clustering
for an exclusive, intrinsic, hierarchical classification. Sneath and Sokal (1973)
apply the acronym SAHN (Sequential, Agglomerative, Hierarchical, Nonoverlap-
ping) to exclusive, intrinsic, hierarchical, agglomerative algorithms. The differences
and similarities between algorithms for generating these two types of classifications
are the topics of this chapter.

Several algorithms can be proposed to express the same exclusive, intrinsic
classification. One frequently uses an algorithm to express a clustering method,
then examines various computer implementations of the method. The primary
algorithmic options in common use are explained below.

1. Agglomerative versus divisive. An agglomerative, hierarchical classification
places each object in its own cluster and gradually merges these atomic
clusters into larger and larger clusters until all objects are in a single cluster.
Divisive, hierarchical classification reverses the process by starting with all
objects in one cluster and subdividing into smaller pieces. Thus this option
corresponds to a choice of procedure rather than to a different kind of classifica-
tion. Partitional classification can be characterized in the same way. A single
partition can be established by gluing together small clusters (agglomerative)
or by fragmenting a single all-inclusive cluster (divisive).

2. Serial versus simultaneous. Serial procedures handle the patterns one by
one, whereas simultaneous classification works with the entire set of patterns
at the same time (see Clifford and Stephenson, 1975).

3. Monothetic versus polythetic. This option is most applicable to problems in
taxonomy, where the objects to be clustered are represented as patterns, or
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points in a space. A monothetic clustering algorithm uses the features one
by one, whereas, a polythetic procedure uses all the features at once. For
example, a different feature can be used to form each partition in a hierarchical
classification under a monothetic algorithm. We will consider only polythetic
algorithms.

4. Graph theory versus matrix algebra. What is the appropriate mathematical
formalism for expressing a clustering algorithm? We will express some algo-
rithms in terms of graph theory, using properties such as connectedness
and completeness to define classifications, and express other algorithms in
terms of algebraic constructs, such as mean-square-error. The choice is one
of clarity, convenience, and personal choice. When implementing an algorithm
on a computer, attention must be paid to questions of computational efficiency.
This issue is not related to human understanding of the classification method.
Some algorithms have convenient expressions under both options.

3.2 HIERARCHICAL CLUSTERING

A hierarchical clustering method is a procedure for transforming a proximity matrix
into a sequence of nested partitions. A hierarchical clustering algorithm is the
specification of steps for performing a hierarchical clustering. It is often convenient
to characterize a hierarchical clustering method by writing down an algorithm,
but the algorithm should be separated from the method itself. In addition to defining
algorithms and methods in this section, we define the type of mathematical structure
a hierarchical clustering imposes on data and describe ways of viewing that structure.

First comes the notion of a sequence of nested partitions. The n objects to
be clustered are denoted by the set &.

Bi= Loy Rgyoviy Hp)

where x; is the ith object. A partition, 6, of & breaks Z into subsets {C,, C,,
., C,,} satisfying the following:

CNC=o foriand j from 1 tom, i#j
C|UC2U...UCHI=%

In this notation, *‘N’" stands for set intersection, "U"" stands for set union,
and @ is the empty set. A clustering is a partition; the components of the partition
are called clusters. Partition %3 is nested into partition ‘€ if every component of
9B is a geegiew subset of a component of ‘6. That is, ‘€ is formed by merging
components of %. For example, if the clustering € with three clusters and the
clustering % with five clusters are defined as follows, then % is nested into €.
Both % and % are clusterings of the set of objects {x;, x5, . . . , xXj0}-

@ = {(x, x3, X5, X7), (X3, X4, X5, Xg), (X9, X10)}

B = {(x1, x3), (x5, X7), (X2), (x4, Xg5 Xg), (Xg, X10)}
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Neither € nor % is nested into the following partition, and this partition is
not nested into € or 8.

{(xlu IZ: 137 14), (-rﬁa xﬁ.g x?s IE)! (-xgs I][})}

A hierarchical clustering is a sequence of partitions in which each partition
is nested into the next partition in the sequence. An agglomerative algorithm for
hierarchical clustering starts with the disjoint clustering, which places each of the
n objects in an individual cluster. The clustering algorithm being employed dictates
how the proximity matrix should be interpreted to merge two or more of these
trivial clusters, thus nesting the trivial clustering into a second partition. The
process is repeated to form a sequence of nested clusterings in which the number
of clusters decreases as the sequence progresses until a single cluster containing
all n objects, called the conjoint clustering, remains. A divisive algorithm performs
the task in the reverse order.

A picture of a hierarchical clustering is much easier for a human being to
comprehend than is a list of abstract symbols. A dendrogram is a special type of
tree structure that provides a convenient picture of a hierarchical clustering. A
dendrogram consists of layers of nodes, each representing a cluster. Lines connect
nodes representing clusters which are nested into one another. Cutting a dendrogram
horizontally creates a clustering. Figure 3.2 provides a simple example. Section
3.2.2 explains the role of dendrograms in hierarchical clustering.

Other pictures can also be drawn to visualize a hierarchical clustering (Kleiner
and Hartigan, 1981; Friedman and Rafsky, 1981; Everitt and Nicholls, 1975).
Information other than the sequence in which clusterings appear will be of interest.
The level, or proximity value, at which a clustering is formed can also be recorded.
If objects are represented as patterns, or points in a space, the centroids of the
clusters can be important, as well as the spreads of the clusters.

Two specific hierarchical clustering methods are now defined called the single-
link and the complete-link methods. Section 3.2.1 explains algorithms for these
two commonly used hierarchical clustering methods. The sequences of clusterings
created by these two methods depend on the proximities only through their rank

Clusterings Xy Xy R X X
{(%,),(%,),(%5),(%) (%)} T—_T o (Disjoint)
{(%5,%5), (%5), (%), (%)}

(%0, %5), (x5,% ), (%)}

{(%,%5: %y, %) (%)}

{(xy, %0 Xq %y %5)) (Conjoint)

Figure 3.2 Example of dendrogram.
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order. Thus we first assume an ordinal scale for the proximities and use graph
theory to express algorithms. Single-link and complete-link hierarchical methods
are not limited to ordinal data. Sections 3.2.4 and 3.2.5 examine algorithms for
these two methods in terms of interval and ratio data. The effects of proximity
ties on hierarchical clustering are discussed in Section 3.2.6, while algorithms
defined for single-link and complete-link clustering are generalized in Sections
3.2.7 and 3.2.9 to establish new clustering methods. The issues in determining
whether or not a hierarchical classification is appropriate for a given proximity
matrix are postponed until Chapter 4.

3.2.1 Single-Link and Complete-Link Algorithms from
Graph Theory

We begin with a symmetric n X n proximity matrix % = [d(i, j)], as defined in
Section 2.2. The n(n — 1)/2 entries on one side of the main diagonal are assumed
to contain a permutation of the integers from 1 to n(n — 1)/2 with no ties. That
is, the proximities are on an ordinal scale, We take the proximities to be dissimilari-
ties; d(1, 2) > d(1, 3) means that objects 1 and 3 are more like one another than
are objects 1 and 2.

Example 3.1

An example of an ordinal proximity matrix for n = 5 is given as matrix %,.

X Xy X3 Xy X5
X 0O 6 8 2 7
X 6 0 1 5 .3
9y = x, 8 1 0 10 9
X 2 5 10 0 4
% L7 3 9 4 0]

A threshold graph is an undirected, unweighted graph on n nodes without
self-loops or multiple edges. Each node represents an object. See Appendix G
for a brief review of terms in graph theory. A threshold graph G(v) is defined
for each dissimilarity level v by inserting an edge (i, j) between nodes i and j if
objects i and j are less dissimilar than v. That is,

(i, j) € G(v) if and only if d(i, j) = v

As discussed in Section 2.2, we assume that d(i, i) = 0 for all i. Thus
G(v) defines a binary relation for any real number v that is reflexive and symmetric.
A binary relation is a subset of the product set & X ¥, where ¥ is the set of
objects. Objects x; and x; are *‘related’” if their dissimilarity is below the threshold
v. Reflexive, symmetric binary relations are pictured in a natural fashion by a
threshold graph. Figure 3.3 shows the binary relation obtained from proximity
matrix %, above for a threshold of 5. The symbol *“*#’" in position (i, j) of the
matrix means that the pair (x;, x;) belongs to the binary relation.
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Figure 3.3 Binary relation and threshold graph for threshold 5.

Simple algorithms for the single-link and complete-link clustering methods
based on threshold graphs are listed below. These algorithms should help one
conceptualize the way in which the two hierarchies are formed and can easily be
applied to small problems. Other algorithms are given later in this chapter that
are appropriate for computer implementation. Both algorithms assume an ordinal
dissimilarity matrix containing no tied entries and produce a nested sequence of
clusterings that can be pictured on a dendrogram.

AGGLOMERATIVE ALGORITHM FOR SINGLE-LINK CLUSTERING

Step 1. Begin with the disjoint clustering implied by threshold graph G(0),
which contains no edges and which places every object in a unique cluster,
as the current clustering. Set k < 1.
Step 2. Form threshold graph G(k).

If the number of components (maximally connected subgraphs) in G(k)
is less than the number of clusters in the current clustering, redefine the
current clustering by naming each component of G(k) as a cluster.

Step 3. If G(k) consists of a single connected graph, stop. Else, set
k < k + 1 and go to step 2.

AGGLOMERATIVE ALGORITHM FOR COMPLETE-LINK CLUSTERING

Step 1. Begin with the disjoint clustering implied by threshold graph G(0),
which contains no edges and which places every object in a unique cluster,
as the current clustering. Set k < 1.
Step 2. Form threshold graph G(k).

If two of the current clusters form a clique (maximally complete sub-
graph) in G(k), redefine the current clustering by merging these two clusters
into a single cluster.

Step 3. If k = n(n — 1)/2, so that G(k) is the complete graph on the n
nodes, stop. Else, set k <= k + 1 and go to step 2.
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These algorithms can be extended to dissimilarity matrices on interval and
ratio scales as long as no entries are tied. Simply view G(k) as the threshold
graph containing edges corresponding to the k smallest dissimilarities. A threshold
dendrogram records the clusterings in the order in which they are formed, irrespec-
tive of the dissimilarity level at which the clusterings first appear. A proximity
dendrogram lists the dissimilarity level at which each clustering forms and, in
effect, is a nonlinear transformation of the scale used with a threshold dendrogram.
Examples of proximity dendrograms are given in Section 3.2.2.

The single-link clustering on G(v) is defined in terms of connected subgraphs
in G(v); the compiete-link clustering uses complete subgraphs. However, not all
maximally complete subgraphs in a threshold graph need be complete-link clusters.
The order in which the clusters are formed is crucial. Figure 3.4 exhibits the
single-link and complete-link hierarchical clusterings for the proximity matrix &,
of Example 3.1. The first seven threshold graphs in the sequence of 10 threshold
graphs are shown with nodes labeled so that node j denotes object x;.

Please note the following peculiarities about forming hierarchical clusterings
from threshold graphs. The entire single-link hierarchy is defined by the first

2 3 2 3 2 3 2 3
L L =
@5 @ 5 5 5
& @ *>——= [
| 4 1 4 1 L] 1 4
G(1) G(2) G(3) G(4)
2 3 2 3 z 3
1 4 f P 1 4
G(S) G(6) G(7)

5 2 3 1 4 2 3 1 4 5
I 11y un
Single Link Complete Link

Figure 3.4 Threshold graphs and dendrograms for single-link and complete-link hierar-
chical clusterings.
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four threshold graphs in Figure 3.4. However, the first seven threshold graphs
are needed to determine the complete-link hierarchy. Once the two-cluster complete-
link clustering has been obtained, no more explicit threshold graphs need be drawn
because the two clusters will merge into the conjoint clustering only when all
n(n — 1)/2 edges have been inserted. This example demonstrates the significance
of nesting in the hierarchy. Objects {x,, x5, x4} form a clique, or maximally complete
subgraph, in threshold graph G(5), but the three objects are not a complete-link
cluster. Once complete-link clusters {x,, x3} and {x;, x4} have been established,
object x5 must merge with one of the two established clusters; once formed, clusters
cannot be dissolved and clusters cannot overlap. The dendrograms themselves
are drawn with each clustering shown on a separate level, even though, for example,
the two-cluster single-link clustering is obtained from G(3) and the two-cluster
complete-link clustering is obtained from G(7).

The interpretation of the dendrograms is not under consideration in this
chapter, but the two dendrograms in Figure 3.4 do raise a question about object
xs. Does it belon S or to the cluster {x;, x4}7 A case can
also be made for calling {x,, x4, xs} a cluster. Perhaps a hierarchical structure is
not appropriate for this proximity matrix. These issues are examined in Chapter
4.

e

Hubert (1974a) provides the following algorithms for generating hierarchical
clusterings by the single-link and complete-link methods. When the proximity

matrix contains no ties, clusterings are numbered 0, 1, ..., (n — 1) and the
mth clustering, €,,, contains n — m clusters.
q‘)’m = {le! szs =) Crrlfri—rm}

HUBERT’'S ALGORITHM FOR SINGLE-LINK AND COMPLETE-LINK METHODS

Step 1. Set m < 0. Form the disjoint clustering with clustering number m.
(@U = {(I]]? {12)5 I 1 ("—n)}

Step 2a. To find the next clustering (with clustering number m + 1) by the
single-link method, define the function Q, for all pairs (r, ) of clusters in
the current clustering as follows.

Q.(r, t) = min {d(i, j) : the maximal subgraph
of G(d(i, ))) defined by C,,. U C,, is connected}

Clusters C,,, and C
link hierarchy if

mq @re merged to form the next clustering in the single-

Qy(p, q) = min {Q(r, 1)}

Step 2b. The function Q. is used to find clustering number m + 1 by the
complete-link method and is defined for all pairs (r, #) of clusters in the
current clustering.
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Q.(r, t) = min {d(i, j) : the maximal subgraph
of G(d(i, j)) defined by C,,, U C,, is complete}

Cluster C,,, is merged with cluster C,,, under the complete-link method if

Op, ) = min {Qu(r, O}

Step 3. Set m <— m + 1 and repeat step 2. Continue until all objects are ip
a single cluster.

The word ‘‘maximal’’ in the definitions of functions Q. and Q; means that
all nodes of the two clusters C,,,. and C,,, must be considered when establishing
connectedness or completeness. Only existing clusters can be merged at the next
level.

Example 3.2

One way to understand the functions Q, and Q. is to consider the sequence of threshold
graphs even though the threshold graphs are not necessary to the evaluation of these functions.
For example, the first seven threshold graphs for the proximity matrix %9, (Example 3.1)
are given in Figure 3.4. The third clustering (m = 2) can be numbered as follows.

€, = {Cs. Cya, Cy3}
The three clusters are defined as
Cy =1{xs}, Cap = {x;, x5}, Cy3 = {xy, x4}

To evaluate Q, when m is 2, find the smallest proximity that will connect two of
the existing clusters. Clusters €5, and C,, become connected in threshold graph G(3).
Therefore, (p, q) is (1, 2) and Q,(p, q) is 3. Another way of understanding this function
is to realize that Q. (r, 1) is the smallest dissimilarity that connects clusters C,, and C,,,
and the smallest of the dissimilarities so found defines the next clustering. In this case,
clusters C,; and C,, first connect at level 3, or in G(3), clusters C,; and C,; first connect
in G(4) and clusters C,, and C,; first form a connected subgraph in G(5). The minimum
of the levels (3, 4, 5) is 3.

The interpretation of Q. is much the same, with completeness replacing connectedness.
For example, Q. is found when m = 2 by searching the threshold graphs in sequence
until one is found that merges existing clusters from €, into a complete subgraph. This
does not happen until G(7), so (p, g) is (1, 3) and Q.(p, q) is 7. Clusters C,, and C,, first
form a complete subgraph in threshold graph G(9). Clusters C,, and C,; first merge into a
complete subgraph in G(7) and clusters C,, and C,; first form a complete subgraph in
G(10). The minimum of the levels (7, 9, 10) is 7, so the fourth complete link clustering
(m = 3) is achieved at threshold 7 and merges clusters C,; and C,;. The fact that other
complete subgraphs are formed in the process, such as {x,, x,, xs}, is immaterial.

Single-link clusters are characterized as maximally connected subgraphs,
whereas complete-link clusters are cliques, or maximally complete subgraphs.
Jardine and Sibson (1971) have demonstrated several desirable theoretical properties
of single-link clusterings, but several authors (e.g., Wishart, 1969; Hubert, 1974b)
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have objected to certain practical difficulties with clusters formed by the single-
link method. For example, single-link clusters easily chain together and are often
“straggly.”” Only a single edge between two large clusters is needed to merge
the clusters. On the other hand, complete-link clusters are conservative. All pairs
of objects must be related before the objects can form a complete-link cluster.
Completeness is a much stronger property than connectedness. Perceived deficien-
cies in these two clustering methods have led to a large number of alternatives,
some of which are explained in Sections 3.2.7 and 3.2.9. For example, Hansen
and DeLattre (1978) noted that single-link clusters may chain and have little homo-
geneity, while complete-link clusters may not be well separated.
 Every connected subgraph of a threshold graph is a single-link cluster but
not every clique is a complete-link cluster. Peay (1975) proposed an exclusive,
overlapping, hierarchical clustering method based on cliques and extended it to
asymmetric proximity matrices. Matula (1977) noted that the number of possible
cliques is huge, so clustering based on cliques is practical only for small n.
Suppose that the latest clustering of {x;, x>, . . . , x,,} in one of the hierarchies
has been formed by merging clusters C,,, and C,,, in the clustering

{Cm;_, s 55 5% Cm(rr—rﬂl}

The following characterizations may help to distinguish the two clustering methods.
If the clustering was by the single-link method, we would know that

min  {d(i, )} =min{ min {d(, )}

X€CppxeCry r#s  xgCh, xeC,

If the clustering was by the complete-link method, we have that

max {d(i, )} =min{ max {d(, H}}
Xi€C 0 XEC g &S XEC 1y k€ C s

These characterizations show why the single-link method has been called
the “*‘minimum’’ method and the complete-link method has been named the *‘maxi-
mum’’ method (Johnson, T967). However, if the proximities are similarities instead
of dissimilarities, this terminology would be confusing. This characterization also
explains why the complete-link method is referred to as the ‘‘diameter’” method.
The diameter of a complete subgraph is the largest proximity among all proximities
for pairs of objects in the subgraph. Although the complete-link method does not
generate clusters with minimum diameter, the diameter of a complete-link cluster
is known to equal the level at which the cluster is formed. By contrast, single-
link clusters are based on connectedness and are characterized by minimum path
length among all pairs of objects in the cluster.

3.2.2 Dendrograms and Recovered Structure

An important objective of hierarchical cluster analysis is to provide a picture of
the data that can easily be interpreted, such as the dendrograms in Figure 3.4.
Dendrograms list the clusterings one after another. Cutting a dendrogram at any
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level defines a clustering and identifies clusters. The level itself has no meaning
in terms of the scale of the proximity matrix.

A proximity graph is a threshold graph in which each edge is weighted
according to its proximity. The proximities used in Section 3.2.1 are ordinal, so
the weights are integers from 1 to n(n — 1)/2. The dendrogram drawn from a
proximity graph is called a proximity dendrogram and records both the clusterings
and the proximities at which they are formed. Proximity dendrograms are especially
useful when the proximities are on an interval or ratio scale.

Example 3.3

A ratio proximity matrix is given below as %,. The threshold and proximity dendrograms
are given in Figure 3.5. Also shown is the sequence of proximity graphs which provides
the actual dissimilarity values at which clusters are formed.

X5 X3 Xy Xg
x, [58 42 69 26

s 67 1.7 T2
g X5 1.9 5.6
X4 7.6

A proximity dendrogram is drawn on a proximity scale from a sequence of
proximity graphs and highlights clusters that are **born’” early and *‘last’” a long
time in the dendrogram. These observations are the basis for formal measures of
cluster validity in Chapter 4.

Any hierarchical clustering algorithm can be seen as a way of transforming
a proximity matrix into a dendrogram. Only the single-link and complete-link
methods of clustering have been discussed so far, but the statement applies to
hierarchical clustering methods defined in Sections 3.2.7 and 3.2.9 as well. Thresh-
old and proximity dendrograms represent the structure that the hierarchical clustering
method is imposing on the data. This imposed structure can be captured in another
proximity matrix called the cophenetic matrix. The agreement between the given
proximity matrix and the cophenetic matrix measures the degree to which the
hierarchical clustering method captures the actual structure of the data. Formal
methods for measuring this agreement are discussed in Chapter 4. Here the cophen-
etic matrix is defined to help explain the difference between the single-link and
complete-link methods.

We begin with a hierarchical clustering:

{(%U'r <€‘I1 L C@Jﬂ—'l}
where the mth clustering contains n — m clusters:
(gm = {le* CmZ: ey Cm{u-rnl}

A level function, L, records the proximity at which each clustering is formed.
For a threshold dendrogram L(k) = k, because the levels in the dendrogram are
evenly spaced. In general,
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L(m) = min {d(x;, x;) : 6,, is defined}

The cophenetic proximity measure de on the n objects is the level at which
objects x; and x; are first in the same cluster.

deti, j) = L(ky)

where
k;; = min {m : (x;, x;) € C,,,, some g}
2 492 4 2 4 2 4 2 4 2 4
i
1.9
e3 3 3 4.2 3 3
2.6 ; )
1@ ®s 1 @ ®s 1 0—4=B5 1 5 1 5
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2 4 2 4 2 4 2 4 2 4
| o s LN :
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Figure 3.5 Examples of threshold and proximity graphs with corresponding dendro-
grams.
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The matrix of values [d(x;, x;)] is called the cophenetic matrix. The closer the
cophenetic matrix and the given proximity matrix, the better the hierarchy fits
the data. There can be no more than (n — 1) levels in a dendrogram, so there
can be no more than (n — 1) distinct cophenetic proximities. Since the cophenetic
matrix has n(n — 1)/2 entries, it must contain many ties.

The cophenetic matrix for the single-link dendrogram in Figure 3.5 is shown
below as %, and will be used to demonstrate some interesting properties of cophen-
etic matrices.

X2 X3 Xy Xs
I] 4.2 42 4.2 2.6

& — %2 1.9 1.7 4.2
L 1.9 4.2
Xa 4.2

Applying the single-link clustering method to %, reproduces the single-
link dendrogram in Figure 3.5. This might be expected. However, applying the
complete-link method to %, generates the same (single-link) dendrogram. The
complete-link method is usually ambiguous when the proximity matrix contains
ties, as discussed in Section 3.2.6. However, the cophenetic matrix is so arranged
that tied proximities form complete subgraphs and no ambiguity occurs under
complete-link clustering. A cophenetic matrix is an example of a proximity matrix
with perfect hierarchical structure. Both the single-link and the complete-link meth-
ods generate exactly the same dendrogram when applied to a cophenetic matrix.
Repeating this exercise by starting with the complete-link dendrogram generates
the cophenetic matrix 9.

Xa X3 X3 X5
x [7.6 56 7.6 2.6

. =2 76 1.7 7.6
O 7.6 5.6
X4 ?.6

The cophenetic matrix %, also has perfect hierarchical structure. The com-
plete-link and single-link clustering methods will produce exactly the same dendro-
gram when applied to %, and that dendrogram will be identical to the complete-
link dendrogram in Figure 3.5. An important question in applications is: Which
dendrogram better describes the true structure of the data?

3.2.3 Hierarchical Structure and Ultrametricity

The fact that both the single-link and the complete-link methods generate exactly
the same proximity dendrogram when applied to a cophenetic matrix suggests
that the cophenetic matrix captures ‘‘true’” or ‘“‘perfect’” hierarchical structure.
Whether or not the hierarchical structure is appropriate for a given data set has
Mﬁd, but the type of structure exemplified by the cophenetic
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matrix is very special. The justification for calling the cophenetic matrix ‘‘true
hierarchical structure comes from the fact that a cophenetic proximity measure
d¢ defines the following equivalence relation, denoted R, on the set of objects:

Re(@) = {(x;, x) : dei, ) < a}

Relation R~(a) can be shown to be an equivalence relation for any a = 0
by checking the three conditions necessary for an equivalence relation. Since
de(i, i) = 0 for all i,

(x;, x;) € Re(a) foralla =0
s0 Re(a) is reflexive. Since d(i, j) = dc(j, i) for all (i, j),
(xj, x;) € Rela) if  (x;, x;) € Re(a) foralla =10
s0 Re(a) is symmetric. The final condition, transitivity, requires that for all @ = 0,
if (x;, xp) € Re(a)  and if  (x, x;) € Re(a), then (x;, x)) € Re(a)

This condition must be satisfied for all triples (x;, x;, x;) of objects and all a. It
can also be restated as

de(i, j) = max {dc(i, k), dc(k, D} for all (i, j, k)

When stated in this way, the requirement is called the wltrametric inequality.
A close inspection of the cophenetic matrices for Figure 3.5 shows that they
satisfy the ultrametric inequality, so R-(a) is, indeed, an equivalence relation for
any a = 0. The nesting of the clusterings forming the hierarchy assures transitivity.
The only way that the very restrictive ultrametric inequality can be satisfied is to
have many ties in the cophenetic proximity. Recall that, at most, only n — 1 of
the n(n — 1)/2 cophenetic proximities can be distinct. Since cophenetic proximity
measures represent perfect hierarchical structure, proximity measures without ties
seldom reflect true hierarchical structure. The concept of ultrametricity has been
developed separately in mathematics and has applications in physics. See Rammal
et al. (1986) for an excellent review of ultrametricity and Schikhof (1984) for a
mathematical treatment of ultrametricity in the realm of *‘p-adic’ analysis.

Two items should be noted with regard to the ultrametric inequality. First,
the cophenetic proximities derived from single-link and complete-link clusterings
always satisfy the ultrametric inequality. However, Section 3.2.7 will introduce
some hierarchical clustering methods whose cophenetic proximities are not ultra-
metric. Second, a geometric interpretation of the ultrametric inequality demonstrates
why proximities measured in_applications are very seldom ultrametric. Suppose
that_each object is a pattern in a d-dimensional space. If Euclidean distance is
the measure of proximity and if the proximity matrix is to be ultrametric, the
triangles formed by all triples of points must be isosceles triangles with the unequal
leg no longer than the two legs of equal length.

Jardine and Sibson (1971) characterize hierarchical clustering methods as
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mappings from the class of proximity matrices to the class of ultrametric proximity
measures. That is, a hierarchical clustering method imposes a dendrogram on the
given proximity matrix and this establishes the cophenetic proximity matrix, which
satis.fm’___s/mg,u]lramen:is_ingguajity. Measures of fit between proximity measures
and cophenetic proximity measures are discussed in Chapter 4. The property of
ultrametricity is also called monotonicity; a cophenetic proximity measure satisfies
the ultrametric inequality only if the clusters form in_a monotonic manner as
dissimilarity increases. In other words, the clusterings are nested in the hierarchy.
Single-link and complete-link clusterings are always monotonic, but other common
clustering methods defined in Section 3.2.7 can create the next clustering at a
smaller dissimilarity than the present one. This issue is discussed in Section 3.2.8.

3.2.4 Other Graph Theory Algorithms for Single-Link
and Complete-Link

The algorithms for single-link and complete-link hierarchical clusterings described
thus far establish step-by-step procedures for forming dendrograms. In this section
we present other algorithms for these clustering methods that provide insight into
the clustering methods and can be computationally attractive.

An algorithm for single-link clustering begins with the minimum spanning
tree (MST) for G(¢), which is the proximity graph containing all n(n — 1)/2
edges. Although the single-link hierarchy can be derived from the MST, the MST
cannot be found from a single-link hierarchical clustering. For convenience, we
assume that no two edges in the MST have the same weight, even though Section
3.2.6 shows that ties in proximity pose no problem with single-link clustering.
An agglomerative algorithm for single-link clustering is given below that assumes
a dissimilarity matrix.

GRAPH THEORY ALGORITHM FOR SINGLE-LINK CLUSTERING

Step 1. Begin with the disjoint clustering, which places each object in its
own cluster. Find an MST on G(=).
Repeat steps 2 and 3 until all objects are in one cluster.

Step 2. Merge the two clusters connected by the MST edge with the smallest
weight to define the next clustering.

Step 3. Replace the weight of the edge selected in step 2 by a weight
larger than the largest proximity.

This algorithm follows from the characterization for single-link clustering
given in Section 3.2.1 and the definition of MST. A divisive algorithm is just as
simple. Cut the edges in the MST in the order of weight, cutting the largest first.
Each cut defines a new clustering, with those objects connected in the MST at
any stage belonging to the same cluster. As long as no proximity ties occur,
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these algorithms generate the same single-link clusterings as the algorithms presented
earlier. Gower and Ross (1969) first proposed this algorithm. Rohlf (1973) provided
an implementation that examines each proximity value only once.

Example 3.4

Examples of the two algorithms are given in Figure 3.6 for the proximity matrix %5 defined
below.

3.-2 13 .\‘4 .\’5

% [23 34 12 3.7

g, = %2 26 1.8 4.6
¥ 4.2 0.7
X4 4.4

A node coloring of a threshold graph G(v) is an assignment of *‘colors,”’
or labels, to the n nodes in such a way that no two nodes connected by an edge

5 3
1 2 ]
4
Cﬂmplﬁta Gr'ﬂph with Minimum Spunning Tree
MST Darkened (MST)
(3,5) S 3
o
2.6 0.7
2 3 5 1 4 2! 2
1 8 1 L | 1.2 1.8
1 9
1.2 4
1.07 5 3
H
0.7
R 1 @2
1.2
Fl
3.0 -
: : S 3
Si ink
ngie L G o
(3,5) Dendrogrem 0.7

2.6
\ 1@ [ ¥
(1,2,4)

Aggiomerative

+®

Divisive

Figure 3.6 Examples of agglomerative and divisive single-link algorithms based on
the MST.
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in G(v) are colored the same. Baker and Hubert (1976) show how the set of
node colorings is related to hierarchical clustering. The connection between node
coloring and complete-link clustering is not as simple as is the relation between
single-link clustering and the MST. The last complete-link clustering achieved
for a given threshold graph G(v) corresponds to a coloring of the nodes of the
complement of G(v). Hansen and DeLattre (1978) provide other algorithms from
graph coloring.

3.2.5 Matrix Updating Algorithms for Single-Link and
Complete-Link

In this section we discuss algorithms for single-link and complete-link clustering
in terms of a scheme for updating the proximity matrix. This approach was suggested
by King (1967) and popularized by Johnson (1967), who formalized the procedure.
The algorithm is an agglomerative scheme that erases rows and columns in the
proximity matrix as old clusters are merged into new ones. We again simplify
the algorithm by assuming no ties in the proximity matrix. Figure 3.7 provides
examples of this algorithm for the proximity matrix %3 (Example 3.4).

The n X n proximity matrix is 9 = [d(i, j)]. The clusterings are assigned
sequence numbers 0, 1, ..., (n — 1) and L(k) is the level of the kth clustering.
A cluster with sequence number m is denoted (m) and the proximity between
clusters (r) and (s) is denoted d[(r), (5)].

JOHNSON’'S ALGORITHM FOR SINGLE-LINK AND COMPLETE-LINK CLUSTERING

Step 1. Begin with the disjoint clustering having level L(0) = 0 and sequence
number m = 0.

Step 2. Find the least dissimilar pair of clusters in the current clustering,
say pair {(r), (s)}, according to

dl(r), (s)] = min {d[(i), ()]}

where the minimum is over all pairs of clusters in the current clustering.

Step 3. Increment the sequence number: m < m + 1. Merge clusters (r)
and (s) into a single cluster to form the next clustering m. Set the level of
this clustering to

L(m) = d[(r), (s)]

Step 4. Update the proximity matrix, %, by deleting the rows and columns
corresponding to clusters () and (s) and adding a row and column correspond-
ing to the newly formed cluster. The proximity between the new cluster,
denoted (r, s) and old cluster (k) is defined as follows. For the single-link
method,
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d((k), (r, 5)] = min {d[(k), ()], dl(k), ()]}

For the complete-link method,

di(k), (r, $)] = max {d[(k), ()], dl(k), ()]}

Step 5. If all objects are in one cluster, stop. Else, go to step 2.
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Figure 3.7 Examples of matrix updating algorithms for single-link and complete-link

clusterings.
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Anderberg (1973) discusses three computational approaches to implementing
the algorithm above, called the stored matrix, sorted matrix, and stored data ap-
proaches. The three approaches differ as to whether the pattern matrix or the
dissimilarity matrix is stored in random access memory or in auxiliary storage,
such as disk. Note that the dissimilarity matrix requires more storage than the
pattern matrix when n = d. The stored matrix approach, where the entire dissimilarity
matrix 1s stored in random access memory, is fastest.

Exampie 3.5

The computational examples in Figure 3.7 demonstrate the construction of single-link and
complete-link hierarchies. This example demonstrates the qualitative differences between
the single-link and complete-link hierarchies for the two artificial data sets defined in Section
2.4, The first data set, called DATAI, consists of 100 patterns in a four-dimensional
pattern space generated so as to have four categories, or true clusters. Patterns 1 through
24 were generated from category 1, patterns 25 through 59 from category 2, patterns 60
through 80 from category 3, and patterns 81 through 100 were generated in category 4.
An eigenvector projection is given in Figure 2.9. The proximity measure is squared Euclidean
distance in the pattern space. Since the proximity measure is Euclidean distance and since
the data were generated to several decimal places on a computer, we feel safe in assuming
that no proximity ties exist, so the hierarchies are both unique (see Section 3.2.6). Figures
3.8 and 3.9 show the proximity dendrograms for the single-link and complete-link hierarchies,
respectively.
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Figure 3.8 Single-link hierarchy for 100 clustered patterns in four dimensions.
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Figure 3.9 Complete-link hierarchy for 100 clustered patterns in four dimensions.

This example demonstrates the difficulty in comparing two dendrograms and motivates
the development of methods for automatically isolating significant clusters that are presented
in Chapter 4. The complete-link dendrogram in Figure 3.9 can be cut at level 1.0 to
generate four clusters. These clusters recover the original four categories in the data perfectly.
The four-category structure is not at all apparent in the single-link hierarchical clustering
of Figure 3.8.

Clustering methods have the nasty habit of creating clusters in data even when no
natural clusters exist, so hierarchies and clusterings must be viewed with extreme suspicion.
Figures 3.10 and 3.11 demonstrate this statement on the two hierarchies for a data set,
called DATA2, consisting of 100 points uniformly distributed over a unit hypercube in
six dimensions (see Section 2.4). The patterns are positioned at random, so it is barely
possible that they have arranged themselves into meaningful clusters; however, it is unlikely
that real clusters exist, especially considering the two-dimensional projections in Figure
2.11. We thus interpret Figures 3.10 and 3.11 as hierarchies in which no true clusters
exist. The single-link dendrogram in Figure 3.10 exhibits the chaining that is characteristic
of single-link hierarchies. This chaining can occur even when valid clusters exist, as in
Figure 3.8. The complete-link hierarchy in Figure 3.11 suggests some meaningful clusters;
it looks more clustered than the single-link hierarchy, and this is the lure of complete-link
clustering. It tends to produce dendrograms that form small clusters which combine nicely
into larger clusters even when such a hierarchy is not warranted, as with random data.
This example should demonstrate the difficulties inherent in letting the human eye scan
over the dendrogram to pick out believable clusters and clusterings.
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Figure 3.10 Single-link hierarchy for 100 random patterns in six dimensions.

3.2.6 Ties in Proximity

The computational complexity of competing algorithms for implementing a particu-
lar clustering method and the availability of software should determine which
algorithm is appropriate for a given application. The problem of choosing between
the single-link and complete-link methods is much more difficult than choosing
an algorithm for one of the methods. No list of characteristics exists that lets us
choose between the two methods in a calm, rational manner. Some theoretical
and practical information about the two methods is summarized in this section,
especially the effects of ties in the proximity matrix.

The single-link and complete-link methods differ in many respects, such as
in the graph structures recognized and the updating procedure. The two methods
prMme clusterings when the proximity matrix satisfies the ultrametric
inequa 1ty, as discussed in Section 3.2.3. This section demonstrates that the two
methods differ in the way they treat ties in the proximity matrix. Up to now, we
have assumed that the proximity matrix contains no ties so that two new clusters
ar¢ never formed at the same level and the algorithms defined thus far produce
unique dendrograms. A tie implies that two or more edges are added to the proximity
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Figure 3.11 Complete-link hierarchy for 100 random patterns in six dimensions.

graph at once and that the minimum and maximum functions required in matrix
updating are not unique.

Jardine and Sibson (1971) showed that the single-link method does not suffer
from ambiguities due to ties because it has a continuity property. If the ties are
broken in the proximities by adding or subtracting a small amount from the tied
proximities, the resulting single-link dendrograms will merge smoothly into the
same dendrogram as the added amount tends to zero, no matter how the ties are
broken. This statement applies to all single-link algorithms as long as the rank
orders of the proximities are not changed by the added amounts. By contrast,
several complete-link dendrograms can be obtained by breaking ties in this way,
as demonstrated in Figure 3.12.

Figure 3.12(a) shows the first three threshold graphs for the given proximity
matrix. Two edges are added at once in G(3). The single-link hierarchy is the
same whether edge (2, 3) is inserted first or edge (3, 4) is inserted first. The
proximity dendrogram for the single-link method in Figure 3.12(b) is unique even
though more than one cluster can be formed at the same level. Algorithms based
on the MST or on matrix updating produce the same results. The situation is
very different with complete link clustering. Figure 3.12(b) shows the hierarchy
defined by adding edge (2, 3) first and that formed when adding edge (3, 4)
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Figure 3.12 Effects of ties in proximity on single-link and complete-link clustering:
(a) proximity matrix and threshold graphs: (b) proximity dendrograms; (c) altered proximity
matrix and dendrograms.

first. The two clustering structures are very different. This effect can also be
observed on the matrix updating algorithm and with Hubert’s algorithm (Section
3.2.1). Adding the two edges (2, 3) and (3, 4) simultaneously does not solve the
pmb__lt::‘_n'l______becausme resulting four-edge threshold graph is not a complete graph.
In fact, the next complete graph would be the one on all five nodes and the
hierarchical clustering would have only three levels.

Figure 3.12(c) emphasizes the seriousness of ties. The given proximity matrix
differs from that in Figure 3.12(a) in only two entries; the (3, 4) and (4, 35)
entries are interchanged, as might occur through a typing error when entering
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data. In this case a unique complete-link hierarchy is obtained because the two
edges I the same proximity can be added in arbitrary order. However, the
hierarchy has two clusters forming at level 3. The single-link hierarchy is also
shown. The single- and complete-link dendrograms in Figure 3.12(c) resemble
one another much more closely than do those in Figure 3.12(b), which might
lead one to believe that the proximity matrix in Figure 3.12(c) had a good hierarchical
structure, whereas that in Figure 3.12(a) has a poor hierarchical structure. This
example raises the issue of sensitivity. It appears t e_hierarchical s e
can change dramatically with small changes in the rank orders of the proximities.
~ The havoc that ties can create in a complete-link hierarchy has been noted
by several researchers. Sibson (1971) and Williams et al. (1971) argue against
the complete-link method as a feasible clustering procedure (see also Hubert,
1974a). The practical problem of ties is subtle. Software packages do not typically
check for ties. The order in which an edge is added from a set of edges with the
same proximity is at the whim of the programmer. The program will generate
only one complete-link clustering, even though a number of clusterings might be
equally justifiable. This problem is compounded when the proximity matrix contains
several ties. The comparative studies in Section 3.5.2 suggest that the complete-
link method produces more useful hierarchies in many applications than does the
single-link method, even though proximity ties make it ambiguous.

3.2.7 General Matrix Updating Algorithms and
Monotonicity

This section generalizes the algorithms in Section 3.2.5 and discusses issues in
the computation and application of these algorithms. Questions of the validity of
cluster structures are taken up in Chapter 4. The general paradigm for expressing
SAHN (Sequential, Agglomerative, Hierarchical, Nonoverlapping) clustering meth-
ods is given in Section 3.2.5. Step 4 of that algorithm specifies how the dissimilarity
matrix is to be updated by defining the formula for the dissimilarity between a
newly formed cluster, (r, s), and an existing cluster, (k) with n, objects. The
single-link and complete-link algorithms use the minimum and maximum, respec-
tively, of the dissimilarities between the pairs {(k), (r)} and {(k), (s)}. Other clustering
methods can be defined by specifying different combinations of the distances in-
volved. A general formula for step 4 that includes most of the commonly referenced
hierarchical clustering methods is given below.

di(k), (r, 5)]
= a,d[(k), (] + adl(k), ()] + Bdl(r), (H] + y|d(k), (] — d[(k), (s)]]

This formula was first proposed by Lance and Williams (1967). Table 3.1
shows the parameter values for the most common algorithms. This table is also
given in Milligan (1979) and in Day and Edelsbrunner (1984).

The acronym *‘PGM’’ refers to the “*pair group method’’; the prefixes **U”’
and **“W"’ refer to unweighted and weighted, respectively. An ‘‘unweighted’” method
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TABLE 3.1 Coefficient Values for SAHN Matrix Updating Algorithms

-
Clustering Method a, oL B ¥
Single-link 172 142 0 —112
Complete-link 112 1/2 0 1/2
nr '".F
UPGMA (group average) m ﬂ_; ey 0 0
WPGMA (weighted average) 172 1/2 0 0
. } n, n, —nn,
UPGMC (unweighted centroid) Ry Ty m 0
WPGMC (weighted centroid) 1/2 1/2 —1/4 0
; ¢z o n. + n; e+ ng — Ny,
Ward’s method (minimum variance) s e I e 0

treats each object in a cluster equally, regardles of the structure of the dendrogram.
A “‘weighted’’ method weights all clusters the same, so objects in small clusters
are weighted more heavily than objects in large clusters. The suffixes **A’" and
“C"" refer to *“‘arithmetic averages’’ and ‘‘centroids.”” Thus ““UPGMA’’ stands
for “*unweighted pair group method using arithmetic averages’’ and **WPGMC"’
refers to “*weighted pair group method using centroids.”” Rohlf (1970) and Sneath
and Sokal (1973) have used this terminology. The UPGMC method has also been
called, simply, the centroid method, while the WPGMC method has been called
the median method (see Lance and Williams, 1967).

Sneath and Sokal (1973) provide a good discussion of the backgrounds of
these methods and define other SAHN algorithms. Anthmetic averaging attempts
to avoid the extremes of the single-link and complete-Tink methods. When measuring

the dissimilarity between an existing cluster and a prospective cluster, the single-
link method finds the closest pair of objects in the two clusters, the complete-
link method finds the most distant pair, and the UPGMA and WPGMA methods
use arithmetic averages of the dissimilarities. The arithmetic averaging methods
have no simple geometric interpretation. In contrast, the UPGMC and WPGMC
methods have direct geometric interpretations when the objects are represented as
patterns in a d-dimensional space. The centroid methods assess the dissimilarity
between two clusters by the distance between centroids. The UPGMC method
measures distance in terms of the centroid computed from all patterns in each
cluster. The WPGMC method computes centroids from the centroids of the two
clusters that merge to form a new cluster. The UPGMA weights the contribution
of each pattern equally by taking into account the sizes of the clusters, while the
WPGMC weights the patterns in small clusters more heavily than the patterns in
large clusters. Centroid methods should only be used when the objects are represented
as patterns and the proximity measure is squared Euclidean distance. An important
distinction between centroid methods and other SAHN algorithms is in monotonicity,
as explained later in this section.
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Example 3.6

Dendrograms for the seven algorithms in Table 3.1 are drawn in Figure 3.13. The six
objects involved are the six pattern vectors defined below in a three-dimensional space.

x, =(1.0 2.0 2.0)7 % =(3.0 40 3.07
X, =(2.0 1.0 2.0 xs=(0.0 3.5 3.57
X, = (0.0 1.0 3.0 ¥o=00 28 s

Under a squared Euclidean distance measure of dissimilarity, the proximity matrix
is given below.

. 2 3 Bl 5 6
[0 2.0 3.0 90 5.5 L5357
0 50 11.0 125 2.5

0 18.0 6.5 6.5

0 3.5
0 6.0
0

- q.; -

L S

The tie in proximity between pairs of patterns (x5, x5) and (x5, x,) causes no ambiguity
in any of the dendrograms. The dendrograms for Ward's method, the two arithmetic average
methods, and the two centroid methods all have the same topology and differ only in
levels. They suggest that x, is an outlier because it joins the cluster of the other five
patterns last and the gap between the formation of the five-pattern cluster and the singleton
cluster 1s large. The single-link dendrogram has much the same topology, except that xs
now appears to be the outlier. The complete-link dendrogram establishes cluster (x,, xs).
All dendrograms agree that (x;, x,, x¢) is a strong cluster. Quantitative measures of the
strength and quality of clusters and clusterings, defined in Chapter 4, should help answer
such questions as: If one of the dendrograms were to be cut to define a partition, where is
the best cutting level? Is (x,, x5, x4, x3) a good cluster?

Several of the comparative studies discussed in Section 3.5.2 conclude that
Ward’s method (Ward, 1963), also called the minimum variance method, outper-
forms other hierarchical clustering methods. This method is based on notions of
square error popularized in analysis-of-variance and other statistical procedures
(Wilks, 1963; Cooley and Lohnes, 1971). Square-error criteria are also used in
partitional clustering algorithms (Section 3.3.1). Ward's method is implemented
by the standard algorithm using the constants in Table 3.1. These constants are
derived below to see how square error is minimized.

Suppose that a clustering has been achieved with Ward’s method and that
the next clustering in the hierarchy is to be obtained with the matrix updating
algorithm. Ward’s method is designed for the situation when the data appear as
patterns. Thus we begin with a set of n patterns in a d-dimensional space. Let
.tg-" be the value for feature j of pattern i when pattern i is in cluster k for i from
1 to n; and j from 1 to d. The centroid of cluster k, denoted [m{", ..., m¥], is
the cluster center, or the average of the n; patterns in cluster k.
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Figure 3.13 Examples of dendrograms for matrix updating algorithms.

i
(k) — (k)
m® = (1/my) Z, xjj
=

The square-error for cluster & is the sum of squared distances to the centroid
for all patterns in cluster k.

d —
" _k 12
>, [k — mi9]
j=1

[
f = ZI
=

The square-error for the entire clustering, which contains K clusters, is the
sum of the square-errors for the individual clusters.

K

2 _ 2

Ex = 2 €y
k=1

Ward’s method merges the pair of clusters that minimizes AEf,q. the change in

E?% caused by the merger of clusters p and ¢ into cluster ¢ to form the next clustering.
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Since the square-errors for all clusters except for the three clusters involved remain
the same,

B e B B 0
&E—e,e &

After a bit of algebra, we find that the change in square-error depends only
on the centroids.

AE?: = Mg Z [muﬂ s mun]z
Myt

qj=1

The clusters p and g selected for merger are the clusters that minimize this
quantity. The square-error must increase as the number of clusters decreases, but
the increase is as small as possible in Ward’s method. Once clusters p and g are
merged into cluster #, the proximity between all other clusters and the new cluster
¢ must be updated. Letting cluster r represent a cluster other than p, g, or 1, the
following formula can be applied to find d[(r), (1)]:

+ +
din), () ==L dl(r), ()] + “——LdI(r). (@) -

Hr I r ,Tf r

Ir
T ”,dl(p). ()]

The choice of a suitable hierarchical clustering method is an important matter
in applications, but theory provides few guidelines for optimizing the choice.
Square-error is a familiar criterion in engineering, so one might feel comfortable
with a procedure that minimizes square-error, such as Ward’s method. However,
the objective of cluster analysis is to investigate the structure of the data, so the
imposition of an apriori criterion, such as square-error, might not be appropriate.
All data do not occur as patterns, so we cannot limit our thinking to geometrical
constructs. Section 3.5.2 reviews several empirical studies that compare hierarchical
clustering methods and that guide the choice of a clustering method.

3.2.8 Crossovers and Monotonicity in Dendrograms

Section 3.2.2 defined perfect hierarchical structure as a proximity matrix
that satisfies the ultrametric inequality. The rationale was that the single-link and
complete-link methods produced the same dendrograms for an ultrametric proximity
matrix, and since these two methods search for very different types of structure,
the fact that they exhibit the same exact structure is meaningful. It is clear from
the single-link and complete-link algorithms based on threshold and proximity
graphs that these methods are monotonic. That is, the level at which the next
cluster forms is always larger, on a dissimilarity scale, than the level of the current
clustering. Monotone methods induce ultrametric cophenetic matrices. Monotonicity
can be expressed in mathematical terms by referring to the matrix updating formula
in Section 3.2.7. If a clustering method merges clusters () and (s) into cluster
(r, 5), monotonicity demands that

dl(k), (r, s)] = dI(r), (5)]
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Figure 3.14 Examples of crossover or reversal in dendrogram.

for all clusters (k) distinct from (r) and (s). That is, no dissimilarity in the updated
matrix can be smaller than the smallest entry in the previous matrix. Another
way of saying this is that the cophenetic matrix generated by these two methods
satisfies the ultrametric inequality.

What can be said about the monotonicity of SAHN algorithms expressed
through matrix updating, especially those defined by the matrix updating algorithm
in Table 3.17 Figure 3.14 provides a simple example of a dissimilarity matrix
and the dendrograms generated by the single-link, complete-link, UPGMC, and
WPGMC methods. The dendrograms from the centroid methods (UPGMC and
WPGMC) are not monotone and exhibit what is called a *‘crossover’” or a *‘reversal’’
since clusters (x;, x,) and (x5, x4) merge at a level lower than the level at which
(x5, x4) 1s first defined.

Monotonicity is clearly a property of the clustering method and has nothing
to do with the proximity matrix. The advantage of the matrix updating formula
is that the monotonicity of any SAHN algorithm that can be expressed in terms
of this updating formula can be predicted from the coefficients. Assuming that

“a, > 0, and o, > 0, Milligan (1979) provided the following results. The matrix
updating formula for step 4 of the SAHN algorithm is repeated below for easy
reference. Clusters (r) and (s) are being merged into cluster (r, s) and the dissimi-
larity between distinct cluster (k) and the newly formed cluster is being estab-
lished.
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dl(k), (r, 5)]
= o, d[(k), (] + a,d[(k), ()] + BdI(r), ()] + |d[(k), (r)] — d[(k), (5)]|

Result I. If o, + ag + B = 1 and y = 0, the clustering method is monotone.

This result is easily demonstrated. The first inequality can be rewritten as
B E 1 = ar = a&'
and substituting in the matrix updating formula shows that

d((k), (r, )] = d[(r), (5)] + o ddI(k), (] — dl(r), ()]}
+ a{dl(k), ()] = dI(r), ()]} + ldI(k), ()] — d[(k), (s)]|

SAHN algorithms require that d[(r), (s)] be no greater than either d[(k), (r)] or
d[(k), (s)] for any distinct (k). Thus the condition that -y be nonnegative implies
that

d(k), (r, )] = d[(r), (5)]

for all clusters (k) other than (r) and (s), which implies monotonicity.

Result 2. f o, + g + B = 1 and 0 > vy = max {—«,, —a,}, the clustering
method is monotone.

To demonstrate this result, first consider the case when d[(k), (r)] >
d[(k), (s)]. Using the first inequality and recalling that vy is negative, the matrix
updating equation can be rewritten as

d[(k), (r, )] = d[(r), ()] + (o, — YIHdIK), (D] = dI(r), ()]}
+ (o + [YD{dI(K), ()] — dI(r), ()]}

Since «, = |y|, the second term on the right is nonnegative for the case under
consideration. The last term on the right is nonnegative because of the way SAHN
algorithms are defined. Thus

d[(k), (r, 8)] = d[(r), (5)]

as in Result 1, and the clustering method is monotone. The case when d[(k), (s)]
= d[(k), (r)] can be proved in a similar fashion.

The inequality in Result 1 is not satisfied for either of the centroid methods
(UPGMC and WPGMC). It is easy to create examples for which these methods
do not produce monotone hierarchies, as indicated in Figure 3.14. However, all
other methods in Table 3.1 are monotone. Note that only single-link and complete-
link clusterings are invariant under monotone transformation of the dissimilarities.

Figure 3.13 demonstrates that nonmcnntone clustenng methods do not neces-
sanly produce crossovers. The-diseussion—e
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will-be-ehminated- One is tempted to reject nonmonotone methods out of hand.
“Williams and Lance (1977) call them obsolete. Anderberg (1973) claims that they
lack a useful interpretation for general proximities. Sneath and Sokal (1973) claim
that ‘‘the frequency of reversals and the relatively high degree of its distortion of
the original [proximity] matrix has led to the abandonment of this [UPGMC] tech-
nique.”’ On the other hand, the performances of nonmonotone methods in several
comparative studies of clustering methods discussed in Section 3.5.2 do not suggest
that such methods be abandoned. Williams et al. (1971) argue that monotonicity
is not essential for the proper performance of hierarchical clustering.

3.2.9 Clustering Methods Based on Graph Theory

The statements of the single-link and complete-link algorithms in terms of
graph theory in Section 3.2.1 suggest that properties other than connectedness
and completeness can be used to define clustering methods. The idea is to watch
the sequence of threshold graphs or proximity graphs for the appearance of a

suitable property. Hubert (1974a) suggests the following expression of algorithms

that define hierarchical clustering methods. Ties in the proximities can affect the
clusterings in unexpected ways, so we assume that no ties exist in the proximity
matrix.

New hierarchical clustering algorithms are formed by changing step 2 in
the algorithm of Section 3.2.1. The function Oy, is defined as follows for all
pairs of clusters {C,,,, C,,} in the clustering {C,,;, . . . , Cppr—m):

Quw(r, 1) = min {d(i, j) : the maximal subgraph of G[d(i, j)] defined by
C,,, U C,, is connected and either has property p(k) or is complete}

Following the algorithm, clusters C,,, and C,,, are merged to form the next
clustering in the sequence if

Qp{ﬁ-}(ps QJ = l'ﬂi[l {Qp{.l'r}'[rn f}}

Some examples of property p are given below. Integer k is a parameter,
so, for example, p(k) could mean a node connectivity of k or a node degree of k.

Node connectivity. The node connectivity of a connected subgraph is the
largest number n. such that all pairs of nodes are joined by at least n,. paths
having no nodes in common.

Edge connectivity. The edge connectivity of a connected subgraph is the
largest integer n, such that all pairs of nodes are joined by at least n, paths
having no edges in common.

Node degree. The degree of a connected subgraph is the largest integer n,
such that each node has at least n, incident edges.

Diameter. The diameter of a connected subgraph is the maximum *‘distance’’
between two nodes in the subgraph. The distance between two nodes is the
number of edges in the shortest path joining them.
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Radius. The radius of a connected subgraph is the smallest integer n, such
that at least one node is within distance n, of all other nodes in the subgraph.

Specifying parameter k and property p defines a new clustering method.
Every cluster must at least be connected. Once all the edges have been inserted
into the subgraph, it is complete and no further properties can be applied. Certain
practical difficulties arise when trying to select a suitable property. Few guidelines
exist other than intuition and experience. Theorems from mathematics provide
some insight into these methods. For example, a node connectivity of k implies
an edge connectivity of k, but the reverse is not true. Similarly, an edge connectivity
of k implies a minimum degree of k, but the reverse does not hold. A compelling
reason must appear before one of these methods is used in place of the single-
link, complete-link, or other SAHN algorithms.

Example 3.7

Figure 3.15 demonstrates hierarchical clustering methods defined by graph properties. An
ordinal proximity matrix is given below on eight objects. Threshold graph G(13) is pictured
in Figure 3.15(a) to help in establishing the dendrograms for several methods, as well as
for the single-link and complete-link methods. Proximity dendrograms are shown in Figure
3.15(b)~(h). A simple way to find these hierarchies with pencil and paper is first to list
the pairs of objects in rank order by proximity. Then construct a sequence of threshold
graphs and find the first threshold graph at which a property is satisfied. It is important to
check the property only on the subgraph formed by the union of the subgraphs for two
existing clusters.

1 2 3 4 5 6 7 8
170 13 21 18 4 8 F 287
2| — 0 9 19 15 14 10 16
g = = 0 22 90 12 11 1
d o—oe ~= 0 & 25 B 1
5| — — — — 0 5 24 2
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7 le= = ssasa= == [ 96
B s o == v=s e ae == uffy]

Ling (1972) examined hierarchical clustering based on notions of connectivity
and compactness that are particularly appropriate for ordinal proximity matrices.
He assumed ordinal proximities with no ties, but his clustering method can also
be applied to interval and ratio proximity matrices. The properties p that Ling
proposed are defined below.

Consider a proximity graph on n nodes. A subgraph is r-connected if all
pairs of nodes in the subgraph are connected by r-chains. An r-chain between
two nodes is a sequence of nodes having d(i, j) = r for all pairs (i, j) of nodes
in the sequence. A subgraph is (k, r)-bonded if every node in the subgraph is
directly connected to at least k nodes and if d(i, j) = r for all k connections.
Finally, a subgraph is (k, r)-connected if it is both r-connected and (k, r)-bonded.
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A subgraph becomes a (k, r)-cluster in the algorithm of Section 3.2.1 as
soon as it becomes (k, r)-connected. Note that (1, r) clusters are single-link clusters.
Ling (1972, 1973a) proposed the (k, r)-cluster as a way of identifying significant
clusters. Given any proximity graph, a (k, r)-cluster can be defined independent
of the hierarchical clustering algorithm. A subgraph is a (k, r)-cluster if r is the
smallest value of s for which the subgraph is (k,s)-connected for some s and the
subgraph is not properly contained in any other (k, r)-connected subgraph for
t > r. Such clusters have several attractive mathematical properties and are intuitively
appealing since both connectedness and compactness are involved in the definition.

We emphasize that no theory exists for choosing among the various properties
of graphs to select the **best’’ clustering method for a particular application. Section
3.5 provides some guidance, but familiarity with a method and confidence in the
results of previous applications of the method are the only practical ways of choosing
a method.
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Figure 3.15 Examples of dendrograms from graph theory: (a) threshold graph G(13)
for proximity matrix in example 3.7: (b) single-link; (c) complete-link; (d) 2-node con-
nected; (e) 2-edge connected; (f) 2-degree; (g) 2-diameter; (h) 2-radius.
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Figure 3.15 (continued)

3.3 PARTITIONAL CLUSTERING

Hierarchical clustering techniques organize the data into a nested sequence of
groups. An important characteristic of hierarchical clustering methods is the visual
impact of the dendrogram, which enables a data analyst to see how objects are
being merged into clusters or split at successive levels of proximity. The data
analyst can then try to decide whether the entire dendrogram describes the data
or can select a clustering, at some fixed level of proximity, which makes sense
for the application in hand. We refer to nonhierarchical clustering methods as
partitional clustering methods. They generate a single partition of the data in an
attempt to recover natural groups present in the data. Both clustering strategies
have their appropriate domains of applications. Hierarchical clustering methods
generally require only the proximity matrix among the objects, whereas partitional
techniques expect the data in the form of a pattern matrix. It is generally assumed
that the features have been measured on a ratio scale.

Hierarchical techniques are popular in biological, social, and behavioral sci-
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ences because of the need to construct taxonomies. Partitional techniques are used
frequently in engineering applications where single partitions are important. Parti-
tional clustering methods are especially appropriate for the efficient representation
and compression of large data bases. Dendrograms are impractical with more
than a few hundred patterns.

The problem of partitional clustering can be formally stated as follows.
Given n patterns in a d-dimensional metric space, determine a partition of the
patterns into K groups, or clusters, such that the patterns in a cluster are more
similar to each other than to patterns in different clusters. The value of K may or
“may not be specified. A clustering criterion, such as square-error, must be adopted.
Criteria can be classified as global or local. A global criterion represents each
cluster by a prototype and assigns the patterns to clusters according to most similar
prototypes. A local criterion forms clusters by utilizing local structure in the data.
For example, clusters can be formed by identifying high-density regions in the
pattern space or by assigning a pattern and its k nearest neighbors to the same
cluster.

The theoretical solution to this partitional problem is straightforward. Simply
select a criterion, evaluate it for all possible partitions containing K clusters, and
pick the partition that optimizes the criterion. The first difficulty encountered is
selecting a criterion that translates one’s intuitive notions about “*cluster’’ into a
reasonable mathematical formula. Criteria are highly dependent on problem parame-
ters and must be simple for computational reasons but complex enough to reflect
various data structures. The second difficulty with this approach is that the number
of partitions is astronomical, even for moderate numbers of patterns, so evaluating
even the simplest criterion over all partitions is impractical.

Let S(n, K) denote the number of clusterings of n objects into K clusters.
The order of the objects in each cluster and the order of the clusters themselves
are immaterial. Empty clusters are not counted. A partial difference equation can
be written for S(n, K) as follows. Suppose that all clusterings of n — 1 objects
have been listed. A clustering of n objects can be formed from this list in two
ways.

1. The nth object can be added as a singleton cluster to each member of the
list with exactly (K — 1) clusters.

2. The nth object can be added to each cluster of any member of the list with
exactly K clusters.

Thus
Sn,K)=S(n—1,K— 1)+ KS5(n — 1, K)
The boundary conditions on this equation are
Sn, D)=1,8n,n)=1,8n,K)=0 ifK>n

The solution to this equation for S(n, K) requires that values {S(j, p)} be known
fortheset{(j,p):1=j=n—-2,1=p =K}
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Solutions to the partial difference equation are called Stirling numbers of
the second kind (Fortier and Solomon, 1966; Jensen, 1969):

k& :
s 10 =2 > (<0< (K) @

There are only 34,105 distinct partitions of 10 objects into four clusters,
but this number explodes to approximately 11,259,666,000 if 19 objects are to
be partitioned into four clusters. Clearly, exhaustive enumeration of all possible
partitions is not computationally feasible even for small numbers of patterns. In
addition, K, the number of clusters, must be selected a priori. Chapter 4 discusses
this problem.

To avoid this combinatorial explosion, a criterion function is evaluated only
for a small set of ‘‘reasonable’ partitions. How to identify a small subset of
partitions that has a good chance of containing the optimal partition? The most
common approach is to optimize the criterion function using an iterative, hill-
climbing technique. Starting with an initial partition, objects are moved from one
cluster to another in an effort to improve the value of the criterion function.
Thus each successive partition is a perturbation of the previous one and, therefore,
only a small number of partitions is examined. Algorithms based on this technique
are computationally efficient but often converge to local minima of the criterion
function. Several heuristics for choosing the initial partition, moving objects from
one cluster to the other, and for merging and splitting clusters will be discussed
later.

Another way of avoiding the combinatorial explosion is somehow to identify
and reject a large number of partitions which are not likely to be of interest.
Jensen (1969) uses a dynamic programming approach to eliminate many partitions
and is still able to achieve an optimal solution. A significant computational savings
is realized, especially for large clustering problems, at the expense of algorithmic
complexity. For example, to partition 19 objects into four clusters, less than 2%
of the total number of partitions need to be evaluated using the dynamic programming
formulation. Even this reduction is not enough to make this approach computation-
ally feasible for practical clustering problems. Several related approaches are de-
scribed in the literature (Edwards and Cavalli-Sforza, 1965; Vinod, 1969; Rao,
1971; Koontz et al., 1975; Lefkovitch, 1980).

There is no single ‘“‘best’’ criterion for obtaining a partition because no
precise and workable definition of ‘‘cluster’” exists. Clusters can be of arbitrary
shapes and sizes in a multidimensional pattern space. Each clustering criterion
imposes a certain structure on the data, and if the data happen to conform to the
requirements of a particular criterion, the true clusters are recovered. Only a small
number of independent clustering criteria can be understood both mathematically
and intuitively. Thus the hundreds of criterion functions proposed in the literature
are related and the same criterion appears in several disguises. Shaffer et al. (1979)
demonstrate the similarity of a mode-seeking partitional algorithm (Kittler, 1976)
and the MST-based algorithm of Zahn (1971). Similarly, Urquhart (1982) shows
that partitions obtained from a relative neighborhood graph are identical to those
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generated by mutual near-neighbor clustering (Gowda and Krishna, 1978). The
literature of cluster analysis is spread so widely and over so many areas of science
that a single criterion function is rediscovered repeatedly.

In this section we present some of the most common partitional clustering
methods. Several popular criteria are versions of square-error and are discussed
in Sections 3.3.1 to 3.3.3. Another global criterion obtains a partition by fitting
a mixture density model to the patterns (Section 3.3.4). These clustering criteria
create clusters having hyperellipsoidal shapes. Sections 3.3.5 to 3.3.7 describe
several partitional clustering methods based on local criteria of density or mode
estimation, graph connectivity, and near-neighbor relationships. Finally, Section
3.3.8 briefly covers the topic of fuzzy clustering, where each object is permitted
to belong to more than one cluster with a grade of membership.

Most of the partitional clustering techniques presented here implicitly assume
continuous-valued feature vectors so that the patterns can be viewed as being
embedded in a metric space. If the features are on a nominal or ordinal scale,
Euclidean distances and cluster centers are not very meaningful, so hierarchical
clustering methods are normally applied. Wong and Wang (1979) proposed a
clustering algorithm for discrete-valued data. The approach is similar to the mode
estimation procedure for continuous data but approximates the high-order discrete
probability distribution by a second-order product and uses Hamming distance
(Section 2.2) between patterns.

The technique of conceptual clustering or learning from examples (Michalski
and Stepp, 1983) can be used with objects represented by nonnumeric or symbolic
descriptors. The objective here is to group objects into conceptually simple classes.
Clustering of trains using attributes such as number of cars, number of wheels,
colors of wheels, and number of items carried, and the clustering of microcomputers
using attributes such as CPU speed, memory size, and type of processor are more
appropriately handled by associating each cluster with a simple ‘*concept.”” Concepts
are defined in terms of attributes. For example, in the train classification problem,
trains with two red cars is a concept. Objects are arranged into a hierarchy of
classes described by concepts.

3.3.1 Square-Error Clustering Criteria

The most commonly used partitional clustering strategy is based on the square-
error criterion. The general objective is to obtain that partition which, for a fixed
number of clusters, minimizes the square-error. Ward’s method of hierarchical
“clustering (Section 3.2.7) uses square-error in a different way. Minimizing square-
error, or within-cluster variation, will be shown to be equivalent to maximizing
the between-cluster variation.

Suppose that the given set of n patterns in d dimensions has somehow been
partitioned into K clusters {C;, C5, . . . , Cg} such that cluster C; has n; patterns
and each pattern is in exactly one cluster, so that
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K
z n.=n
k=1

The mean vector, or center, of cluster C; is defined as the centroid of the cluster,
or
ng
m® = (1/ny) 2 xE—”
i=1
where x{® is the ith pattern belonging to cluster C;. The square-error for cluster
Cy is the sum of the squared Euclidean distances between each pattern in C;, and
its cluster center m®). This square-error is also called the within-cluster variation.
ny
e;% - Z {x&-‘ﬂ o mm}T(x?‘} . m{k)}
i=1
The Mahalanobis distance (Section 2.2) can also be used to define square-error.
The square-error for the entire clustering containing K clusters is the sum
of the within-cluster variations:

K

"

g 2

Ex = Z €
k=1

The objective of a square-error clustering method is to find a partition containing
K clusters that minimizes E% for fixed K. The resulting partition has also been
referred to as the minimum variance partition. Figure 3.16 illustrates that the
square-error criterion views the centroids of clusters as prototypes. The error repre-
sents deviations of the patterns from the centroids. In other words, the patterns
are viewed as a collection of K spherically shaped swarms. Square-error clustering
tries to make the K swarms as compact and separated as possible.

Gordon and Henderson (1977) also define the clustering problem in terms
of minimizing the within-cluster sum of square distances. However, they write
their criterion function in such a way that the clustering problem can be formulated
as a nonlinear programming problem. Let x; denote the jth feature of the ith

€1 12
X.l 12

-

Figure 3.16 Distances used in computing square-error.
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pattern, i = 1, . . . ,n;j=1,. .. ,d. Let yg = 1 if the ith pattern belongs
to the kth cluster, and 0 if the ith pattern does not belong to the kth cluster, k& =
1. . . ., K. The centroid of the kth cluster, z;, is written as z; = (2, . . . ,
Zr4), where

H M
Zij = > axy) > Vi

i=1 i=1
The total within-cluster variation, denoted as Sr, can be written as
n d

7 K
Eh —_ ST’ — 21 kzl Yik EI (.I‘j - ij)z
i=1 k= j=

Gordon and Henderson (1977) proposed the following two formulations for
minimizing Sy.

1. Given the pattern matrix, &, and the number of clusters, K, find the n X K
matrix Y = [y;,] that minimizes S;. Note that Y is an n X K matrix of 0’s
and 1’s with exactly one 1 in each row and at least one 1 in each column.

2. A more general formulation minimizes Sy under the assumption that y; €
[0, 1] subject to the constraints

K
2 v = 1 and v =0
k=1

The term y; denotes the fraction of the ith pattern that is assigned to the
kth cluster. This concept is similar to fuzzy clustering (Section 3.3.8), where a
pattern belongs to a cluster with a “‘grade of membership.”” A lemma by Gordon
and Henderson shows that the matrix % which minimizes S; under these constraints
must contain only 0’s and 1’s. Thus the first formulation is a special case of the
second formulation. The algorithm used to minimize S is based on the method
of steepest descent.

A number of clustering criteria related to square-error have been derived
from scatter matrices used in discriminant analysis. They are based on the following
decomposition of the total scatter matrix, &, into the within-cluster scatter matrix,
Yw, and the between-cluster scatter matrix, ¥ (see Appendix D).

g}=803+8?w

The total scatter matrix & is fixed, no matter how the given patterns are
partitioned. These matrices are scalars in one dimension, so it should be clear
that increasing the between-cluster scatter 5 decreases the within-cluster scatter
Fw, and vice versa. To define clustering criteria in terms of scatter matrices, we
need to represent the ‘‘size’” of clusters by the trace and the determinant operators.
A number of clustering criteria are described below in terms of scatter (Friedman
and Rubin, 1967).

We first show that a clustering criterion defined by either the trace of Fy
or ¥ is identical to the square-error criterion.
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K K nk
tr (Fp) = > ot @F) =3 > x* —mY)TxP —m®) = E}
k=1 k=1 i=1
Note that tr (¥*)) is the sum of variances along the feature directions for
cluster k and measures the compactness of cluster C,.. Minimizing tr (&yy) is identical
to maximizing tr (¥5) because

tr (F) = tr (Fy) + tr (Fp)

and tr () is the same for any partition. The trace criterion, and the equivalent
square-error criterion, are invariant under orthogonal transformations (Appendix
D) of the pattern space, such as rotations, but are not invariant under nonsingular
linear transformations. That is, the minimum square-error partition may change
if the coordinate axes are scaled.

The determinant of ¥ is not a good clustering criterion because ¥ becomes
singular when the number of clusters is less than the number of features, K < d.
Minimizing the determinant of &y, has an advantage over the square-error criterion
in that &y, is invariant to nonsingular linear transformations (Appendix D) of the
patterns. However, ¥y, becomes singular if (n — K) < d or if the patterns lie in
a subspace of the feature space. A linear transformation (Sections 2.4.1 and 2.4.3)
can be used to reduce the dimensionality of the data when ¥y is singular.

Section 2.4.3 showed that the eigenvectors of ¥y'¥5 define a projection of
the patterns to a space of K — | dimensions. These eigenvectors are invariant
under nonsingular linear transformations of the pattern matrix. Further, since the
eigenvalues of ¥3,'¥; determine the ratio of between-cluster to within-cluster
scatter, we can define two additional clustering criterion. Assuming that there are
m = min {d, K — 1} significant eigenvalues, {{;, {5, . . . , {,} of I3'Fp,
these criteria can be expressed as

m m

tr (F'Fp) = EI Gi and V[P = l_li S 1)
= =

Clustering methods based on these criteria choose that partition for which
tr (P! Fp) or |F)/|Fw| is maximized. Note that maximizing |¥|/|Fy| is the same
as minimizing |%}y| because || is independent of the partition of the data.

The clustering criteria above look for globular or hyperellipsoidal clusters.
Different criterion lead to different clusterings. The square-error criterion is less
demanding computationally than the criteria based on scatter ratios because the
latter require the computation of eigenvalues after every partition. Unfortunately,
there is no general guideline available for choosing one criterion over the other.
In practice, one should generate partitions using different criterion functions and

then choose the ‘*best’’ one under some validation scheme (Chapter 4).

=

Example 3.8

Suppose that the four two-dimensional pattern vectors shown in Figure 3.17 are to be
clustered (Duda and Hart, 1973). It is easy to compute the scatter matrices for the following
three partitions (Duda and Hart, 1973).
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Figure 3.17 Clustering of four patterns in two
o dimensions.
({x15 Xa}, {x3, X4} tr ($yy) = 18 |9 = 16
({x15%a}, (%00 X3}) tr (Fy) = 18 || = 16
({x15 X2 X3}, {X4}) tr (Fy) = 52/3 |Fl = 64/3

Thus the third partition is best of the three according to the tr (&) criterion, which
is equivalent to the square-error criterion. However, the first two partitions are selected by
the |y criterion.

3.3.2 Square-Error Clustering Methods

The basic idea of an iterative clustering algorithm is to start with an initial
partition and assign patterns to clusters so as to reduce square-error. The square-
error tends to decrease as the number of clusters increases and can be minimized
only for a fixed number of clusters. An iterative partitional clustering method
can be implemented in several different ways. Different implementations can lead
to different partitions. Dubes and Jain (1976) emphasize the distinction between
clustering methods and clustering algorithms. A clustering method specifies the
general strategy for grouping the patterns into clusters such as minimizing square-
error or maximizing tr ($w'Fp). A clustering algorithm, on the other hand, is a
computer program that implements a strategy and incorporates various heuristics.
A general algorithm for iterative partitional clustering method is given below.
Anderberg (1973) provides an extensive discussion of several details of this ap-
proach.

ALGORITHM FOR ITERATIVE PARTITIONAL CLUSTERING

Step 1. Select an initial partition with K clusters.
Repeat steps 2 through 5 until the cluster membership stabilizes.

Step 2. Generate a new partition by assigning each pattern to its closest
cluster center.
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Step 3. Compute new cluster centers as the centroids of the clusters.

Step 4. Repeat steps 2 and 3 until an optimum value of the criterion function
is found.

Step 5. Adjust the number of clusters by merging and splitting existing
clusters or by removing small, or outlier, clusters.

The details of the steps in this algorithm must either be supplied by the
user as parameters or be implicitly hidden in the computer program. However,
these details are crucial to the success of the program. A big frustration in using
clustering programs is the lack of guidelines available for choosing details. We
briefly review some of the crucial parameters and the options available (Anderberg,
1973; Dubes and Jain, 1980).

Initial partition. An initial partition can be formed by first specifying a
set of K seed points. Seed points can be the first K patterns or K patterns chosen
randomly from the pattern matrix. A set of K patterns that are well separated
from each other can be obtained by taking the centroid of the data as the first
seed point and selecting successive seed points which are at least a certain distance
away from the seed points already chosen. The initial partition or clustering is
formed by assigning each pattern to the closest seed point. The centroids of the
resulting clusters are the initial cluster centers. Hierarchical clustering of the data

can also be used to select an initial E&rtition.

Different initial partitions can lead to different final clusterings because algo-
rithms based on_square-error can converge to local minima. This is especially
true if the clusters are not separated well. One way to overcome local minima is
to run the partitional algorithm with several different initial partitions. If they all
lead to the same final partition, we have some confidence that the global minimum
of square-error has been achieved.

Updating the partition. Partitions are updated by reassigning patterns to
clusters in an attempt to reduce the square-error. The term *‘pass’’ or ‘‘cycle”
refers to the process of examining the cluster label of every pattern once. McQueen
(1967) defined a K-means pass as an assignment of all patterns to the closest
cluster center. The center of the gaining cluster is recomputed after each new
assignment in McQueen’s K-means method. Forgy's method (Forgy, 1965) recom-
putes cluster centers after all patterns have been examined. The Euclidean metric
is the most common metric for computing the distance between a pattern and a
cluster center but Mahalanobis distance (Section 2.2.1) is also used. However,
Mahalanobis distance requires computation of the inverse of the sample covariance
matrix every time a pattern changes its cluster label.

Friedman and Rubin (1967) define a hill-climbing pass and a forcing pass
in their clustering algorithm based on an invariant criteria using scatter matrices.
A hill-climbing pass changes the cluster label of a pattern only to improve the
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criterion function. Remember that a K-means pass assigns every pattern to its
closest cluster center. A forcing pass perturbs the partition to avoid getting trapped
at a local minimum of the criterion function. A forcing pass tries each pattern of
a cluster in a different cluster. The criterion function is recalculated after each
test, the best partition found is retained, and the forcing pass is repeated for the
next cluster. These passes are applied repeatedly until convergence is obtained.

Adjusting the number of clusters. Some clustering algorithms can create
new clusters or merge existing clusters if certain conditions are met. This capability
allows an algorithm to recover from poor initial partitions and lets it select a
“‘natural’ or ‘‘suitable’” number of clusters, especially if the number of clusters
desired is not appropriate. In one of the popular partitional clustering algorithms
called ISODATA (Ball and Hall, 1964), these conditions are determined from
parameters specified by the user of the program. A cluster is split if it has too
many patterns and an unusually large variance along the feature with largest spread.
Two clusters are merged if their cluster centers are sufficiently close, again based
on a parameter supplied by the user.

An outlier is a pattern that is sufficiently far removed from the rest of the
data to suspect that it was included by error, such as a mistake in data entry.
Quite often an outlier is due to noise in the measurement process or error in data
coding. Outliers can provide useful information about the underlying data generation
process, but forcing an outlier to belong to a cluster distorts the shape of that
cluster. Figure 3.18 demonstrates that an outlier can force a partitional clustering

O: Cluster 1
A: Cluster 2

Figure 3.18 Effect of outlier in distorting a clustering.
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Figure 3.19 Convergence of K-means clustering: (a) initial data; (b) cluster membership
after first loop; (c) cluster membership after second loop.

algorithm to put two compact and well-separated groups into the same cluster.
Thus it is best to identify an outlier and remove it from further consideration.
Some clustering algorithms also treat ‘*small’’ clusters as outliers.

Convergence. When does the algorithm stop? Partitional algorithms termi-
nate when the criterion function cannot be improved. There is no guarantee that
an iterative algorithm will reach a global minimpm. Some algorithms stop when
the cluster labels for all the patterns do not change between two successive iterations.
A maximum number of iterations can be specified to prevent endless oscillations.
In practice, K-means type algorithms converge rapidly. Figure 3.19 shows two
well-separated clusters in two dimensions. Even though the two initial seed points
belong to the same cluster, the convergence of the K-means algorithm to the
correct partition requires only two iterations.

Selim and Ismail (1984) rigorously prove convergence of the K-means algo-
rithm. The problem of partitioning n d-dimensional patterns into K clusters can
be formulated as the following mathematical programming problem. Minimize
the weighted sum of Euclidean distances between patterns and cluster centers,

K n
AW, M) =D > wyd(x;, m*®)

k=1 i=1
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subject to the constraint
K
> wg=1, i=1,2,...,n and wye{0, 1}
k=1

The matrix W = [wy] is a K X n matrix of weights for each pattern in each
cluster and AL is the d X K matrix of cluster centers.

J[f[=[m‘” m? ... m{fﬂ]

This is similar to the formulation of Gordon and Henderson (1977) discussed in
Section 3.3.1.

The function fi'W, Al) is nonconvex and its local minimum need not be a
global minimum. Frieze (1980) has also studied similar optimization problems.
Consider the data set shown in Figure 3.20. If the two initial cluster centers are

m'V = [(2';] and m® = [g]

then the K-means algorithm will stop after one iteration and converge to the solution
Wi = Wip = Wyy = wyy = 1, w; = 0 otherwise, which yields two clusters {x,,
X5} and {X3, x4} and W, M) = 8. Selim and Ismail show that this solution is
not even a local minimum because by slightly perturbing M, AW, M) = 6 can
be achieved with the cluster centers

0 4
(1) — 2) =
m [0] and m [2]

Pollard (1981) also provides conditions for the almost-sure convergence of
the cluster centers in K-means clustering as the number of patterns increases.

Computation. The computational complexity of this algorithm is of the
order O(ndKT), where n is the number of patterns, d the number of features, K

(2)
x m X
2 20 X o
1)
x, m :2
O 2 - ++
2 4 B 8

Figure 3.20 Convergence of square-error clustering algorithm.
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the number of clusters desired, and T the number of iterations. The value of T
depends on the initial cluster centers, distribution of patterns, and the size of the
clustering problem. In practice, however, the user specifies an upper bound on
the value of 7. The iterative nature of the square-error clustering methods demands
substantial processing time, even for a few hundred patterns. Two approaches
have recently been taken to speed up square-error clustering algorithms that utilize
advances in microelectronics technology: parallel processing and VLSI architecture.
Tilton and Strong (1984) describe the performance of the ISODATA clustering
algorithm when implemented on the MPP (Massively Parallel Processor), which
contains an array of 128 X 128 microprocessors. A clustering problem involving
a 512 X 512 digital image and 16 clusters required 20 seconds on the MPP
compared to 7 hours on a VAX-11/780 superminicomputer. (See Chapter 5 for a
brief review of digital image processing and image segmentation.) Ni and Jain
(1985) present a systolic architecture for a square-error pattern clustering whose
design has a potential performance gain of 1300 times over a serial processor.

3.3.3 Square-Error Clustering Programs

We now explain two examples of square-eror clustering programs, called
FORGY and CLUSTER and compare their performance on two data sets. Clustering
software is discussed in Section 3.4.

FORGY is the simplest and most straightforward square-error clustering pro-
gram (Forgy, 1965). It uses only the K-means pass. The cluster centers are updated
by recomputing the centroids of all patterns having the same cluster label at the
end of the pass. The seed points are K patterns chosen at random, where K 18
specified by the user as the number of clusters desired. Our implementation of
FORGY allows the user to specify a heuristic that creates additional clusters (Dubes
and Jain, 1976). After the square-error has converged for a fixed K. a new cluster
is created when a pattern_is found that is sufficiently far removed from the existing
cluster centers. The average distance between pattern x; and the K cluster centers
is given by

K
d. = (1K) > d(x;, m*)
k=1

A new cluster is created centered at pattern x; if
ld(x;, m@) — d| = 4T,

where the gth cluster center is the cluster center closest to pattern x; and T is a
user-specified parameter, 0 < 7} < 1. The left side of the above inequality is
roughly d; for patterns close to an existing cluster and is small for patterns far
removed from all existing clusters. The larger T';, the more new clusters are created.
FORGY also detects outliers. If the number of patterns in any cluster falls below
another user-specified parameter, T, then all the patterns belonging to that cluster
are considered as outliers and are ignored.

To run FORGY, a user specifies threshold T, for creating new clusters,
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threshold T for deleting clusters, and the maximum allowable number of iterations.
The most crucial parameter is 7| and a few runs of the program with different
values of T, and T, may be necessary to obtain a reasonable grouping of the
data. FORGY should be run several times with different starting configurations.

The output of FORGY provides cluster labels for all patterns and several
statistics such as the square error for each cluster, a table of distances between
cluster centers, and the ratio of within-cluster to between-cluster distance. A table
showing the number of patterns in each category is also printed when a priori
category labels for all patterns are available. Since FORGY is based on square-
error, it also generates some statistics that can be applied to analyze the separations
among patterns. Since FORGY tries to group the patterns, an analysis of variance
cannot be applied to these statistics. This point is treated at length in Chapter 4.
Example 3.9 demonstrates the expected output of FORGY. The statistics are ex-
plained below.

The square-error for a clustering, E%, can be decomposed into a feature-
by-feature sum as shown below.

a ]
= > f7
j=1

The contribution of feature j to the square-error, f}, is the sum of the squared
differences between each pattern and its cluster center using only feature ;.

nk

f} Py 2‘ 2 [x{.k} }ﬁ}]Z
k=1 i=1
In terms of the standard decomposition (Appendix D), f7 is the **within-
cluster’” variation in feature j. The ‘‘between-cluster’’ component, b7, can be
expressed in terms of the cluster centers and m;, the jth coordinate of the centroid
of all patterns.

K
b} = [z m(mP)> ] — n(m;)*

k=1
1 K ng

K
Z E ’.“”'} E .l'i‘_;;m}k}
! k=1

k=1 i=I

Discriminant anaiyqi'-: (Appendix D) shows that the total square-error contribu-
tion from feature j, a , can be written as

G=13+17
The F-ratio is defined as
bH(K — 1
F-ratio = M
f /(n —

The name “‘F-ratio’” comes from analysis of variance (Appendix F). When the
samples are independent and come from Gaussian distributions and when the vari-
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ances of all groups are the same and when the group labels are assigned a priori,
the F-ratio has an F distribution with K — 1 and n — K degrees of freedom.
Large values of the F-ratio, when measured on the scale of an F distribution,
indicate a grouping in which the separation among clusters is significantly large
with respect to the separations among patterns in individual clusters. Unfortunately,
this distribution cannot be applied to determine whether a particular feature contrib-
utes significantly to the clustering because the cluster labels are assigned after
looking at the data. For example, a clustering algorithm labels the patterns so as
to separate the clusters maximally. The null distribution of the F-ratio printed
out by the program is not the standard distribution published in textbooks.

A few other quantities defined m FORGY s output need clarification. For
cluster number k, the ‘‘squared error’” 1s ez, “S.E./(N(k) — 1) is erl(ng — 1),
and ““CLAVGD(k)"" is (e/ny)"2. Other terms are self-explanatory. Note that “‘dis-
tance’” means ‘‘squared Euclidean distance.’’

Example 3.9

FORGY was applied to data sets DATA1 and DATA2 (Example 2.6). DATALI consists
of 100 patterns arranged into four distinct clusters in a four-dimensional unit hypercube.
Patterns are arranged by category. The first 24 patterns are from category 1, the next 35
from category 2, the next 21 from category 3, and the last 20 from category 4. DATA2
consists of 100 patterns uniformly generated in a six-dimensional unit hypercube. The
following parameter settings were tried for both sets of data:

K=2,4,6 ;=05 T,=1 maximum number of iterations = 20

The objective here was not to finely tune the parameters to get the best clustering,
but to see if reasonable clusterings can be obtained. FORGY converged in fewer than 10
iterations on both data sets. The two-cluster solution took about 12 seconds of CPU time
on a Harris 500 superminicomputer. The execution time increased to 35 seconds when the
number of clusters was increased to six.

We first summarize the results for DATA1, where the true cluster numbers generated
by computer are treated as category information. Part of the output for the two-cluster
solution is shown in Figure 3.21. The output shows that categories 1 and 2 are grouped
into one cluster and categories 3 and 4 in the other cluster. This grouping is surprising in
light of the two-dimensional representation in Figure 2.10 and might be explained by the
observation that the clusters are hyperellipsoidal with nearly identical covariance structure.
The F-ratio for feature 4 is largest, so the patterns cluster better in feature 4 than in the
other 3 features. We cannot say whether the clustering in feature 4 is significantly best.
Only patterns 13, 16, and 89 fail to cluster properly. The main output of the program is
the locations of the two cluster centers. The total square error for the two-cluster solution
is 17.406 and seems evenly divided between the two clusters.

Only the most useful information in FORGY output is displayed for the four-cluster
(Figure 3.22) and six-cluster (Figure 3.23) solutions. The total square-error reduces to
6.8396 for the four-cluster solution and to 3.4096 for the six-cluster solution. Categories
1 and 4 are confused in the four-cluster solution, whereas they are separated in the two-
cluster solution. e

= solyti ] The six-cluster solution separates patterns
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Results of FORGY algorithm after 6 iterations

0 Patterns were removed.
4 Clusters were cobtained.

Cluster No. for each pattern — LABEL array

z 202 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 3 3 3 3 a3 3 3 3 3 3 3 3 3 3 3 13
3 3 3 3 3 3 3 3 3 3 3 3 33 33 3 3 3 1
4 1 4 1 1 4 1 4 1 1 4 1 1 4 4 1 1 1 1 4
z2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Squared error per cluster - K is the cluster No.

K N(K) Squared error S.E./(N{K)-1) CLAVGD(K)

1 13 0.20735 0.17279E-01 0.12629

2 44 5.1956 0.12083 0.34363

3 35 1.2852 0.37799E-01 0.19162

4 B 0.15144 0.21634E-01 0.13759
TOTAL 100 6.8396

Squared error divided by (No of patterns in clustering — No. of clusters) =

0.71246E-01

Distances between cluster centers

1 2 3 4
1 0.0000 0.76497 1.0242 0.53347E-01
2 0.76497 0.0000 0.52729 0.73402
3 1.0242 0.52729 0.0000 1.2203
4 0.53347E-01 0.73402 1.2203 0.0000

Cluster membership according to category:
Rows are clusters and columns are categories
1 2 3 4

o 0 13 0

24 0 0 20

0 35 0 0

0 0 8 0

o L B

Figure 3.22 FORGY clustering on DATAL: four clusters.

into clusters according to category except for patterns 13 and 16. The origins of these two
patterns should probably be inspected. Categories 2 and 4 are split into two clusters, so a
bimodal structure might be appropriate for describing these categories.

How many clusters are appropriate for these data? One of the heuristics for deciding
the number of clusters is to look for a “‘knee’” in the plot of total square-error versus the
number of clusters (see Section 4.4.2). This heuristic suggests that DATAI has four clusters.
The problem of fixing the *‘correct’’ number of clusters is one of the most fundamental
and unsolved problems in cluster analysis.

One useful statistic printed by FORGY is the ratio of the distances between a cluster
center and all others to the average within-cluster distance. Large values of this statistic
suggest that the clusters are compact and well separated. These values are substantially
higher for both the four-cluster and the six-cluster solution than for the two-cluster solution,
although these statistics naturally increase with the number of clusters. In the four-cluster
solution, only cluster 2, which is a mixture of categories 1 and 4, has a low value for this
statistic.
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Results of FORGY algorithm after 9 iterations

0 Patterns were removed.
6 Clusters were obtained.

Cluster No. for each pattern — LABEL array

H oo
sy
=k b O
Hwtnoh g
B Wwoln b oy
= Wk noy
(el TR N R
Hwbwumo
o B Lnan
= Wy
=W
B Wunno
L LN b e
HWwuuo
Wb Lo
B L b LN e
Huwpnom
HwWwnm o
HWwunk ;
= L B O

Sguared error per cluster — K is the cluster No.

K N(K) Squared error S5.E./(N{K)-1) CLAVGD(K)
1 15 0.43799 0.31285E-01 0.17088
2 b 5 0.25361 0.23056E-01 0.14538
3 21 0.62299 0.31149E-01 0.17224
4 7 0.30889 0.51482E-01 0.21006
5 23 0.71969 0.32713E-01 0.17689
6 22 1.0664 0.50783E-01 0.22017
TOTAL 100 3.4096

Squared error divided by (No of patterns in clustering - No. of clusters) =
0.36272E-01

Distances between cluster centers

1 2 3 4 5 6
1 0.0000 0.88037 0.80797 0.B5551E-01 0.84843 0.32988
2 0.88037 0.0000 0.97198 0.74127 0.39550E-01 0.39932
3 0.80797 0.97198 0.0000 0.61857 1.1596 0.88723
4 0.85551E-01 0.74127 0.61857 0.0000 0.70367 0.20117
5 0.84843 0.39550E-01 1.1596 0.70367 0.0000 0.41891
6 0.32988 0.39932 0.88723 0.20117 0.41891 0.0000

Cluster membership according to category:
Rows are clusters and columns are categories

2
0
12
0 2
0
23
0

L]
15

N o L b
NMOoONOOoOOH
OCOoOOoHOOW
oo o

Figure 3.23 FORGY clustering on DATA1: six clusters.

The patterns in DATA?2 have no category information, so FORGY cannot construct
cluster by category tables to judge the performance of the clustering program. We can
contrast the output of FORGY for these random data with the clustered data in DATAI
but must be aware that the numbers of features is not the same. Figures 3.24 to 3.26
show that the square-error for DATAZ2 is substantially higher than for DATAI, and the
total square-error for DATA2 does not fall as sharply as for DATA1 when the number of
clusters is increased. Both sets of data have the same number of patterns, but DATA2 is
in six dimensions. Again, the complete output for FORGY on DATA2 is shown only for
the two-cluster solution (Figure 3.24).

Another noticeable difference between clustering for the two data sets appears in
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Results of FORGY algorithm after 10 iterations

0 Patterns were removed.
4 Clusters were obtained,

Cluster No. for each pattern — LABEL array

e = b Lad =t
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el
W b
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Squared error per cluster — K is the cluster No.

K N(K) Squared error S.E./(N(K)-1) CLAVGD(K)

1 32 12,332 0.39782 0.62079

2 22 6.1898 0.29475 0.53043

3 19 5.1512 0.28618 0.52069

4 27 9.6708 0.37195 0.59848
TOTAL 100 33.344

Squared error divided by (No of patterns in clustering — No. of clusters) =
0.34733

Distances between cluster centers

1 2 3 4
1 0.0000 0.44283 0.39219 0.42436
2 0.44283 0.0000 0.30128 0.31992
3 0.39219 0.30128 0.0000 0.66478
4 0.42436 0.31992 0.66478 0.0000

Figure 3.25 FORGY clustering on DATAZ2: four clusters.

the ratio of the average distance between a cluster center and all others to the average
within-cluster distance. This statistic has substantially lower values for random data than
for the clustered data. Clustering tendency (Section 4.6) deals with the issue of whether a
given data set is random.

Example 3.10

Figure 3.27(a) demonstrates a difficulty with square-error clustering. It shows the two-
cluster solution generated by FORGY for a set of patterns in the plane which clearly
contains two well-separated groups. Unfortunately, the partition boundary between the two
clusters does not lie in the sparse region as expected but cuts one of the two ‘‘natural”’
clusters in half. Similarly, the cigar-shaped data in Figure 3.27(b) are not clustered correctly
by FORGY . These examples demonstrate that the square-error criterion, which seeks compact
hyperellipsoidal clusters, can produce misleading results when the data do not occur in
compact, hyperellipsoidal boundaries.

The second square-error clustering program to be examined is called CLUS-
TER (Dubes and Jain, 1976). It has the same objective as FORGY but generates
a nonhierarchical sequence of clusterings rather than a single clustering. This
program utilizes both a K-means pass and a forcing pass (Friedman and Rubin,
1967). CLUSTER attempts to find the ‘*best’’ clusterings containing 1, 2, . . . ,
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Results of FORGY algorithm after 6 iterations

0 Patterns were removed.
6 Clusters were obtained.

Cluster No. for each pattern - LABEL array

1 3 1 1 1 4 1 3 5 &6 1 6 1 5 4 3 6 4 5 1
5 1 3 6 3 4 1 3 3 4 6 2 5 2 3 5 4 1 5 4
4 2 4 4 3 1 6 2 3 2 l 3 2 5 1 6 1 4 4 3
5 6 2 3 5 1 6 2 1 5 1 4 5 3 4 6 4 3 3 5
3 3 4 5 6 4 4 6 4 4 6 3 5 5 2 6 5 4 6 6
Squared error per cluster — K is the cluster No.

K N(K) Sgquared error S.E./(N(K)-1) CLAVGD(K)

1 18 5.7175 0.33633 0.56360

2 9 1.6167 0.20209 0.42383

3 19 6.0932 0.33851 0.56630

&4 21 6.9902 0.34951 0.57694

5 17 4.5053 0.28158 0.51480

7] 16 3.8947 0.25965 0.49338
TOTAL 100 28.818

Squared error divided by (No of patterns in clustering - No. of clusters) =
0.30657

Distances between cluster centers

1 2 3 4 5 6
i 0.0000 0.65279 0.41074 0.44736 0.46324 0.49531
2 0.65279 0.0000 0.32856 0.39610 0.34615 0.51358
3 0.41074 0.32856 0.0000 0.46140 0.83177 0.61105
4 0.44736 0.39610 0.46140 0.0000 0.36814 0.39783
B 0.46324 0.34615 0.83177 0.36814 0.0000 0.60731
6 0.49531 0.51358 0.61105 0.39783 0.60731 0.0000

Figure 3.26 FORGY clustering on DATAZ; six clusters.

K clusters and prints a history of the K clusterings achieved, one for each number
of clusters.

CLUSTER involves two phases which are repeated until a pass through
both phases does not decrease the square-error. Phase 1 creates a sequence of
clusterings containing 2, 3, . . . , K clusters, where K is specified by the user.
The initial two cluster centers are the centroid of the patterns and the pattern
farthest removed from the centroid, not counting the outliers. Given a clustering
with k clusters, the pattern farthest removed from the existing clustering is identified
as the (k + 1)st cluster center. The K-means pass is repeated until no patterns
change clusters or until a maximum number of iterations have been completed.

The first pass through phase 1 gives a set of K clusterings, each containing
a different number of clusters. Phase 2 then creates another set of clusterings by
merging existing clusters two at a time to see if a better clustering can be achieved
(forcing pass). After each pass through phases 1 and 2, the square-errors of the
clusterings are compared with those of the clusterings (having the same number
of clusters) that existed before that pass. If any of the square-errors are smaller
than before, another pass through phases 1 and 2 is initiated. This continues
until square-error cannot be decreased.
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One of the main advantages of CLUSTER over other clustering programs
is that the user need not specify parameters. Only the maximum number of clusters
desired is required. The clustering statistic computed in CLUSTER is a purely
heuristic number.

K K
(VK) 2, [(me)'* (n — m)™" X n,d*(m®, m*)]
k= =

That is, the ratio of the “‘average’” distance from cluster k to all other clusters is
divided by the average within-cluster distance for cluster k. This quantity is averaged
over all clusters. Intuition dictates that the larger this number, the better the cluster-
ing. But how large is large? How does this statistic depend on problem parameters?
These questions have not been answered. We now present the results of CLUSTER
on DATAI and DATA2 and compare these results with those given by program
FORGY.

No. of patterns = 240(200,40) No. of ini. clu. centers = 2
Min clus. size =1 Max no of iterations =5
Max no of inner loop= 10
Threshold for forming new cluster= 0.4
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Figure 3.27 Inadequacies of square-error clustering.
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No. of patterns = 240(120,120) No. of Inl. clu. centers =74
Min clus. size =1 Max no of iterations =5
Max no ef inner loop= 10
Threshold for forming new cluster= 0.4
V) A AA
A2 2 N “
Fa P
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Figure 3.27 (continued)
Example 3.11
The partitions obtained from CLUSTER for data sets DATAl and DATA2 are given in
Figures 3.28 and 3.29. They appear to _be better Y. Eor
example, the four-cluster solution from CLUSTER for D. -error_of

4.0677 (Figure 3.28) compared to 6.8396 by FORGY The partition from CLUSTER uniquely

associates a cluster with each category with the exception of a single pattern from category
1. FORGY's four-cluster solution merged categories 1 and 4 in the same cluster. The

performance of CLUSTER on the random data of DATAZ2 is comparable to that of FORGY.

In summary, clustering programs that minimize square-error are very practical.
They try to define clusters that are hyperellipsoidal in shape. The square-error
criterion is equivalent to several other criteria involving the scatter matrices used
in discriminant analysis. The numerous square-error programs available differ both
in computational details and in the approach taken to minimize the square error.
Square-error clustering methods do exhibit inadequacies as when the Euclidean
metric is used to measure distance but the features are not on comparable scales.
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Other data sets that cannot be adequately clustered by square-error programs,
such as CLUSTER and FORGY, are demonstrated by Zahn (1971) and Hall et
al. (1973).

3.3.4 Clustering by Mixture Decomposition

A popular approach to clustering is based on the notion of a mixture density.
Each pattern is assumed to be drawn from one of K underlying populations, or
clusters. The clustering problem is to allocate each pattern to its correct population.
Unlike the density estimation or the mode-seeking clustering algorithms discussed
in Section 3.3.5, the form and the number of underlying population densities are
assumed to be known here. The patterns are not labeled by population. If the
parameters of the population densities can be estimated from the patterns, each
pattern can be assigned to its appropriate cluster based on estimated probability
densities. This model of clustering is identical to the problem of unsupervised
learning in statistical pattern recognition (Appendix A) and has been used to estimate
crop acreages from remote-sensing data (Odell and Basu, 1976).

The patterns are drawn from a population with a known number of clusters,
or classes. The underlying probability density function for class o; is denoted
p(x|w;,0,), where ; is a vector of unknown parameters for o;. If P(w) is the a
priori probability of class ;, or the chance that a pattern comes from w;, the
mixture density can be written as

K
p(x|0) = >, p(x|w;, 0)P(w))
i=1

where 8 = (0,, 05, . . . , 0x). The class-conditional densities p(x|w;, 8;) are
called the component densmes and the a priori probabilities P(w;) are ca]led the
mixing parameters. Note that

K
> Plw) =1
i=1

We would like to use the patterns to estimate the parameter vector 6 so
that the mixture can be decomposed into its component clusters, assuming that
the mixture is ‘‘identifiable’” (Duda and Hart, 1973; Titterington et al., 1985). If
one cluster is to be assigned to each category, the parameters of each component
density can be estimated separately. This is estimation, not clustering.

The general formulation given above is applicable for arbitrary density func-
tions. In the absence of prior knowledge about the shape and size of the clusters
present in the data, it is a common practice to assume that the component densities
are multivariate normal with different mean vectors and, perhaps, different covari-
ance matrices (McLachlan, 1982; Symons, 1981; Sclove, 1977; Scott and Symons,
1971; Wolfe, 1970; Day, 1969). This approach to clustering is model based, but
the model is Gaussian. The parameter vector 0 is usually estimated by the maximum
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likelihood approach, although the Bayesian approach has also been used (Binder,
1978; Symons, 1981). Duda and Hart (1973) lucidly illustrate the practical difficulties
associated with obtaining the maximum likelihood estimates of 6. One difficulty
is that no explicit solution for the maximum likelihood estimator of @ exists, so
an iterative estimation scheme must be employed. Starting with an initial estimate
of @, a hill-climbing or gradient-descent procedure maximizes the log-likelihood
function. Problems such as the rate of convergence, singular solutions, dependence
on the starting point, and local versus global maximum are inherent in this procedure.
These problems are further compounded as the number of unknown parameters
increases. It is commonly assumed that the K covariance matrices are equal to
limit the size of the problem.

It turns out that this maximum likelihood approach of mixture decomposition
1s related to a well-known clustering method (Symons, 1981). If the K covariance
matrices are equal, then the maximum likelihood criterion is a simple modification
of Friedman and Rubin’s invariant criterion of minimizing |%;|. When the covariance
matrices or cluster shapes are different, the maximum likelihood grouping minimizes

K .

[Tl

i=1

Symons (1981) has compared several of these criteria on real as well as

synthetic data sets. His empirical results show that the choice of the most appropriate
criterion depends on the similarity of the component covariance matrices and the
relative sizes of the clusters. A suboptimal but practical approach is to take the
clusters generated in a square-error clustering program, such as CLUSTER (Section
3.3.3), and use the cluster centers as estimates of mean vectors and sample covariance
matrices from each cluster as estimates of the covariance matrix.

3.3.5 Clustering by Density Estimation and Mode
Seeking

Clusters can be viewed as regions of the pattern space in which the patterns
are dense, separated by regions of low pattern density. Clusters can be identified
by searching for regions of high density, called modes, in the pattern space.
Each mode is associated with a cluster center and each pattern is assigned to the
cluster with the closest center. The probability density estimate at a point x is
proportional to the number of patterns, k,, falling in a small region of volume V/,,
around x (Duda and Hart, 1973; Silverman, 1986).

k,/n
VH

pu(x) =

where n is the total number of patterns. For a fixed V,, k, will be large for
points lying in a dense region, resulting in a large estimate p,(x). The choice of
V., is critical when n is small and is governed either by the Parzen window approach
or by the nearest-neighbor approach (Duda and Hart, 1973).

The volume V,, in the Parzen window approach is specified as a function of
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n. In the nearest-neighbor approach, k, is specified as a function of n. The region
around each pattern is examined to capture its k, nearest neighbors. In both ap-
proaches, convergence arguments and other heuristics suggest that V,, be inversely
proportional to Vn. Once more, &, is usually taken as proportional to Vn. The
primary difference between these two approaches is that the window around each
point in the Parzen-window approach has the same volume, whereas the window
size depends on the location of the pattern in the pattern space in the nearest-
neighbor approach.

The simplest way to identify modes in the data is to construct a histogram
by partitioning the pattern space into a number of nonoverlapping regions or cells.
Cells with relatively high frequency counts are the potential modes or cluster
centers and the boundaries between clusters fall in the **valleys’’ of the histogram.
This method has the capability of identifying unimodal clusters of any shape.
However, the number of patterns must be sufficiently large (compared to the number
of features) in order for the histogram to be a good estimate of the density function.
Even if the sample-size requirement is met, the success of such an approach
depends on two factors. First, cells of small volume will give a very “‘noisy’’
estimate of the density, whereas large cells tend to overly smooth the density
estimate. Second, the procedure for locating peaks and valleys in the histogram
must be performed over a neighborhood whose size is known. These factors are
difficult to handle in more than a few dimensions.

The general concept of identifying modes for clustering has been proposed
by a number of researchers (Torn, 1977; Wong and Liu, 1977; Kittler, 1976;
Koontz et al., 1976; Eigen et al., 1974; Katz and Rholf, 1973; Gitman and Levine,
1970; Mucciardi and Gose, 1972; Sebestyen and Edie, 1966). This approach has
been quite popular in the clustering of multispectral data in remote sensing, where
the large-sample-size requirement is easily met and the size of the histogram cells
is naturally defined because of the gray-level quantization (Narendra and Goldberg,
1977; Goldberg and Shlien, 1978; Wharton, 1983). Wharton (1983) shows that
the performance of clustering based on histograms is comparable to that of K-
means clustering. The surprising result of this study was that even for moderately
sized data sets (100 observations per category), the histograms gave a reasonable
estimate of the density function.

The memory and run-time requirements of storing and searching multidimen-
sional histograms can be enormous. Chhikara and Register (1979) get around
this problem by constructing one histogram for each feature. Histograms with
only one mode are eliminated and the set of patterns is dichotomized on the
feature whose histogram has the smallest number of modes. This sequential splitting
procedure is repeated by recomputing histograms for individual clusters. A merging
procedure is invoked whenever the clusters overlap in the pattern space. The
splitting and merging stop when all the clusters have unimodal frequency distribu-
tions for every feature. This algorithm requires the user to interactively specify
the valleys in the histogram for data splitting. Eigen et al. (1974) also use equal-
interval histograms for each dimension and identify modes by recording sign changes
in the finite differences of the cell counts.
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The mode separation procedure of Kittler (1976) uses a Parzen window
estimate of the density function with a hypercubic ‘‘kernel function’ (Duda and
Hart, 1973). Unimodal regions of the pattern space are identified as follows. The
starting pattern is chosen randomly and corresponds to the first point in the sequence.
The second point in the sequence is that pattern which has a maximum density
in a hypercubic window around the first pattern. The pattern with the maximum
density in the region which is the union of the windows around the first two
patterns is selected for the third point. A one-dimensional sequence of density
estimates 18 thus obtained in which each pattern is represented once and only
once. The regions of dense patterns correspond to the peaks in this plot. Shaffer
et al. (1979) have analyzed this algorithm and demonstrate that the results of this
mode-seeking algorithm are always identical to the results of single-link clustering.
Thus, seemingly different clustering algorithms can give the same results.

The underlying density of patterns can also be estimated by the k, -nearest-
neighbor method (Wong and Lane, 1983). Two patterns x; and x; are said to be
neighbors if x; is one of the k, nearest neighbors of x; and if x; is among the &,
patterns closest to x;. The dissimilarity between neighboring patterns x; and x; is
given by

| 1
= = S
ZP,,(K;) zpn{xj)
Pairs of patterns that are not neighbors are assigned arbitrarily large dissimilarities.
A single-link clustering algorithm (Section 3.2.1) is then applied to this dissimilarity
matrix to generate hierarchical clusters. The parameter &, is a function of n and
is usually taken to be log, n. However, different values of k, can lead to different
clusterings. Wong and Lane (1983) demonstrate that their clustering algorithm is

“‘strongly set consistent’’ for high-density clusters; that is, the resulting single-
linkage clusters are maximally connected sets of the form

{x|p,(x) =p’}

for some fixed density level p*. Mode-seeking clustering methods have been used
extensively in the engineering literature, particularly in remote sensing applications.

d(x;, x;) =

3.3.6 Clustering by Graph Theory

Various kinds of geometric structures or graphs for analyzing multidimensional
patterns have led to some useful algorithms which can identify irregularly shaped
or nonglobular clusters. Section 3.2 has exhibited a number of algorithms for
hierarchical clustering based on graph theory. This section treats objects as points
in a pattern space, so distances are available between all pairs of objects. The
methods in this section seek single partitions, not hierarchies.

A graph is constructed whose nodes represent the patterns to be clustered
and whose edges represent relations between the nodes (see Appendix G). In the
simplest case, every node is connected to the remaining (n — 1) nodes, resulting
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in the complete graph. The edge weights are distances between pairs of patterns.
For the purpose of clustering, it is the relative positions of the points that is
important; pairs of patterns in the same cluster should be closer than pairs of
patterns belonging to different clusters.

Several graph structures, such as minimum spanning trees, relative neighbor-
hood graphs, and Gabriel graphs, have been imposed on the set of patterns to
capture perceptual grouping. These graphs choose a subset of the n(n — 1)/2
edges in the complete graph to reflect the “‘structure’” or the inherent separation
among clusters. The edges in these graphs mostly correspond to small interpoint
distances. These graphs depend only on the ordering of the lengths of the edges.
Clustering methods decompose the graphs into connected components by identifying
and deleting *‘inconsistent’” edges. Each component represents a cluster.

Zahn (1971) demonstrated how the minimum spanning tree (MST) can be
used to detect clusters. His choice of MST was influenced by the Gestalt principle,
which favors that grouping of patterns which represents smaller interpoint distances.
The basic idea of Zahn’s clustering algorithm is very simple and consists of the
following steps.

ZAHN'S CLUSTERING ALGORITHM

Step 1. Construct the MST for the set of n patterns given.
Step 2. Identify inconsistent edges in the MST.

Step 3. Remove the inconsistent edges to form connected components and
call them clusters.

Zahn’s algorithm can be applied iteratively to each of the resulting components
to identify subclusters. Section 3.2.4 explains the relation between single-link
clustering and the MST. The crucial step in the algorithm is the definition of
inconsistency. Zahn considers several criteria for inconsistency. In one, an edge
is inconsistent if its weight (interpoint distance) is significantly larger than the
average of nearby edge weights. Thus the inconsistent edges are related to cluster
separation. The number of standard deviations by which an edge weight differs
from the average of nearby edge weights and the ratio of the edge weight to the
average of nearby edge weights are two means for identifying inconsistent edges.
An edge with a factor of inconsistency of two usually links two clusters and can
be deleted.

Figure 3.30 illustrates inconsistent edges for a two-dimensional data set.
Figure 3.30(a) shows a set of two-dimensional patterns containing three well-
separated clusters. Figure 3.30(b) demonstrates an inconsistent edge in the MST
for a set of seven patterns. Since the z-score of edge (C, D) is greater than 3, it
is unusually long compared to its neighboring edges, and hence is labeled as an
inconsistent edge. Figure 3.30(c) identifies inconsistent edges in the MST for the
data in Figure 3.30(a). The two intercluster edges have been correctly identified,
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but an additional inconsistent edge breaks the cluster in the upper left corner into
two components.

Zahn has applied his algorithm to a number of data sets consisting of clusters
with different shapes and properties, including touching clusters, clusters with
smoothly varying point densities, smoothly varying nonhomogeneous clusters, and
line-like clusters. The results show that while the above-mentioned notion of incon-
sistent edges works well for disjoint clusters, special heuristics are needed for
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Inconsistent edges in two-dimensional data: (a) three well-separated clusters;

(b) an example of an inconsistent edge; (¢) MST of (a) with inconsistent edges marked

X.
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(c)
Figure 3.30 (continued)

more complex situations. For example, in the case of two fairly homogeneous
clusters of different point density shown in Figure 3.31, several inconsistent edges
will be found in the sparse cluster. Zahn suggests first detecting and deleting the
denser cluster and then analyzing the remaining data. The histogram of the edge
lengths in the MST helps us in identifying the intercluster edges; intercluster edges
occupy the region between the two peaks (corresponding to within-cluster edge
lengths) in the histogram of edge lengths.

Prior knowledge of the shapes of the clusters is needed to select the proper
heuristic to identify inconsistent edges. This is the greatest deficiency of the MST-
based approach in more than two dimensions. The very reason for applying cluster
analysis is often to estimate the shapes of clusters and their structure. Nevertheless,
MST-based clustering is an important technique which complements the square-
error partitional technique. Some other variations of Zahn’s idea have also been
reported in the literature (Fehlauer and Eisenstein, 1978; Page, 1974; Magnuski,
1975). Koontz et al. (1976) and Mizoguchi and Shimura (1980) base their clustering
algorithms on directed trees.

Two other geometric structures, the relative neighborhood graph (RNG) and
the Gabriel graph (GG), have also been used in cluster analysis (Urquhart, 1982;
Matula and Sokal, 1980). These connected graphs are based on a region of influence
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Figure 3.31 Two homogeneous clusters with different density.

(Toussaint, 1980). Patterns x; and x; are defined to be relative neighbors, and are
connected in the RNG, if and only if

d(x;, x;) = max {d(x;, x;), d(x;, x;)} forallk, k+#iandk#j

where d(x;, x;) denotes the Euclidean distance between x; and x;. Or, we can say
that x; and x; are connected in RNG if and only if no other point falls in
LUNE(x;, x;), where LUNE(x;, x;) is the intersection of the two disks of radius
d(x;, x;) centered at x; and x;. LUNE is the region of influence of RNG and is
shown in Figure 3.32(a).

The Gabriel graph (GG) is defined as follows. Points x; and X; are connected
in GG if and only if

d*(x;, X)) < d*(x;, x) + d2(x;, Xp) forallk, k#iandk#j

This is equivalent to the condition that two points X; and x; are connected in GG
if and only if no other point lies in DISK(x;, x;), where DISK(x;, x;) is the disk
with diameter d(x;, x;) as shown in Figure 3.32(b). We say that DISK is the
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(a) {b}

Figure 3.32 Regions of influence for RNG and GG.

region of influence for this graph. The construction of RNG and GG is well
understood for two-dimensional data, but the construction of these graphs in high
dimensions is a difficult problem.

Delaunay triangulation (DT) is another graph structure that is useful in point
pattern analysis and plays a prominent role in many algorithms that compute GG
and RNG:; efficient algorithms for computing DT are available and RNG and GG
can easily be obtained from DT by deleting some of the edges in DT. The definition
of DT is best made in terms of its dual structure, the Dirichlet tessellation. The
Dirichlet tessellation, also well known as the Voronoi diagram, of a set of patterns
% in R? (d-dimensional Euclidean space) is a partition of R? into “*cells’” about
each pattern vector x; such that each cell consists of those points of R? lying
closer to x; than to any other pattern in &. Cell boundaries are intersections of the
perpendicular bisectors of the lines connecting x; to each of the (n — 1) other
patterns in &. Thus each cell is a convex polygon.

The Delaunay triangulation is defined as follows. The edge connecting points
x; and x; is in the DT if and only if the two cells of the Dirichlet tessellation
containing x; and x; share a common boundary. A large body of applications of
DT resides in such varied disciplines as biology and geography. For example,
DT has been used as a model of territories of breeding bird species (Sibson,
1980). Ahuja (1982) outlines applications of DT to problems in clustering, matching,
and segmentation. (See Chapter 5 for segmentation and matching in the image
processing context.) An implementation of an agglomerative clustering algorithm
based on DT has been made by Howe (1978) and applied to observations of
pollen in lake sediments with the goal of partitioning the region with respect to
forest type. However, these applications have been developed only for two-dimen-
sional data.

A minimum spanning tree and a Delaunay triangulation (DT) play important
roles as “‘bounds’’ on RNG and GG. It can be shown that

E(MST) C E(RNG) C E(GG) C E(DT)

where E denotes the edge set of a graph. The first set inclusion guarantees that
the RNG is a supergraph of its MST. Thus every RNG is connected. Lee and
Preparata (1984) define a method for efficiently computing the RNG or GG. Figure
3.33 demonstrates the MST, RNG, GG, and Delaunay triangulation for the data
in Figure 3.30(a).
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Figure 3.33 MST, RNG. GG, and Delaunay triangulation for the data in Figure 3.30(a):
(a) MST; (b) RNG: (c) GG; (d) Delaunay triangulation.
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(d)

Figure 3.33 (continued)
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Clustering algorithms based on RNG, GG, and DT are very similar to Zahn’s
MST-based clustering algorithm. Only the first step in his algorithm needs to be
changed: from **Construct the MST"’ to ‘‘Construct the appropriate graph struc-
ture.”’ The heuristics needed to define inconsistent edges becomes more complex
with larger sets of edges. In the case of the MST, removing a single edge always
results in two components. This is not always true with the RNG, GG, and DT
because there can be more than one path between two patterns. Applications of
the RNG, GG, and DT have been limited so far to two- and three-dimensional
patterns primarily due to computational difficulties in higher dimensions.

Urquhart (1982) favors the use of GG and RNG over the MST for clustering
problems for the following reasons. First, RNG and GG are less sensitive to
changes in the positions of patterns than the MST. Second, since the GG and RNG
are supergraphs of the MST, they exhibit a greater degree of interconnectedness
of patterns and so may be more appropriate in capturing the cluster structure in
the data than the MST. Indeed, the RNG-based clustering algorithms developed
by Urquhart avoid some of the problems of Zahn’s MST algorithm. Ahuja (1982)
and Tuceryan (1986) argue for the intuitively appealing characteristics of DT over
other graph structures in processing patterns. They have demonstrated that DT is
useful for grouping or clustering two-dimensional patterns. However, we again
emphasize that the performance of a clustering algorithm is data dependent.

3.3.7 Nearest-Neighbor Clustering

A natural way to define clusters is by utilizing the property of nearest neighbors;
a pattern should usually be put in the same cluster as its nearest neighbor. Two
patterns should be considered similar if they share neighbors. The notion of nearest
neighbors is inherent in the construction of various graphs, particularly the graphs
discussed in Section 3.3.6, so graph-theoretic clustering methods are closely related
to nearest-neighbor clustering methods. However, they differ significantly in how
the clusters are formed and, most important, in the final partition.

A very simple clustering algorithm which is based on the nearest neighbor
rule is given below (Lu and Fu, 1978). A set of patterns & = {xy, x5, . . . ,
X,} is to be partitioned into K clusters. The user specifies a threshold, ¢, on the
nearest-neighbor distance.

NEAREST-NEIGHBOR CLUSTERING ALGORITHM

Step 1. Seti « 1 and k « 1. Assign pattern x, to cluster C,.

Step 2. Set i « i + 1. Find the nearest neighbor of x; among the patterns
already assigned to clusters. Let d,, denote the distance from x; to its nearest
neighbor. Suppose that the nearest neighbor is in cluster m.

Step 3. If d,, = 1, then assign x; to C,,. Otherwise, set k < k + 1 and
assign X; to a new cluster C,.
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Step 4. If every pattern has been assigned to a cluster, stop. Else, go to
step 2.

The number of clusters generated, K, is a function of the parameter f. As
the value of r increases, fewer clusters are generated. The nearest neighbor distance
in step 2 can be replaced by the average distance between X; and its p nearest
neighbors in the mth cluster. Then the user has to specify another parameter,
namely, p. Lu and Fu (1978) have used this clustering algorithm to cluster patterns
represented by sentences or strings in an application of syntactic pattern recognition
to character recognition.

Jarvis and Patrick (1973) defined a proximity measure as the number of
matches in near-neighbor lists for two patterns. Their clustering algorithm can be
summarized as follows: Place patterns x; and X; into the same cluster if x; and x;
share at least k, near neighbors and x; and x; are k-near neighbors of each other.
This algorithm is noniterative and is computationally attractive since near neighbors
can be computed efficiently (Kamgar-Parsi and Kanal, 1985). However, the user
has to specify the size of the neighborhood, k, and the similarity threshold, k.
Jarvis and Patrick (1973) do not provide any guidelines for choosing these parameters
but suggest finding the ‘‘best’” value interactively. Note that large values of &
bias the algorithm toward globular structures, whereas small values of k favor
chained or elongated structures (Jarvis, 1978). A hierarchy can also be generated
by varying the value of k,. Jarvis and Patrick claim that since Zahn’s MST method
is based on the first near neighbor, it is a first-order method and seeks linear and
elongated clusters at the expense of globular structures.

The notion of proximity based on shared nearest neighbors has been modified
by Gowda and Krishna (1978) to measure the *‘mutual nearness’’ of two patterns.
If x; is the pth near neighbor of x; and x; is the gth near neighbor of x;, then the
mutual neighborhood value (MNV) between x; and x; is defined as (p + g). The
smaller MNV, the more similar the patterns. This represents a stronger notion of
similarity than the number of shared neighbors of Jarvis and Patrick. Gowda and
Krishna's clustering algorithm is described below.

MUTUAL NEIGHBORHOOD CLUSTERING ALGORITHM

Step 1. Determine the k near neighbors of every pattern.

Step 2. Compute the MNV for every pair of patterns. If patterns x; and x;
are not mutual neighbors for a given value of k, set MNV (x;, x;) to an
arbitrarily large number.

Step 3. Identify all the pairs of patterns with MNV of 2. Merge each such
pair into a cluster, starting with the pair having the smallest distance.

Repeat step 3 for MNV thresholds of 3,4, . . . , 2k to generate a hierarchy.

The parameter k that controls the neighborhood depth is crucial to the perfor-
mance of the algorithm. Small values of k give several ‘“‘strong’’ clusters and
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large values of k give fewer “*weak’’ clusters. In fact, & can always be chosen
sufficiently large to make the algorithm return a single cluster. Gowda and Krishna
(1978) demonstrate that the algorithm is able to identify nonspherical clusters,
linearly nonseparable clusters, clusters with unequal populations, and clusters with
low-density bridges when k is 5 in two dimensions. However, no heuristic is
provided to select an appropriate value of k for arbitrary data sets.

3.3.8 Fuzzy Clustering

The clustering algorithms described so far assign each pattern to one and
only one cluster. In other words, the patterns are partitioned into disjoint sets;
patterns in one cluster are supposed to be more similar to each other than to
patterns in different clusters. If the clusters are compact and well separated, as
demonstrated in Figure 3.34(a), there is no ambiguity or uncertainty associated
with assigning each pattern to one cluster. We can easily see that there are two
clusters in Figure 3.34(a) with well-defined boundaries. But what happens if the
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Figure 3.34 Examples of cluster structures: (a) well-separated clusters; (b) touching
or overlapping clusters.
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clusters are touching or overlapping? Figure 3.34(b) illustrates a case in which
cluster boundaries are not sharp and the assignment of patterns to clusters is difficult.
Although it is clear that patterns x; and x; should be put in different clusters,
pattern x; could be put into either the cluster containing X; or the cluster containing
X;. Such clusters are said to have ‘‘fuzzy’” boundaries.

The fuzzy set theory developed by Zadeh (1965) permits an object to belong
to a cluster with a grade of membership. The degree of membership takes a
value in the interval [0, 1]. For ordinary clusters, called ‘‘crisp’® clusters, the
membership grade for pattern x; in a particular cluster is 1 if the pattern belongs
to the cluster and 0 if it does not. With fuzzy clusters, pattern x; has a grade of
membership, f,(x;) = 0, or degree of belonging to the qth cluster, where
2 f4(x;) = 1. The larger f,(x;), the more confidence exists that x; belongs to cluster
g. If fi(x;) is 1, pattern x; belongs to cluster j with absolute certainty. The interpreta-
tions of values such as 0.3 is less clear. Membership grades are subjective in
nature and are based on definitions rather than measurements (Zadeh, 1984). For
example, pattern x; in Figure 3.34(b) could belong to one cluster with membership
value 0.45 and to the other cluster with membership value 0.55.

The grade of membership is not the same as the probability that the pattern
belongs to the cluster even though grades of membership and probabilities both
take values in the range [0, 1]. Under a probabilistic framework, pattern x; belongs
to one and only one cluster, depending on the outcome of a random experiment.
In fuzzy set theory, pattern X; can belong to two clusters simultaneously. The
membership grades determine the degree to which two cluster labels are applicable.

Another interpretation of the degree of membership is that it measures the
compatibility of a pattern or an object with the description of a fuzzy set. Sometimes
this property is useful in interpreting the results of a clustering algorithm. Consider
the problem of clustering a variety of computers ranging from microcomputers to
mainframes based on such attributes as memory size, CPU speed, and processor
type. The objective might be to partition computers into two clusters labeled **per-
sonal’’ and ‘‘multiuser system.”” To which cluster should a computer based on a
Motorola 68020 processor be assigned, which is used in a variety of personal
computers and workstations?

Proponents argue that fuzzy clustering is more appropriate than ordinary
clustering for capturing human concepts such as ‘‘small,”” *‘big,”’ *‘high,”" and
““low."* Fuzzy sets are likely to find increasing use in applications involving impre-
cise and incomplete information, commonsense reasoning, and complex concepts
(Zadeh, 1984). Skeptics of fuzzy clustering do not doubt its mathematical correct-
ness, but are not convinced that it offers any advantages over the classical and
better understood clustering methods. Many more papers have been written on
the theoretical foundations of fuzzy sets and fuzzy logic than on its practical
applications.

Clustering has always been a popular domain for fuzzy sets. Early work by
Bellman et al. (1966), Ruspini (1969), Gitman and Levine (1970), Bezdek (1974),
and Dunn (1974) have culminated in two books on fuzzy clustering (Bezdek,
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1981; Backer, 1978). Virtually all the clustering algorithms based on fuzzy set
theory are partitional in nature, but a few generate hierarchies. Some of these
fuzzy algorithms are straightforward modifications of the square-error type of parti-
tional algorithms discussed in Section 3.3.1. Indeed, Bezdek (1976) proposed a
fuzzy ISODATA clustering algorithm for which convergence theorems are available.

The crucial step in a fuzzy clustering algorithm is the definition of the member-
ship function. Backer (1978) shows how to construct a membership function based
on similarity decomposition. Let the set of patterns {x;, . . . , x,} be initially
partitioned into clusters {Cy, . . . , Ck} and let n; be the number of patterns in
C;. Let 8(x, C;) denote the similarity between pattern x and cluster C;. The larger
this value, the closer are the pattern and the cluster. The cluster membership
function fc(x) for pattern x induced by cluster C; is given by

K
fe(x) = Pd(x, C) / >, Pid(x, Cp)
k=1

where P, = m/n is the relative size of cluster C;. This membership function is
nonnegative and sums to 1 for every pattern.

K
fe(x) =0 and > fex) =1
k=1

The similarity or affinity function, 8(x, C;), can be based on the distance
concept, the neighborhood concept, or the probabilistic concept (Backer, 1978).
It measures the relationship between a pattern and a cluster as a whole or between
a pattern and one or more representatives of that cluster. The choice of this function
depends on the data. Backer and Jain (1981) define an affinity function based on
the mean vectors of the clusters. The membership function is

1 — (1/B)d(x, m®)
K — (1/B) D d(x, m¥)
j

ka(x) s

where d(x, m*’) denotes the Euclidean distance between the pattern vector x and
the centroid m™® of cluster C,. The parameter 8 controls the neighborhood size
and affects the values of cluster belongingness. Only general guidelines are available
for choosing B. The performance of a fuzzy clustering algorithm depends critically
on the definition of the membership function.

Fuzzy partitional clustering algorithms generate partitions that minimize in-
duced fuzziness following the same steps as square-error clustering algorithms.
The induced fuzziness takes its minimum value if we can obtain a partition for
which f¢ (x) € {0, 1} or, equivalently, when the partition is nonfuzzy. Therefore,
a criterion function needs to be defined to characterize the induced fuzziness of a
partition. Backer (1978) defines a number of fuzzy partitioning criterion functions.
For example, a criterion based on the average pairwise fuzzy set separability is
given by
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where K is the number of clusters and /(f, N f¢) is the intersection of two fuzzy
sets (clusters) defined as follows:

[fey N fe) =~ S min o) fo 0]
N xex

The minimum value of ®; is 0, which represents maximum fuzziness, and the

maximum value of ®;is 1, which corresponds to a nonfuzzy partition. The problem

of fuzzy clustering is to find that partition which maximizes ®@,. The basic steps

in a fuzzy partitional clustering algorithm are given below.

FUZZY PARTITIONAL CLUSTERING ALGORITHM

Step 1. Select an initial partition {C;}5—,.

Repeat steps 2 to 4 until the cluster memberships stabilize.
Step 2. Compute the membership functions {f¢(x,)}.

Step 3. Compute the criterion function ®y.

Step 4. Reclassify patterns to improve ®;.

The output of a fuzzy algorithm not only includes a partition but also additional
information in the form of membership values. However, the new information
provided by the membership values must be interpreted by the data analyst. In
summary, fuzzy clustering is an interesting concept that includes most partitional
clustering algorithms as special cases. However, its superiority to ordinary clustering
has yet to be demonstrated in applications.

3.4 CLUSTERING SOFTWARE

Someone interested in applying clustering techniques has plenty of software to
choose from. As we reported earlier, there is no shortage of clustering algorithms,
and most of them have been implemented to run on a variety of computers. One
of the main reasons for the large number of ‘‘different’’ clustering programs available
is that most researchers and research groups put all their trust in the algorithm
they have developed even though it is very similar to existing algorithms. In
addition, documented and tested clustering packages were not available until re-
cently, so users had to write their own software. The paper by Johnston et al.
(1979) illustrates how the ‘‘law of serendipity’” can lead to a “*new’’ clustering
algorithm. During the coding of the mode-seeking algorithm by Koontz et al.
(1976), Johnston et al., by mistake, modified one of the expression for the relative
density of a pair of patterns. This led to a new clustering algorithm which provided
better clustering for ‘‘uniform, touching’’ clusters than the original!



