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Introduction



Clustering in KDD

⊚ One of the main tasks in the KDD process is the analysis of data when we do not
know its structure

⊚ This task is very different from the task of prediction where we know the goal, and
we try to approximate it

⊚ A great part of the KDD tasks are non supervised problems (KDNuggets poll, 2-3
most frequent task)

⊚ Problems: Scalability, arbitrary cluster shapes, limited types of data, finding the
correct parameters. . .

⊚ There are some new algorithms that deal with these kinds of problems
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Scalability Strategies



Strategies for cluster scalability

⊚ One-pass
◦ Process data as a stream

⊚ Summarization/Data compression
◦ Compress examples to fit more data in memory

⊚ Sampling/Batch algorithms
◦ Process a subset of the data and maintain/compute a global model

⊚ Approximation
◦ Avoid expensive computations by approximate estimation

⊚ Paralelization/Distribution
◦ Divide the task into several parts and merge models
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One pass

⊚ This strategy is based on incremental clustering algorithms

⊚ They are cheap, but order of processing affects greatly their quality

⊚ Although they can be used as a preprocessing step

⊚ Two steps algorithms
1. Many clusters are generated using the one-pass algorithm

2. A more accurate algorithm clusters the preprocessed data
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Data Compression/Summarization

⊚ Not all the data is necessary to discover the clusters

⊚ Discard sets of examples and summarize by:
◦ Sufficient statistics

◦ Density approximations

⊚ Discard data irrelevant for the model (do not affect the result)
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Approximation

⊚ Not using all the information available to make decisions
◦ Using K-neighbours (data structures for computing k-neighbours)

⊚ Preprocessing the data using a cheaper algorithm
◦ Generate batches using approximate distances (eg: canopy clustering)

⊚ Use approximate data structures
◦ Use of hashing or approximate counts for distances and frequency computation
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Batches/Sampling

⊚ Process only data that fits in memory

⊚ Obtain from the data set:
◦ Samples (process only a subset of the dataset)

◦ Determine the size of the sample so all the clusters are represented

◦ Batches (process all the dataset)
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Paralelization/Distribution/Divide&Conquer

⊚ Paralelization usually depends on the specific algorithm

⊚ Some not easy to parallelize (eg: hierarchical clustering)

⊚ Some have specific parts that can be solved in parallel or by Divide&Conquer
◦ Distance computations in k-means

◦ Parameter estimation in EM algorithms

◦ Grid density estimations

◦ Space partitioning

⊚ Batches and sampling are more general approaches
◦ The problem is how to merge all the different partitions



Scalable Algorithms



Scalable Hierarchical Clustering

Patra, Nandi, Viswanath Distance based clustering method for arbitrary shaped clusters
in large datasets Pattern Recognition, 2011, 44, 2862-2870

⊚ Strategy: One pass + Summarization

⊚ The leader algorithm is used as a one pass summarization using Leader algorithm
(many clusters)

⊚ Single link is used to cluster the summaries

⊚ Guarantees the equivalence to SL at top levels

⊚ Summarization makes the algorithm independent of the dataset size (depends on
the radius used on the leader algorithm and the volume of the data)

⊚ Complexity O(c2)
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One pass + Single Link

1st Phase

2nd Phase

Leader Algorithm

Hierarchical Clustering
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BIRCH

Zhang, Ramakrishnan, Livny BIRCH: An Efficient Data Clustering Method for Very
Large Databases (1996)

⊚ Strategy: One-pass + Summarization

⊚ Hierarchical clustering with limited memory

⊚ Incremental algorithm

⊚ Based on probabilistic prototypes and distances

⊚ We need two passes from the database

⊚ Based on a specialized data structure named CF-tree (Clustering Feature Tree)
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BIRCH (CF-tree)

⊚ Balanced n-ary tree containing clusters represented by probabilistic prototypes

⊚ Leaves have a capacity of L prototypes and the clusters radius can not be more
than T

⊚ Non-terminal nodes have a fixed branching factor (B), each element summarizes
its subtree

⊚ Choice of parameters is crucial because available space could be filled during the
process

⊚ This is solved by changing the parameters (basically T ), and recompressing the
tree (T determines the granularity of the final groups)
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BIRCH - Insertion algorithm

1. Traverse the tree until reaching a leave and choose the nearest prototype

2. On this leave we could introduce the instance into an existing group or create a
new prototype depending on if the distance is larger than parameter T

3. If the current leave has no space for the new prototype, then create a new terminal
node, and distribute the prototypes among the current node and the new node
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BIRCH - Insertion algorithm (cont.)

4. The distribution is performed choosing the two most different prototypes and
dividing the rest using their proximity to these two prototypes

5. This creates a new node in the ascendant node, if the new node exceeds the
capacity of the father then it is split, and the process is continued until the root of
the tree is reached if necessary

6. Additionally, we could perform merge operations to compact the tree and reduce
space
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BIRCH - Insertion Algorithm

Insertion + division
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BIRCH - Clustering algorithm

1. Phase 1: Construction of the CF-tree, we obtain a hierarchy that summarizes the
database as a set of groups which granularity is defined by T

2. Phase 2: Optionally we modify the CF-tree in order to reduce its size by merging
near groups and deleting outliers

3. Phase 3: We use the prototypes inside the leaves of the trees as new instances,
and we run a clustering algorithm with them (for instance K-means)

4. Phase 4: We refine the groups assigning the instances from the original database
to the prototypes obtained in the previous phase
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One pass + CFTREE (BIRCH)

1st Phase - CFTree 2nd Phase - Kmeans



Canopy Clustering

McCallum, Nigam, Ungar Efficient clustering of high-dimensional data sets with
application to reference matching (2002)

⊚ Strategy: Divide & Conquer + Approximation

⊚ The approach is based on a two stages clustering

⊚ The first stage can be seen as a pre-process to determine the neighbourhood of
the densities and aimed to reduce the number of distances to compute on the
second stage

⊚ This first stage is the called canopy clustering, relies on a cheap distance and two
parameters T1 > T2

⊚ These parameters are used as two centered spheres that determine how to classify
the examples.



Canopy Clustering - Algorithm

⊚ Algorithm:
1. One example is picked at random, and the cheap distance from this example to the

rest is computed
2. All the examples that are at less than T2 are deleted and included in the canopy
3. The points at less than T1 are added to the canopy of these examples without

deleting them
4. The procedure is repeated until the example list is empty
5. Canopies can share examples

⊚ After that the data can be clustered with different algorithms

⊚ For agglomerative clustering only the distances among the examples in the
canopies have to be computed
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Canopy Clustering - Algorithm

1st Canopy 2nd Canopy 3rd Canopy



Mini-batch K-means

Sculley Web-scale k-means clustering Proceedings of the 19th international conference on
World wide web, 2010, 1177-1178

⊚ Strategy: Sampling

⊚ Apply K-means to a sequence of bootstrapped samples of the data

⊚ Each iteration the samples are assigned to prototypes, and the prototypes are
updated with the new sample

⊚ Each iteration the weight of the samples is reduced (learning rate)

⊚ The quality of the results depends on the size of the batches

⊚ Convergence is detected when prototypes are stable
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Mini-batch K-means (algorithm)

Given: k, mini-batch size b, iterations t, data set X
Initialize each c ∈ C with an x picked randomly from X
v ← 0
for i ← 1 to t do

M ← b examples picked randomly from X
for x ∈ M do

d[x] ← f(C,x)

for x ∈ M do
c ← d[x]
v[c] ← v[c] + 1
η ← 1

v[c]

c ← (1-η)c+ηx



CURE

Guha, Rastogi, Shim CURE: An efficient clustering algorithm for large databases
(1998)

⊚ Strategy: Sampling + Divide & Conquer

⊚ Hierarchical agglomerative clustering

⊚ Scalability is obtained by using sampling techniques and partitioning the dataset

⊚ Uses a set of representatives (c) for a cluster instead of centroids (non-spherical
groups)

⊚ Distance is computed as the nearest representative among groups

⊚ The clustering algorithm is agglomerative and merges pairs of groups until k

groups are obtained
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CURE - Algorithm

1. Draws a random sample from the dataset

2. Partitions the sample in p groups

3. Executes the clustering algorithm on each partition

4. Deletes outliers

5. Runs the clustering algorithm on the union of all groups until it obtains k groups

6. Label the data accordingly to the similarity to the k groups
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CURE - Algorithm

Sampling+Partition Clustering partition 1

Clustering partition 2 Join partitions Labelling data 

DATA



Rough-DBSCAN

Viswanath, Babu Rough-DBSCAN: A fast hybrid density based clustering method for
large data sets Pattern Recognition Letters, 2009, 30, 1477 - 1488

⊚ Strategy: One-pass + Summarization

⊚ Two stages algorithm:
1. Preprocess using the leader algorithm

◦ Determine the examples that belong to the higher densities and their number of
neighbours

2. Apply DBSCAN algorithm
◦ Determine the densities for the selected instances
◦ Approximate the values of the densities from their distances, and the sizes of the

neighbourhood
◦ Assign the neighbours accordingly to the found densities
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MapReduce Clustering

Zhao, W., Ma, H., He, Q. Parallel K-Means Clustering Based on MapReduce Cloud
Computing, LNCS 5931, 674-679, Springer 2009

⊚ Strategy: Distribution/Divide & Conquer

⊚ Applied to K-means and GMM

⊚ Mappers have a copy of the current centroids and assigns the closest one to
examples

⊚ Reducers compute the new centroids according to the assignments
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MapReduce Clustering

N Mappers K Reducers

Assign Prototype 1

Prototype k

D
A

T
A

Prototypes (i) 

Assign

Assign

Assign

Prototype 2

...
Prototypes (i+1) 
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Clustering of Data Streams



Clustering of Data Streams

Data streams: Modelling an on-line continuous series of data

⊚ Each item of the series is an example (one value, a vector of values, structured
data)
◦ For instance, sensory data (one or multiple synchronized data), stream of

documents (twitter/news)

⊚ Data are generated from a set of clusters (stable or changing over time)
◦ For instance, states from a process or semantic topics
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Clustering of Data Streams

⊚ Data are processed incrementally (model changes with time)
◦ Only the current model

◦ Periodic snapshots

⊚ Different goals:
◦ Model the domain

◦ Detect anomalies/novelty/bursts

◦ Detect change (Concept drift)
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Clustering of Data Streams - Elements

⊚ Clustering has an on-line and an off-line phase

⊚ Elements:
◦ The data structure used to summarize the data

◦ The window model used to decide the influence of the current and past data

◦ The mechanism for identifying outliers

◦ The clustering algorithm used to obtain the partition of the data
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Clustering of Data Streams - Summary datastructure

⊚ Involved in the on-line phase

⊚ Data are summarized using sufficient statistics (num of examples, sum of values,
sum of squared products of values. . . )

⊚ Usually a hierarchical data-structure (different levels of granularity)

⊚ Indexing structure that can be updated incrementally

⊚ Stores raw data or prototypes depending on space constraints
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Clustering of Data Streams - Window model

⊚ Sliding window model
◦ Fixed time window

◦ Only data inside the window updates the structure

⊚ Damped window model
◦ A weight is associated to examples and clusters

◦ Influence of data depends on time, old data fade away or are discarded

⊚ Landmark window model
◦ Defines points of interest in time or amount of data

◦ Data before the landmark are discarded
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Clustering of Data Streams - Outliers

⊚ Difficult task because data evolve with time

⊚ Most methods work around the idea of microclusters

⊚ A micro-cluster represents a dense area in the space of examples

⊚ The indexing structure tracks the evolution of the micro-clusters

⊚ Different thresholds determine if a micro-cluster is kept or discarded
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CluStream - Prototype Based

Aggarwal et al. On Clustering Massive Data Streams: A Summarization Paradigm
Data Streams-Models and Algorithms, Springer, 2007, 31, 9-38

⊚ On-line phase:
◦ Maintains micro-clusters (more than final number of clusters)
◦ New data is incorporated to a micro-cluster or generates new micro-clusters
◦ The number of micro-clusters is fixed, they are merged to maintain the number
◦ Periodically the micro-clusters are stored

⊚ Off-line phase:
◦ Given a time window the stored micro-clusters are used to compute the

micro-clusters inside the time frame
◦ K-means used to compute the clusters for the time window



DenStream - Density Based

Cao, Ester, Qian, Zhou Density-Based Clustering over an Evolving Data Stream with
Noise Proceedings of the Sixth SIAM International Conference on Data Mining, 2006

⊚ On-line phase:
◦ Core-micro-clusters (a weighted sum of close points)
◦ The weight of a point fades exponentially with time (damping window model)
◦ New examples are merged and mc are classified as:

◦ core-mc, sets of points with weight over a threshold
◦ potential-mc
◦ outlier-mc, sets of points with weight below a threshold

◦ outlier-mc dissapear with time

⊚ Off-line phase: Modified version of DBSCAN
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Clustering of Data Streams - Density Based

Time n Time n+t

Clusters Clusters 
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Python Notebooks

Ô
This Python Notebook has examples comparing K-means algorithm with
two scalable algorithms Mini Batch K-means and BIRCH

⊚ Clustering DM Notebook (click here to open the notebook in colab)

If you download the notebook you will be able to use it locally (run jupyter
notebook to open the notebooks)
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https://colab.research.google.com/drive/1K4_s5rmPXqtzku_7avGgaQBvjRpb2Py0
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