
Consensus Clustering

Javier Béjar

URL - 2024 Spring Term

CS - MAI



Consensus Clustering

⊚ The ensemble of classifiers is a well established strategy in supervised learning

⊚ Unsupervised learning aims the same goal: Consensus clustering or Clustering
ensembles

⊚ The idea is to merge complementary perspectives of the data into a more stable
partition

1



Consensus Clustering

⊚ Given a set of partitions of the same data X :

P = {P 1, P 2, . . . , P n}

with:

P 1 = {C1
1 , C1

2 , . . . , C1
k1

}
...

P n = {Cn
1 , Cn

2 , . . . , Cn
kn

}

to obtain a new partition that uses the information from all n partitions

2



Goals

⊚ Robustness, the combination has a better performance than each individual
partition in some sense

⊚ Consistency, the combination is similar to the individual partitions

⊚ Stability, the resulting partition is less sensitive to outliers and noise

⊚ Novelty, the combination is able to obtain different partitions that can not be
obtained by the clustering methods that generated the individual partitions

3



Advantages

⊚ Knowledge reuse, the consensus can be computed from the partition
assignments, so previous partitions using the same or different attributes can be
used

⊚ Distributed computing, the individual partitions can be obtained independently

⊚ Privacy, only the assignments of the individual partitions are needed for the
consensus

4



Consensus Process



Consensus Process

⊚ Consensus clustering is based generally in a two steps process:
1. Generate the individual partitions to be combined

2. Combine the partitions to generate the final partition

=

6



Partition Generation

⊚ Different example representations: Diversity by generating partitions with
different subsets of attributes

⊚ Different clustering algorithms: Take advantage that all clustering algorithms
have different biases

⊚ Different parameter initialization: Use clustering algorithms able to produce
different partitions using different parameters

⊚ Subspace projection: Use dimensionality reductions techniques

⊚ Subsets of examples: Use random subsamples of the dataset (bootstrapping)



Consensus Generation

⊚ Coocurrence based methods: Use the labels obtained from each individual
clustering, and the coincidence of the labels for the examples

◦ Relabelling and voting, co-association matrix, graph and hyper-graph partitioning,
information theory measures, finite mixture models

⊚ Median partition based methods: Given a set of partitions (P) and a
similarity function (Γ(Pi, Pj)), find the partition (Pc) that maximizes the similarity
to the set:

Pc = argmax
P ∈Px

∑
Pi∈P

Γ(P, Pi)

8



Coocurrence based methods



Relabeling and voting

⊚ First, solve the labeling correspondence problem

⊚ After that, determine the consensus using different voting strategies

Dimitriadou Weingessel, Hornik Voting-Merging: An Ensemble Method for Clustering
Lecture Notes in Computer Science, 2001, 2130

1. Generate a clustering

2. Determine the correspondence with the current consensus

3. Each example gets a vote from their cluster assignment

4. Update the consensus

10



Co-Association matrix

⊚ Co-Association matrix: Count how many times a pair of examples are in the
same cluster

⊚ Use the matrix as a similarity or a new set of characteristics

⊚ Apply a cluster algorithm to the information from the co-association matrix

=

0 1 2 3 4 5 6 7 8 9 10 11

1
1

9
1
0

8
7

4
6

2
0

1
3

5

0 0 0 0 0 0 0 0 1 3 3 3

0 0 0 0 0 0 0 0 1 3 3 3

0 0 0 0 0 0 0 0 1 3 3 3

0 0 0 1 2 1 2 2 3 1 1 1

0 0 0 1 3 2 3 3 2 0 0 0

0 0 0 1 3 2 3 3 2 0 0 0

0 0 0 1 3 2 3 3 2 0 0 0

3 3 3 2 0 1 0 0 0 0 0 0

3 3 3 2 0 1 0 0 0 0 0 0

3 3 3 2 0 1 0 0 0 0 0 0

2 2 2 3 1 2 1 1 1 0 0 0

1 1 1 2 2 3 2 2 1 0 0 0



Graph and hypergraph partitioning

⊚ Define consensus as a graph partitioning problem

⊚ Different methods to build a graph or hyper-graph from the partitions

Strehl, Ghosh Cluster ensembles- A knowledge reuse framework for combining
multiple partitions Journal of Machine Learning Research, MIT Press, 2003, 3, 583-617

⊚ Cluster based Similarity Partitioning Algorithm (CSPA)

⊚ HyperGraph-Partitioning Algorithm (HGPA)

⊚ Meta-CLustering Algorithm (MCLA)

12



CSPA

⊚ Compute a similarity matrix from the clusterings

⊚ Hyper-edges matrix: For all clusterings, compute an indicator matrix (H) that
represents the links among examples and clusters (Hyper-graph)

⊚ Compute the similarity matrix as:

S =
1

r
HHT

where r is the number of clusterings

⊚ Apply a graph partitioning algorithm to the distance matrix (METIS)

⊚ Drawback: Quadratic cost in the number of examples O(n2kr)

13



CSPA: example

C1 C2 C3

x1 1 2 1
x2 1 2 1
x3 1 1 2
x4 2 1 2
x5 2 3 2

=⇒

C1,1 C1,2 C2,1 C2,2 C2,3 C3,1 C3,2

x1 1 0 0 1 0 1 0
x2 1 0 0 1 0 1 0
x3 1 0 1 0 0 0 1
x4 0 1 1 0 0 0 1
x5 0 1 0 0 1 0 1

S =

x1 x2 x3 x4 x5

x1 1 1 1/3 0 0
x2 1 1 1/3 0 0
x3 1/3 1/3 1 2/3 1/3
x4 0 0 2/3 1 2/3
x5 0 0 1/3 2/3 1

14



HGPA

⊚ Partitions the hyper-graph generated by the examples and their clusterings
⊚ The indicator matrix is partitioned into k clusters of approximately the same size
⊚ The HMETIS hyper-graph partitioning algorithm is used
⊚ Linear in the number of examples O(nkr)



MCLA

⊚ Group and collapse hyper-edges and assign the objects to the hyper-edge in which
they participate the most

⊚ Algorithm
1. Build a meta-graph with the hyper-edges as vertices (edges have the vertices

similarities as weights, Jaccard)

2. Partition the hyper-edges into k meta-clusters

3. Collapse the hyper-edges of each meta-cluster

4. Assign examples to their most associated meta-cluster

⊚ Linear in the number of examples O(nk2r2)

16



MCLA: Meta-graph

C1,1 C1,2 C2,1 C2,2 C2,3 C3,1 C3,2

x1 1 0 0 1 0 1 0
x2 1 0 0 1 0 1 0
x3 1 0 1 0 0 0 1
x4 0 1 1 0 0 0 1
x5 0 1 0 0 1 0 1

C11 C12

C21

C22

C23

C31

C32

17



Median partition based methods



Median Partition Methods

⊚ Given a set of partitions (P) and a similarity function among partitions Γ(Pi, Pj),
the Median Partition Pc is the one that maximizes the similarity to the set

Pc = argmax
P ∈Px

∑
Pi∈P

Γ(P, Pi)

⊚ Has been proven to be a NP-hard problem for some similarity functions Γ

19



Similarity functions

⊚ Based on the agreements and disagreements of pairs of examples between two
partitions

◦ Rand index, Jaccard coefficient, Mirkin distance (and their randomness adjusted
versions)

⊚ Based on set matching
◦ Purity, F-measure

⊚ Based on information theory measures (how much information two partitions
share)

◦ NMI, Variation of Information, V-measure

20



Strategies

⊚ Best of k (the partition of the set that minimizes the distance)

⊚ Optimization using local search: Hill Climbing, Simulated Annealing, Genetic
Algorithms

◦ Perform a movement of examples between two clusters of the current solution to
improve the partition

⊚ Non Negative Matrix Factorization
◦ Find the partition matrix closest to the averaged association matrix of a set of

partitions

21



Python Notebooks

Ô
This Python Notebook has examples of consensus clustering

⊚ Consensus clustering Notebook (click here to open the notebook in
colab)

If you download the notebook you will be able to use it locally (run jupyter
notebook to open the notebooks)

22

https://colab.research.google.com/drive/1k722FrO20xzn2j4YoJpbG8Ntf0jvDhwH

	Consensus Process
	Coocurrence based methods
	Median partition based methods

