IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO.5, SEPTEMBER/OCTOBER 2002

1003

CLARANS: A Method for Clustering Objects
for Spatial Data Mining

Raymond T. Ng and Jiawei Han, Member, IEEE Computer Society

Abstract—Spatial data mining is the discovery of interesting relationships and characteristics that may exist implicitly in spatial
databases. To this end, this paper has three main contributions. First, we propose a new clustering method called CLARANS, whose
aim is to identify spatial structures that may be present in the data. Experimental results indicate that, when compared with existing
clustering methods, CLARANS is very efficient and effective. Second, we investigate how CLARANS can handle not only points
objects, but also polygon objects efficiently. One of the methods considered, called the IR-approximation, is very efficient in clustering
convex and nonconvex polygon objects. Third, building on top of CLARANS, we develop two spatial data mining algorithms that aim to
discover relationships between spatial and nonspatial attributes. Both algorithms can discover knowledge that is difficult to find with

existing spatial data mining algorithms.

Index Terms—Spatial data mining, clustering algorithms, randomized search, computational geometry.

1 INTRODUCTION

DATA mining in general is the search for hidden patterns
that may exist in large databases. Spatial data mining
in particular is the discovery of interesting relationships
and characteristics that may exist implicitly in spatial
databases. Because of the huge amounts (usually, tera-
bytes) of spatial data that may be obtained from satellite
images, medical equipments, video cameras, etc., it is costly
and often unrealistic for users to examine spatial data in
detail. Spatial data mining aims to automate such a
knowledge discovery process. Thus, it plays an important
role in

1. extracting interesting spatial patterns and features,
capturing intrinsic relationships between spatial and
nonspatial data,

3. presenting data regularity concisely and at higher
conceptual levels, and

4. helping to reorganize spatial databases to accom-
modate data semantics, as well as to achieve better
performance.

Many excellent studies on data mining have been
conducted, such as those reported in [2], [3], [6], [14], [20],
[23], [26]. Agrawal et al. consider the problem of inferring
classification functions from samples [2] and study the
problem of mining association rules between sets of data
items [3]. Han et al. propose an attribute-oriented approach
to knowledge discovery [14]. And the book edited by
Shapiro and Frawley includes many interesting studies on
various issues in knowledge discovery such as finding
functional dependencies between attributes [26]. However,
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most of these studies are concerned with knowledge
discovery on nonspatial data and the work most relevant
to our focus here is the one reported in [23]. More
specifically, Lu et al. propose one spatial dominant and
one nonspatial dominant algorithm to extract high-level
relationships between spatial and nonspatial data. How-
ever, both algorithms suffer from the following problems.
First, the user or an expert must provide the algorithms
with spatial concept hierarchies, which may not be available
in many applications. Second, both algorithms conduct
their spatial exploration primarily by merging regions at a
certain level of the hierarchy to a larger region at a higher
level. Thus, the quality of the results produced by both
algorithms relies quite crucially on the appropriateness of
the hierarchy to the given data. The problem for most
applications is that it is very difficult to know a priori which
hierarchy will be the most appropriate. Discovering this
hierarchy may itself be one of the reasons to apply spatial
data mining.

Cluster Analysis is a branch of statistics that, in the past
three decades, has been intensely studied and successfully
applied to many applications. To the spatial data mining
task at hand, the attractiveness of cluster analysis is its
ability to find structures or clusters directly from the given
data, without relying on any hierarchies. However, cluster
analysis has been applied rather unsuccessfully in the past
to general data mining and machine learning. The com-
plaints are that cluster analysis algorithms are ineffective
and inefficient. Indeed, for cluster analysis to work
effectively, there are the following key issues:

o  Whether there exists a natural notion of similarities
among the “objects” to be clustered. For spatial data
mining, our approach here is to apply cluster
analysis only on the spatial attributes. If these
attributes correspond to point objects, natural
notions of similarities exist (e.g., Euclidean or
Manhattan distances). However, if the attributes
correspond to polygon objects, the situation is more
complicated. More specifically, the similarity (or
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distance) between two polygon objects may be
defined in many ways, some better than others.
But, more accurate distance measurements may
require more effort to compute. The main question
then is for the kind of spatial clustering under
consideration, which measurement achieves the best
balance.

o  Whether clustering a large number of objects can be
efficiently carried out. Traditional cluster analysis
algorithms are not designed for large data sets, with
say more than 1,000 objects.

In addressing these issues, we report in this paper:

e the development of CLARANS, which aims to use
randomized search to facilitate the clustering of a
large number of objects and

e a study on the efficiency and effectiveness of three
different approaches to calculate the similarities
between polygon objects. They are the approach that
calculates the exact separation distance between two
polygons, the approach that overestimates the exact
distance by using the minimum distance between
vertices, and the approach that underestimates the
exact distance by using the separation distance
between the isothetic rectangles of the polygons.

To evaluate our ideas and algorithms, we present results—-
more often experimental than analytic—showing that:

e CLARANS is more efficient than the existing
algorithms PAM and CLARA, both of which
motivate the development of CLARANS; and

e calculating the similarity between two polygons by
using the separation distance between the isothetic
rectangles of the polygons is the most efficient and
effective approach.

In [25], we present a preliminary study of CLARANS and
the two spatial data mining algorithms. But, this paper
extends [25] in two major ways. First, CLARANS and the
data mining algorithms are generalized to support polygon
objects. As motivated above, clustering polygon objects
effectively and efficiently is not straightforward at all.
Second, this paper presents more detailed analysis and
experimental results on the behavior of CLARANS and on
the ways to fine tune CLARANS for specific applications.

Since the publication of [25], many clustering methods

have been developed, which can be broadly categorized
into partitioning methods [7], hierarchical methods [33],
[12], [4], [18], density-based methods [11], [15], and grid-
based methods [31], [29], [1]. In [7], Bradley et al. proposes
an algorithm that follows the basic framework of the
K-means algorithm, but that provides scalability by intelli-
gently compressing some regions of the data space. In [33],
[12], [4], [18], the proposed hierarchical methods try to
detect nested clustering structures, which are prevalent in
some applications. In [11], [15], the proposed density-based
methods attempt to provide better clustering for elongated
clusters; partitioning methods are typically much better
suited for spherical clusters. In [31], [29], [1], the developed
grid-based methods superimpose a grid structure onto the
data space to facilitate clustering.

To compare CLARANS with these works, we make the

following general observations:
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e Many of the aforementioned techniques require
some tree or grid structures to facilitate the cluster-
ing. Consequently, these techniques do not scale up
well with increasing dimensionality of the datasets.
While it is true that the material discussed in this
paper is predominantly 2D, the CLARANS algo-
rithm works the same way for higher dimensional
datasets. Because CLARANS is based on rando-
mized search and does not use any auxiliary
structure, CLARANS is much less affected by
increasing dimensionality.

e Many of the aforementioned techniques assume that
the distance function is Euclidean. CLARANS, being
a local search technique, makes no requirement on
the nature of the distance function.

e Many of the aforementioned techniques deal with
point objects; CLARANS is more general and
supports polygonal objects. A considerable portion
of this paper is dedicated to handling polygonal
objects effectively.

e CLARANS is a main-memory clustering technique,
while many of the aforementioned techniques are
designed for out-of-core clustering applications. We
concede that whenever extensive I/O operations are
involved, CLARANS is not as efficient as the others.
However, we argue that CLARANS still has con-
siderable applicability. Consider the 2D objects to be
discussed in this paper. Each object is represented by
two real numbers, occupying a total of 16 bytes.
Clustering 1,000,000 objects would require slightly
more than 16 Mbytes of main memory. This is an
amount easily affordable by a personal computer, let
alone computers for data mining. The point here is
that, given the very low cost of RAM, main-memory
clustering algorithms, such as CLARANS, are not
completely dominated by out-of-core algorithms for
many applications. Finally, on a similar note,
although some newly developed clustering methods
may find clusters “natural” to the human eye and
good for certain applications [4], there are still many
applications, such as delivery services, to which
partitioning-based clustering, such as CLARANS, is
more appropriate.

The paper is organized as follows: Section 2 introduces
PAM and CLARA. Section 3 presents our clustering
algorithm CLARANS, as well as experimental results
comparing the performance of CLARANS, PAM, and
CLARA. Section 4 studies and evaluates experimentally
the three different approaches that compute the similarities
between polygon objects. Section 5 concludes the paper
with a discussion on ongoing works.

2 CLUSTERING ALGORITHMS BASED
ON PARTITIONING

2.1 Overview

In the past 30 years, cluster analysis has been widely
applied to many areas such as medicine (classification of
diseases), chemistry (grouping of compounds), social
studies (classification of statistical findings), etc. Its main
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Fig. 1. Four cases for Replacing A with M.

goal is to identify structures or clusters present in the data.
Existing clustering algorithms can be classified into two
main categories: hierarchical methods and partitioning
methods. Hierarchical methods are either agglomerative
or divisive. Given n objects to be clustered, agglomerative
methods begin with n clusters (i.e., all objects are apart). In
each step, two clusters are chosen and merged. This process
continues until all objects are clustered into one group. On
the other hand, divisive methods begin by putting all
objects in one cluster. In each step, a cluster is chosen and
split up into two. This process continues until n clusters are
produced. While hierarchical methods have been success-
fully applied to many biological applications (e.g., for
producing taxonomies of animals and plants [19]), they are
known to suffer from the weakness that they can never
undo what was done previously. Once an agglomerative
method merges two objects, these objects will always be in
one cluster. And once a divisive method separates two
objects, these objects will never be regrouped into the same
cluster.

In contrast, given the number k of partitions to be found,
a partitioning method tries to find the best k partitions' of
the n objects. It is very often the case that the k clusters
found by a partitioning method are of higher quality (i.e.,
more similar) than the & clusters produced by a hierarchical
method. Because of this property, developing partitioning
methods has been one of the main focuses of cluster
analysis research. Indeed, many partitioning methods have
been developed, some based on k-means, some on k-medoid,
some on fuzzy analysis, etc. Among them, we have chosen
the k-medoid methods as the basis of our algorithm for the
following reasons. First, unlike many other partitioning
methods, the k-medoid methods are very robust to the
existence of outliers (i.e., data points that are very far away
from the rest of the data points). Second, clusters found by
k-medoid methods do not depend on the order in which the
objects are examined. Furthermore, they are invariant with
respect to translations and orthogonal transformations of
data points. Last but not least, experiments have shown that
the k-medoid methods described below can handle very
large data sets quite efficiently. See [19] for a more detailed
comparison of k-medoid methods with other partitioning
methods. In the remainder of this section, we present the
two best-known k-medoid methods on which our algorithm
is based.

1. Partitions here are defined in the usual way: Each object is assigned to
exactly one group.
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PAM (Partitioning Around Medoids) was developed by
Kaufman and Rousseeuw [19]. To find k clusters, PAM’s
approach is to determine a representative object for each
cluster. This representative object, called a medoid, is meant
to be the most centrally located object within the cluster.
Once the medoids have been selected, each nonselected
object is grouped with the medoid to which it is the most
similar. More precisely, if O; is a nonselected object and O,,
is a (selected) medoid, we say that O; belongs to the cluster
represented by O,, if d(O;, O,,) = ming,d(0;, O.), where the
notation minp, denotes the minimum over all medoids O,
and the notation d(O;,0;) denotes the dissimilarity or
distance between objects O; and O,. All the dissimilarity
values are given as inputs to PAM. Finally, the quality of a
clustering (i.e., the combined quality of the chosen medoids)
is measured by the average dissimilarity between an object
and the medoid of its cluster. To find the k£ medoids, PAM
begins with an arbitrary selection of k objects. Then, in each
step, a swap between a selected object O,, and a nonselected
object O, is made, as long as such a swap would result in an
improvement of the quality of the clustering.

Before we embark on a formal analysis, let us consider a
simple example. Suppose there are 2 medoids: A and B.
And we consider replacing A with a new medoid M. Then,
for all the objects Y that are originally in the cluster
represented by A, we need to find the nearest medoid in
light of the replacement. There are two cases. In the first
case, Y moves to the cluster represented by B, but not to the
new one represented by M. In the second case, Y moves to
the new cluster represented by M, and the cluster
represented by B is not affected. Apart from reconsidering
all the objects Y that are originally in A’s cluster, we also
need to consider all the objects Z that are originally in B’s
cluster. In light of the replacement, Z either stays with B, or
moves to the new cluster represented by M. Fig. 1 illustrates
the four cases.

In the remainder of this paper, we use:

e O, to denote a current medoid that is to be replaced
(e.g., A in Fig. 1),

e O, to denote the new medoid to replace O,,(e.g., M
in Fig. 1),

e O; to denote other nonmedoid objects that may or
may notneed tobe moved (e.g., Y and Z in Fig. 1), and
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e (;, to denote a current medoid that is nearest to O;
without A and M (e.g., B in Fig. 1).
Now, to formalize the effect of a swap between O,, and O,,
PAM computes costs Cjn, for all nonmedoid objects O;.
Depending on which of the following cases O; is in, Cj,, is
defined differently.

Case 1. suppose O; currently belongs to the cluster
represented by O,,. Furthermore, let O; be more similar to
Oj» than to O,, i.e., d(0;,0,) > d(Oj, O, ), where O; , is the
second most similar medoid to O;. Thus, if O,, is replaced
by O, as a medoid, O; would belong to the cluster
represented by O;, (cf. Case 1 in Fig. 1). Hence, the cost
of the swap as far as O, is concerned is:

Cimp = d(0j,0j2) — d(O;,Op). (1)

This equation always gives a nonnegative Cj,,,, indicating
that there is a nonnegative cost incurred in replacing O,
with O,.

Case 2. O; currently belongs to the cluster represented by
O,,. But, this time, O; is less similar to O, than to O,, i.e.,
d(0j,0,) < d(0j,0;j2). Then, if O,, is replaced by O,, O;
would belong to the cluster represented by O, (cf. Fig. 1).
Thus, the cost for O; is given by:

ijp = d(Oj: Op) - d(Oja Om)- (2)

Unlike in (1), Cj,, here can be positive or negative,
depending on whether O; is more similar to O,, or to O,.

Case 3. suppose that O; currently belongs to a cluster
other than the one represented by O,,. Let O;2 be the
representative object of that cluster. Furthermore, let O; be
more similar to O;» than to O,. Then, even if O,, is replaced
by O,, O; would stay in the cluster represented by O;,.
Thus, the cost is:

Cimp = 0. 3)

Case 4. O; currently belongs to the cluster represented by
Oj2. But, O is less similar to O, 5 than to O,,. Then, replacing
O,, with O, would cause O; to jump to the cluster of O,
from that of O;2 Thus, the cost is:

ijp = d(Oj7 Op) - d(Ojv Oj~2)’ (4)

and is always negative. Combining the four cases above, the
total cost of replacing O,, with O, is given by:

TCmp = Z ijp- (5)
J

We now present Algorithm PAM.
Algorithm PAM

1. Select k representative objects arbitrarily.

Compute T'C,,, for all pairs of objects O,,, O,, where
O, is currently selected, and O, is not.

3. Select the pair O,,0, which corresponds to
mino,, 0, TCnp. If the minimum TC,,, is negative,
replace O,, with O,, and go back to Step 2.

4. Otherwise, for each nonselected object, find the most
similar representative object. Halt.

Experimental results show that PAM works satisfactorily
for small data sets (e.g., 100 objects in 5 clusters [19]). But, it
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is not efficient in dealing with medium and large data sets.
This is not too surprising if we perform a complexity
analysis on PAM. In Steps 2 and 3, there are altogether
k(n — k) pairs of O,,,O,. For each pair, computing T7'C,,,
requires the examination of (n — k) nonselected objects.
Thus, Steps 2 and 3 combined is of O(k(n — k)?). And this is
the complexity of only one iteration. Thus, it is obvious that
PAM becomes too costly for large values of n and k. This
analysis motivates the development of CLARA.

2.3 CLARA

Designed by Kaufman and Rousseeuw to handle large data
sets, CLARA (Clustering LARge Applications) relies on
sampling [19]. Instead of finding representative objects for
the entire data set, CLARA draws a sample of the data set,
applies PAM on the sample, and finds the medoids of the
sample. The point is that, if the sample is drawn in a
sufficiently random way, the medoids of the sample would
approximate the medoids of the entire data set. To come up
with better approximations, CLARA draws multiple sam-
ples and gives the best clustering as the output. Here, for
accuracy, the quality of a clustering is measured based on
the average dissimilarity of all objects in the entire data set,
and not only of those objects in the samples. Experiments
reported in [19] indicate that five samples of size 40 + 2k
give satisfactory results.

Algorithm CLARA

1. Fori=1to 5, repeat the following steps:

2. Draw a sample of 40 + 2k objects randomly from the
entire data set? and call Algorithm PAM to find
k medoids of the sample.

3. For each object O; in the entire data set, determine
which of the £ medoids is the most similar to O;.

4. Calculate the average dissimilarity of the clustering
obtained in the previous step. If this value is less
than the current minimum, use this value as the
current minimum, and retain the £ medoids found in
Step 2 as the best set of medoids obtained so far.

5. Return to Step 1 to start the next iteration.
Complementary to PAM, CLARA performs satisfactorily
for large data sets (e.g., 1,000 objects in 10 clusters). Recall
from Section 2.2 that each iteration of PAM is of
O(k(n — k)*). But, for CLARA, by applying PAM just to
the samples, each iteration is of O(k(40 4 k)* + k(n — k)).
This explains why CLARA is more efficient than PAM for
large values of n.

3 A CLUSTERING ALGORITHM BASED ON
RANDOMIZED SEARCH

In this section, we will present our clustering algorithm-—
CLARANS (Clustering Large Applications based on RAN-
domized Search). We will first give a graph-theoretic
framework within which we can compare PAM and
CLARA, and motivate the development of CLARANS.
Then, after describing the details of the algorithm, we will
present experimental results showing how to fine tune

2. Kaufman and Rousseeuw [19] report a useful heuristic to draw
samples. Apart from the first sample, subsequent samples include the best
set of medoids found so far. In other words, apart from the first iteration,
subsequent iterations draw 40 4 & objects to add on to the best £ medoids.
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CLARANS and that CLARANS outperforms CLARA and
PAM in terms of both efficiency and effectiveness.

3.1 Motivation of CLARANS: A Graph Abstraction

Given n objects, the process described above of finding
k medoids can be viewed abstractly as searching through
a certain graph. In this graph, denoted by G, ;, a node is
represented by a set of k objects {O,,,...,Op,}, intui-
tively indicating that O,,,...,0,, are the selected
medoids. The set of nodes in the graph is the set
{{0Om,,...,0m,} | Om,,...,Om, are objects in the data set}.

Two nodes are neighbors (i.e., connected by an arc) if
their sets differ by only one object. More formally, two
nodes S ={On,,...,0n,} and Sy ={04,...,0,,} are
neighbors if and only if the cardinality of the intersection
of §1,5;1s k—1, ie., |S1NSy| =k — 1. It is easy to see that
each node has k(n — k) neighbors. Since a node represents a
collection of k& medoids, each node corresponds to a
clustering. Thus, each node can be assigned a cost that is
defined to be the total dissimilarity between every object
and the medoid of its cluster. It is not difficult to see that, if
objects O,,, O, are the differences between neighbors .S; and
Sy (ie., O, 0, & S1 N Sy, but O, € 51 and O, € 5), the cost
differential between the two neighbors is exactly given by
T,y defined in (5).

By now, it is obvious that PAM can be viewed as a search
for a minimum on the graph G, ;. At each step, all the
neighbors of the current node are examined. The current
node is then replaced by the neighbor with the deepest
descent in costs. And the search continues until a minimum
is obtained. For large values of n and k (like n = 1,000 and
k = 10), examining all k(n — k) neighbors of a node is time
consuming. This accounts for the inefficiency of PAM for
large data sets.

On the other hand, CLARA tries to examine fewer
neighbors and restricts the search on subgraphs that are
much smaller in size than the original graph G, ;. However,
the problem is that the subgraphs examined are defined
entirely by the objects in the samples. Let Sa be the set of
objects in a sample. The subgraph Gg, consists of all the
nodes that are subsets (of cardinalities k) of Sa. Even though
CLARA thoroughly examines G, via PAM, the trouble is
that the search is fully confined within Ggq . If M is the
minimum node in the original graph G, ; and if M is not
included in Gg,, M will never be found in the search of
G a1, regardless of how thorough the search is. To atone for
this deficiency, many samples would need to be collected
and processed.

Like CLARA, our algorithm CLARANS does not check
every neighbor of a node. But, unlike CLARA, it does not
restrict its search to a particular subgraph. In fact, it
searches the original graph G,;. One key difference
between CLARANS and PAM is that the former only
checks a sample of the neighbors of a node. But, unlike
CLARA, each sample is drawn dynamically in the sense
that no nodes corresponding to particular objects are
eliminated outright. In other words, while CLARA draws
a sample of nodes at the beginning of a search, CLARANS
draws a sample of neighbors in each step of a search. This
has the benefit of not confining a search to a localized area.
As will be shown in Section 3.3, a search by CLARANS
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gives higher quality clusterings than CLARA, and CLAR-
ANS requires a very small number of searches. We now
present the details of Algorithm CLARANS.

3.2 CLARANS
Algorithm CLARANS

1. Input parameters numlocal and maxneighbor. Initi-
alize i to 1, and mincost to a large number.

2. Set current to an arbitrary node in G, .

3. Setjtol.

4. Consider a random neighbor S of current, and based
on 5, calculate the cost differential of the two nodes.

5. If S has a lower cost, set current to S, and go to
Step 3.

6. Otherwise, increment j by 1. If j < mazneighbor, go
to Step 4.

7. Otherwise, when j > maxneighbor, compare the cost
of current with mincost. If the former is less than
mancost, set mincost to the cost of current and set
bestnode to current.

8. Increment i by 1. If ¢ > numlocal, output bestnode
and halt. Otherwise, go to Step 2.

Steps 3 to 6 above search for nodes with progressively lower
costs. But, if the current node has already been compared
with the maximum number of the neighbors of the node
(specified by mazneighbor) and is still of the lowest cost, the
current node is declared to be a “local” minimum. Then, in
Step 7, the cost of this local minimum is compared with the
lowest cost obtained so far. The lower of the two costs above
is stored in mincost. Algorithm CLARANS then repeats to
search for other local minima, until numlocal of them have
been found.

As shown above, CLARANS has two parameters: the
maximum number of neighbors examined (mazneighbor)
and the number of local minima obtained (numlocal). The
higher the value of maxzneighbor, the closer is CLARANS to
PAM, and the longer is each search of a local minima. But,
the quality of such a local minima is higher and fewer local
minima needs to be obtained. Like many applications of
randomized search [16], [17], we rely on experiments to
determine the appropriate values of these parameters.

3.3 Experimental Results: Tuning CLARANS

3.3.1 Details of Experiments

To observe the behavior and efficiency of CLARANS, we
ran CLARANS with generated data sets whose clusters are
known. For better generality, we used two kinds of clusters
with quite opposite characteristics. The first kind of clusters
is rectangular and the objects within each cluster are
randomly generated. More specifically, if such a data set
of say 3,000 objects in 20 clusters is needed, we first
generated 20 “bounding boxes” of the same size. To make
the clusters less clear-cut, the north-east corner of the Ith
box and the south-west corner of (i + 1)th box touch. Since
for our application of spatial data mining, CLARANS is
used to cluster spatial coordinates, objects in our experi-
ments here are pairs of x-, y- coordinates. For each
bounding box, we then randomly generated 150 pairs of
coordinates that fall within the box. Similarly, we generated
data sets of the same kind but of varying numbers of objects
and clusters. In the figuress below, the symbol rn-k (e.g.,
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Fig. 2. Determining the maximum number of neighbors. (a) Relative efficiency. (b) Relative quality.

r3000-20) represents a data set of this kind with n points in
k clusters.

Unlike the first kind, the second kind of clusters we
experimented with does not contain random points. Rather,
points within a cluster are ordered in a triangle. For
example, the points with coordinates (0,0), (1,0), (0,1), (2,0),
(1,1), and (0,2) form such a triangular cluster of size 6. To
produce a cluster next to the previous one, we used a
translation of the origin (e.g., the points (10,10), (11,10),
(10,11), (12,10), (11,11), and (10,12)). In the figures below, the
symbol tn-k (e.g., t3000-20) represents a data set organized
in this way with n points in & clusters.

All the experiments reported here were carried out in a
time-sharing SPARC-LX workstation. Because of the ran-
dom nature of CLARANS, all the figures concerning
CLARANS are average figures obtained by running the
same experiment 10 times (with different seeds of the
random number generator).

3.3.2 Determining the Maximum Number of Neighbors

In the first series of experiments, we applied CLARANS
with the parameter mazneighbor = 250, 500, 750, 1,000, and
10,000 on the data sets rn-k and tn-k, where n varies from
100 to 3,000 and k varies from 5 to 20. To save space, we
only summarize the two major findings that lead to further
experiments:

e When the maximum number of neighbors
mazneighbor is set to 10,000, the quality of the
clustering produced by CLARANS is effectively
the same as the quality of the clustering produced
by PAM (i.e.,, mazneighbor = k(n — k)). While we
will explain this phenomenon very shortly, we use
the results for mazneighbor = 10,000 as a yard-
stick for evaluating other (smaller) values of
maxneighbor. More specifically, the runtime values
of the first graph and the average distance values
(i.e., quality of a clustering) of the second graph

in Fig. 2 below are normalized by those produced
by setting maxneighbor = 10,000. This explains the
two horizontal lines at y—value=1 in both
graphs.

e Asexpected, a lower value of mazneighbor produces
a lower quality clustering. A question we ask is then
how small can the value of mazxneighbor be before
the quality of the clustering becomes unacceptable.
From the first series of experiments, we find out that
these critical values seem to be proportional to the
value k(n — k). This motivates us to conduct another
series of experiments with the following enhanced
formula for determining the value of maxneighbor,
where minmaxneighbor is a user-defined minimum
value for mazxneighhbor:

- if k(n — k) < minmazneighbor then mazxneighbor
= k(n — k); otherwise, mazneighbor equals the
the larger value between p% of k(n —k) and
minmaxneighbor.

The above formula allows CLARANS to examine all the
neighbors as long as the total number of neighbors is below
the threshold minmaxneighbor. Beyond the threshold, the
percentage of neighbors examined gradually drops from
100 percent to a minimum of p%. The two graphs in Fig. 2
show the relative runtime and quality of CLARANS with
minmazneighbor = 250 and p varying from 1 to 2 percent.
While the graphs only show the results of the rectangular
data sets with 2,000 and 3,000 points in 20 clusters, these
graphs are representative, as the appearances of the graphs
for small and medium data sets, and for the triangular data
sets are very similar.

Fig. 2a shows that the lower the value of p, the smaller the
amount of runtime CLARANS requires. And as expected,
Fig. 2b shows that a lower value of p produces a lower
quality clustering (i.e., higher (relative) average distance).
But, the very amazing feature shown in Fig. 2b is that the
quality is still within 5 percent from that produced by
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TABLE 1
Relative Runtime and Quality for the Data Set r2000-20
| numlocal l 1 ‘ 2 l 3 | 4 | B |
relative runtime 0.19 | 0.38 |06 078 |1

relative average distance | 1.029 | 1.009 | 1 1 1

setting maxneighbor = 10,000 (or by PAM). As an example,
if a maximum of p = 1.5% of neighbors are examined, the
quality is within 3 percent, while the runtime is only
40 percent. What that means is that examining 98.5 percent
more neighbors, while taking much longer, only produces
marginally better results. This is consistent with our earlier
statement that CLARANS with maxneigh = 10,000 gives
the same quality as PAM, which is effectively the same as
setting maxzneighbor = k(n — k) = 20(3000 — 20) = 59, 600.

The reason why so few neighbors need to be examined to
get good quality clusterings can be best illustrated by the
graph abstraction presented in Section 3.1. Recall that each
node has k(n — k) neighbors, making the graph very highly
connected. Consider two neighbors S;,5, of the current
node, and assume that S constitutes a path leading to a
certain minimum node S. Even if S; is missed by not being
examined and S; becomes the current node, there are still
numerous paths that connect S; to S. Of course, if all such
paths are not strictly downward (in cost) paths and may
include “hills” along the way, S will never be reached from
Ss. But, our experiments seem to indicate that the chance
that a hill exists on every path is very small.

To keep a good balance between runtime and quality, we
believe that a p value between 1.25 percent and 1.5 percent
is very reasonable. For all our later experiments with
CLARANS, we chose the value p = 1.25%.

3.3.3 Determining the Number of Local Minima

Recall that Algorithm CLARANS has two parameters:
maxneighbor and numlocal. Having dealt with the former,
here we focus on determining the value of numlocal. In this
series of experiments, we ran CLARANS with numlocal =
1,...,5 on data sets rn-k and tn-k for small, medium and
large values of n and k. For each run, we recorded the
runtime and the quality of the clustering. Table 1 (which is
typical of all data sets) shows the relative runtime and
quality for the data set r2000-20. Here, all the values are
normalized by those with numlocal = 5.

As expected, the runtimes are proportional to the
number of local minima obtained. As for the relative
quality, there is an improvement from numlocal =1 to
numlocal = 2. Performing a second search for a local
minimum seems to reduce the impact of “unlucky”
randomness that may occur in just one search. However,
setting numlocal larger than 2 is not cost-effective, as there
is little increase in quality. This is an indication that a
typical local minimum is of very high quality. We believe
that this phenomenon is largely due to, as discussed
previously, the peculiar nature of the abstract graph
representing the operations of CLARANS. For all our later
experiments with CLARANS, we used the version that
finds two local minima.
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3.4 Experimental Results: CLARANS versus PAM

In this series of experiments, we compared CLARANS with
PAM. As discussed in Section 3.3.2, for large and medium
data sets, it is obvious that CLARANS, while producing
clusterings of very comparable quality, is much more
efficient than PAM. Thus, our focus here was to compare
the two algorithms on small data sets. We applied both
algorithms to data sets with 40, 60, 80, and 100 points in
five clusters. Fig. 3 shows the runtime taken by both
algorithms. Note that, for all those data sets, the clusterings
produced by both algorithms are of the same quality (i.e.,
same average distance). Thus, the difference between the
two algorithms is determined by their efficiency. It is
evident from Fig. 3 that, even for small data sets, CLARANS
outperforms PAM significantly. As expected, the perfor-
mance gap between the two algorithms grows, as the data
set increases in size.

3.5 Experimental Results: CLARANS versus CLARA

In this series of experiments, we compared CLARANS with
CLARA. As discussed in Section 2.3, CLARA is not
designed for small data sets. Thus, we ran this set of
experiments on data sets whose number of objects exceeds
100. And the objects were organized in different number of
clusters, as well as in the two types of clusters described in
Section 3.3.1.

When we conducted this series of experiments running
CLARA and CLARANS as presented earlier, CLARANS is
always able to find clusterings of better quality than those
found by CLARA. However, in some cases, CLARA may
take much less time than CLARANS. Thus, we wondered
whether CLARA would produce clusterings of the same
quality if it was given the same amount of time. This leads
to the next series of experiments in which we gave both
CLARANS and CLARA the same amount of time. Fig. 4
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Fig. 4. Relative Quality: Same Time for CLARANS and CLARA.

shows the quality of the clusterings produced by CLARA,
normalized by the corresponding value produced by
CLARANS.

Given the same amount of time, CLARANS clearly
outperforms CLARA in all cases. The gap between
CLARANS and CLARA increases from 4 percent when £,
the number of clusters, is five to 20 percent when £ is 20.
This widening of the gap as k increases can be best
explained by looking at the complexity analyses of CLARA
and CLARANS. Recall from Section 2.3 that each iteration
of CLARA is of O(k* + nk). On the other hand, recall from
Section 3.3.2 that the cost of CLARANS is basically linearly
proportional to the number of objects.®> Thus, an increase in
k imposes a much larger cost on CLARA than on
CLARANS.

The above complexity comparison also explains why,
for a fixed number of clusters, the higher the number of
objects, the narrower the gap between CLARANS and
CLARA is. For example, when the number of objects is
1,000, the gap is as high as 30 percent. The gap drops to
around 20 percent as the number of object increases to
2,000. Since each iteration of CLARA is of O(k® + nk), the
first term k* dominates the second term. Thus, for a fixed k,
CLARA is relatively less sensitive to an increase in n. On
the other hand, since the cost of CLARANS is roughly
linearly proportional to n, an increase in n imposes a larger
cost on CLARANS than on CLARA. This explains why, for
a fixed k, the gap narrows as the number of objects

3. There is a random aspect and a nonrandom aspect to the execution of
CLARANS. The nonrandom aspect corresponds to the part that finds the
cost differential between the current node and its neighbor. This part, as
defined in (5) is linearly proportional to the number of objects in the data
set. On the other hand, the random aspect corresponds to the part that
searches for a local minimum. As the values to plot the graphs are average
values of 10 runs, which have the effect of reducing the influence of the
random aspect, the runtimes of CLARANS used in our graphs are largely
dominated by the nonrandom aspect of CLARANS.
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increases. Nonetheless, the bottom-line shown in Fig. 4 is
that CLARANS beats CLARA in all cases.

In sum, we have presented experimental evidence
showing that CLARANS is more efficient than PAM and
CLARA for small and large data sets. Our experimental
results for medium data sets (not included here) lead to the
same conclusion.

4 CLUSTERING CONVEX POLYGON OBJECTS

4.1 Motivation

As described in Section 3.3, all the experiments presented so
far assume that each object is represented as a point, in
which case standard distance metrics such as the Manhat-
tan distance and the Euclidean distance can be used to
calculate the distance between two objects/points. How-
ever, in practice, numerous spatial objects that we may
want to cluster are polygonal in nature, e.g., shopping
malls, parks. The central question then is how to calculate
the distance between two polygon objects efficiently and
effectively for clustering purposes. One obvious way to
approximate polygon objects is to represent each object by a
representative point, such as the centroid of the object.
However, in general, the objects being clustered may have
widely varied sizes and shapes. For instance, a typical
house in Vancouver may have a lot size of 200 square
meters and a rectangular shape, whereas Stanley Park in
Vancouver has a size of about 500,000 square meters and an
irregular shape that hugs the shoreline. Simply representing
each of these objects by its centroid, or any single point,
would easily produce clusterings of poor quality.

Given the above argument, one may wonder whether it
is sufficient to represent a polygon object by multiple points
in the object, e.g., points on the boundary of the object. But,
for large objects like Stanley Park, two of its representative
points may be 5,000 meters apart from each other. If these
two representative points are fed to CLARANS as individual
points/objects, there is no guarantee that they will be in the
same cluster. This would result in Stanley Park being
assigned to more than one cluster, thus violating the
partitioning requirement of the clustering algorithms.*

This motivates why, in this section, we study how
CLARANS (and for that matter, CLARA and PAM) can be
augmented to allow convex polygon objects—in their
entireties—to be clustered. The key question is how to
efficiently compute the distance between two polygons. To
answer this question, we study three different approaches.
The first one is based on computing the exact separation
distance between two convex polygon objects. The second
approach uses the minimum distance between vertices to
approximate the exact separation distance. The third
approach approximates by using the separation distance
between isothetic rectangles. We analyze the pros and cons,
and complexities of these approaches. Last but not least, we
propose a performance optimization that is based on
memoizing the computed distances. At the end of this
section, we will give experimental results evaluating the
usefulness of these ideas.

4. Note that there exist clustering algorithms that allow clusters to
overlap. However, here we are only concerned with the most standard kind
of clusterings, generally known as crisp clustering, where each object is
assigned to exactly one cluster.
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4.2 Calculating the Exact Separation Distance

In coordinate geometry, the distance between a point P and
a line L is defined as the minimum distance, in this case the
perpendicular distance, between the point and the line, i.e.,
min {d(P,Q) | Q is a point on L}. Thus, given two polygons
A, B, it is natural for us to define the distance between these
two polygons to be the minimum distance between any pair
of points in A, B, i.e., min {d(P,Q) | P,Q are points in A, B
respectively}. This distance is exactly the same as the
minimum distance between any pair of points on the
boundaries of A, B. This is called the separation distance
between the two polygons [9], [27].

We need two key steps to compute the separation
distance between two convex polygons A, B. First, we need
to determine whether A and B have any intersection. This
can be done in O(log n + log m) time where n,m denotes
the number of vertices A and B have [27]. (A vertix of a
polygon is the intersection point between two edges of the
polygon.) If the two polygons intersect, then the separation
distance is zero. Otherwise, we compute the separation
distance between the two boundaries. This again can be
done in O(logn + log m) time [9], [21].

While there exist different algorithms that compute the
separation distance and that have the same O(logn +
log m) complexity, we have chosen and implemented one of
the most efficient such algorithms that is reported in [21].
Instead of trying all vertices and edges on the boundaries of
the two polygons, this algorithm first identifies two chains
of vertices and consecutive line segments (one chain from
each polygon) that “face” each other in the sense that a
vertex in either chain can “see” at least one vertex in the
other chain. If P is a vertex in A and () a vertex in B, we say
that P and @ “see” each other if the line segment joining P
and @ does not intersect the interior of either polygon.’
Thus, by definition, the separation distance of the two
polygons must be the minimum distance between any pair
of points (not necessarily vertices) on the two chains. By
taking a binary search strategy, the algorithm finds the
latter distance.

4.3 Approximating by the Minimum Distance
between Vertices

One way to approximate the exact separation distance
between two polygons is to find the minimum distance
between the vertices of the polygons, i.e., min {d(P,Q) | P,

5. This definition ignores any object that may lie between A and B.

are vertices of A, B respectively}. Hereafter, we refer to this
approximation as the MV-approximation. Obviously, the
MV-approximation requires a time complexity of O(n * m).
Even though from a complexity point of view, this
approximation is inferior to the algorithm described above
that computes the exact separation distance in practice, it
usually outperforms the exact algorithm, unless when the
values of n and m are moderately high, e.g., exceeding 20.
For many spatial data mining applications, it is sufficient to
represent most spatial objects with fewer than 20 vertices
and edges. This justifies using the MV-approximation to
optimize performance. Section 4.6.2 will give experimental
results on the efficiency of the MV-approximation.

Fig. 5a shows a simple example demonstrating that the
separation distance between two polygons need not be
equal to the minimum distance between vertices. How-
ever, it is easy to see that the separation distance cannot
exceed the minimum distance between vertices. Thus, the
MV-approximation always overestimates the actual
separation distance. From the point of view of clustering
objects by their MV-approximations, the key question is
whether such overestimations would affect the (quality of
the) clusterings.

Recall from Section 4.1 that we argue that using just the
centroid to represent an object could produce clusterings of
poor quality. And the distance between the centroids of A and
Balways overestimates the actual separation distance. At this
point, one may wonder whether the overestimation by
centroid distance and the MV-approximation have similar
effects. The key difference is that the former, depending
largely on the sizes and shapes of the polygons, gives
“nonuniform” approximations, whereas the latter is more
consistent in its approximations. In Fig. 5b, B is closer to C
than to A based on their exact separation distances. Whereas
the centroid distance between A and B is fairly close to the
separation distance it approximates, the centroid distance
between B and C is many times higher than the actual
separation distance between Band C'. In fact, by their centroid
distances, B is closer to A than to C, thus reversing the
ordering induced by their separation distances. In general, ifa
collection of objects has widely varied sizes and shapes, the
centroid distance approximation would produce poor clus-
terings (relative to the clusterings produced by using the
separation distances). On the other hand, for the example
shown in Fig. 5b, the MV-approximation preserves the
ordering that B is closer to C than to A. Certainly, an
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approximation is an approximation and it is not hard to
construct situations where the MV-approximation can be
inaccurate. However, by trying the approximation on
numerous polygon objects that can be found in real maps,
we have verified that the MV-approximation is reasonable
and is much less susceptible to variations in sizes and shapes
than the centroid distance approximation is. Section 4.6.4 will
give experimental results on the quality of the clusterings
produced by the MV-approximation.

4.4 Approximating by the Separation Distance
between Isothetic Rectangles

Another way to approximate the exact separation distance
between two polygons A,B is to 1) compute isothetic
rectangles I4,Ip and 2) calculate the separation distance
between I, and Ip. Given a polygon A, the isothetic
rectangle I4 is the smallest rectangle that contains A, and
whose edges are parallel to either the x- or the y-axes.
Hereafter, we refer to this approximation to the exact
separation distance as the IR-approximation.

For any given polygon A, a minimum bounding
rectangle of A is defined to be the smallest rectangle—in
area—that contains A. As such, a minimum bounding
rectangle need not have its edges parallel to either the x- or
the y-axes. Precisely because of this, it is relatively costly to
compute a minimum bounding rectangle. In contrast, the
isothetic rectangle, while possibly having an area larger
than that of a minimum bounding rectangle, can be easily
obtained by finding the minimum and maximum of the
sets {v | v is the x-coordinate of a vertex of the polygon}, and
{w | w is the y-coordinate of a vertex of the polygon }. Thus,
Step 1 of the IR-approximation takes a trivial amount of
time to compute.

Like computing the exact separation distance between
two polygons, as described in Section 4.2, calculating the
exact separation distance between two isothetic rectangles
requires two steps. In the first step where possible
intersection is checked, it only takes constant time for
isothetic rectangles, but time logarithmic to the number of
vertices for polygons. Similarly, in the next step where the
actual separation distance is computed (necessary when the
two rectangles or polygons do not intersect), it is constant
time for isothetic rectangles, but logarithmic time for
polygons. In particular, for isothetic rectangles, it suffices
to call repeatedly a procedure that computes the distance
between a point and a line segment. Thus, Step 2 of the
IR-approximation can be done efficiently. And the
IR-approximation can be used to reduce the time otherwise
needed to compute the exact separation distance.

From efficiency to effectiveness, just as we evaluate in
the previous section how the MV-approximation affects the
quality of the clusterings, here we should ask a similar
question. On one hand, the IR-approximation is different
from the MV-approximation in that the former always
underestimates the actual separation distance between the
original polygons. This is because the isothetic rectangle of
a polygon contains the polygon. On the other hand, like the
MV-approximation, so long as the IR-approximation
underestimates all polygons being clustered fairly uni-
formly, the clusterings produced would be of comparable
quality to those produced by using the exact separation
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distances. Section 4.6.4 will give experimental results
comparing the quality of the clusterings produced by these
two approaches.

So far, we have portrayed the IR-approximation (and the
MV-approximation) as a performance optimization to
computing the exact separation distance. Actually, there is
another advantage being offered by the IR-approximation
(and the MV-approximation). That is, it does not require the
original polygon to be convex. As described above, the
definition of the isothetic rectangle of a polygon applies
equally well to convex and nonconvex polygons. Thus,
when integrated with the IR-approximation, CLARANS can
be used to cluster any polygons. In contrast, the method
described in Section 4.2 only works for convex polygons,
thereby also restricting CLARANS to convex polygons.

4.5 Memoization of Exact and Approximated
Distances

Recall from previous sections that, for any pair of objects
Oy, 0;, the distance d(O,,,0;) between the two objects
may be referenced numerous times in an execution of
CLARANS. When the objects are merely points, this
distance can be computed dynamically each time it is
needed. This is sufficient because calculating the Manhat-
tan or the Euclidean distance is a simple operation that
takes microseconds to complete.

The situation is, however, very different when the
objects being clustered are polygons. As will be shown
experimentally in Section 4.6.2, calculating the similarity
between two polygons, even when the IR-approximation
or the MV-approximation is used, still takes milliseconds
to complete. Since the distance d(O,,,O;) may be needed
repeatedly, it makes sense to, once computed, memoize
the distance. This would ensure that the distance between
each pair of polygon objects is computed at most once.
Clearly, this memoization strategy trades off space for
time efficiency. Section 4.6.5 will give experimental results
evaluating whether memoization is valuable, and whether
this tradeoff is worthwhile.

4.6 Experimental Evaluation

4.6.1 Details of the Experiments

Recall that both the MV-approximation and the IR-
approximation are applicable to calculating the separation
distance between nonconvex polygons. But, because the
method described in Section 4.2 only works for convex
polygons, all our experiments are restricted to polygon
objects that are convex. To generate random polygons of
different shapes, sizes, and orientations, we used the convex
polygon generator developed by Snoeyink for testing some
of the ideas reported in [21]. The generator computes and
outputs n evenly-spaced points on an ellipse with center
(ctrz, ctry), starting with angle of fset, and having major
and minor axes parallel to the x- and y-axes with radii r;, rs,
respectively, where n, ctrz, ctry, of fset,ri,ry are all inputs
to the generator. We used a random number generator to
create all these inputs, in such a way that all generated
polygons lie in a rectangular region with length ! and width
w. By varying the values of [ and w, we can generate sets of
polygons with different densities and, thus, with different
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Fig. 6. Efficiency of the approximations.

proportions of polygons that overlap with some other
polygons in the set.

All the experiments reported here were carried out in a
time-sharing SPARC-LX workstation. Whenever CLARANS
was used, all figures concerning CLARANS, due to its
random nature, were average figuress obtained by running
the same experiment 10 times.

4.6.2 Efficiency: Exact Distance versus
IR-Approximation versus MV-Approximation

In this series of experiments, we used polygons with
different numbers of vertices and recorded the average
amount of runtime needed to calculate the exact separation
distance, its IR-approximation, and its MV-approximation
for one pair of polygons. Fig. 6 shows the results with the
runtimes recorded in milliseconds.

The IR-approximation approach is the clear winner in
that it always outperforms the exact separation distance
approach, that it beats the MV-approximation approach by
a wide margin when the number of vertices is high, and
that, even when the number of vertices is small, it delivers a
performance competitive with that of the MV-approxima-
tion approach. Recall from Section 4.4 that two steps are
needed to compute the IR-approximation. The first step is to
compute the isothetic rectangles, which has a complexity of
O(n). The second step is to compute the separation distance
between the isothetic rectangles, which has a complexity of
O(1). The flatness of the curve for the IR-approximation in
Fig. 6 clearly shows that the second step dominates the first
one. Thus, as a whole, the IR-approximation does not vary
as the number of vertices increases.

In contrast, both the exact separation distance and the
MV-approximation require higher runtimes as the number
of vertices increases. When the number of vertices is less
than 20, calculating the exact separation distance takes more
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time than the MV-approximation does. But, the reverse is
true when the number of vertices exceeds 20. In other
words, the runtime for the MV-approximation grows faster
than that for computing the exact separation distance. This
is consistent with the complexity results presented in
Sections 4.2 and 4.3.

4.6.3 Clustering Effectiveness: Exact Distance versus
IR-Approximation versus MV-Approximation

While the previous series of experiments do not involve
clustering, in this series of experiments, CLARANS was
integrated with the three different ways to calculate
distances between polygons. Because the number of vertices
of polygons is a parameter that affects the performance of
the three approaches, we ran CLARANS with sets of n-sided
polygons where n varies from 4 to 20, and with a random
mix of polygons, each of which has between 4 to 20 edges.
For this series of experiments, we focus on both clustering
effectiveness and efficiency.

Regarding the effectiveness of the two approximations
relative to the exact distance approach, recall that the
IR-approximation always underestimates the exact dis-
tance, while the MV-approximation always overestimates
it. Thus, it is not appropriate to simply measure the
effectiveness based on the average approximated distance
between a polygon and the medoid of its cluster. Instead,
we compare the clusters produced by the exact distance
approach and the clusters produced by the two approxima-
tions. More precisely, for a particular polygon A, we
calculate the ratio:

the exact distance between A and M, divided by the exact
distance between A and My,

where M, is the medoid of the cluster A is assigned to
using the approximation and M, is the corresponding
medoid using exact distance. The closer to 1 the ratio is, the
more accurate the approximation.

As it turns out for almost every set of polygons we
experimented with, over 90 percent of the polygons satisfy
M, = M,. That is to say, despite the approximations, the
clustering structures are very much preserved. Further-
more, Table 2 shows the aforementioned ratio average over
all polygons A.

The quality of the clusterings produced by the
IR-approximation and the MV-approximation is almost
identical to the quality of the clustering produced by using
the exact separation distance, differing by about 2-3 percent.
This clearly shows that the two approximations are very
effective, as they underestimate or overestimate the actual
distances so consistently that the clusters are preserved.
Thus, using the IR-approximation and the MV-approxima-
tion as ways to optimize performance is justified.

4.6.4 Clustering Efficiency: Exact Distance versus
IR-approximation versus MV-approximation

Next, we consider the efficiency of the two approximations
relative to the exact distance approach. Fig. 7 shows the
times needed by CLARANS to cluster a varying number of
polygons that have 10 edges and a varying number of
polygons that have between 4 to 20 edges. In both cases, the
IR-approximation and the MV-approximation considerably
outperform the exact separation distance approach. In
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TABLE 2
The Ratio Average over All Polygons A

Approach Average Ratio
MV-approximation 1.02
IR-approximation 1.03

particular, the IR-approximation is always the most
efficient, requiring only about 30 percent to 40 percent the
time needed by the exact distance approach.

Other sets of polygons that we experimented with,
including some that have varying densities, also give the
same conclusion. Thus, given the fact that the IR-approx-
imation is capable of delivering clusterings that are of
almost identical quality to those produced by the exact
approach, the IR-approximation is the definite choice for
CLARANS. Other experiments we conducted indicate that
same conclusion can be drawn if PAM and CLARA were to
use to cluster polygon objects.

4.6.5 Effectiveness of Memoizing Computed Distances
While the graphs in Fig. 7 identify the IR-approximation
approach as the clear winner, the performance results of the
approximation is disappointing. For example, it takes about
1,000 seconds to cluster 100 polygons. Recall from Fig. 6 that
the IR-approximation for one pair of polygons takes two to
three milliseconds. For 100 polygons, there are 100*100/2 =
5,000 pairs of polygons. These 5,000 distances take a total of
10 to 15 seconds to compute. Thus, what is happening is
that the distance between each pair of polygons is
computed on the average 60 to 100 times. This argues very
strongly why computed distances should be memoized as a
performance optimization. Fig. 8 shows the results of
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applying memoization to the same set of polygons used
in Fig. 7b. Indeed, with memoization, the time taken to
cluster 100 polygons with the IR-approximation drops to
about 10 seconds, as estimated above. Similar performance
gains are obtained if either the exact separation distance or
the MV-approximation are used.

4.7 Summary
Regarding how to compute the similarities between
objects, our experimental results clearly indicate that the
IR-approximation approach is the choice. While only
approximating the exact separation distance, the
IR-approximation approach can deliver clusterings of
almost identical quality to the clusterings produced by
the exact distance approach. The decisive factor is then
the efficiency of the IR-approximation approach. It has
the desirable property that its computation time does not
vary with the number of vertices of the polygon objects
and that it outperforms the exact distance approach
typically by three to four times. Furthermore, it can be
used for both convex and nonconvex polygon objects.
While the material in this section focuses on collections
of objects that are all polygons, the results can be easily
generalized to heterogeneous collections of objects, where
some objects are polygons and the remaining ones are
points. For such collections, the similarity between a point
and a polygon can be defined as the distance between the
point and the isothetic rectangle of the polygon. This
distance can be computed in constant time.

5 CONCLUSIONS

In this paper, we have presented a clustering algorithm
called CLARANS which is based on randomized search. For
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Fig. 7. Clustering efficiency of the approximations. (a) 10-Sided polygons. (b) 4-to-20-Sided polygons.
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small data sets, CLARANS is a few times faster than PAM;
the performance gap for larger data sets is even larger.
When compared with CLARA, CLARANS has the advan-
tage that the search space is not localized to a specific
subgraph chosen a priori, as in the case of CLARA.
Consequently, when given the same amount of runtime,
CLARANS can produce clusterings that are of much better
quality than those generated by CLARA.

We have also studied how polygon objects can be
clustered by CLARANS. We have proposed three different
ways to compute the distance between two polygons.
Complexity and experimental results indicate that the
IR-approximation is a few times faster than the method
that computes the exact separation distance. Furthermore,
experimental results show that despite the much smaller
runtime, the IR-approximation is able to find clusterings
that are of quality almost as good as those produced by
using the exact separation distances. In other words, the
IR-approximation can give significant efficiency gain—but
without loss of effectiveness.

In ongoing work, we are developing a package that
uses clustering as a basis for providing many operations
for mining spatial data. The spatial data mining algo-
rithms SD(CLARANS) and NSD(CLARANS) described in
[25] are two examples. There are also operations for
mining with maps [32].
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