Programacio i Algorismia Avancada
Grau en Intel-ligencia Artificial, FIB-UPC

José Luis Balcazar, Jordi Delgado

Dept. CS, UPC

2025-26, Quadrimestre de primavera

Contenido

Presentacion

Busqueda combinatoria

Teoria de lenguajes formales
Calculabilidad e indecidibilidad

Clases de complejidad

Contenido

Presentacién

Algoritmica

En sentido laxo, incluye modelos abstractos de calculo

P> Busqueda combinatoria: concepto; “backtracking”; esquemas
“greedy”; Programacién Dindamica; “divide-and-conquer”.

» Lenguajes formales: gramdticas, modelos abstractos de
calculo.

» Computabilidad e indecidibilidad: las funciones recursivas
parciales; lambda-célculo.

» Teoria de la Complejidad; NP-completitud.

Lab

Y parte de los exdmenes

He enviado a las direcciones de e-mail estudiantat.upc.edu
invitaciones al curso de jutge.org con el mismo nombre que la
asignatura. Quien no lo haya recibido que me avise por e-mail (a
jose.luis.balcazar@upc.edu).

Hoy

Repasamos recursividad y arboles

> https://jutge.org/problems/X91812
> https://jutge.org/problems/P63448
> https://jutge.org/problems/P90133

https://jutge.org/problems/X91812
https://jutge.org/problems/P63448
https://jutge.org/problems/P90133

Contenido

Blsqueda combinatoria
Blsqueda exhaustiva
Estructura de subproblemas
Backtracking
Esquemas “greedy”
Programacién Dindmica (Dynamic Programming)

Recorridos de arboles

Repaso: preorden, inorden, postorden

Recorridos de grafos
Repaso: depth-first search

Biusqueda combinatoria, |

Combinatorial search

Algunas estrategias de disefio de algoritmos, de entre las
muchisimas posibles, han resultado particularmente exitosas.
Contexto intuitivo para explicarlas
y analizar sus parecidos y diferencias:

» nocién de “caso” de un problema computacional;

» nocién de “solucién candidata” para un caso;
» nocién de “solucién que buscamos”, en dos posibles enfoques:

(a) mera existencia (una solucién? o todas ellas?),
(b) optimalidad (maximizacién? minimizacién?).

Por supuesto, no todo problema computacional admite este tipo de
analisis, pero muchos si lo permiten (y alin mds si tomamos estas
nociones guia de forma un poco relajada pero atin dtil).

Busqueda combinatoria, |l

Frecuentemente podemos aplicar el esquema de mas de una manera

Arboles de expansién:

Dado un grafo conexo, con pesos en las aristas, encuéntrese en él
un subgrafo conexo

(a) que conecta todos los vértices sin crear ciclos;

Busqueda combinatoria, |l

Frecuentemente podemos aplicar el esquema de mas de una manera

Arboles de expansién:

Dado un grafo conexo, con pesos en las aristas, encuéntrese en él
un subgrafo conexo

(a) que conecta todos los vértices sin crear ciclos; o

(b) que conecta todos los vértices con el minimo peso total.

Busqueda combinatoria, |l

Frecuentemente podemos aplicar el esquema de mas de una manera

Arboles de expansién:

Dado un grafo conexo, con pesos en las aristas, encuéntrese en él
un subgrafo conexo

(a) que conecta todos los vértices sin crear ciclos; o

(b) que conecta todos los vértices con el minimo peso total.

“Mochilas”:

Dados niimeros V' 'y W'y un conjunto de objetos, cada uno con un
peso y un valor, encuéntrese un subconjunto de tales objetos

(a) que alcanza valor total al menos V pero pesa a lo mas W,
(b) que alcanza el mayor valor posible pero pesa a lo mas W;

(c) que alcanza valor total al menos V pero pesa lo menos
posible.

Busqueda combinatoria, |l

O bien: Arboles de expansion, |

“Spanning trees"”:
» Nocion de “caso” de un problema computacional:
“Dado un grafo conexo con pesos en las aristas. . ."
» nocién de “solucién candidata” para un caso:
“encuéntrese en él un subgrafo conexo que...";
P nocién de “solucién que buscamos”, en dos posibles enfoques:

(a) mera existencia, como:
“conecta todos los vértices sin crear ciclos” o

Busqueda combinatoria, |l

O bien: Arboles de expansion, |

“Spanning trees"”:
» Nocion de “caso” de un problema computacional:
“Dado un grafo conexo con pesos en las aristas. . ."
» nocién de “solucién candidata” para un caso:
“encuéntrese en él un subgrafo conexo que...";
P nocién de “solucién que buscamos”, en dos posibles enfoques:

(a) mera existencia, como:
“conecta todos los vértices sin crear ciclos” o

(b) optimalidad (maximizacién o minimizacién), como:
“conecta todos los vértices con el minimo peso total”.

Busqueda combinatoria, |V
O bien: Mochila, |

“Mochilas”:

» Nocién de “caso” de un problema computacional:
“Dados niimeros V' y W y un conjunto de objetos, cada uno
y y J)
con un peso y un valor..."
» nocion de “solucién candidata” para un caso:

i

“encuéntrese un subconjunto de tales objetos...";
» nocién de “solucién que buscamos”, en dos posibles enfoques:

(a) mera existencia, como:

“que alcanza valor total al menos V pero pesa a lo mas W";
(b) optimalidad (maximizacién o minimizacién), como:

“que alcanza el mayor valor posible pero pesa a lo mas W;"

o:

“que alcanza valor total al menos V' pero pesa lo menos posible”.

Empezaremos solucionando versiones decisionales, y luego
extenderemos las soluciones a los casos de optimizacion.

Blusqueda exhaustiva, |

Simplemente “probemos todas las posibles soluciones”, jno?

Al encontrarnos con un nuevo problema:
i Coémo proceder?
1. Exploramos una o varias maneras de encajarlo en el esquema
de bldsqueda combinatoria.

2. De los esquemas algoritmicos que conozcamos, jcuales
podemos aplicar?

3. O... jtenemos que explorar todas las posibilidades?

Mochila, Il
Versién decisional, buscaremos primero todas las soluciones
Dados:
» objetos i € {0,...,N —1}
» con pesos w(i] y valores v|i],
» maxima capacidad de la mochila W,
» valor total deseado V,

encuéntrese un conjunto de objetos “que poner en la mochila” de
manera que:

» su peso total no supera la capacidad maxima W, y

» su valor total es al menos el valor deseado V.

Ejemplo:
Peso maximo W = 26, valor deseado V' = 45 con objetos de:

Pesos: 9 8 12 11 7
Valores: 16 15 24 23 13

Mochila, Il

“La cuenta de la vieja", “brute force”, “perebor”

def slow_knapsack(objects, max_w, min_v)
sols = list()
for candidate in powerset(objects):
if (totalweight(candidate) <= max_w and
totalvalue(candidate) >= min_v):
sols.append(candidate)
return sols

Mochila, Il

“La cuenta de la vieja", “brute force”, “perebor”

def slow_knapsack(objects, max_w, min_v)
sols = list()
for candidate in powerset(objects):
if (totalweight(candidate) <= max_w and
totalvalue(candidate) >= min_v):
sols.append(candidate)
return sols

Diversas posibilidades para el iterador powerset:
P Resuélvelo sin particular inspiracién previa: P18957.

> ‘“ltertools recipes” en la documentacién oficial de Python,
capitulo sobre itertools.

» Aprender a programar generadores (es facil) y hacerlos
recursivos (ya no tan facil).

Mochila, Il

“La cuenta de la vieja", “brute force”, “perebor”

def slow_knapsack(objects, max_w, min_v)
sols = list()
for candidate in powerset(objects):
if (totalweight(candidate) <= max_w and
totalvalue(candidate) >= min_v):
sols.append(candidate)
return sols

Diversas posibilidades para el iterador powerset:
P Resuélvelo sin particular inspiracién previa: P18957.

> ‘“ltertools recipes” en la documentacién oficial de Python,
capitulo sobre itertools.

» Aprender a programar generadores (es facil) y hacerlos
recursivos (ya no tan facil).

» Demasiado lento para casi cualquier propésito practico.

Busqueda exhaustiva, |l

Limites de la bisqueda exhaustiva

1. “Set-based combinatorial search”: buscamos una aguja en el
pajar de todos los subconjuntos de un conjunto dado.

2. "Permutation-based combinatorial search”: buscamos una
aguja en el pajar de todas las permutaciones de una secuencia
dada.

3. jiRealmente tenemos que explorar todas las posibilidades?

» Todos los subconjuntos (“powerset”)... 2" casos.
» Todas las permutaciones. .. N! casos.

El factorial y el crecimiento exponential, |

No tomaras el nombre de la Exponencial en vano!

90 1 1
80/=
70/
60(-
50/-
10|~
30(-

20(=

El factorial y el crecimiento exponential, |

No tomaras el nombre de la Exponencial en vano!

120

100|=

60[=

40(=

El factorial y el crecimiento exponential, |

No tomards el nombre de la Exponencial en vano!

400000

350000

300000

250000

200000 (=

150000

100000

50000 {=

El factorial y el crecimiento exponential, Il

N! crece exponencialmente, dijo Stirling

Supongamos:
» que sélo necesitamos una operacién elemental por cada una
de las N! configuraciones posibles, y que

» podemos contar con que se realicen 13000 billones de
operaciones por segundo (13 x 101%).

Entonces, tardaremos:
para N = 12: milmillonésimas de segundo (10~°);

El factorial y el crecimiento exponential, Il

N! crece exponencialmente, dijo Stirling

Supongamos:
» que sélo necesitamos una operacién elemental por cada una
de las N! configuraciones posibles, y que

» podemos contar con que se realicen 13000 billones de
operaciones por segundo (13 x 101%).

Entonces, tardaremos:
para N = 12: milmillonésimas de segundo (10~°);
para N = 15: 8 milésimas de segundo (8 x 1073);

El factorial y el crecimiento exponential, Il

N! crece exponencialmente, dijo Stirling

Supongamos:
» que sélo necesitamos una operacién elemental por cada una
de las N! configuraciones posibles, y que

» podemos contar con que se realicen 13000 billones de
operaciones por segundo (13 x 101%).

Entonces, tardaremos:

para N = 12: milmillonésimas de segundo (10~°);
para N = 15: 8 milésimas de segundo (8 x 1073);
para N = 18: medio segundo;

El factorial y el crecimiento exponential, Il

N! crece exponencialmente, dijo Stirling

Supongamos:
» que sélo necesitamos una operacién elemental por cada una
de las N! configuraciones posibles, y que

» podemos contar con que se realicen 13000 billones de
operaciones por segundo (13 x 101%).

Entonces, tardaremos:

para N = 12: milmillonésimas de segundo (10~°);
para N = 15: 8 milésimas de segundo (8 x 1073);
para N = 18: medio segundo;

para N = 21: una hora;

El factorial y el crecimiento exponential, Il

N! crece exponencialmente, dijo Stirling

Supongamos:
» que sélo necesitamos una operacién elemental por cada una
de las N! configuraciones posibles, y que

» podemos contar con que se realicen 13000 billones de
operaciones por segundo (13 x 101%).

Entonces, tardaremos:

para N = 12: milmillonésimas de segundo (10~°);
para N = 15: 8 milésimas de segundo (8 x 1073);
para N = 18: medio segundo;

para N = 21: una hora;

para N = 24: un aho y medio;

El factorial y el crecimiento exponential, Il

N! crece exponencialmente, dijo Stirling

Supongamos:
» que sélo necesitamos una operacién elemental por cada una
de las N! configuraciones posibles, y que

» podemos contar con que se realicen 13000 billones de
operaciones por segundo (13 x 101%).

Entonces, tardaremos:

para N = 12: milmillonésimas de segundo (10~°);
para N = 15: 8 milésimas de segundo (8 x 1073);
para N = 18: medio segundo;

para N = 21: una hora;

para N = 24: un aho y medio;

para N = 27: mas de 250 siglos. ..

Blusqueda combinatoria, V

Variantes

i Qué estructura combinatoria hay detras?
» ;Conjuntos? “Set-based backtracking”.
» ;Permutaciones? “Permutation-based backtracking”.
> ...

Y, en términos de los detalles algoritmicos, puede ser:

» Recorrido para encontrar todas las soluciones.

Blusqueda combinatoria, V

Variantes

i Qué estructura combinatoria hay detras?
» ;Conjuntos? “Set-based backtracking”.
» ;Permutaciones? “Permutation-based backtracking”.
> ...

Y, en términos de los detalles algoritmicos, puede ser:
» Recorrido para encontrar todas las soluciones.

» Blsqueda (similar a la lineal) para encontrar una solucién.

Blusqueda combinatoria, V

Variantes

i Qué estructura combinatoria hay detras?
» ;Conjuntos? “Set-based backtracking”.
» ;Permutaciones? “Permutation-based backtracking”.
> ...

Y, en términos de los detalles algoritmicos, puede ser:
» Recorrido para encontrar todas las soluciones.
» Blsqueda (similar a la lineal) para encontrar una solucién.

» Recorrido de optimizacién para encontrar la mejor solucién.

Mochila, IV

Recorrido alternativo del “powerset”

Is 1 in the set?

€3

Is 2 in the set? Is 2 in the set?

no yes no, yes
Is3in Is 3 in Is3in Is 3 in
the set? the set? the set? the set?
no yes no yes no, yes no es
o {3} {2y {23} {1} {13 {1.2} {1.2.3}

By: Brian M. Scott at math.stackexchange

.com

https://math.stackexchange.com/users/12042/brian-m-scott
https://math.stackexchange.com/questions/1884759/why-is-finding-all-subsets-of-a-set-power-set-an-exponential-problem

Mochila, V

“La cuenta de la vieja” siguiendo el recorrido alternativo

def knapsack(weights, values, current_item, max_w, min_v):
if current_item == -1:
"all items considered, none left"
if min_v <= 0 and max_w >= O:
return [list() 1]
else:
return list()

solsO = knapsack(weights, values, current_item - 1,
max_w, min_v)
solsl = knapsack(weights, values, current_item - 1,

max_w - weights[current_item],

min_v - values[current_item])
solsO.extend(sol + [current_item] for sol in solsl)
return solsO

Biusqueda combinatoria, VI

El siguiente ingrediente

Adicionalmente:
Los candidatos a solucién se estructuran en

» una nocién de “subproblema”, obtenido a través de una
“secuencia de decisiones” que progresan hacia las soluciones
candidatas

Biusqueda combinatoria, VI

El siguiente ingrediente

Adicionalmente:
Los candidatos a solucidén se estructuran en
» una nocién de “subproblema”, obtenido a través de una

“secuencia de decisiones” que progresan hacia las soluciones
candidatas
(frecuentemente se denomina “problemas locales” a los
subproblemas, y entonces el problema original se denomina
“global");

Biusqueda combinatoria, VI

El siguiente ingrediente

Adicionalmente:
Los candidatos a solucién se estructuran en

» una nocién de “subproblema”, obtenido a través de una
“secuencia de decisiones” que progresan hacia las soluciones
candidatas
(frecuentemente se denomina “problemas locales” a los
subproblemas, y entonces el problema original se denomina
“global");

» una funcidén que nos indica si una secuencia de decisiones es

Biusqueda combinatoria, VI

El siguiente ingrediente

Adicionalmente:
Los candidatos a solucidén se estructuran en
» una nocién de “subproblema”, obtenido a través de una
“secuencia de decisiones” que progresan hacia las soluciones
candidatas
(frecuentemente se denomina “problemas locales” a los
subproblemas, y entonces el problema original se denomina
“global");
» una funcidén que nos indica si una secuencia de decisiones es
(a) ya “inaceptable”

Biusqueda combinatoria, VI

El siguiente ingrediente

Adicionalmente:
Los candidatos a solucién se estructuran en

» una nocién de “subproblema”, obtenido a través de una
“secuencia de decisiones” que progresan hacia las soluciones
candidatas
(frecuentemente se denomina “problemas locales” a los
subproblemas, y entonces el problema original se denomina
“global");

» una funcidén que nos indica si una secuencia de decisiones es

(a) ya “inaceptable”
(es decir, el subproblema no tiene solucién) o

Biusqueda combinatoria, VI

El siguiente ingrediente

Adicionalmente:
Los candidatos a solucién se estructuran en

» una nocién de “subproblema”, obtenido a través de una
“secuencia de decisiones” que progresan hacia las soluciones
candidatas

(frecuentemente se denomina “problemas locales” a los
subproblemas, y entonces el problema original se denomina
“global");

» una funcidén que nos indica si una secuencia de decisiones es

(a) ya “inaceptable”
(es decir, el subproblema no tiene solucién) o
(b) “aceptable” pero adn “incompleta”

Biusqueda combinatoria, VI

El siguiente ingrediente

Adicionalmente:
Los candidatos a solucién se estructuran en

» una nocién de “subproblema”, obtenido a través de una
“secuencia de decisiones” que progresan hacia las soluciones
candidatas

(frecuentemente se denomina “problemas locales” a los
subproblemas, y entonces el problema original se denomina
“global");

» una funcidén que nos indica si una secuencia de decisiones es

(a) ya “inaceptable”
(es decir, el subproblema no tiene solucién) o

(b) “aceptable” pero adn “incompleta”
(puede ser que el problema tenga solucién, hay que continuar
la exploracién) o

Biusqueda combinatoria, VI

El siguiente ingrediente

Adicionalmente:
Los candidatos a solucién se estructuran en

» una nocién de “subproblema”, obtenido a través de una
“secuencia de decisiones” que progresan hacia las soluciones
candidatas

(frecuentemente se denomina “problemas locales” a los
subproblemas, y entonces el problema original se denomina
“global");
» una funcidén que nos indica si una secuencia de decisiones es
(a) ya “inaceptable”
(es decir, el subproblema no tiene solucién) o
(b) “aceptable” pero adn “incompleta”
(puede ser que el problema tenga solucién, hay que continuar
la exploracién) o
(c) una solucién “completa” para el problema global.

Backtracking, |

Concepto

Organizamos la exploraciéon de manera controlada:
Depth-First Search / preorden, excepto que el grafo o drbol es
implicito.

» Cada subproblema es un vértice de un grafo o arbol
(probablemente muy grande) que queda en nuestra
imaginacion.

> Las aristas de ese grafo imaginario son decisiones que nos
llevan de un subproblema a otro.

» Y lo principal: cuando detectamos un subproblema no factible
(“callején sin salida™), nos ahorramos la exploracién de todas
las configuraciones que requieran solucionarlo.

(El nombre viene "heredado” de antafio, antes de que la
programacioén recursiva fuera una opcién generalizada: era preciso
“programar explicitamente” el cambio de subérbol a explorar.)

Busqueda combinatoria, VII

O bien: Arboles de expansién, Il

Arboles de expansién:
Subproblema:
» encontrar el drbol de expansién de un subgrafo, o bien

» completar un tnico arbol de expansién incompleto:
» manteniendo un &rbol parcial ya construido, o bien

Busqueda combinatoria, VII

O bien: Arboles de expansién, Il

Arboles de expansién:
Subproblema:
» encontrar el drbol de expansién de un subgrafo, o bien

» completar un tnico arbol de expansién incompleto:

» manteniendo un &rbol parcial ya construido, o bien
» manteniendo un conjunto de arboles parciales ya construidos
(spanning forest). ..

Busqueda combinatoria, VII

O bien: Arboles de expansién, Il

Arboles de expansién:
Subproblema:
» encontrar el drbol de expansién de un subgrafo, o bien

» completar un tnico arbol de expansién incompleto:

» manteniendo un &rbol parcial ya construido, o bien
» manteniendo un conjunto de arboles parciales ya construidos
(spanning forest). ..

Secuencia de decisiones: el arbol crece en una arista mas. ..

(a) solucién “completa” para el problema global: conecta todo,

Busqueda combinatoria, VII

O bien: Arboles de expansién, Il

Arboles de expansién:
Subproblema:
» encontrar el drbol de expansién de un subgrafo, o bien

» completar un tnico arbol de expansién incompleto:

» manteniendo un &rbol parcial ya construido, o bien
» manteniendo un conjunto de arboles parciales ya construidos
(spanning forest). ..

Secuencia de decisiones: el arbol crece en una arista mais. ..
(a) solucién “completa” para el problema global: conecta todo,

(b) ya “inaceptable”: la nueva arista crea un ciclo,

Busqueda combinatoria, VII

O bien: Arboles de expansién, Il

Arboles de expansién:
Subproblema:
» encontrar el drbol de expansién de un subgrafo, o bien

» completar un tnico arbol de expansién incompleto:

» manteniendo un &rbol parcial ya construido, o bien
» manteniendo un conjunto de arboles parciales ya construidos
(spanning forest). ..

Secuencia de decisiones: el arbol crece en una arista mais. ..
(a) solucién “completa” para el problema global: conecta todo,
(b) ya “inaceptable”: la nueva arista crea un ciclo,

(c) “aceptable” pero ain “incompleta”: todos los demds casos.

Busqueda combinatoria, VIII
O bien: Mochila, VI

i Podemos lograr valor total al menos V con peso no superior a W?

Subproblema: consideramos sélo un subconjunto de los objetos.

Busqueda combinatoria, VIII
O bien: Mochila, VI

i Podemos lograr valor total al menos V con peso no superior a W?
Subproblema: consideramos sélo un subconjunto de los objetos.
Secuencia de decisiones: consideramos un objeto nuevo; o bien nos
lo quedamos o bien lo descartamos.

(a) solucién “completa” para el problema global: hemos
considerado todos los objetos;

Busqueda combinatoria, VIII
O bien: Mochila, VI

i Podemos lograr valor total al menos V con peso no superior a W?
Subproblema: consideramos sélo un subconjunto de los objetos.

Secuencia de decisiones: consideramos un objeto nuevo; o bien nos
lo quedamos o bien lo descartamos.

(a) solucién “completa” para el problema global: hemos
considerado todos los objetos;

(b) ya “inaceptable”: el nuevo peso total supera W y no
decrecerd al anadir mas objetos;

Busqueda combinatoria, VIII
O bien: Mochila, VI

i Podemos lograr valor total al menos V con peso no superior a W?

Subproblema: consideramos sélo un subconjunto de los objetos.

Secuencia de decisiones: consideramos un objeto nuevo; o bien nos

lo quedamos o bien lo descartamos.

(a) solucién “completa” para el problema global: hemos
considerado todos los objetos;

(b) ya “inaceptable”: el nuevo peso total supera W y no
decrecerd al anadir mas objetos;

(c) “aceptable” pero atin “incompleta”: todos los demds casos.

Mochila, VII

Aplicando backtracking

def knapsack(weights, values, current_item, max_w, min_v):
if current_item == -1:
"all items considered, none left"
if min_v <= O:
return [list()]
else:
return list()
sols0 = knapsack(weights, values, current_item - 1,
max_w, min_v)
if weights[current_item] <= max_w:
"current_item >= 0 is a valid item to consider next"
solsl = knapsack(weights, values, current_item - 1,
max_w - weights[current_item],
min_v - values[current_item])
solsO.extend(sol + [current_item] for sol in solsl)
return solsO

Mochila, VIII

Sofisticaciones

En este ejemplo, la secuencia de decisiones que lleva al punto en
que estamos se reduce a los nuevos valores de max_w y min_v. No
es buena inspiracién para problemas en que sea preciso tener en
cuenta las decisiones ya tomadas.

Mochila, VIII

Sofisticaciones

En este ejemplo, la secuencia de decisiones que lleva al punto en
que estamos se reduce a los nuevos valores de max_w y min_v. No
es buena inspiracién para problemas en que sea preciso tener en
cuenta las decisiones ya tomadas.

. Cémo podemos solucionarlo manteniendo explicitamente las
decisiones tomadas?

Mochila, IX

Bulsqueda exhaustiva con candidato explicito

def knapsack(weights, values, current_item,
max_w, min_v, cand, cand_w, cand_v):
if current_item == -1:
if cand_v >= min_v and cand_w <= max_w:
return [cand]
else:
return list()
else:
sols = knapsack(weights, values, current_item - 1,
max_w, min_v, cand, cand_w, cand_v)
sols.extend(knapsack(weights, values, current_item-1,
max_w, min_v,
cand + [current_item],
cand_w + weights[current_item],

cand_v + values[current_item]))
return sols

Mochila, X

Backtracking con candidato explicito

def knapsack(weights, values, current_item, max_w, min_v,
cand, cand_w, cand_v):
if current_item == -1:
if cand_v >= min_v and cand_w <= max_w:
return [cand]
else:
return list()
else:
sols = knapsack(weights, values, current_item - 1,
max_w, min_v, cand, cand_w, cand_v)
if weights[current_item] <= max_w:
sols.extend(knapsack(weights, values, current_item-1,
max_w, min_v,
cand + [current_item],
cand_w + weights[current_item],

cand_v + values[current_item]))
return sols

Mochila, Xl

Backtracking con candidato explicito, evitando copias

def knapsack(weights, values, current_item, max_w, min_v,
cand, cand_w, cand_v):
if current_item == -1:
if cand_v >= min_v and cand_w <= max_w:
return [cand.copy()]
else: return list()
else:
sols = knapsack(weights, values, current_item - 1,
max_w, min_v, cand, cand_w, cand_v)
if weights[current_item] <= max_w:
cand.append(current_item)
sols.extend(knapsack(weights, values, current_item-1,
max_w, min_v, cand,
cand_w + weights[current_item],
cand_v + values[current_item]))
cand.pop() # backtracking happens here!
return sols

Busqueda combinatoria, IX

Existencia versus optimizacion

En el caso de problemas de optimizacion
(sea maximizacién o minimizacién) precisamos ademds

una funcién objetivo a optimizar,

» definida sobre candidatos a solucién, pero
» de tal manera que se pueda extender de forma natural a los
subproblemas locales (secuencias de decisiones).

Blusqueda combinatoria, X

O bien: Arboles de expansién, IlI

Arboles de expansion:

Secuencia de decisiones: el drbol crece en una arista mas. . .

(a) ya “inaceptable”: la nueva arista crea un ciclo,

(b) solucién “completa” para el problema global: conecta todo,

(c) “aceptable” pero atiin “incompleta”: todos los demas casos.

Funcién objetivo:

» peso del arbol parcial en curso?

Blusqueda combinatoria, X

O bien: Arboles de expansién, IlI

Arboles de expansion:

Secuencia de decisiones: el drbol crece en una arista mas. . .

(a) ya “inaceptable”: la nueva arista crea un ciclo,

(b) solucién “completa” para el problema global: conecta todo,

(c) “aceptable” pero atiin “incompleta”: todos los demas casos.

Funcién objetivo:
» peso del arbol parcial en curso?

P> mejor peso posible para un 4rbol de expansién completo que
extienda el arbol parcial en curso?

Biusqueda combinatoria, Xl
O bien: Mochila, XII

Mochila, versiéon de optimizacién:
Lograr el maximo valor total con peso no superior a W.

Subproblema: consideramos sélo un subconjunto de los objetos.

Biusqueda combinatoria, Xl
O bien: Mochila, XII

Mochila, versiéon de optimizacién:
Lograr el maximo valor total con peso no superior a W.
Subproblema: consideramos sélo un subconjunto de los objetos.

Secuencia de decisiones: consideramos un objeto nuevo; o bien nos
lo quedamos o bien lo descartamos.

(a) ya “inaceptable”: el nuevo peso total supera W;

(b) solucién “completa” para el problema global: hemos
considerado todos los objetos;

(c) “aceptable” pero adn “incompleta”: todos los demds casos.

Biusqueda combinatoria, Xl
O bien: Mochila, XII

Mochila, versiéon de optimizacién:
Lograr el maximo valor total con peso no superior a W.
Subproblema: consideramos sélo un subconjunto de los objetos.

Secuencia de decisiones: consideramos un objeto nuevo; o bien nos
lo quedamos o bien lo descartamos.

(a) ya “inaceptable”: el nuevo peso total supera W;

(b) solucién “completa” para el problema global: hemos
considerado todos los objetos;

(c) “aceptable” pero adn “incompleta”: todos los demds casos.
Funcién objetivo:

» valor de la mochila en curso?

Busqueda combinatoria, XIl|
O bien: Mochila, XIII

Mochila, enfoque alternativo:

Lograr el menor peso posible con un valor de al menos V.

Busqueda combinatoria, XIl|
O bien: Mochila, XIII

Mochila, enfoque alternativo:
Lograr el menor peso posible con un valor de al menos V.

Subproblema: dado el conjunto de objetos atin no descartados,
descartar nuevos objetos.

(Lector: complete el esquema por su propia cuenta.)

Mochila, XIV

Problema de optimizacién por busqueda exhaustiva

def slow_knapsack(weights, values, itq, limw):
mx = 0
best = None
for cand in powerset(range(itq)):
if total(weights, cand) <= limw:
cmx = total(values, cand)
if cmx > mx:
best = cand
mx = cmx
return best, total(weights, best), total(values, best)

Mochila, XV

Problema de optimizacién por backtracking

def knapsack(weights, values, current_item, max_w):
if current_item == -1:

return ([],0,0)
else:
"current_item >= 0"
best0, bestwO, bestvO = knapsack(weights, values,
current_item - 1, max_w)
if weights[current_item] <= max_w:
bestl, bestwl, bestvl = knapsack(weights, values,

current_item - 1, max_w - weights[current_item])
if bestvl + values[current_item] > bestvO:
bestl.append(current_item)

return (bestl, bestwl + weights[current_item],

bestvl + values[current_item])
return bestO, bestwO, bestvO

Ejemplo: N-queens, |

El drbol implicito: parte explorada hasta la primera solucién

Start H
0.0

21

D

I X X X

X X |
G
(3.1)(22) (32 % (3.1
X E X X
Dead end,
Up to (0,0)

43

G

Dead end,
Solution
Up to (2.4)

Fuente: https://www.slideshare.net/
praveenkumar33449138/02-problem-solvingsearchcontrol

https://www.slideshare.net/praveenkumar33449138/02-problem-solvingsearchcontrol
https://www.slideshare.net/praveenkumar33449138/02-problem-solvingsearchcontrol

Ejemplo: N-queens, Il

Busca todas las soluciones

def attempt(row, board, size):

if row == size:
board.draw()
else:

for column in range(size):
if board.free(row, column):
board.put_q(row, column)
attempt(row + 1, board, size)
board.remove_q(row, column)

Llamada inicial:

board = Board()
size = int(input("How many queens? "))
attempt (0, board, size)

Ejemplo: N-queens, Il

Busca una solucién

def attempt(row, board, size):
if row == size:
return True
else:
for column in range(size):
if board.free(row, column):
board.put_q(row, column)
s = attempt(row + 1, board, size)
if s:
return True
else:

board.remove_q(row, column)
return False

Ejemplo: N-queens, Il

Busca una solucién

def attempt(row, board, size):
if row == size:
return True
else:
for column in range(size):
if board.free(row, column):
board.put_q(row, column)
s = attempt(row + 1, board, size)
if s:
return True
else:
board.remove_q(row, column)
return False

Llamada inicial: declara el tablero, lee el tamafio, y llama asi:

if attempt(0, board, size):
board.draw()

Ejemplo: N-queens, 1V

Por supuesto, podemos hacerlo mejor

Ideas a explorar:
» Simetrias: evita explorar una configuracién que es, en esencia,
"la misma” que una ya explorada.
> Adapta el orden en que se exploran las casillas de la fila en
curso:
» (Cada casilla, si la usamos, jen cudnto nos reduce las
posibilidades en las filas siguientes?
» Exploramos primero las casillas que nos dejan mas libertad
para las filas siguientes, y dejamos las mds restrictivas para
después (“best-first search”).

“Graph Colorability”

Dos variantes, sélo estudiamos una

“Vertex coloring”:

Dado un grafo, asignese un color a cada vértice de manera que no
haya ninguna arista que conecte dos vértices del mismo color.

http://mathworld.wolfram.com/images/eps-gif/
VertexColoring_750.gif

“Edge coloring”:

Dado un grafo, asignese un color a cada arista de manera que no
haya ningtin vértice en que confluyan dos o mas aristas del mismo
color.

http://mathworld.wolfram.com/images/eps-gif/
EdgeColoring_850.gif

Hoy: “edge coloring”.

http://mathworld.wolfram.com/images/eps-gif/VertexColoring_750.gif
http://mathworld.wolfram.com/images/eps-gif/VertexColoring_750.gif
http://mathworld.wolfram.com/images/eps-gif/EdgeColoring_850.gif
http://mathworld.wolfram.com/images/eps-gif/EdgeColoring_850.gif

Ejemplo: “3-colorability” en grafos 3-regulares, |

El arbol implicito: grafos con mas y mas aristas ya coloreadas

Restriccion
Hoy, sélo grafos 3-regulares: todos los vértices tienen grado 3.
Enunciado:

Dado un grafo 3-regular G, asignense colores a las aristas
usando tres colores de manera que en cada vértice haya una
arista de cada color.

Ideas para un esquema de “backtracking”:

» Cada vértice del grafo implicito corresponde al grafo G con
parte de las aristas ya coloreadas.

Ejemplo: “3-colorability” en grafos 3-regulares, |

El arbol implicito: grafos con mas y mas aristas ya coloreadas

Restriccion
Hoy, sélo grafos 3-regulares: todos los vértices tienen grado 3.
Enunciado:

Dado un grafo 3-regular G, asignense colores a las aristas
usando tres colores de manera que en cada vértice haya una
arista de cada color.

Ideas para un esquema de “backtracking”:

» Cada vértice del grafo implicito corresponde al grafo G con
parte de las aristas ya coloreadas.

» Vecinos de un vértice del grafo implicito: una arista mas de G
recibe color.

Ejemplo: “3-colorability” en grafos 3-regulares, |

El arbol implicito: grafos con mas y mas aristas ya coloreadas

Restriccion
Hoy, sélo grafos 3-regulares: todos los vértices tienen grado 3.
Enunciado:

Dado un grafo 3-regular G, asignense colores a las aristas
usando tres colores de manera que en cada vértice haya una
arista de cada color.

Ideas para un esquema de “backtracking”:
» Cada vértice del grafo implicito corresponde al grafo G con
parte de las aristas ya coloreadas.

» Vecinos de un vértice del grafo implicito: una arista mas de G
recibe color.

» ;i Cudl? Queremos asegurar que el grafo implicito es un arbol
para evitar subproblemas repetidos.

Ejemplo: “3-colorability” en grafos 3-regulares, Il

El &rbol implicito (fragmento)

Ejemplo: “3-colorability” en grafos 3-regulares, Il

Una opcién de entre varias

Forzamos un orden sobre las aristas
y lo mantenemos estrictamente: si un camino del grafo implicito
colorea primero la arista e; de G y después la arista e; de G, lo
mismo ocurre en todos los caminos.
» Por ejemplo, “depth-first search” sobre G para marcar el
orden.
» Eso asegura que, al colorear cada arista, al menos uno de los
extremos ya ha gastado al menos un color.
» Ademas, el grafo implicito es un arbol: cada posible
subproblema sélo se puede alcanzar de una manera.

Ejemplo: “3-colorability” en grafos 3-regulares, IV

Demo!

Basada en NetworkX y GraphViz:

» fijamos un orden de las aristas mediante la implementacién de
“depth-first search” de NetworkX;

> mantenemos el conjunto de colores disponibles en cada
vértice;

» los vamos probando uno a uno y, con cada uno, lanzamos la
[lamada recursiva;

» Callejones sin salida: aristas para las que ya no quedan colores
factibles.

Parafernalia adicional para informar de lo que va pasando y dibujar
los grafos

(como el dict gd que mantiene el “layout” de GraphViz).

Ejemplo: “3-colorability” en grafos 3-regulares, V
El programa
def tricolor(g, edgelist):
if not edgelist: return True
else:
u, v = edgelist.popQ)
possib = g.node[ul [’free’] & g.node[v][’free’]
for c in possib:
g.edges[u, v][’color’] = c
g.nodes[u] [’free’] .remove(c)
g.nodes[v] [’free’] .remove(c)
success = tricolor(g, edgelist)
if success: return True
else, free again the colors, try next possib
g.edges[u, v][’color’] = noncolor
g.nodes [u] [’free’] .add(c)
g.nodes[v] [’free’] .add(c)
edgelist.append((u, v)) # backtrack!
return False

Ejemplo: “3-colorability” en grafos 3-regulares, VI

Desarrollos adicionales

I[deas:

» Fijamos los tres colores de un vértice concreto para evitar
explorar subdrboles que corresponden a permutar colores.

(En general: identificamos simetrias y las usamos para evitar
exploraciones innecesarias.)

» ;Cémo seria la versién que nos da todas las soluciones?

» ;Cémo tratar el problema cuando no suponemos
3-regularidad? Buscamos usar el minimo de colores posible.

» Usando ideas similares, buscamos cémo plantear y resolver
problemas de ‘“vertex-coloring”. Variante de optimizacién:
usar, de nuevo, el minimo de colores posible.

Algoritmos “greedy”, |

Como pronto veremos, ya conocemos ejemplos

Caracteristica:

P> La siguiente decisidn es siempre “la que mejor parece” para el
subproblema en curso;

P se toma esa decisién y nunca se reconsidera:
no existe “backtracking”.

» Dado que, en ese momento, no se tiene perspectiva del
problema global, esa decisién es arriesgada.

» Por tanto, se necesita una argumentacién adicional, separada
del algoritmo, que explique por qué es buena idea hacerlo asi.

Algoritmos “greedy”, Il

El principio “greedy” a argumentar en cada ocasién

“Greedy-choice property”:
Toda decisién vélida que sea éptima para el subproblema local es
también Sptima para el problema global.

https://en.wikipedia.org/wiki/Greedy_algorithm

Algoritmos “greedy”, Il

El principio “greedy” a argumentar en cada ocasién

“Greedy-choice property”:
Toda decisién vélida que sea éptima para el subproblema local es
también Sptima para el problema global.

i Cudando hemos visto esto antes?

https://en.wikipedia.org/wiki/Greedy_algorithm

Algoritmos “greedy”, Il

El principio “greedy” a argumentar en cada ocasién

“Greedy-choice property”:
Toda decisién vélida que sea éptima para el subproblema local es
también Sptima para el problema global.

i Cudando hemos visto esto antes?

» Algoritmo de Dijkstra (single-source shortest paths),

https://en.wikipedia.org/wiki/Greedy_algorithm

Algoritmos “greedy”, Il

El principio “greedy” a argumentar en cada ocasién

“Greedy-choice property”:
Toda decisién vélida que sea éptima para el subproblema local es
también Sptima para el problema global.

i Cudando hemos visto esto antes?

» Algoritmo de Dijkstra (single-source shortest paths),

» algoritmo de Kruskal para encontrar drboles de expansidn
minimos. . .

https://en.wikipedia.org/wiki/Greedy_algorithm.

https://en.wikipedia.org/wiki/Greedy_algorithm

Algoritmos “greedy”, Il
O bien: Mochila, XVI

i Obtendremos una solucién éptima al aplicar el esquema “greedy”
al problema de la mochila?

Algoritmos “greedy”, Il
O bien: Mochila, XVI

i Obtendremos una solucién éptima al aplicar el esquema “greedy”
al problema de la mochila?

» Objetos indivisibles: NO.

Algoritmos “greedy”, Il
O bien: Mochila, XVI

i Obtendremos una solucién éptima al aplicar el esquema “greedy”
al problema de la mochila?

» Objetos indivisibles: NO.

» Objetos divisibles: SI.

» A condicién de poner un poco de cuidado en definir “decisidn
S6ptima”.

Algoritmos “greedy”, Il
O bien: Mochila, XVI

i Obtendremos una solucién éptima al aplicar el esquema “greedy”
al problema de la mochila?

>
>
| 2

Objetos indivisibles: NO.

Objetos divisibles: Si.

A condicién de poner un poco de cuidado en definir “decision
S6ptima”.

Incluso para objetos indivisibles, nos da una informacién util:
una cota superior sobre el valor que se puede obtener a partir
de un subproblema local.

Si esa aproximacién nos indica que un subproblema local no

puede proporcionar una solucién mejor que la mejor que se
tiene hasta el momento, nos lo podemos ahorrar.

Algoritmos “greedy”, IV

O bien: Arboles de expansién, IV

https://es.wikipedia.org/wiki/Algoritmo_de_Kruskal

» Kruskal es un ejemplo clasico de algoritmo “greedy”.

» Proporciona un arbol de expansiéon minimal sélo al final:
durante el proceso, se tienen fragmentos inconexos.

» Existe un algoritmo similar, pero en el cual siempre
mantenemos un arbol de expansidn conexo pero incompleto
durante el proceso.

» ;Lograras disefiar este algoritmo por ti mism@? (NO busques
en la Wikipedia “algoritmo de Prim” hasta haber completado
tu propia solucién.)

https://es.wikipedia.org/wiki/Algoritmo_de_Kruskal

Giving change, |

O bien: Algoritmos “greedy”, V

Dadas las denominaciones de determinadas monedas
(y provisién tan amplia de cada moneda como sea precisa),

» digamos, di, ..., d,,

P vy una cantidad concreta a alcanzar exactamente, M:

» ;jcémo lograrlo?

Relacién con “la mochila” y con “Subset sum”:

» Objetos “repetidos”, podemos tomar cuantos queramos de
cada tipo, y

P no hay pesos, pero la cantidad objetivo se ha de alcanzar
exacta.

Giving change, |l

O bien: Algoritmos “greedy”, VI

Vamos tomando monedas de la denominacién mas elevada posible
hasta alcanzar la cantidad deseada.

» Para muchas denominaciones, el algoritmo “greedy” funciona
(es decir, da una solucién con el minimo nimero de monedas).
» Se llaman “canonical coin systems”.

P Incluyen los casos tipicos de la mayoria de los paises:
> 1,2, 5,10, 20, 50, 100, 200;
> 1,5, 10, 25, 50, 100;
> 1, 29, 493;
> ..

» Para otras denominaciones, no siempre!

https://en.wikipedia.org/wiki/Change-making_problem.

https://en.wikipedia.org/wiki/Change-making_problem

Giving change, Il

O bien: Algoritmos “greedy”, VI

>

i Cémo se expresa el problema “giving change” en los
términos de los esquemas de blsqueda combinatoria que
hemos indicado anteriormente?

Las denominaciones 1, 5, 10, 25 (las monedas de délar de
curso habitual) forman un “canonical coin system”. Resuelve
“giving change” en ddlares mediante un algoritmo “greedy”

Plantea y resuelve el mismo problema con las denominaciones
del sistema euro, completo: Jutge P81629 en la lista
Combinatorial Search Schemes (I1).

Encuentra casos en que el enfoque “greedy” no de la solucién
Sptima.
i Cémo obtener optimalidad en todos los casos?

» “Backtracking” es siempre una opcién.
» Después del parcial veremos que sera preferible Programacién
Dindmica.

Programaciéon Dinamica, |
Lectura recomendada: origenes por Richard Bellman en persona
Recordemos (“greedy-choice property”):

Toda decisién vélida que sea éptima para el subproblema local es
también éptima para el problema global.

https://pubsonline.informs.org/doi/pdf/10.1287/opre.50.1.48.17791

Programaciéon Dinamica, |

Lectura recomendada: origenes por Richard Bellman en persona

Recordemos (“greedy-choice property”):

Toda decisién vélida que sea éptima para el subproblema local es
también éptima para el problema global.

Puntos clave hacia la Programacién Dindmica:

» Es dificil, o imposible, argumentar cudl de las decisiones
locales, 6ptima o no, llevard a la solucién globalmente éptima:

el mantra “greedy” es frecuentemente inaplicable;

https://pubsonline.informs.org/doi/pdf/10.1287/opre.50.1.48.17791

Programaciéon Dinamica, |

Lectura recomendada: origenes por Richard Bellman en persona

Recordemos (“greedy-choice property”):

Toda decisién vélida que sea éptima para el subproblema local es
también éptima para el problema global.

Puntos clave hacia la Programacién Dindmica:

» Es dificil, o imposible, argumentar cudl de las decisiones
locales, 6ptima o no, llevard a la solucién globalmente éptima:

el mantra “greedy” es frecuentemente inaplicable;
» sin embargo, a veces, un primo suyo tal vez sea cierto, a saber,
el Principio de Optimalidad de Bellman:
la parte de la solucién globalmente éptima que
corresponde a cualquier subproblema local es, a su vez,

una soluciéon localmente éptima.

» Ejemplo: “Giving change”.

https://pubsonline.informs.org/doi/pdf/10.1287/opre.50.1.48.17791

Programacién Dinamica, |l

Modus operandi mds habitual

Programacién Dindmica tabulada:

>

>

Organiza los subproblemas y sus soluciones 6ptimas en forma
de tabla.

Inventa y justifica una regla para llenar cada entrada de esa
tabla,

a partir de entradas de la tabla que sabes que puedes haber
logrado llenar antes.

Frecuentemente parece, a primera vista, ineficiente; pero no lo
es tanto, y suele admitir ademds mejoras ad-hoc.

(La Programacién Dindmica no siempre es tabulada; pero en
este curso sélo tratamos la variante tabulada.)

Giving change, IV

Cuando tus “monedas” no permiten solucién “greedy”

En el ejemplo “giving change”, primer planteamiento:

» Tabla T con tantas filas como denominaciones de moneda
distintas, mas una: “nimero de denominaciones en uso".

Giving change, IV

Cuando tus “monedas” no permiten solucién “greedy”

En el ejemplo “giving change”, primer planteamiento:
» Tabla T con tantas filas como denominaciones de moneda
distintas, mas una: “nimero de denominaciones en uso".
» Y con tantas columnas como indica la cantidad final M a
obtener (o la mas alta si se quiere poder usar la misma tabla
para varios casos), mas una.

Giving change, IV

Cuando tus “monedas” no permiten solucién “greedy”

En el ejemplo “giving change”, primer planteamiento:

» Tabla T con tantas filas como denominaciones de moneda
distintas, mas una: “nimero de denominaciones en uso".

» Y con tantas columnas como indica la cantidad final M a
obtener (o la mas alta si se quiere poder usar la misma tabla
para varios casos), mas una.

» La entrada T/, h] indica cudntas monedas se usan para
obtener la cantidad h > 0, pero usando solamente las i > 0
denominaciones de moneda mas pequefias.

Giving change, IV

Cuando tus “monedas” no permiten solucién “greedy”

En el ejemplo “giving change”, primer planteamiento:
» Tabla T con tantas filas como denominaciones de moneda
distintas, mas una: “nimero de denominaciones en uso".

» Y con tantas columnas como indica la cantidad final M a
obtener (o la mas alta si se quiere poder usar la misma tabla
para varios casos), mas una.

» La entrada T/, h] indica cudntas monedas se usan para
obtener la cantidad h > 0, pero usando solamente las i > 0
denominaciones de moneda mas pequefias.

T[i, h] =

Giving change, IV

Cuando tus “monedas” no permiten solucién “greedy”

En el ejemplo “giving change”, primer planteamiento:

» Tabla T con tantas filas como denominaciones de moneda
distintas, mas una: “nimero de denominaciones en uso".

» Y con tantas columnas como indica la cantidad final M a
obtener (o la mas alta si se quiere poder usar la misma tabla
para varios casos), mas una.

» La entrada T/, h] indica cudntas monedas se usan para
obtener la cantidad h > 0, pero usando solamente las i > 0
denominaciones de moneda mas pequefias.

T[i, b =
min(T[i —1,h], 1+ T[i,h—dj]).

Giving change, IV

Cuando tus “monedas” no permiten solucién “greedy”

En el ejemplo “giving change”, primer planteamiento:

» Tabla T con tantas filas como denominaciones de moneda
distintas, mas una: “nimero de denominaciones en uso".

» Y con tantas columnas como indica la cantidad final M a
obtener (o la mas alta si se quiere poder usar la misma tabla
para varios casos), mas una.

» La entrada T/, h] indica cudntas monedas se usan para
obtener la cantidad h > 0, pero usando solamente las i > 0
denominaciones de moneda mas pequefias.

T[i, h] =
min(T[i —1,h], 14+ T[i,h—di]).
sii>0yh2>d.

Giving change, V

Muchos detalles a los que prestar atencién

i Significado preciso de las filas?

jAfecta a la indexacién de la lista de denominaciones!

» ;T[0,h]? En particular T[0,0]...

Giving change, V
Muchos detalles a los que prestar atencién
i Significado preciso de las filas?
jAfecta a la indexacién de la lista de denominaciones!
» ; T[0,h]? En particular TJ[0,0]...
T[0,0] =0

Giving change, V
Muchos detalles a los que prestar atencién
i Significado preciso de las filas?
jAfecta a la indexacién de la lista de denominaciones!
» ; T[0,h]? En particular TJ[0,0]...
T[0,0] =0

» TJO0, h] ha de indicar “imposible” para h > 0. ;Qué haremos
con esas entradas?

Giving change, V
Muchos detalles a los que prestar atencién
i Significado preciso de las filas?
jAfecta a la indexacién de la lista de denominaciones!
» ; T[0,h]? En particular TJ[0,0]...
T[0,0] =0
» TJO0, h] ha de indicar “imposible” para h > 0. ;Qué haremos
con esas entradas?
T[0, h] = float("inf")

Giving change, V
Muchos detalles a los que prestar atencién
i Significado preciso de las filas?
jAfecta a la indexacién de la lista de denominaciones!
» ; T[0,h]? En particular TJ[0,0]...
T[0,0] =0
» TJO0, h] ha de indicar “imposible” para h > 0. ;Qué haremos
con esas entradas?
T[0, h] = float("inf")

» ;Ddnde nos convienen las denominaciones?

Giving change, V
Muchos detalles a los que prestar atencién

i Significado preciso de las filas?
jAfecta a la indexacién de la lista de denominaciones!
» ;T[0,h]? En particular T[0,0]...
T[0,0] =0
» TJO0, h] ha de indicar “imposible” para h > 0. ;Qué haremos
con esas entradas?
T[0, h] = float("inf")
» ;Ddnde nos convienen las denominaciones?
En las posiciones 1 en adelante de una lista, denoms,

Giving change, V
Muchos detalles a los que prestar atencién

i Significado preciso de las filas?
jAfecta a la indexacién de la lista de denominaciones!
» ;T[0,h]? En particular T[0,0]...
T[0,0] =0
» TJO0, h] ha de indicar “imposible” para h > 0. ;Qué haremos
con esas entradas?
T[0, h] = float("inf")
» ;Ddnde nos convienen las denominaciones?
En las posiciones 1 en adelante de una lista, denoms,

evitando dp.

Giving change, V
Muchos detalles a los que prestar atencién

i Significado preciso de las filas?
jAfecta a la indexacién de la lista de denominaciones!
» ;T[0,h]? En particular T[0,0]...
T[0,0] =0
» TJO0, h] ha de indicar “imposible” para h > 0. ;Qué haremos
con esas entradas?

T[0, h] = float("inf")
» ;Ddnde nos convienen las denominaciones?
En las posiciones 1 en adelante de una lista, denoms,
evitando dp.

» Las necesitaremos ordenar.

Giving change, V
Muchos detalles a los que prestar atencién

i Significado preciso de las filas?
jAfecta a la indexacién de la lista de denominaciones!
» ;T[0,h]? En particular T[0,0]...
T[0,0] =0
» TJO0, h] ha de indicar “imposible” para h > 0. ;Qué haremos
con esas entradas?
T[0, h] = float("inf")
» ;Ddnde nos convienen las denominaciones?
En las posiciones 1 en adelante de una lista, denoms,
evitando dp.
» Las necesitaremos ordenar.

iQué “placeholder” podemos poner en denoms [0] 7

Giving change, V
Muchos detalles a los que prestar atencién

i Significado preciso de las filas?
jAfecta a la indexacién de la lista de denominaciones!
» ;T[0,h]? En particular T[0,0]...
T[0,0] =0
» TJO0, h] ha de indicar “imposible” para h > 0. ;Qué haremos
con esas entradas?
T[0, h] = float("inf")
» ;Ddnde nos convienen las denominaciones?
En las posiciones 1 en adelante de una lista, denoms,
evitando dp.
» Las necesitaremos ordenar.
iQué “placeholder” podemos poner en denoms [0] 7
denoms [0] = float("-inf")

Giving change, VI

def gcdptable(denoms, upper_lim):
t ={} #t is a *dictionary* (!!) t[i,jl = t[(i,j)]
for quantity in range(upper_lim + 1):
"init table for no coins"
t[0, quantity] = float("inf")
t[0, 0] =0
for denom in range(1l, len(denoms)): # Re-indexed ’denoms’
for quantity in range(upper_lim + 1):
if denoms[denom] <= quantity:
"shall we use one more denoms[denom] coin?"
t [denom, quantity] = min(
t[denom - 1, quantityl],
1 + t[denom, quantity - denoms[denom]])
else:
"cannot use that denomination anymore"
t[denom, quantity] = t[denom - 1, quantity]
return t

Giving change, VII

Pero, jcudl es realmente la solucién completa?

Giving change, VII

Pero, jcual es realmente la solucién completa?

def trace(gctab, denoms, q):

r = Counter() # Beware! ’denoms’ are not re-indexed

d = len(denoms) - 1

while q:
"non-generalizable: we can tell which case of the two"
if d == 0:

"only unit coins are used now"
r[denoms[d]] += q
break

elif gctabld, q] == gctabld-1, ql:
"coins of denoms[d] units were not employed"
d =1

else:
r[denoms[d]] += 1
q -= denoms[d]

return r

Giving change, VIII

i Realmente necesitamos toda la tabla?

iHa de estar siempre presente la denominacién 17

Condicidn necesaria y suficiente para poder resolver todos los casos.

» ;Podemos simplificar la estructura de datos?

» Muchas veces, la manera de simplificar el programa es
simplificar la estructura de datos.

» ;i Necesitamos tener siempre todas las filas?

Giving change, VIII

i Realmente necesitamos toda la tabla?

iHa de estar siempre presente la denominacién 17

Condicidn necesaria y suficiente para poder resolver todos los casos.

» ;Podemos simplificar la estructura de datos?

» Muchas veces, la manera de simplificar el programa es
simplificar la estructura de datos.

» ;i Necesitamos tener siempre todas las filas?

» iEn cada momento, nos basta tener la que estamos
calculando!

Giving change, IX

dptable = [float("inf")]*(upper_lim + 1)
dptable[0] = O
for i in range(l, upper_lim + 1):
"dptable[i]: how many coins needed to add up to i"
for coin in coins:
"try using it"
if coin <= i:
dptable[i] = min(dptable[i], 1 + dptable[i-coin])

Calculando la tabla asi, dptable[h] > upper_lim significa que
no es posible alcanzar h, de lo cual informamos apropiadamente.

En otro caso, la solucién estd en dptable [h].

Giving change, X

Para conservar la solucién completa

Cada vez que se modifica la tabla principal, se anota el motivo del
cambio en una tabla secundaria:

for coin in coins:
if coin <= i:
if 1 + dptable[i - coin] <= dptablel[i]:
dptable[i] = 1 + dptable[i - coin]
best[i] = coin

ildea generalizable!

Giving change, Xl

Para reconstruir la solucién completa

Usando luego best (un dict), la reconstruimos asi:

def trace(best, goal):
coins = 1list(Q)
while goal:
used = best[goal]
coins.append (used)
goal -= used
return coins

Mochila, XVI

Brevisimamente

La mochila, jpor Programacién Dindmica?

Mochila, XVI

Brevisimamente
La mochila, jpor Programacién Dindmica?

» ;i Qué representa cada dimensién de la tabla?
» ;i Qué representa el contenido de las casillas?

» ;Cémo queda entonces la correspondiente ecuacién de
Bellman?

Mochila, XVI

Brevisimamente
La mochila, jpor Programacién Dindmica?

» ;i Qué representa cada dimensién de la tabla?
» ;i Qué representa el contenido de las casillas?

» ;Cémo queda entonces la correspondiente ecuacién de
Bellman?

Tli,hl=max(T[i —1,h], i+ T[i—1,h—w])

.a condicién de que. ..

Mochila, XVI

Brevisimamente
La mochila, jpor Programacién Dindmica?

» ;i Qué representa cada dimensién de la tabla?
» ;i Qué representa el contenido de las casillas?

» ;Cémo queda entonces la correspondiente ecuacién de
Bellman?

Tli,hl=max(T[i —1,h], i+ T[i—1,h—w])

.a condicién de que. ..

Mochila, XVI

Brevisimamente
La mochila, jpor Programacién Dindmica?

» ;i Qué representa cada dimensién de la tabla?
» ;i Qué representa el contenido de las casillas?

» ;Cémo queda entonces la correspondiente ecuacién de
Bellman?

Tli,hl=max(T[i —1,h], i+ T[i—1,h—w])
.a condicién de que. ..

w; < h

A completar mediante cuidadosa consideracién de las boundary
conditions.

Supersecuencias, |

Conecta con aplicaciones en Bioinformatica

Dadas dos secuencias (por ejemplo strings), jcudl es la secuencia
mds corta posible que tiene a ambas como subsecuencias?

(O una de ellas en caso de que haya varias.)

Supersecuencias, |

Conecta con aplicaciones en Bioinformatica

Dadas dos secuencias (por ejemplo strings), jcudl es la secuencia
mds corta posible que tiene a ambas como subsecuencias?

(O una de ellas en caso de que haya varias.)

Como antes, empezamos por calcular solamente su longitud;
anadimos luego cédigo para trazar la supersecuencia solucién.

Supersecuencias, |

Conecta con aplicaciones en Bioinformatica

Dadas dos secuencias (por ejemplo strings), jcudl es la secuencia
mds corta posible que tiene a ambas como subsecuencias?

(O una de ellas en caso de que haya varias.)

Como antes, empezamos por calcular solamente su longitud;
anadimos luego cédigo para trazar la supersecuencia solucién.

Si r es una de las supersecuencias comunes minimas de s y t,
iqué podemos averiguar sobre r?

Supersecuencias, |l

Consideraciones

1. jCémo serian los casos de secuencias de entrada vacias?

Supersecuencias, |l

Consideraciones

1. jCémo serian los casos de secuencias de entrada vacias?

2. iCoémo seria un caso en que ambas secuencias empiezan por
la misma letra?
» Entonces el resultado también.
» Y el resto del resultado es. ..

Supersecuencias, |l

Consideraciones

1. jCémo serian los casos de secuencias de entrada vacias?
. Coémo seria un caso en que ambas secuencias empiezan por
la misma letra?
» Entonces el resultado también.
» Y el resto del resultado es... un subproblema con secuencias
mas cortas.
3. Queda pendiente el caso de que las primeras letras de las dos
secuencias sean diferentes.

» Entonces el resultado ha de empezar por una de ellas.
» Y el resto del resultado es. ..

Supersecuencias, |l

Consideraciones

1. jCémo serian los casos de secuencias de entrada vacias?

. Coémo seria un caso en que ambas secuencias empiezan por
la misma letra?
» Entonces el resultado también.
» Y el resto del resultado es... un subproblema con secuencias
mas cortas.

3. Queda pendiente el caso de que las primeras letras de las dos
secuencias sean diferentes.
» Entonces el resultado ha de empezar por una de ellas.
» Y el resto del resultado es... un subproblema con una
secuencia mantenida igual y la otra mas corta.

Supersecuencias, |l

Tabla bidimensional

Sli, jl:

longitud de la supersecuencia mas corta de s[i:] y t[j:].

Supersecuencias, |l

Tabla bidimensional

Sli, jl:

longitud de la supersecuencia mas corta de s[i:] y t[j:].

Si s[i] == t[jl:

Supersecuencias, |l

Tabla bidimensional

Sli, jl:

longitud de la supersecuencia mas corta de s[i:] y t[j:].
Sis[il == t[j1: 1 + S[i+1, j+1].

Sis[il !'= t[3l:

Supersecuencias, |l

Tabla bidimensional

Sli, jl:

longitud de la supersecuencia mas corta de s[i:] y t[j:].
Sis[il == t[j1: 1 + S[i+1, j+1].

Sis[i] !'= t[jl: 1 + min(S[i+1, jl, S[i, j+11).

Supersecuencias, |l

Tabla bidimensional

Sli, jl:

longitud de la supersecuencia mas corta de s[i:] y t[j:].
Sis[il == t[j1: 1 + S[i+1, j+1].
Sis[i] !'= t[jl: 1 + min(S[i+1, jl, S[i, j+11).

Boundary conditions: cuando s[i:] y/o t[j:] es vacia.

Supersecuencias, |l

Tabla bidimensional

Sli, jl:

longitud de la supersecuencia mas corta de s[i:] y t[j:].
Sis[i] == t[jl: 1 + S[i+1, j+1].
Sis[il '= t[jl: 1 + min(S[i+1, j1, S[i, j+11).
Boundary conditions: cuando s[i:] y/o t[j:] es vacia.

Ojo! Esta vez, las entradas de la tabla dependen de otras entradas
con indices superiores.

Supersecuencias, IV

Aproximacién al programa

initialize
for i in reversed(range(len(s))):
for j in reversed(range(len(t))):
if s[i] == t([jl:
Sli, j1 = 1 + S[i+1, j+1]
else:
S[i, jl = 1 + min(S[i+1, jI1, S[i, j+11)
return S[0, 0]

Supersecuencias, V

Cémo trazar la solucién

Método general: tabla secundaria que indica, para cada iy j, en
caso de ser diferentes las letras s[i] y t[j], si hemos de tomar en
ese punto la letra de s o la de t.

Para construirla, en el caso s[i] != t[j] reemplazamos la
operacién min por una comprobacién de desigualdad y apuntamos
en la tabla secundaria de cual de los dos strings dados viene la
letra a usar (por ejemplo, con los valores -1 o 1, reservando el cero
para cuando s[i] == t[j]).

Es también posible tomar la decisién mediante comparaciones del
estilo de S[i, jl == 1 + S[i+1, j] sobre la tabla principal.

Discretizacion no supervisada

“Unsupervised Discretization” o “One-Dimensional Clustering”

Dada una lista de float’s, hay que
particionarla en un nimero reducido de
segmentos (“bins”, “buckets”, “clusters”...).

Resuelto (si que casi nadie se enterase) por los
cartégrafos en la rama de cartografia llamada
choropleth maps; la solucién que
describimos ahora, ellos la llaman Jenks’
natural breaks.

(Fuente: Expert Health

Data Programming, Inc

Es un caso particular de la segmentacién por (EHDP) : Vitalnet)

“K-Means" .

https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization
https://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization
https://www.ehdp.com/vitalnet/output-map.htm
https://www.ehdp.com/vitalnet/output-map.htm
https://www.ehdp.com/vitalnet/output-map.htm

Segmentacion por “K-Means”

“Clustering” que sigue el criterio de minimizar el error cuadratico

El caso general:
Con vectores de niimeros reales en dimension d.

» Datos: n vectores x;, entero positivo k;

» Resultado: particionar los vectores en k clusters C;;

» representaremos cada “cluster” C; por un vector ¢;

(su centroide);
» los centroides han de minimizar el error cuadratico medio:
%Z Z d(X,', CJ')2
J xi€C

Nota:

No exigimos que los ¢; se escojan de entre los datos x;.

Segmentacion por “K-Means”

“Clustering” que sigue el criterio de minimizar el error cuadratico

El caso general:
Con vectores de niimeros reales en dimension d.

» Datos: n vectores x;, entero positivo k;

» Resultado: particionar los vectores en k clusters C;;

» representaremos cada “cluster” C; por un vector ¢;

(su centroide);
» los centroides han de minimizar el error cuadratico medio:
DIPILCE;
J xi€C

Nota:

No exigimos que los ¢; se escojan de entre los datos x;.

Malas noticias: NP-hard para dimensién 2 o mas.

Y, icomo lo resuelve la gente?

Si por milagro tuviéramos los centroides:

Entonces es facil encontrar los “clusters’: cada punto va a su

centroide mas préximo, porque, si no, el error crece.

Y, icomo lo resuelve la gente?

Si por milagro tuviéramos los centroides:

Entonces es facil encontrar los “clusters’: cada punto va a su
centroide mas préximo, porque, si no, el error crece.

Si por milagro tuviéramos los “clusters”:

Entonces es facil encontrar los centroides: minimizamos

> xec d(xi c)? forzando la derivada a cero; el resultado (no podia
ser otro) es que cada centroide queda en el baricentro de su
“cluster” porque, si no, el error crece.

La heuristica de Lloyd

Mucha gente la llama K-Means, confundiendo el problema con la solucién aproximada

Vamos alternando
entre las dos cosas que sabemos hacer, empezando por k
candidatos iniciales a centroide:

» recalcular los “clusters”,
» recalcular los centroides,

P repetir.

https://www.naftaliharris.com/blog/
visualizing-k-means-clustering/

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

K-Means: minimo global en dimension 1, |

Dynamic Programming: estrategia de Wang y Song, a.k.a. Jenks’ Natural Breaks

Input: ndmero de “clusters” k, y n floats, con n > k; x1 to x, en
orden creciente (pasa un sort si no).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148156
https://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization

K-Means: minimo global en dimension 1, |
Dynamic Programming: estrategia de Wang y Song, a.k.a. Jenks’ Natural Breaks

Input: ndmero de “clusters” k, y n floats, con n > k; x1 to x, en
orden creciente (pasa un sort si no).

Tabulamos: C[i, m], coste de un “clustering” de los puntos x; to x;
en m “clusters”, para m < k'y m < i; la solucién estd en C[n, k].

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148156
https://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization

K-Means: minimo global en dimension 1, |

Dynamic Programming: estrategia de Wang y Song, a.k.a. Jenks’ Natural Breaks

Input: ndmero de “clusters” k, y n floats, con n > k; x1 to x, en
orden creciente (pasa un sort si no).

Tabulamos: C[i, m], coste de un “clustering” de los puntos x; to x;
en m “clusters”, para m < k'y m < i; la solucién estd en C[n, k].

Inicializacién: C[i,m] =0 si m=0.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148156
https://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization

K-Means: minimo global en dimension 1, |

Dynamic Programming: estrategia de Wang y Song, a.k.a. Jenks’ Natural Breaks

Input: ndmero de “clusters” k, y n floats, con n > k; x1 to x, en
orden creciente (pasa un sort si no).

Tabulamos: C[i, m], coste de un “clustering” de los puntos x; to x;
en m “clusters”, para m < k'y m < i; la solucién estd en C[n, k].

Inicializacién: C[i,m] =0 si m=0.

iRelacién con “un cluster menos”? ldentificamos el punto mas
pequeno del dltimo “cluster”.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148156
https://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization

K-Means: minimo global en dimension 1, |

Dynamic Programming: estrategia de Wang y Song, a.k.a. Jenks’ Natural Breaks

Input: ndmero de “clusters” k, y n floats, con n > k; x1 to x, en
orden creciente (pasa un sort si no).

Tabulamos: C[i, m], coste de un “clustering” de los puntos x; to x;
en m “clusters”, para m < k'y m < i; la solucién estd en C[n, k].

Inicializacién: C[i,m] =0 si m=0.

iRelacién con “un cluster menos”? ldentificamos el punto mas
pequeno del dltimo “cluster”.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148156
https://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization

K-Means: minimo global en dimension 1, |

Dynamic Programming: estrategia de Wang y Song, a.k.a. Jenks’ Natural Breaks

Input: ndmero de “clusters” k, y n floats, con n > k; x1 to x, en
orden creciente (pasa un sort si no).

Tabulamos: C[i, m], coste de un “clustering” de los puntos x; to x;
en m “clusters”, para m < k'y m < i; la solucién estd en C[n, k].

Inicializacién: C[i,m] =0 si m=0.

iRelacién con “un cluster menos”? ldentificamos el punto mas
pequeno del dltimo “cluster”.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148156
https://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization

K-Means: minimo global en dimension 1, |l

i Cudl es la diferencia entre m clusters y m — 1 clusters?

C[i, m] = mianS;(C[i — 1, m —].] + ZJ'SESI' d(Xg, Cj7,')2)

K-Means: minimo global en dimension 1, |l

i Cudl es la diferencia entre m clusters y m — 1 clusters?

Cli,m) = minm<j<i(Cl = 1L,m = 1] + 35, e d(x, 6,1)?)
donde

N 1
G —‘i—j+4_§:j§e§ixf

K-Means: minimo global en dimension 1, |ll

Demo available

https://www.cs.upc.edu/~balqui/demoWSJ/

Alpha stage!
» Algin dia futuro me preocuparé por la estética,
» y por la usabilidad!. ..
Requiere:
P el nimero de clusters,
» los puntos que se supone que ya se han procesado y

» el nuevo punto a incorporar.

https://www.cs.upc.edu/~balqui/demoWSJ/

K-Means: minimo global en dimension 1, IV

i Cémo podemos hacerlo mejor?

Esta estrategia lleva a un algoritmo O(n?).

Mejora: no calcular individualmente cada ¢;; sino actualizar ¢; ;1
(icémo hacerlo? Un poco de algebra te lo dice.)

Ahorramos asi una computacién lineal que reduce el coste a O(n?).

(La alternativa de Jenks: in Cartografia sélo precisamos las
fronteras entre clusters, sin los centroides. Es posible tunear la
férmula, reemplazando en el esquema de minimizacién los
centroides por su definicién.)

Hay quien afirma que se puede hacer en O(nlogn). Ese texto no
ha pasado revisidn por pares.

Caminos minimos, |
i Aristas con costes? ;jPueden ser negativos?
Problemas de caminos minimos en grafos
Muy comunes: muchos problemas practicos se pueden modelar asi.
Empezamos por el caso “single-source™: el vértice inicial de todos
los caminos es fijo. El grafo es dirigido.
» ; Costes variables en los arcos, o todos iguales?
Si todos son iguales, jBreadth-First Search!
» ;Hay arcos con costes negativos?
» Si no: Dijkstra (o extensiones como A¥*).
» Silos hay... jhay un ciclo de coste total negativo?

En ese caso, el problema se complica. Solucionado muy
recientemente.

» Si no los hay: Bellman-Ford:

Caminos minimos, |
i Aristas con costes? ;jPueden ser negativos?
Problemas de caminos minimos en grafos
Muy comunes: muchos problemas practicos se pueden modelar asi.
Empezamos por el caso “single-source™: el vértice inicial de todos
los caminos es fijo. El grafo es dirigido.
» ; Costes variables en los arcos, o todos iguales?
Si todos son iguales, jBreadth-First Search!
» ;Hay arcos con costes negativos?
» Si no: Dijkstra (o extensiones como A¥*).
» Silos hay... jhay un ciclo de coste total negativo?

En ese caso, el problema se complica. Solucionado muy
recientemente.

» Si no los hay: Bellman-Ford:

Un fragmento de un camino minimo... jes minimo!

Caminos minimos, |
i Aristas con costes? ;jPueden ser negativos?
Problemas de caminos minimos en grafos
Muy comunes: muchos problemas practicos se pueden modelar asi.
Empezamos por el caso “single-source™: el vértice inicial de todos
los caminos es fijo. El grafo es dirigido.
» ; Costes variables en los arcos, o todos iguales?
Si todos son iguales, jBreadth-First Search!
» ;Hay arcos con costes negativos?
» Si no: Dijkstra (o extensiones como A¥*).
» Silos hay... jhay un ciclo de coste total negativo?

En ese caso, el problema se complica. Solucionado muy
recientemente.

» Si no los hay: Bellman-Ford:
Un fragmento de un camino minimo... jes minimo!

iIncluso en presencia de costes negativos!

Caminos minimos, Il
Si el Principio de Optimalidad se cumple. ..

Grafo dirigido de n vértices, vértice inicial s: “tabulamos” la
distancia dist[v, i] de s a v en, como mucho, i pasos.

Sidist[v, il es 6ptima y el dltimo arco es (u, v), entonces
dist[u, i-1] necesariamente es éptima.

dist[v,i] = min(dist[v, i — 1], dist[u, i — 1] + cost[u, v])

Caminos minimos, Il
Si el Principio de Optimalidad se cumple. ..

Grafo dirigido de n vértices, vértice inicial s: “tabulamos” la
distancia dist[v, i] de s a v en, como mucho, i pasos.

Sidist[v, il es 6ptima y el dltimo arco es (u, v), entonces
dist[u, i-1] necesariamente es éptima.

dist[v,i] = min(dist[v, i — 1], dist[u, i — 1] + cost[u, v])

for all v in V:
dist[v] = float(’inf’)

dist[s] = 0
for i in range(1l, n):
for all the edges (u, v):
if dist[v] > dist[u] + costl[u,v]:
dist[v] = dist[u] + cost[u, v]

Caminos minimos, Il
Si el Principio de Optimalidad se cumple. ..

Grafo dirigido de n vértices, vértice inicial s: “tabulamos” la
distancia dist[v, i] de s a v en, como mucho, i pasos.

Sidist[v, il es 6ptima y el dltimo arco es (u, v), entonces
dist[u, i-1] necesariamente es éptima.

dist[v, i] = min(dist|[v,i — 1], dist[u, i — 1] + cost[u, v])

for all v in V: # Bellman-Ford en PA2
dist[v] = float(’inf’)
prev[v] = None

dist[s] = 0

for i in range(1l, n):
for all the edges (u, v):
if dist[v] > dist[u] + costl[u,v]:
dist[v] = dist[u] + cost[u, v]
previv] =u

Caminos minimos, Il

i Qué es lo que decidimos considerar un subproblema?

“All-pairs shortest paths”:

Dado un grafo (dirigido o no), jcudles son las distancias mas
cortas entre todos los pares de vértices?

P> Puede haber costes negativos, pero no ciclos de coste total
negativo.

> VérticesdeOa N —1,

» subproblemas definidos por un segmento inicial de esa
secuencia de vértices;

P sélo se permiten los vértices de ese segmento inicial como
vértices intermedios de un camino.

» Inicialmente: segmento nulo, no se permiten vértices como
pasos intermedios; la distancia viene dada por los arcos
individuales: si desde un vértice se alcanza directamente otro.

Caminos minimos, IV
jRecordemos comprobar el Principio de Optimalidad!
Esencia del algoritmo de Floyd(-Warshall(-Roy)):

» Si ya tenemos en nuestra tabla de distancias todas las que
sblo usan vértices intermedios anteriores a k:

i Cémo las usamos para contar también con k?

> La nueva opcidn k se usara o bien cero veces, jo bien
exactamente una!

https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm

Caminos minimos, IV
jRecordemos comprobar el Principio de Optimalidad!
Esencia del algoritmo de Floyd(-Warshall(-Roy)):
» Si ya tenemos en nuestra tabla de distancias todas las que
sblo usan vértices intermedios anteriores a k:
i Cémo las usamos para contar también con k?

> La nueva opcidn k se usara o bien cero veces, jo bien
exactamente una!

dist(i, j, k) = min(dist(i, j, k-1),
dist(i, k, k-1) + dist(k, j, k-1))

https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm

Caminos minimos, IV
jRecordemos comprobar el Principio de Optimalidad!
Esencia del algoritmo de Floyd(-Warshall(-Roy)):
» Si ya tenemos en nuestra tabla de distancias todas las que
sblo usan vértices intermedios anteriores a k:
i Cémo las usamos para contar también con k?

> La nueva opcidn k se usara o bien cero veces, jo bien
exactamente una!

dist(i, j, k) = min(dist(i, j, k-1),
dist(i, k, k-1) + dist(k, j, k-1))
» Y si pasar por k es preferible, anotamos en la tabla secundaria
que el mejor camino de i a j pasa por k.
> La tabla secundaria permite reconstruir recursivamente los
caminos minimos si se necesitan.

(Existe una opcidn alternativa para esta reconstruccién: véase
el enlace a Wikipedia dado arriba.)

https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm

Blsqueda exhaustiva, Il

Si hay que probar todas las posibles soluciones, hagamoslo bien

iNo encuentras mds opcién que la blsqueda exhaustiva?
(No olvides preguntar si alguien ha demostrado NP-hardness; mds
explicaciones sobre esto en la segunda mitad del curso.)

1. Empieza por existencia, deja la optimizacién para después;

2. Usa la libreria estdndar para programar rapidamente una
bisqueda exhaustiva, aunque sea exponencialmente lenta, y
pruébala.

3. Se puede usar también para contabilizar repeticiones de
subproblemas.

4. Si es demasiado lenta, plantea una solucién por backtracking.

5. Subproblemas frecuentemente repetidos? Consideramos
aplicar Programacién Dindmica (dynamic programming), tal
vez tras “backtracking”, o tal vez directamente para empezar.

Busqueda exhaustiva, IV

Una vez en este punto:
P> Plantea el problema en términos de optimizacién.
> ; “Best-first search”?
(Es decir, A* y familia (“iterative deepening”...)
https://en.wikipedia.org/wiki/Best-first_search.)

» ; “Branch-and-bound"? ; “Branch-and-cut”?, ;AO* con
“alpha-beta pruning”?...)

https://en.wikipedia.org/wiki/Best-first_search

	Presentación
	Búsqueda combinatoria
	Búsqueda exhaustiva
	Estructura de subproblemas
	Backtracking
	Esquemas ``greedy''
	Programación Dinámica (Dynamic Programming)

	Teoría de lenguajes formales
	Contexto y principios
	Lenguajes regulares
	Lenguajes incontextuales
	La jerarquía de Chomsky
	Máquinas de Turing

	Calculabilidad e indecidibilidad
	Funciones recursivas parciales
	Indecidibilidad
	Enumerabilidad recursiva

	Clases de complejidad
	Cotas de tiempo o de espacio
	Problemas NP-completos

