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Abstract
Several clustering algorithms can be applied to clustering in
large multimedia databases. The e�ectiveness and e�ciency
of the existing algorithms, however, is somewhat limited,
since clustering in multimedia databases requires cluster-
ing high-dimensional feature vectors and since multimedia
databases often contain large amounts of noise. In this pa-
per, we therefore introduce a new algorithm to clustering
in large multimedia databases called DENCLUE (DENsity-
based CLUstEring). The basic idea of our new approach is
to model the overall point density analytically as the sum
of inuence functions of the data points. Clusters can then
be identi�ed by determining density-attractors and clusters
of arbitrary shape can be easily described by a simple equa-
tion based on the overall density function. The advantages
of our new approach are (1) it has a �rmmathematical basis,
(2) it has good clustering properties in data sets with large
amounts of noise, (3) it allows a compact mathematical de-
scription of arbitrarily shaped clusters in high-dimensional
data sets and (4) it is signi�cantly faster than existing algo-
rithms. To demonstrate the e�ectiveness and e�ciency of
DENCLUE, we perform a series of experiments on a num-
ber of di�erent data sets from CAD and molecular biology.
A comparison with DBSCAN shows the superiority of our
new approach.
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1 Introduction

Because of the fast technological progress, the amount
of data which is stored in databases increases very fast.
The types of data which are stored in the computer be-
come increasingly complex. In addition to numerical
data, complex 2D and 3D multimedia data such as im-
age, CAD, geographic, and molecular biology data are
stored in databases. For an e�cient retrieval, the com-
plex data is usually transformed into high-dimensional
feature vectors. Examples of feature vectors are color
histograms [SH94], shape descriptors [Jag91, MG95],
Fourier vectors [WW80], text descriptors [Kuk92], etc.
In many of the mentioned applications, the databases
are very large and consist of millions of data objects
with several tens to a few hundreds of dimensions.
Automated knowledge discovery in large multimedia

databases is an increasingly important research issue.
Clustering and trend detection in such databases, how-
ever, is di�cult since the databases often contain large
amounts of noise and sometimes only a small portion
of the large databases accounts for the clustering. In
addition, most of the known algorithms do not work ef-
�ciently on high-dimensional data.The methods which
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are applicable to databases of high-dimensional fea-
ture vectors are the methods which are known from
the area of spatial data mining. The most promi-
nent representatives are partitioning algorithms such
as CLARANS [NH94], hierarchical clustering algo-
rithms,and locality-based clustering algorithms such
as (G)DBSCAN [EKSX96, EKSX97] and DBCLASD
[XEKS98]. The basic idea of partitioning algorithms

is to partition the database into k clusters which are
represented by the gravity of the cluster (k-means) or
by one representative object of the cluster (k-medoid).
Each object is assigned to the closest cluster. A well-
known partitioning algorithm is CLARANS which uses
a randomized and bounded search strategy to improve
the performance. Hierarchical clustering algorithms de-
compose the database into several levels of partition-
ings which are usually represented by a dendrogram - a
tree which splits the database recursively into smaller
subsets. The dendrogram can be created top-down (di-
visive) or bottom-up (agglomerative). Although hier-
archical clustering algorithms can be very e�ective in
knowledge discovery, the costs of creating the dendro-
grams is prohibitively expensive for large data sets since
the algorithms are usually at least quatratic in the num-
ber of data objects. More e�cient are locality-based
clustering algorithms since they usually group neighbor-
ing data elements into clusters based on local conditions
and therefore allow the clustering to be performed in
one scan of the database. DBSCAN, for example, uses
a density-based notion of clusters and allows the discov-
ery of arbitrarily shaped clusters. The basic idea is that
for each point of a cluster the density of data points in
the neighborhood has to exceed some threshold. DB-
CLASD also works locality-based but in contrast to DB-
SCAN assumes that the points inside of the clusters
are randomly distributed, allowing DBCLASD to work
without any input parameters. A performance compar-
ison [XEKS98] shows that DBSCAN is slightly faster
than DBCLASD and both, DBSCAN and DBCLASD
are much faster than hierarchical clustering algorithms
and partitioning algorithms such as CLARANS. To
improve the e�ciency, optimized clustering techniques
have been proposed. Examples include R*-Tree-based
Sampling [EKX95], Grid�le-based clustering [Sch96],
BIRCH [ZRL96] which is based on the Cluster-Feature-
tree, and STING which uses a quadtree-like structure
containing additional statistical information [WYM97].

A problem of the existing approaches in the con-
text of clustering multimedia data is that most algo-
rithms are not designed for clustering high-dimensional
feature vectors and therefore, the performance of ex-



isting algorithms degenerates rapidly with increasing
dimension. In addition, few algorithms can deal with
databases containing large amounts of noise, which is
quite common in multimedia databases where usually
only a small portion of the database forms the interest-
ing subset which accounts for the clustering. Our new
approach solves these problems. It works e�ciently for
high-dimensional data sets and allows arbitrary noise
levels while still guaranteeing to �nd the clustering. In
addition, our approach can be seen as a generalization
of di�erent previous clustering approaches { partioning-
based, hierarchical, and locality-based clustering. De-
pending on the parameter settings, we may initalize our
approach to provide similar (or even the same) results
as di�erent other clustering algorithms, and due to its
generality, in same cases our approach even provides a
better e�ectiveness. In addition, our algorithm works
e�ciently on very large amounts of high-dimensional
data, outperforming one of the fastest existing meth-
ods (DBSCAN) by a factor of up to 45.
The rest of the paper is organized as follows. In sec-

tion 2, we introduce the basic idea of our approach and
formally de�ne inuence functions, density functions,
density-attractors, clusters, and outliners. In section 3,
we discuss the properties of our approach, namely its
generality and its invariance with respect to noise. In
section 4, we then introduce our algorithm including its
theoretical foundations such as the locality-based den-
sity function and its error-bounds. In addition, we also
discuss the complexity of our approach. In section 5,
we provide an experimental evaluation comparing our
approach to previous approaches such as DBSCAN. For
the experiments, we use real data from CAD and molec-
ular biology. To show the ability of our approach to deal
with noisy data, we also use synthetic data sets with a
variable amount of noise. Section 6 summarizes our re-
sults and discusses their impact as well as important
issues for future work.

2 A General Approach to Clustering

Before introducing the formal de�nitions required for
describing our new approach, in the following we �rst
try to give a basic understanding of our approach.

2.1 Basic Idea

Our new approach is based on the idea that the inu-
ence of each data point can be modeled formally using
a mathematical function which we call inuence func-
tion. The inuence function can be seen as a func-
tion which describes the impact of a data point within
its neighborhood. Examples for inuence functions are
parabolic functions, square wave function, or the Gaus-
sian function. The inuence function is applied to each
data point. The overall density of the data space can
be calculated as the sum of the inuence function of
all data points. Clusters can then be determined math-
ematically by identifying density-attractors. Density-
attractors are local maxima of the overall density func-
tion. If the overall density function is continuous and

di�erentiable at any point, determining the density-
attractors can be done e�ciently by a hill-climbing pro-
cedure which is guided by the gradient of the overall
density function. In addition, the mathematical form of
the overall density function allows clusters of arbitrary
shape to be described in a very compact mathematical
form, namely by a simple equation of the overall density
function. Theoretical results show that our approach is
very general and allows di�erent clusterings of the data
(partition-based, hierarchical, and locality-based) to be
found. We also show (theoretically and experimentally)
that our algorithm is invariant against large amounts of
noise and works well for high-dimensional data sets.
The algorithmDENCLUE is an e�cient implementa-

tion of our idea. The overall density function requires to
sum up the inuence functions of all data points. Most
of the data points, however, do not actually contribute
to the overall density function. Therefore, DENCLUE
uses a local density function which considers only the
data points which actually contribute to the overall den-
sity function. This can be done while still guaranteeing
tight error bounds. An intelligent cell-based organiza-
tion of the data allows our algorithm to work e�ciently
on very large amounts of high-dimensional data.

2.2 De�nitions

We �rst have to introduce the general notion of inu-
ence and density functions. Informally, the inuence
functions are a mathematical description of the inu-
ence a data object has within its neighborhood. We
denote the d-dimensional feature space by F d. The den-
sity function at a point x 2 F d is de�ned as the sum of
the inuence functions of all data objects at that point
(cf. [Schn64] or [FH 75] for a similar notion of density
functions).

Def. 1 (Inuence & Density Function)
The inuence function of a data object y 2 F d is a
function f

y
B : F d �! R+

0 which is de�ned in terms of a
basic inuence function fB

f
y
B(x) = fB(x; y):

The density function is de�ned as the sum of the in-
uence functions of all data points. Given N data
objects described by a set of feature vectors D =
fx1; : : : ; xNg � F d the density function is de�ned as

fDB (x) =

NX
i=1

fxiB (x):

In principle, the inuence function can be an arbitrary
function. For the de�ntion of speci�c inuence func-
tions, we need a distance function d : F d � F d �! R+

0

which determines the distance of two d-dimensional fea-
ture vectors. The distance function has to be reexive
and symmetric. For simplicity, in the following we as-
sume a Euclidean distance function. Note, however,
that the de�nitions are independent from the choice of
the distance function. Examples of basic inuence func-
tions are:
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(a) Data Set (b) Square Wave (c) Gaussian

Figure 1: Example for Density Functions
1. Square Wave Inuence Function

fSquare(x; y) =

�
0 if d(x; y) > �

1 otherwise

2. Gaussian Inuence Function

fGauss(x; y) = e�
d(x;y)2

2�2

The density function which results from a Gaussian in-
uence function is

fDGauss(x) =

NX
i=1

e�
d(x;xi)

2

2�2 :

Figure 1 shows an example of a set of data points in 2D
space (cf. �gure 1a) together with the corresponding
overall density functions for a square wave (cf. �gure
1b) and a Gaussian inuence function (cf. �gure 1c).
In the following, we de�ne two di�erent notions of clus-
ters { center-de�ned clusters (similar to k-means clus-
ters) and arbitrary-shape clusters. For the de�nitions,
we need the notion of density-attractors. Informally,
density attrators are local maxima of the overall den-
stiy function and therefore, we also need to de�ne the
gradient of the density function.

Def. 2 (Gradient)
The gradient of a function fDB (x) is de�ned as

rfDB (x) =

NX
i=1

(xi � x) � fxiB (x):

In case of the Gaussian inuence function, the gradient
is de�ned as:

rfDGauss(x) =
NX
i=1

(xi � x) � e�d(x;xi)
2

2�2 :

In general, it is desirable that the inuence function
is a symmetric, continuous, and di�erentiable function.
Note, however, that the de�nition of the gradient is
independent of these properties. Now, we are able to
de�ne the notion of density-attractors.

Def. 3 (Density-Attractor)
A point x� 2 F d is called a density-attractor for a
given inuence function, i� x� is a local maxium of the
density-function fDB .

A point x 2 F d is density-attracted to a density-
attractor x�, i� 9k 2 N : d(xk ; x�) � � with

x0 = x; xi = xi�1 + � � rf
D
B (xi�1)

krfDB (xi�1)k :
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Figure 2: Example of Density-Attractors

Figure 2 shows an example of density-attrators in a one-
dimensional space. For a continuous and di�erentiable
inuence function, a simple hill-climbing algorithm can
be used to determine the density-attractor for a data
point x 2 D. The hill-climbing procedure is guided by
the gradient of fDB .
We are now are able to introduce our de�nitions of clus-
ters and outliers. Outliers are points, which are not
inuenced by "many" other data points. We need a
bound � to formalize the "many".

Def. 4 (Center-De�ned Cluster)
A center-de�ned cluster (wrt to �,�) for a density-
attractor x� is a subset C � D, with x 2 C being
density-attracted by x� and fDB (x�) � �. Points x 2 D
are called outliers if they are density-attraced by a local
maximum x�o with fDB (x�o) < �.

This de�nition can be extended to de�ne clusters of
arbitrary shape.

Def. 5 (Arbitrary-Shape Cluster)
An arbitrary-shape cluster (wrt �,�) for the set of
density-attractors X is a subset C � D, where
1. 8x 2 C 9x� 2 X : fDB (x�) � �, x is density-attracted

to x� and

2. 8x�1; x�2 2 X : 9 a path P � F d from x�1 to x�2 with
8p 2 P : fDB (p) � �.

Figure 3 shows examples of center-de�ned clusters for
di�erent �. Note that the number of clusters found by
our approach varies depending on �. In �gures 4a and
4c, we provide examples of the density function together
with the plane for di�erent �. Figures 4b and 4d show
the resulting arbitrary-shape clusters. The parameter
� describes the inuence of a data point in the data
space and � describes when a density-attractor is sig-
ni�cant. In subsection 3.3, we discuss the e�ects of the
parameters � and � and provide a formal procedure of
how to determine the parameters.
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(a) � = 0:2 (b) � = 0:6 (d) � = 1:5

Figure 3: Example of Center-De�ned Clusters for di�erent �
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(a) � = 2 (b) � = 2 (c) � = 1 (d) � = 1

Figure 4: Example of Arbitray-Shape Clusters for di�erent �

3 Properties of Our Approach

In the following subsections we discuss some impor-
tant properties of our approach including its generality,
noise-invariance, and parameter settings.

3.1 Generality

As already mentioned, our approach generalizes other
clustering methods, namely partition-based, hierarchi-
cal, and locality-based clustering methods. Due the
wide range of di�erent clustering methods and the given
space limitations, we can not discuss the generality of
our approach in detail. Instead, we provide the basic
ideas of how our approach generalizes some other well-
known clustering algorithms.
Let us �rst consider the locality-based clustering algo-
rithm DBSCAN. Using a square wave inuence func-
tion with � =EPS and an outlier-bound � =MinPts,
the abitary-shape clusters de�ned by our method (c.f.
de�nition 5) are the same as the clusters found by DB-
SCAN. The reason is that in case of the square wave
inuence function, the points x 2 D : fD(x) > � satisfy
the core-point condition of DBSCAN and each non-core
point x 2 D which is directly density-reachable from a
core-point xc is attracted by the density-attractor of
xc. An example showing the identical clustering of DB-
SCAN and our approach is provided in �gure 5. Note
that the results are only identical for a very simple in-
uence function, namely the square wave function.

 

 

(a) DBSCAN (b) DENCLUE

Figure 5: Generality of our Approach

To show the generality of our approach with respect to
partition-based clustering methods such as the k-means
clustering, we have to use a Gaussian inuence function.
If � of de�nition 3 equals to �=2, then there exists a
� such that our approach will �nd k density-attractors
corresponding to the k mean values of the k-means clus-
tering, and the center-de�ned clusters (cf. de�nition 4)
correspond to the k-means clusters. The idea of the
proof of this property is based on the observation that
by varying the � we are able to obtain between 1 andN�

clusters (N� is the number of non-identical data points)
and we therefore only have to �nd the appropriate � to
obtain a corresponding k-means clustering. Note that
the results of our approach represent a globally optimal
clustering while most k-means clustering methods only
provide a local optimum of partitioning the data set D
into k clusters. The results k-means clustering and our
approach are therefore only the same if the k-means
clustering provides a global optimum.

The third class of clustering methods are the hierarchi-
cal methods. By using di�erent values for � and the
notion of center-de�ned clusters according to de�nition
5, we are able to generate a hierarchy of clusters. If we
start with a very small value for �, we obtain N� clus-
ters. By increasing the �, density-attractors start to
merge and we get the next level of the hierarchy. If we
further increase �, more and more density-attractors
merge and �nally, we only have one density-atractor
representing the root of our hierarchy.

3.2 Noise-Invariance

In this subsection, we show the ability of our approach
to handle large amounts of noise. Let D � F d be a
given data set and DSD (data space) the relevant por-
tion of F d. Since D consists of clusters and noise, it can
be partitioned D = DC [DN , where DC contains the
clusters and DN contains the noise (e.g., points that are



uniformly distributed in DSD). Let X = fx�1; : : : ; x�kg
be the canonically ordered set of density-attractors be-
longing to D (wrt �; �) and XC = fx̂�1; : : : ; x̂�k̂g the den-
sity attractors for DC (wrt �; �c) with � and �c being
adequately chosen, and let kSk denote the cardinality
of S. Then, we are able to show the following lemma.

Lemma 1 (Noise-Invariance)
The number of density-attractors of D and DC is the
same and the probability that the density-attractors re-
main identical goes against 1 for kDNk ! 1. More
formally,

kXk = kXCk and

lim
kDNk!1

�
P (

kXkX
i=1

d(x�i ; x̂
�

i ) = 0)

�
= 1:

Idea of the Proof: The proof is based on the fact, that

the normalized density ~fDN of a uniformly distributed

data set is nearly constant with ~fDN = c (0 < c � 1).
According to [Schu70] and [Nad65],

lim
kDNk!1

sup
y2DSD

����c� 1

kDNk
p
2��2

d
fDN (y)

���� = 0

for any � > 0. So the density distribution of D can
approximated by

fD(y) = fDC (y) + kDNk
p
2��2

d � c
for any y 2 DSD. The second portion of this formula
is constant for a given D and therefore, the density-
attractors de�nded by fDC

do not change. �

3.3 Parameter Discussion
As in most other approaches, the quality of the result-
ing clustering depends on an adequate choice of the
parameters. In our approach, we have two important
parameters, namely � and �. The parameter � deter-
mines the inuence of a point in its neighborhood and �
describes whether a density-attractor is signi�cant, al-
lowing a reduction of the number of density-attractors
and helping to improve the performance. In the follow-
ing, we describe how the parameters should be chosen
to obtain good results.
Choosing a good � can be done by considering di�erent
� and determining the largest interval between �max

and �min where the number of density-attractors m(�)
remains constant. The clustering which results from
this approach can be seen as naturally adapted to the
data-set. In �gure 6, we provide an example for the
number of density-attractors depending on �.

σ

m( )σ

Figure 6:
Number of Density-Attractors depending on �

The parameter � is the minimum density level for a
density-attractor to be signi�cant. If � is set to zero, all
density-attractors together with their density-attracted
data points are reported as clusters. This, however, is
often not desirable since { especially in regions with a
low density { each point may become a cluster of its
own. A good choice for � helps the algorithm to focus
on the densely populated regions and to save computa-
tional time. Note that only the density-attractors have
to have a point-density � �. The points belonging to
the resulting cluster, however, may have a lower point-
density since the algorithm assigns all density-attracted
points to the cluster (cf. de�nition 4). But what is a
good choice for �? If we assume the database D to
be noise-free, all density-attractors of D are signi�cant
and � should be choosen in 0 � � � min

x�2X
ffD(x�)g.

In most cases the database will contain noise (D =
DC [ DN ; cf. subsection 3.2). According to lemma
1, the noise level can be described by the constant

kDNk �
p
2��2

d
and therefore, � should be chosen in

kDNk �
p
2��2

d � � � min
x�2X

ffDC (x�)g:

Note that the noise level also has an inuence on the
choice of �. If the di�erence of the noise level and the
density of small density-attractors is large, then there
is a large intervall for choosing �.

4 The Algorithm

In this section, we describe an algorithm which imple-
ments our ideas described in sections 2 and 3. For an
e�cient determination of the clusters, we have to �nd
a possibility to e�ciently calculate the density function
and the density-attractors. An important observation
is that to calculate the density for a point x 2 F d,
only points of the data set which are close to x actu-
ally contribute to the density. All other points may be
neglected without making a substantial error. Before
describing the details of our algorithm, in the following
we �rst introduce a local variant of the density function
together with its error bound.

4.1 Local Density Function

The local density function is an approximation of the
overall density function. The idea is to consider the in-
uence of nearby points exactly whereas the inuence of
far points is neglected. This introduces an error which
can, however, be guaranteed to be in tight bounds. To
de�ne the local density function, we need the function
near(x) with x1 2 near(x) : d(x1; x) � �near . Then,
the local density is de�ned as follows.

Def. 6 (Local Density Function)

The local density f̂D(x) is

f̂D(x) =
X

x12near(x)

fx1B (x) :

The gradient of the local density function is de�ned
similar to de�nition 2. In the following, we assume that



�near = k�. An upper bound for the error made by us-

ing the local density function f̂D(x) instead of the real
density function fD(x) is given by the following lemma.

Lemma 2 (Error-Bound)
If the points xi 2 D : d(xi; x) > k� are neglected, the
error is bound by

Error =
X

xi2D; d(xi;x)>k�

e�
d(xi;x)

2

2�2

� kfxi 2 Djd(xi; x) > k�gk � e�k2=2:
Idea of the Proof: The error-bound assumes that all
points are on a hypersphere of k� around x. �
The error-bound given by lemma 5 is only an upper
bound for the error made by the local density function.
In real data sets, the error will be much smaller since
many points are much further away from x than k�.

4.2 The DENCLUE Algorithm
The DENCLUE algorithm works in two steps. Step
one is a preclustering step, in which a map of the rel-
evant portion of the data space is constructed. The
map is used to speed up the calculation of the density
function which requires to e�ciently access neighbor-
ing portions of the data space. The second step is the
actual clustering step, in which the algorithm identi�es
the density-attractors and the corresponding density-
attracted points.
Step 1: The map is constructed as follows. The mini-
mal bounding (hyper-)rectangle of the data set is di-
vided into d-dimensional hypercubes, with an edge-
length of 2�. Only hypercubes which actually contain
data points are determined. The number of populated
cubes (kCpk) can range from 1 to N� depending on the
choosen �, but does not depend on the dimensionality of
the data space. The hypercubes are numbered depend-
ing on their relative position from a given origin (cf. �g-
ure 7 for a two-dimensional example). In this way, the
populated hypercubes (containing d-dimensional data
points) can be mapped to one-dimensional keys. The
keys of the populated cubes can be e�ciently stored in
a randomized search-tree or a B+-tree.

 1      2      3     4      5      6

 7      8      9     10     11     12

 

 13     14     15    16     17     18

 19     20     21    22     23     24

 25     26     27    28     29     30

 31     32     33    34     35     36

origin

Figure 7: Map in a 2-dim. data space

For each populated cube c 2 Cp, in addition to the key
the number of points (Nc) which belong to c, pointers
to those points, and the linear sum

P
x2cx are stored.

This information is used in the clustering step for a
fast calculation of the mean of a cube (mean(c)). Since
clusters can spread over more than one cube, neighbor-
ing cubes which are also populated have to be accessed.
To speed up this access, we connect neighboring pop-
ulated cubes. More formally, two cubes c1; c2 2 Cp
are connected if d(mean(c1);mean(c2)) � 4�. Doing
that for all cubes would normally take O(C2

p ) time.
We can, however, use a second outlier-bound �c to re-
duce the time needed for connecting the cubes. Let
Csp = fc 2 CpjNc � �cg be the set of highly popu-
lated cubes. In general, the number of highly popu-
lated cubes Csp is much smaller than Cp, especially in
high-dimensional space. The time needed for connect-
ing the highly populated cubes with their neighbors is
then O(kCspk � kCpk) with kCspk << kCpk. The car-
dinality of Csp depends on �c. A good choice for �c is
�c = �=2d, since in high-dimensional spaces the clusters
are usually located on lower-dimensional hyperplanes.
The data structure generated in step 1 of our algorithm
has the following properties:

� The time to access the cubes for an arbitrary point
is O(log(Cp)).

� The time to access the relevant portion around a
given cube (the connected neighboring cubes) isO(1).

Step 2: The next step of our algorithm is the clustering
step. Only the highly populated cubes and cubes which
are connected to a highly populated cube are considered
in determining clusters. This subset of Cp is noted as
Cr = Csp [ fc 2 Cpj9cs 2 Csp and 9connection(cs; c)g.
Using the data structure constructed in step 1 of the
algorithm, we are able to e�ciently calculate the lo-

cal density function f̂D(x). For x 2 c and c; c1 2
Cr, we set near(x) = fx1 2 c1jd(mean(c1); x) �
k� and 9connection(c1; c)g The limit k� is chosen such
that only marginal inuences are neglegted. A value
of k = 4 is su�cient for pratical purposes (compare to
the 3� rule for the Gaussian distribution [Sch70]). The
resulting local density-function is

f̂DGauss(x) =
X

x12near(x)

e�
d(x;x1)

2

2�2 :

Similarly, the local gradient rf̂DGauss(x) can be com-
puted. With these settings and according to lemma 5,
the Error at a point x can be approximated as

Error � e�
k2

2 � kD � near(x)k:
where k = 4 according to the de�nition of near(x).
To determine the density-attractors for each point in
the cubes of Cr, a hill-climbing procedure based on the

local density function f̂D and its gradient rf̂D is used.
The density-attractor for a point x is computed as

x = x0; xi+1 = xi + �
rf̂DGauss(xi)
krf̂DGauss(xi)k

:

The calculation stops at k 2 N if f̂D(xk+1) < f̂D(xk)
and takes x� = xk as a new density-attractor. After



determining the density-attractor x� for a point x and

f̂DGauss(x
�) � �, the point x is classi�ed and attached

to the cluster belonging to x�. For e�ciency reasons,
the algorithm stores all points x0 with d(xi; x0) � �=2
for any step 0 � i � k during the hill-climbing proce-
dure and attaches these points to the cluster of x� as
well. Using this heuristics, all points which are located
close to the path from x to its density-attractor can be
classi�ed without appling the hill-climbing procedure to
them.

4.3 Time Complexity

First, let us recall the main steps of our algorithm.

DENCLUE (D; �; �; �c)

1. MBR DetermineMBR(D)

2. Cp  DetPopulatedCubes(D;MBR; �)
Csp  DetHighlyPopulatedCubes(Cp; �c)

3. map;Cr  ConnectMap(Cp; Csp; �)

4. clusters DetDensAttractors(map;Cr ; �; �)

Step one is a linear scan of the data set and takes
O(kDk). Step two takes O(kDk + kCpk � log(kCpk))
time because a tree-based access structure (such as a
randomized search tree or B+-tree) is used for storing
the keys of the populated cubes. Note that kCpk �
kDk and therefore in the worst case, we have O(kDk �
log(kDk). The complexity of step 3 depends on � and
�, which determine the cardinatilty of Csp and Cp. For-
mally, the time complexity of step 3 is O(kCspk � kCpk)
with kCspk << kCpk � kDk. In step 4, only points
which belong to a cube c 2 Cr are examined. All other
points are treated as outliers and are not used. If the
portion of D without outliers is denoted by Dr, then
the time complexity of this step is O(kDrk � logkCrjj),
since the density-attractor of a point can be determined
locally. Note that all mentioned time complexities are
worst case time complexities.
As we will see in the experimental evaluation (cf. sec-
tion 5), in the average case the total time complexity of
our approach is much better (in the orderO(log(kDk))).
If there is a high level of noise in the data, the av-
erage time complexity is even better (in the order
O(kfx 2 cjc 2 Crgk) ). Note that for a new � the data
structure does not need to be built up from scratch,
especially if �new = k�old. Note further that the algo-
rithm is designed to work on very large data sets and
therefore, all steps work secondary memory based which
is already reected in the time complexities above.

5 Experimental Evaluation
To show the practical relevance of our new method,
we performed an experimental evaluation of the DEN-
CLUE algorithm and compared it to one of the most ef-
�cient clustering algorithms { the DBSCAN algorithm
[EKSX96]. All experimental results presented in this
section are computed on an HP C160 workstation with
512 MBytes of main memory and several GBytes of
secondary storage. The DENCLUE algorithm has been
implemented in C++ using LEDA [MN89].

The test data used for the experiments are real multi-
media data sets from a CAD and a molecular biology
application. To show the invariance of our approach
with respect to noise, we extended the CAD data set
by large amounts of uniformly distributed noise.

5.1 E�ciency
The data used for the e�ciency test is polygonal CAD
data which are transformed into 11-dimensional feature
vectors using a Fourier transformation. We varied the
number of data points between 20000 and 100000. We
chose the parameters of our algorithm and DBSCAN
such that both algorithms produced the same cluster-
ing of the data set.
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Figure 8: Comparison of DENCLUE and DBSCAN
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Figure 9: Performance of DENCLUE

The results of our experiments are presented in �gure
8. The �gure shows that DBSCAN has a slightly super-
linear performance and in �gure 9a, we show the speed
up of our approach (DENCLUE is up to a factor of
45 faster than DBSCAN). Since in �gure 8 the perfor-
mance of our approach is di�cult to discern, in �gure
9b we show the performance of DENCLUE separately.
Figure 9b shows that the performance of DENCLUE is
logarithmic in the number of data items. The logarith-
mic performance of our approach results from the fact
that only data points in highly populated regions are
actually considered in the clustering step of our algo-
rithm. All other data points are only considered in the
construction of the data structure.

5.2 Application to Molecular Biology
To evaluate the e�ectiveness of DENCLUE, we applied
our method to an application in the area of molecu-
lar biology. The data used for our tests comes from
a complex simulation of a very small but exible pep-
tide. (The time for performing the simulation took sev-
eral weeks of CPU-time.) The data generated by the
simulation describes the conformation of the peptide
as a 19-dimensional point in the dihedral angle space
[DJSGM97]. The simulation was done for a period of
50 nanoseconds with two snapshots taken every picosec-
ond, resulting in about 100000 data points. The pur-
pose of the simulation was to determine the behavior



of the molecule in the conformation space. Due to the
large amount of high-dimensional data, it is di�cult to
�nd, for example, the preferred conformations of the
molecule. This, however, is important for applications
in the pharmaceutical industry since small and exible
peptides are the basis for many medicaments. The ex-
ibility of the peptides, however, is also responsible for
the fact that the peptide has many intermediate non-
stable conformations which causes the data to contain
large amounts of noise (more than 50 percent).

(a) Folded State (b) Unfolded State

Figure 10: Folded Conformation of the Peptide

In �gures 10a we show the most important conforma-
tions (corresponding to the largest clusters of conforma-
tions in the 19-dimensional dihedral angle space) found
by DENCLUE. The two conformations correspond to a
folded and an unfolded state of the peptide.

6 Conclusions
In this paper, we propose a new approach to clustering
in large multimedia databases. We formally introduce
the notion of inuence and density functions as well as
di�erent notions of clusters which are both based on
determining the density-attractors of the density func-
tion. For an e�cient implementation of our approach,
we introduce a local density function which can be e�-
ciently determined using a map-oriented representation
of the data. We show the generality of our approach, i.e.
that we are able to simulate a locality-based, partition-
based, and hierachical clustering. We also formally
show the noise-invariance and error-bounds of our ap-
proach. An experimental evaluation shows the superior
e�ciency and e�ectiveness of DENCLUE. Due to the
promising results of the experimental evaluation, we be-
lieve that our method will have a noticeable impact on
the way clustering will be done in the future. Our plans
for future work include an application and �ne tuning
of our method for speci�c applications and an exten-
sive comparison to other clustering methods (such as
Birch).
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