
Programació i Algoŕısmia Avançada
Grau en Intel·ligència Artificial, FIB–UPC

José Luis Balcázar, Jordi Delgado

Dept. CS, UPC

2025–26, Quadrimestre de primavera

Contenido

Presentación

Búsqueda combinatoria

Teoŕıa de lenguajes formales

Calculabilidad e indecidibilidad

Clases de complejidad

Contenido

Presentación

Búsqueda combinatoria

Teoŕıa de lenguajes formales

Calculabilidad e indecidibilidad

Clases de complejidad

Algoŕıtmica
En sentido laxo, incluye modelos abstractos de cálculo

▶ Búsqueda combinatoria: concepto; “backtracking”; esquemas
“greedy”; Programación Dinámica; “divide-and-conquer”.

▶ Lenguajes formales: gramáticas, modelos abstractos de
cálculo.

▶ Computabilidad e indecidibilidad: las funciones recursivas
parciales; lambda-cálculo.

▶ Teoŕıa de la Complejidad; NP-completitud.

Lab
Y parte de los exámenes

He enviado a las direcciones de e-mail estudiantat.upc.edu
invitaciones al curso de jutge.org con el mismo nombre que la
asignatura. Quien no lo haya recibido que me avise por e-mail (a
jose.luis.balcazar@upc.edu).

Hoy
Repasamos recursividad y árboles

▶ https://jutge.org/problems/X91812

▶ https://jutge.org/problems/P63448

▶ https://jutge.org/problems/P90133

https://jutge.org/problems/X91812
https://jutge.org/problems/P63448
https://jutge.org/problems/P90133

Contenido

Presentación

Búsqueda combinatoria
Búsqueda exhaustiva
Estructura de subproblemas
Backtracking
Esquemas “greedy”
Programación Dinámica (Dynamic Programming)

Teoŕıa de lenguajes formales

Calculabilidad e indecidibilidad

Clases de complejidad

Recorridos de árboles
Repaso: preorden, inorden, postorden

Recorridos de grafos
Repaso: depth-first search

Búsqueda combinatoria, I
Combinatorial search

Algunas estrategias de diseño de algoritmos, de entre las
much́ısimas posibles, han resultado particularmente exitosas.

Contexto intuitivo para explicarlas

y analizar sus parecidos y diferencias:

▶ noción de “caso” de un problema computacional;

▶ noción de “solución candidata” para un caso;
▶ noción de “solución que buscamos”, en dos posibles enfoques:

(a) mera existencia (una solución? o todas ellas?),
(b) optimalidad (maximización? minimización?).

Por supuesto, no todo problema computacional admite este tipo de
análisis, pero muchos śı lo permiten (y aún más si tomamos estas
nociones gúıa de forma un poco relajada pero aún útil).

Búsqueda combinatoria, II
Frecuentemente podemos aplicar el esquema de más de una manera

Árboles de expansión:

Dado un grafo conexo, con pesos en las aristas, encuéntrese en él
un subgrafo conexo

(a) que conecta todos los vértices sin crear ciclos;

o

(b) que conecta todos los vértices con el ḿınimo peso total.

“Mochilas”:
Dados números V y W y un conjunto de objetos, cada uno con un
peso y un valor, encuéntrese un subconjunto de tales objetos

(a) que alcanza valor total al menos V pero pesa a lo más W ;

(b) que alcanza el mayor valor posible pero pesa a lo más W ;

(c) que alcanza valor total al menos V pero pesa lo menos
posible.

Búsqueda combinatoria, II
Frecuentemente podemos aplicar el esquema de más de una manera

Árboles de expansión:

Dado un grafo conexo, con pesos en las aristas, encuéntrese en él
un subgrafo conexo

(a) que conecta todos los vértices sin crear ciclos; o

(b) que conecta todos los vértices con el ḿınimo peso total.

“Mochilas”:
Dados números V y W y un conjunto de objetos, cada uno con un
peso y un valor, encuéntrese un subconjunto de tales objetos

(a) que alcanza valor total al menos V pero pesa a lo más W ;

(b) que alcanza el mayor valor posible pero pesa a lo más W ;

(c) que alcanza valor total al menos V pero pesa lo menos
posible.

Búsqueda combinatoria, II
Frecuentemente podemos aplicar el esquema de más de una manera

Árboles de expansión:

Dado un grafo conexo, con pesos en las aristas, encuéntrese en él
un subgrafo conexo

(a) que conecta todos los vértices sin crear ciclos; o

(b) que conecta todos los vértices con el ḿınimo peso total.

“Mochilas”:
Dados números V y W y un conjunto de objetos, cada uno con un
peso y un valor, encuéntrese un subconjunto de tales objetos

(a) que alcanza valor total al menos V pero pesa a lo más W ;

(b) que alcanza el mayor valor posible pero pesa a lo más W ;

(c) que alcanza valor total al menos V pero pesa lo menos
posible.

Búsqueda combinatoria, III
O bien: Árboles de expansión, I

“Spanning trees”:

▶ Noción de “caso” de un problema computacional:

“Dado un grafo conexo con pesos en las aristas. . . ”

▶ noción de “solución candidata” para un caso:

“encuéntrese en él un subgrafo conexo que. . . ”;

▶ noción de “solución que buscamos”, en dos posibles enfoques:

(a) mera existencia, como:
“conecta todos los vértices sin crear ciclos” o

(b) optimalidad (maximización o minimización), como:
“conecta todos los vértices con el ḿınimo peso total”.

Búsqueda combinatoria, III
O bien: Árboles de expansión, I

“Spanning trees”:

▶ Noción de “caso” de un problema computacional:

“Dado un grafo conexo con pesos en las aristas. . . ”

▶ noción de “solución candidata” para un caso:

“encuéntrese en él un subgrafo conexo que. . . ”;

▶ noción de “solución que buscamos”, en dos posibles enfoques:

(a) mera existencia, como:
“conecta todos los vértices sin crear ciclos” o

(b) optimalidad (maximización o minimización), como:
“conecta todos los vértices con el ḿınimo peso total”.

Búsqueda combinatoria, IV
O bien: Mochila, I

“Mochilas”:
▶ Noción de “caso” de un problema computacional:

“Dados números V y W y un conjunto de objetos, cada uno
con un peso y un valor. . . ”

▶ noción de “solución candidata” para un caso:

“encuéntrese un subconjunto de tales objetos. . . ”;

▶ noción de “solución que buscamos”, en dos posibles enfoques:

(a) mera existencia, como:
“que alcanza valor total al menos V pero pesa a lo más W ”;

(b) optimalidad (maximización o minimización), como:
“que alcanza el mayor valor posible pero pesa a lo más W ;”
o:
“que alcanza valor total al menos V pero pesa lo menos posible”.

Empezaremos solucionando versiones decisionales, y luego
extenderemos las soluciones a los casos de optimización.

Búsqueda exhaustiva, I
Simplemente “probemos todas las posibles soluciones”, ¿no?

Al encontrarnos con un nuevo problema:

¿Cómo proceder?

1. Exploramos una o varias maneras de encajarlo en el esquema
de búsqueda combinatoria.

2. De los esquemas algoŕıtmicos que conozcamos, ¿cuáles
podemos aplicar?

3. O. . . ¿tenemos que explorar todas las posibilidades?

Mochila, II
Versión decisional, buscaremos primero todas las soluciones

Dados:

▶ objetos i ∈ {0, . . . ,N − 1}
▶ con pesos w [i] y valores v [i],

▶ máxima capacidad de la mochila W ,

▶ valor total deseado V ,

encuéntrese un conjunto de objetos “que poner en la mochila” de
manera que:

▶ su peso total no supera la capacidad máxima W , y

▶ su valor total es al menos el valor deseado V .

Ejemplo:

Peso máximo W = 26, valor deseado V = 45 con objetos de:

Pesos: 9 8 12 11 7
Valores: 16 15 24 23 13

Mochila, III
“La cuenta de la vieja”, “brute force”, “perebor”

def slow_knapsack(objects, max_w, min_v)

sols = list()

for candidate in powerset(objects):

if (totalweight(candidate) <= max_w and

totalvalue(candidate) >= min_v):

sols.append(candidate)

return sols

Diversas posibilidades para el iterador powerset:

▶ Resuélvelo sin particular inspiración previa: P18957.

▶ “Itertools recipes” en la documentación oficial de Python,
caṕıtulo sobre itertools.

▶ Aprender a programar generadores (es fácil) y hacerlos
recursivos (ya no tan fácil).

▶ Demasiado lento para casi cualquier propósito práctico.

Mochila, III
“La cuenta de la vieja”, “brute force”, “perebor”

def slow_knapsack(objects, max_w, min_v)

sols = list()

for candidate in powerset(objects):

if (totalweight(candidate) <= max_w and

totalvalue(candidate) >= min_v):

sols.append(candidate)

return sols

Diversas posibilidades para el iterador powerset:

▶ Resuélvelo sin particular inspiración previa: P18957.

▶ “Itertools recipes” en la documentación oficial de Python,
caṕıtulo sobre itertools.

▶ Aprender a programar generadores (es fácil) y hacerlos
recursivos (ya no tan fácil).

▶ Demasiado lento para casi cualquier propósito práctico.

Mochila, III
“La cuenta de la vieja”, “brute force”, “perebor”

def slow_knapsack(objects, max_w, min_v)

sols = list()

for candidate in powerset(objects):

if (totalweight(candidate) <= max_w and

totalvalue(candidate) >= min_v):

sols.append(candidate)

return sols

Diversas posibilidades para el iterador powerset:

▶ Resuélvelo sin particular inspiración previa: P18957.

▶ “Itertools recipes” en la documentación oficial de Python,
caṕıtulo sobre itertools.

▶ Aprender a programar generadores (es fácil) y hacerlos
recursivos (ya no tan fácil).

▶ Demasiado lento para casi cualquier propósito práctico.

Búsqueda exhaustiva, II
Ĺımites de la búsqueda exhaustiva

1. “Set-based combinatorial search”: buscamos una aguja en el
pajar de todos los subconjuntos de un conjunto dado.

2. “Permutation-based combinatorial search”: buscamos una
aguja en el pajar de todas las permutaciones de una secuencia
dada.

3. ¿Realmente tenemos que explorar todas las posibilidades?
▶ Todos los subconjuntos (“powerset”). . . 2N casos.
▶ Todas las permutaciones. . . N! casos.

El factorial y el crecimiento exponential, I
No tomarás el nombre de la Exponencial en vano!

El factorial y el crecimiento exponential, I
No tomarás el nombre de la Exponencial en vano!

El factorial y el crecimiento exponential, I
No tomarás el nombre de la Exponencial en vano!

El factorial y el crecimiento exponential, II
N! crece exponencialmente, dijo Stirling

Supongamos:

▶ que sólo necesitamos una operación elemental por cada una
de las N! configuraciones posibles, y que

▶ podemos contar con que se realicen 13000 billones de
operaciones por segundo (13× 1015).

Entonces, tardaremos:

para N = 12: milmillonésimas de segundo (10−9);

para N = 15: 8 milésimas de segundo (8× 10−3);

para N = 18: medio segundo;

para N = 21: una hora;

para N = 24: un año y medio;

para N = 27: más de 250 siglos. . .

El factorial y el crecimiento exponential, II
N! crece exponencialmente, dijo Stirling

Supongamos:

▶ que sólo necesitamos una operación elemental por cada una
de las N! configuraciones posibles, y que

▶ podemos contar con que se realicen 13000 billones de
operaciones por segundo (13× 1015).

Entonces, tardaremos:

para N = 12: milmillonésimas de segundo (10−9);

para N = 15: 8 milésimas de segundo (8× 10−3);

para N = 18: medio segundo;

para N = 21: una hora;

para N = 24: un año y medio;

para N = 27: más de 250 siglos. . .

El factorial y el crecimiento exponential, II
N! crece exponencialmente, dijo Stirling

Supongamos:

▶ que sólo necesitamos una operación elemental por cada una
de las N! configuraciones posibles, y que

▶ podemos contar con que se realicen 13000 billones de
operaciones por segundo (13× 1015).

Entonces, tardaremos:

para N = 12: milmillonésimas de segundo (10−9);

para N = 15: 8 milésimas de segundo (8× 10−3);

para N = 18: medio segundo;

para N = 21: una hora;

para N = 24: un año y medio;

para N = 27: más de 250 siglos. . .

El factorial y el crecimiento exponential, II
N! crece exponencialmente, dijo Stirling

Supongamos:

▶ que sólo necesitamos una operación elemental por cada una
de las N! configuraciones posibles, y que

▶ podemos contar con que se realicen 13000 billones de
operaciones por segundo (13× 1015).

Entonces, tardaremos:

para N = 12: milmillonésimas de segundo (10−9);

para N = 15: 8 milésimas de segundo (8× 10−3);

para N = 18: medio segundo;

para N = 21: una hora;

para N = 24: un año y medio;

para N = 27: más de 250 siglos. . .

El factorial y el crecimiento exponential, II
N! crece exponencialmente, dijo Stirling

Supongamos:

▶ que sólo necesitamos una operación elemental por cada una
de las N! configuraciones posibles, y que

▶ podemos contar con que se realicen 13000 billones de
operaciones por segundo (13× 1015).

Entonces, tardaremos:

para N = 12: milmillonésimas de segundo (10−9);

para N = 15: 8 milésimas de segundo (8× 10−3);

para N = 18: medio segundo;

para N = 21: una hora;

para N = 24: un año y medio;

para N = 27: más de 250 siglos. . .

El factorial y el crecimiento exponential, II
N! crece exponencialmente, dijo Stirling

Supongamos:

▶ que sólo necesitamos una operación elemental por cada una
de las N! configuraciones posibles, y que

▶ podemos contar con que se realicen 13000 billones de
operaciones por segundo (13× 1015).

Entonces, tardaremos:

para N = 12: milmillonésimas de segundo (10−9);

para N = 15: 8 milésimas de segundo (8× 10−3);

para N = 18: medio segundo;

para N = 21: una hora;

para N = 24: un año y medio;

para N = 27: más de 250 siglos. . .

Búsqueda combinatoria, V
Variantes

¿Qué estructura combinatoria hay detrás?

▶ ¿Conjuntos? “Set-based backtracking”.

▶ ¿Permutaciones? “Permutation-based backtracking”.

▶ . . .

Y, en términos de los detalles algoŕıtmicos, puede ser:

▶ Recorrido para encontrar todas las soluciones.

▶ Búsqueda (similar a la lineal) para encontrar una solución.

▶ Recorrido de optimización para encontrar la mejor solución.

Búsqueda combinatoria, V
Variantes

¿Qué estructura combinatoria hay detrás?

▶ ¿Conjuntos? “Set-based backtracking”.

▶ ¿Permutaciones? “Permutation-based backtracking”.

▶ . . .

Y, en términos de los detalles algoŕıtmicos, puede ser:

▶ Recorrido para encontrar todas las soluciones.

▶ Búsqueda (similar a la lineal) para encontrar una solución.

▶ Recorrido de optimización para encontrar la mejor solución.

Búsqueda combinatoria, V
Variantes

¿Qué estructura combinatoria hay detrás?

▶ ¿Conjuntos? “Set-based backtracking”.

▶ ¿Permutaciones? “Permutation-based backtracking”.

▶ . . .

Y, en términos de los detalles algoŕıtmicos, puede ser:

▶ Recorrido para encontrar todas las soluciones.

▶ Búsqueda (similar a la lineal) para encontrar una solución.

▶ Recorrido de optimización para encontrar la mejor solución.

Mochila, IV
Recorrido alternativo del “powerset”

By: Brian M. Scott at math.stackexchange.com

https://math.stackexchange.com/users/12042/brian-m-scott
https://math.stackexchange.com/questions/1884759/why-is-finding-all-subsets-of-a-set-power-set-an-exponential-problem

Mochila, V
“La cuenta de la vieja” siguiendo el recorrido alternativo

def knapsack(weights, values, current_item, max_w, min_v):

if current_item == -1:

"all items considered, none left"

if min_v <= 0 and max_w >= 0:

return [list()]

else:

return list()

sols0 = knapsack(weights, values, current_item - 1,

max_w, min_v)

sols1 = knapsack(weights, values, current_item - 1,

max_w - weights[current_item],

min_v - values[current_item])

sols0.extend(sol + [current_item] for sol in sols1)

return sols0

Búsqueda combinatoria, VI
El siguiente ingrediente

Adicionalmente:
Los candidatos a solución se estructuran en

▶ una noción de “subproblema”, obtenido a través de una
“secuencia de decisiones” que progresan hacia las soluciones
candidatas

(frecuentemente se denomina “problemas locales” a los
subproblemas, y entonces el problema original se denomina
“global”);

▶ una función que nos indica si una secuencia de decisiones es

(a) ya “inaceptable”
(es decir, el subproblema no tiene solución) o

(b) “aceptable” pero aún “incompleta”
(puede ser que el problema tenga solución, hay que continuar
la exploración) o

(c) una solución “completa” para el problema global.

Búsqueda combinatoria, VI
El siguiente ingrediente

Adicionalmente:
Los candidatos a solución se estructuran en

▶ una noción de “subproblema”, obtenido a través de una
“secuencia de decisiones” que progresan hacia las soluciones
candidatas

(frecuentemente se denomina “problemas locales” a los
subproblemas, y entonces el problema original se denomina
“global”);

▶ una función que nos indica si una secuencia de decisiones es

(a) ya “inaceptable”
(es decir, el subproblema no tiene solución) o

(b) “aceptable” pero aún “incompleta”
(puede ser que el problema tenga solución, hay que continuar
la exploración) o

(c) una solución “completa” para el problema global.

Búsqueda combinatoria, VI
El siguiente ingrediente

Adicionalmente:
Los candidatos a solución se estructuran en

▶ una noción de “subproblema”, obtenido a través de una
“secuencia de decisiones” que progresan hacia las soluciones
candidatas

(frecuentemente se denomina “problemas locales” a los
subproblemas, y entonces el problema original se denomina
“global”);

▶ una función que nos indica si una secuencia de decisiones es

(a) ya “inaceptable”
(es decir, el subproblema no tiene solución) o

(b) “aceptable” pero aún “incompleta”
(puede ser que el problema tenga solución, hay que continuar
la exploración) o

(c) una solución “completa” para el problema global.

Búsqueda combinatoria, VI
El siguiente ingrediente

Adicionalmente:
Los candidatos a solución se estructuran en

▶ una noción de “subproblema”, obtenido a través de una
“secuencia de decisiones” que progresan hacia las soluciones
candidatas

(frecuentemente se denomina “problemas locales” a los
subproblemas, y entonces el problema original se denomina
“global”);

▶ una función que nos indica si una secuencia de decisiones es

(a) ya “inaceptable”

(es decir, el subproblema no tiene solución) o
(b) “aceptable” pero aún “incompleta”

(puede ser que el problema tenga solución, hay que continuar
la exploración) o

(c) una solución “completa” para el problema global.

Búsqueda combinatoria, VI
El siguiente ingrediente

Adicionalmente:
Los candidatos a solución se estructuran en

▶ una noción de “subproblema”, obtenido a través de una
“secuencia de decisiones” que progresan hacia las soluciones
candidatas

(frecuentemente se denomina “problemas locales” a los
subproblemas, y entonces el problema original se denomina
“global”);

▶ una función que nos indica si una secuencia de decisiones es

(a) ya “inaceptable”
(es decir, el subproblema no tiene solución) o

(b) “aceptable” pero aún “incompleta”
(puede ser que el problema tenga solución, hay que continuar
la exploración) o

(c) una solución “completa” para el problema global.

Búsqueda combinatoria, VI
El siguiente ingrediente

Adicionalmente:
Los candidatos a solución se estructuran en

▶ una noción de “subproblema”, obtenido a través de una
“secuencia de decisiones” que progresan hacia las soluciones
candidatas

(frecuentemente se denomina “problemas locales” a los
subproblemas, y entonces el problema original se denomina
“global”);

▶ una función que nos indica si una secuencia de decisiones es

(a) ya “inaceptable”
(es decir, el subproblema no tiene solución) o

(b) “aceptable” pero aún “incompleta”

(puede ser que el problema tenga solución, hay que continuar
la exploración) o

(c) una solución “completa” para el problema global.

Búsqueda combinatoria, VI
El siguiente ingrediente

Adicionalmente:
Los candidatos a solución se estructuran en

▶ una noción de “subproblema”, obtenido a través de una
“secuencia de decisiones” que progresan hacia las soluciones
candidatas

(frecuentemente se denomina “problemas locales” a los
subproblemas, y entonces el problema original se denomina
“global”);

▶ una función que nos indica si una secuencia de decisiones es

(a) ya “inaceptable”
(es decir, el subproblema no tiene solución) o

(b) “aceptable” pero aún “incompleta”
(puede ser que el problema tenga solución, hay que continuar
la exploración) o

(c) una solución “completa” para el problema global.

Búsqueda combinatoria, VI
El siguiente ingrediente

Adicionalmente:
Los candidatos a solución se estructuran en

▶ una noción de “subproblema”, obtenido a través de una
“secuencia de decisiones” que progresan hacia las soluciones
candidatas

(frecuentemente se denomina “problemas locales” a los
subproblemas, y entonces el problema original se denomina
“global”);

▶ una función que nos indica si una secuencia de decisiones es

(a) ya “inaceptable”
(es decir, el subproblema no tiene solución) o

(b) “aceptable” pero aún “incompleta”
(puede ser que el problema tenga solución, hay que continuar
la exploración) o

(c) una solución “completa” para el problema global.

Backtracking, I
Concepto

Organizamos la exploración de manera controlada:

Depth-First Search / preorden, excepto que el grafo o árbol es
impĺıcito.

▶ Cada subproblema es un vértice de un grafo o árbol
(probablemente muy grande) que queda en nuestra
imaginación.

▶ Las aristas de ese grafo imaginario son decisiones que nos
llevan de un subproblema a otro.

▶ Y lo principal: cuando detectamos un subproblema no factible
(“callejón sin salida”), nos ahorramos la exploración de todas
las configuraciones que requieran solucionarlo.

(El nombre viene “heredado” de antaño, antes de que la
programación recursiva fuera una opción generalizada: era preciso
“programar expĺıcitamente” el cambio de subárbol a explorar.)

Búsqueda combinatoria, VII
O bien: Árboles de expansión, II

Árboles de expansión:

Subproblema:

▶ encontrar el árbol de expansión de un subgrafo, o bien
▶ completar un único árbol de expansión incompleto:

▶ manteniendo un árbol parcial ya construido, o bien

▶ manteniendo un conjunto de árboles parciales ya construidos
(spanning forest). . .

Secuencia de decisiones: el árbol crece en una arista más. . .

(a) solución “completa” para el problema global: conecta todo,

(b) ya “inaceptable”: la nueva arista crea un ciclo,

(c) “aceptable” pero aún “incompleta”: todos los demás casos.

Búsqueda combinatoria, VII
O bien: Árboles de expansión, II

Árboles de expansión:

Subproblema:

▶ encontrar el árbol de expansión de un subgrafo, o bien
▶ completar un único árbol de expansión incompleto:

▶ manteniendo un árbol parcial ya construido, o bien
▶ manteniendo un conjunto de árboles parciales ya construidos

(spanning forest). . .

Secuencia de decisiones: el árbol crece en una arista más. . .

(a) solución “completa” para el problema global: conecta todo,

(b) ya “inaceptable”: la nueva arista crea un ciclo,

(c) “aceptable” pero aún “incompleta”: todos los demás casos.

Búsqueda combinatoria, VII
O bien: Árboles de expansión, II

Árboles de expansión:

Subproblema:

▶ encontrar el árbol de expansión de un subgrafo, o bien
▶ completar un único árbol de expansión incompleto:

▶ manteniendo un árbol parcial ya construido, o bien
▶ manteniendo un conjunto de árboles parciales ya construidos

(spanning forest). . .

Secuencia de decisiones: el árbol crece en una arista más. . .

(a) solución “completa” para el problema global: conecta todo,

(b) ya “inaceptable”: la nueva arista crea un ciclo,

(c) “aceptable” pero aún “incompleta”: todos los demás casos.

Búsqueda combinatoria, VII
O bien: Árboles de expansión, II

Árboles de expansión:

Subproblema:

▶ encontrar el árbol de expansión de un subgrafo, o bien
▶ completar un único árbol de expansión incompleto:

▶ manteniendo un árbol parcial ya construido, o bien
▶ manteniendo un conjunto de árboles parciales ya construidos

(spanning forest). . .

Secuencia de decisiones: el árbol crece en una arista más. . .

(a) solución “completa” para el problema global: conecta todo,

(b) ya “inaceptable”: la nueva arista crea un ciclo,

(c) “aceptable” pero aún “incompleta”: todos los demás casos.

Búsqueda combinatoria, VII
O bien: Árboles de expansión, II

Árboles de expansión:

Subproblema:

▶ encontrar el árbol de expansión de un subgrafo, o bien
▶ completar un único árbol de expansión incompleto:

▶ manteniendo un árbol parcial ya construido, o bien
▶ manteniendo un conjunto de árboles parciales ya construidos

(spanning forest). . .

Secuencia de decisiones: el árbol crece en una arista más. . .

(a) solución “completa” para el problema global: conecta todo,

(b) ya “inaceptable”: la nueva arista crea un ciclo,

(c) “aceptable” pero aún “incompleta”: todos los demás casos.

Búsqueda combinatoria, VIII
O bien: Mochila, VI

¿Podemos lograr valor total al menos V con peso no superior a W ?

Subproblema: consideramos sólo un subconjunto de los objetos.

Secuencia de decisiones: consideramos un objeto nuevo; o bien nos
lo quedamos o bien lo descartamos.

(a) solución “completa” para el problema global: hemos
considerado todos los objetos;

(b) ya “inaceptable”: el nuevo peso total supera W y no
decrecerá al añadir más objetos;

(c) “aceptable” pero aún “incompleta”: todos los demás casos.

Búsqueda combinatoria, VIII
O bien: Mochila, VI

¿Podemos lograr valor total al menos V con peso no superior a W ?

Subproblema: consideramos sólo un subconjunto de los objetos.

Secuencia de decisiones: consideramos un objeto nuevo; o bien nos
lo quedamos o bien lo descartamos.

(a) solución “completa” para el problema global: hemos
considerado todos los objetos;

(b) ya “inaceptable”: el nuevo peso total supera W y no
decrecerá al añadir más objetos;

(c) “aceptable” pero aún “incompleta”: todos los demás casos.

Búsqueda combinatoria, VIII
O bien: Mochila, VI

¿Podemos lograr valor total al menos V con peso no superior a W ?

Subproblema: consideramos sólo un subconjunto de los objetos.

Secuencia de decisiones: consideramos un objeto nuevo; o bien nos
lo quedamos o bien lo descartamos.

(a) solución “completa” para el problema global: hemos
considerado todos los objetos;

(b) ya “inaceptable”: el nuevo peso total supera W y no
decrecerá al añadir más objetos;

(c) “aceptable” pero aún “incompleta”: todos los demás casos.

Búsqueda combinatoria, VIII
O bien: Mochila, VI

¿Podemos lograr valor total al menos V con peso no superior a W ?

Subproblema: consideramos sólo un subconjunto de los objetos.

Secuencia de decisiones: consideramos un objeto nuevo; o bien nos
lo quedamos o bien lo descartamos.

(a) solución “completa” para el problema global: hemos
considerado todos los objetos;

(b) ya “inaceptable”: el nuevo peso total supera W y no
decrecerá al añadir más objetos;

(c) “aceptable” pero aún “incompleta”: todos los demás casos.

Mochila, VII
Aplicando backtracking

def knapsack(weights, values, current_item, max_w, min_v):

if current_item == -1:

"all items considered, none left"

if min_v <= 0:

return [list()]

else:

return list()

sols0 = knapsack(weights, values, current_item - 1,

max_w, min_v)

if weights[current_item] <= max_w:

"current_item >= 0 is a valid item to consider next"

sols1 = knapsack(weights, values, current_item - 1,

max_w - weights[current_item],

min_v - values[current_item])

sols0.extend(sol + [current_item] for sol in sols1)

return sols0

Mochila, VIII
Sofisticaciones

En este ejemplo, la secuencia de decisiones que lleva al punto en
que estamos se reduce a los nuevos valores de max w y min v. No
es buena inspiración para problemas en que sea preciso tener en
cuenta las decisiones ya tomadas.

¿Cómo podemos solucionarlo manteniendo expĺıcitamente las
decisiones tomadas?

Mochila, VIII
Sofisticaciones

En este ejemplo, la secuencia de decisiones que lleva al punto en
que estamos se reduce a los nuevos valores de max w y min v. No
es buena inspiración para problemas en que sea preciso tener en
cuenta las decisiones ya tomadas.

¿Cómo podemos solucionarlo manteniendo expĺıcitamente las
decisiones tomadas?

Mochila, IX
Búsqueda exhaustiva con candidato expĺıcito

def knapsack(weights, values, current_item,

max_w, min_v, cand, cand_w, cand_v):

if current_item == -1:

if cand_v >= min_v and cand_w <= max_w:

return [cand]

else:

return list()

else:

sols = knapsack(weights, values, current_item - 1,

max_w, min_v, cand, cand_w, cand_v)

sols.extend(knapsack(weights, values, current_item-1,

max_w, min_v,

cand + [current_item],

cand_w + weights[current_item],

cand_v + values[current_item]))

return sols

Mochila, X
Backtracking con candidato expĺıcito

def knapsack(weights, values, current_item, max_w, min_v,

cand, cand_w, cand_v):

if current_item == -1:

if cand_v >= min_v and cand_w <= max_w:

return [cand]

else:

return list()

else:

sols = knapsack(weights, values, current_item - 1,

max_w, min_v, cand, cand_w, cand_v)

if weights[current_item] <= max_w:

sols.extend(knapsack(weights, values, current_item-1,

max_w, min_v,

cand + [current_item],

cand_w + weights[current_item],

cand_v + values[current_item]))

return sols

Mochila, XI
Backtracking con candidato expĺıcito, evitando copias

def knapsack(weights, values, current_item, max_w, min_v,

cand, cand_w, cand_v):

if current_item == -1:

if cand_v >= min_v and cand_w <= max_w:

return [cand.copy()]

else: return list()

else:

sols = knapsack(weights, values, current_item - 1,

max_w, min_v, cand, cand_w, cand_v)

if weights[current_item] <= max_w:

cand.append(current_item)

sols.extend(knapsack(weights, values, current_item-1,

max_w, min_v, cand,

cand_w + weights[current_item],

cand_v + values[current_item]))

cand.pop() # backtracking happens here!

return sols

Búsqueda combinatoria, IX
Existencia versus optimización

En el caso de problemas de optimización

(sea maximización o minimización) precisamos además

una función objetivo a optimizar,
▶ definida sobre candidatos a solución, pero
▶ de tal manera que se pueda extender de forma natural a los

subproblemas locales (secuencias de decisiones).

Búsqueda combinatoria, X
O bien: Árboles de expansión, III

Árboles de expansión:

Secuencia de decisiones: el árbol crece en una arista más. . .

(a) ya “inaceptable”: la nueva arista crea un ciclo,

(b) solución “completa” para el problema global: conecta todo,

(c) “aceptable” pero aún “incompleta”: todos los demás casos.

Función objetivo:

▶ peso del árbol parcial en curso?

▶ mejor peso posible para un árbol de expansión completo que
extienda el árbol parcial en curso?

Búsqueda combinatoria, X
O bien: Árboles de expansión, III

Árboles de expansión:

Secuencia de decisiones: el árbol crece en una arista más. . .

(a) ya “inaceptable”: la nueva arista crea un ciclo,

(b) solución “completa” para el problema global: conecta todo,

(c) “aceptable” pero aún “incompleta”: todos los demás casos.

Función objetivo:

▶ peso del árbol parcial en curso?

▶ mejor peso posible para un árbol de expansión completo que
extienda el árbol parcial en curso?

Búsqueda combinatoria, XI
O bien: Mochila, XII

Mochila, versión de optimización:

Lograr el máximo valor total con peso no superior a W .

Subproblema: consideramos sólo un subconjunto de los objetos.

Secuencia de decisiones: consideramos un objeto nuevo; o bien nos
lo quedamos o bien lo descartamos.

(a) ya “inaceptable”: el nuevo peso total supera W ;

(b) solución “completa” para el problema global: hemos
considerado todos los objetos;

(c) “aceptable” pero aún “incompleta”: todos los demás casos.

Función objetivo:

▶ valor de la mochila en curso?

Búsqueda combinatoria, XI
O bien: Mochila, XII

Mochila, versión de optimización:

Lograr el máximo valor total con peso no superior a W .

Subproblema: consideramos sólo un subconjunto de los objetos.

Secuencia de decisiones: consideramos un objeto nuevo; o bien nos
lo quedamos o bien lo descartamos.

(a) ya “inaceptable”: el nuevo peso total supera W ;

(b) solución “completa” para el problema global: hemos
considerado todos los objetos;

(c) “aceptable” pero aún “incompleta”: todos los demás casos.

Función objetivo:

▶ valor de la mochila en curso?

Búsqueda combinatoria, XI
O bien: Mochila, XII

Mochila, versión de optimización:

Lograr el máximo valor total con peso no superior a W .

Subproblema: consideramos sólo un subconjunto de los objetos.

Secuencia de decisiones: consideramos un objeto nuevo; o bien nos
lo quedamos o bien lo descartamos.

(a) ya “inaceptable”: el nuevo peso total supera W ;

(b) solución “completa” para el problema global: hemos
considerado todos los objetos;

(c) “aceptable” pero aún “incompleta”: todos los demás casos.

Función objetivo:

▶ valor de la mochila en curso?

Búsqueda combinatoria, XII
O bien: Mochila, XIII

Mochila, enfoque alternativo:

Lograr el menor peso posible con un valor de al menos V .

Subproblema: dado el conjunto de objetos aún no descartados,
descartar nuevos objetos.

(Lector: complete el esquema por su propia cuenta.)

Búsqueda combinatoria, XII
O bien: Mochila, XIII

Mochila, enfoque alternativo:

Lograr el menor peso posible con un valor de al menos V .

Subproblema: dado el conjunto de objetos aún no descartados,
descartar nuevos objetos.

(Lector: complete el esquema por su propia cuenta.)

Mochila, XIV
Problema de optimización por búsqueda exhaustiva

def slow_knapsack(weights, values, itq, limw):

mx = 0

best = None

for cand in powerset(range(itq)):

if total(weights, cand) <= limw:

cmx = total(values, cand)

if cmx > mx:

best = cand

mx = cmx

return best, total(weights, best), total(values, best)

Mochila, XV
Problema de optimización por backtracking

def knapsack(weights, values, current_item, max_w):

if current_item == -1:

return ([],0,0)

else:

"current_item >= 0"

best0, bestw0, bestv0 = knapsack(weights, values,

current_item - 1, max_w)

if weights[current_item] <= max_w:

best1, bestw1, bestv1 = knapsack(weights, values,

current_item - 1, max_w - weights[current_item])

if bestv1 + values[current_item] > bestv0:

best1.append(current_item)

return (best1, bestw1 + weights[current_item],

bestv1 + values[current_item])

return best0, bestw0, bestv0

Ejemplo: N-queens, I
El árbol impĺıcito: parte explorada hasta la primera solución

Fuente: https://www.slideshare.net/
praveenkumar33449138/02-problem-solvingsearchcontrol

https://www.slideshare.net/praveenkumar33449138/02-problem-solvingsearchcontrol
https://www.slideshare.net/praveenkumar33449138/02-problem-solvingsearchcontrol

Ejemplo: N-queens, II
Busca todas las soluciones

def attempt(row, board, size):

if row == size:

board.draw()

else:

for column in range(size):

if board.free(row, column):

board.put_q(row, column)

attempt(row + 1, board, size)

board.remove_q(row, column)

Llamada inicial:

board = Board()

size = int(input("How many queens? "))

attempt(0, board, size)

Ejemplo: N-queens, III
Busca una solución

def attempt(row, board, size):

if row == size:

return True

else:

for column in range(size):

if board.free(row, column):

board.put_q(row, column)

s = attempt(row + 1, board, size)

if s:

return True

else:

board.remove_q(row, column)

return False

Llamada inicial: declara el tablero, lee el tamaño, y llama aśı:

if attempt(0, board, size):

board.draw()

Ejemplo: N-queens, III
Busca una solución

def attempt(row, board, size):

if row == size:

return True

else:

for column in range(size):

if board.free(row, column):

board.put_q(row, column)

s = attempt(row + 1, board, size)

if s:

return True

else:

board.remove_q(row, column)

return False

Llamada inicial: declara el tablero, lee el tamaño, y llama aśı:

if attempt(0, board, size):

board.draw()

Ejemplo: N-queens, IV
Por supuesto, podemos hacerlo mejor

Ideas a explorar:
▶ Simetŕıas: evita explorar una configuración que es, en esencia,

”la misma” que una ya explorada.
▶ Adapta el orden en que se exploran las casillas de la fila en

curso:
▶ Cada casilla, si la usamos, ¿en cuánto nos reduce las

posibilidades en las filas siguientes?
▶ Exploramos primero las casillas que nos dejan más libertad

para las filas siguientes, y dejamos las más restrictivas para
después (“best-first search”).

▶ . . .

“Graph Colorability”
Dos variantes, sólo estudiamos una

“Vertex coloring”:

Dado un grafo, aśıgnese un color a cada vértice de manera que no
haya ninguna arista que conecte dos vértices del mismo color.

http://mathworld.wolfram.com/images/eps-gif/

VertexColoring_750.gif

“Edge coloring”:

Dado un grafo, aśıgnese un color a cada arista de manera que no
haya ningún vértice en que confluyan dos o más aristas del mismo
color.

http://mathworld.wolfram.com/images/eps-gif/

EdgeColoring_850.gif

Hoy: “edge coloring”.

http://mathworld.wolfram.com/images/eps-gif/VertexColoring_750.gif
http://mathworld.wolfram.com/images/eps-gif/VertexColoring_750.gif
http://mathworld.wolfram.com/images/eps-gif/EdgeColoring_850.gif
http://mathworld.wolfram.com/images/eps-gif/EdgeColoring_850.gif

Ejemplo: “3-colorability” en grafos 3-regulares, I
El árbol impĺıcito: grafos con más y más aristas ya coloreadas

Restricción
Hoy, sólo grafos 3-regulares: todos los vértices tienen grado 3.

Enunciado:

Dado un grafo 3-regular G , aśıgnense colores a las aristas
usando tres colores de manera que en cada vértice haya una
arista de cada color.

Ideas para un esquema de “backtracking”:

▶ Cada vértice del grafo impĺıcito corresponde al grafo G con
parte de las aristas ya coloreadas.

▶ Vecinos de un vértice del grafo impĺıcito: una arista más de G
recibe color.

▶ ¿Cuál? Queremos asegurar que el grafo impĺıcito es un árbol
para evitar subproblemas repetidos.

Ejemplo: “3-colorability” en grafos 3-regulares, I
El árbol impĺıcito: grafos con más y más aristas ya coloreadas

Restricción
Hoy, sólo grafos 3-regulares: todos los vértices tienen grado 3.

Enunciado:

Dado un grafo 3-regular G , aśıgnense colores a las aristas
usando tres colores de manera que en cada vértice haya una
arista de cada color.

Ideas para un esquema de “backtracking”:

▶ Cada vértice del grafo impĺıcito corresponde al grafo G con
parte de las aristas ya coloreadas.

▶ Vecinos de un vértice del grafo impĺıcito: una arista más de G
recibe color.

▶ ¿Cuál? Queremos asegurar que el grafo impĺıcito es un árbol
para evitar subproblemas repetidos.

Ejemplo: “3-colorability” en grafos 3-regulares, I
El árbol impĺıcito: grafos con más y más aristas ya coloreadas

Restricción
Hoy, sólo grafos 3-regulares: todos los vértices tienen grado 3.

Enunciado:

Dado un grafo 3-regular G , aśıgnense colores a las aristas
usando tres colores de manera que en cada vértice haya una
arista de cada color.

Ideas para un esquema de “backtracking”:

▶ Cada vértice del grafo impĺıcito corresponde al grafo G con
parte de las aristas ya coloreadas.

▶ Vecinos de un vértice del grafo impĺıcito: una arista más de G
recibe color.

▶ ¿Cuál? Queremos asegurar que el grafo impĺıcito es un árbol
para evitar subproblemas repetidos.

Ejemplo: “3-colorability” en grafos 3-regulares, II
El árbol impĺıcito (fragmento)

Ejemplo: “3-colorability” en grafos 3-regulares, III
Una opción de entre varias

Forzamos un orden sobre las aristas
y lo mantenemos estrictamente: si un camino del grafo impĺıcito
colorea primero la arista e1 de G y después la arista e2 de G , lo
mismo ocurre en todos los caminos.

▶ Por ejemplo, “depth-first search” sobre G para marcar el
orden.

▶ Eso asegura que, al colorear cada arista, al menos uno de los
extremos ya ha gastado al menos un color.

▶ Además, el grafo impĺıcito es un árbol: cada posible
subproblema sólo se puede alcanzar de una manera.

Ejemplo: “3-colorability” en grafos 3-regulares, IV
Demo!

Basada en NetworkX y GraphViz:

▶ fijamos un orden de las aristas mediante la implementación de
“depth-first search” de NetworkX;

▶ mantenemos el conjunto de colores disponibles en cada
vértice;

▶ los vamos probando uno a uno y, con cada uno, lanzamos la
llamada recursiva;

▶ Callejones sin salida: aristas para las que ya no quedan colores
factibles.

Parafernalia adicional para informar de lo que va pasando y dibujar
los grafos

(como el dict gd que mantiene el “layout” de GraphViz).

Ejemplo: “3-colorability” en grafos 3-regulares, V
El programa

def tricolor(g, edgelist):

if not edgelist: return True

else:

u, v = edgelist.pop()

possib = g.node[u][’free’] & g.node[v][’free’]

for c in possib:

g.edges[u, v][’color’] = c

g.nodes[u][’free’].remove(c)

g.nodes[v][’free’].remove(c)

success = tricolor(g, edgelist)

if success: return True

else, free again the colors, try next possib

g.edges[u, v][’color’] = noncolor

g.nodes[u][’free’].add(c)

g.nodes[v][’free’].add(c)

edgelist.append((u, v)) # backtrack!

return False

Ejemplo: “3-colorability” en grafos 3-regulares, VI
Desarrollos adicionales

Ideas:
▶ Fijamos los tres colores de un vértice concreto para evitar

explorar subárboles que corresponden a permutar colores.

(En general: identificamos simetŕıas y las usamos para evitar
exploraciones innecesarias.)

▶ ¿Cómo seŕıa la versión que nos da todas las soluciones?

▶ ¿Cómo tratar el problema cuando no suponemos
3-regularidad? Buscamos usar el ḿınimo de colores posible.

▶ Usando ideas similares, buscamos cómo plantear y resolver
problemas de “vertex-coloring”. Variante de optimización:
usar, de nuevo, el ḿınimo de colores posible.

▶ . . .

Algoritmos “greedy”, I
Como pronto veremos, ya conocemos ejemplos

Caracteŕıstica:
▶ La siguiente decisión es siempre “la que mejor parece” para el

subproblema en curso;

▶ se toma esa decisión y nunca se reconsidera:

no existe “backtracking”.

▶ Dado que, en ese momento, no se tiene perspectiva del
problema global, esa decisión es arriesgada.

▶ Por tanto, se necesita una argumentación adicional, separada
del algoritmo, que explique por qué es buena idea hacerlo aśı.

Algoritmos “greedy”, II
El principio “greedy” a argumentar en cada ocasión

“Greedy-choice property”:

Toda decisión válida que sea óptima para el subproblema local es
también óptima para el problema global.

¿Cuándo hemos visto esto antes?

▶ Algoritmo de Dijkstra (single-source shortest paths),

▶ algoritmo de Kruskal para encontrar árboles de expansión
ḿınimos. . .

https://en.wikipedia.org/wiki/Greedy_algorithm.

https://en.wikipedia.org/wiki/Greedy_algorithm

Algoritmos “greedy”, II
El principio “greedy” a argumentar en cada ocasión

“Greedy-choice property”:

Toda decisión válida que sea óptima para el subproblema local es
también óptima para el problema global.

¿Cuándo hemos visto esto antes?

▶ Algoritmo de Dijkstra (single-source shortest paths),

▶ algoritmo de Kruskal para encontrar árboles de expansión
ḿınimos. . .

https://en.wikipedia.org/wiki/Greedy_algorithm.

https://en.wikipedia.org/wiki/Greedy_algorithm

Algoritmos “greedy”, II
El principio “greedy” a argumentar en cada ocasión

“Greedy-choice property”:

Toda decisión válida que sea óptima para el subproblema local es
también óptima para el problema global.

¿Cuándo hemos visto esto antes?

▶ Algoritmo de Dijkstra (single-source shortest paths),

▶ algoritmo de Kruskal para encontrar árboles de expansión
ḿınimos. . .

https://en.wikipedia.org/wiki/Greedy_algorithm.

https://en.wikipedia.org/wiki/Greedy_algorithm

Algoritmos “greedy”, II
El principio “greedy” a argumentar en cada ocasión

“Greedy-choice property”:

Toda decisión válida que sea óptima para el subproblema local es
también óptima para el problema global.

¿Cuándo hemos visto esto antes?

▶ Algoritmo de Dijkstra (single-source shortest paths),

▶ algoritmo de Kruskal para encontrar árboles de expansión
ḿınimos. . .

https://en.wikipedia.org/wiki/Greedy_algorithm.

https://en.wikipedia.org/wiki/Greedy_algorithm

Algoritmos “greedy”, III
O bien: Mochila, XVI

¿Obtendremos una solución óptima al aplicar el esquema “greedy”
al problema de la mochila?

▶ Objetos indivisibles: NO.

▶ Objetos divisibles: ŚI.

▶ A condición de poner un poco de cuidado en definir “decisión
óptima”.

▶ Incluso para objetos indivisibles, nos da una información útil:
una cota superior sobre el valor que se puede obtener a partir
de un subproblema local.

▶ Si esa aproximación nos indica que un subproblema local no
puede proporcionar una solución mejor que la mejor que se
tiene hasta el momento, nos lo podemos ahorrar.

Algoritmos “greedy”, III
O bien: Mochila, XVI

¿Obtendremos una solución óptima al aplicar el esquema “greedy”
al problema de la mochila?

▶ Objetos indivisibles: NO.

▶ Objetos divisibles: ŚI.

▶ A condición de poner un poco de cuidado en definir “decisión
óptima”.

▶ Incluso para objetos indivisibles, nos da una información útil:
una cota superior sobre el valor que se puede obtener a partir
de un subproblema local.

▶ Si esa aproximación nos indica que un subproblema local no
puede proporcionar una solución mejor que la mejor que se
tiene hasta el momento, nos lo podemos ahorrar.

Algoritmos “greedy”, III
O bien: Mochila, XVI

¿Obtendremos una solución óptima al aplicar el esquema “greedy”
al problema de la mochila?

▶ Objetos indivisibles: NO.

▶ Objetos divisibles: ŚI.

▶ A condición de poner un poco de cuidado en definir “decisión
óptima”.

▶ Incluso para objetos indivisibles, nos da una información útil:
una cota superior sobre el valor que se puede obtener a partir
de un subproblema local.

▶ Si esa aproximación nos indica que un subproblema local no
puede proporcionar una solución mejor que la mejor que se
tiene hasta el momento, nos lo podemos ahorrar.

Algoritmos “greedy”, III
O bien: Mochila, XVI

¿Obtendremos una solución óptima al aplicar el esquema “greedy”
al problema de la mochila?

▶ Objetos indivisibles: NO.

▶ Objetos divisibles: ŚI.

▶ A condición de poner un poco de cuidado en definir “decisión
óptima”.

▶ Incluso para objetos indivisibles, nos da una información útil:
una cota superior sobre el valor que se puede obtener a partir
de un subproblema local.

▶ Si esa aproximación nos indica que un subproblema local no
puede proporcionar una solución mejor que la mejor que se
tiene hasta el momento, nos lo podemos ahorrar.

Algoritmos “greedy”, IV
O bien: Árboles de expansión, IV

https://es.wikipedia.org/wiki/Algoritmo_de_Kruskal

▶ Kruskal es un ejemplo clásico de algoritmo “greedy”.

▶ Proporciona un árbol de expansión minimal sólo al final:
durante el proceso, se tienen fragmentos inconexos.

▶ Existe un algoritmo similar, pero en el cual siempre
mantenemos un árbol de expansión conexo pero incompleto
durante el proceso.

▶ ¿Lograrás diseñar este algoritmo por ti mism@? (NO busques
en la Wikipedia “algoritmo de Prim” hasta haber completado
tu propia solución.)

https://es.wikipedia.org/wiki/Algoritmo_de_Kruskal

Giving change, I
O bien: Algoritmos “greedy”, V

Dadas las denominaciones de determinadas monedas
(y provisión tan amplia de cada moneda como sea precisa),

▶ digamos, d1, . . . , dn,

▶ y una cantidad concreta a alcanzar exactamente, M:

▶ ¿cómo lograrlo?

Relación con “la mochila” y con “Subset sum”:

▶ Objetos “repetidos”, podemos tomar cuantos queramos de
cada tipo, y

▶ no hay pesos, pero la cantidad objetivo se ha de alcanzar
exacta.

Giving change, II
O bien: Algoritmos “greedy”, VI

Vamos tomando monedas de la denominación más elevada posible
hasta alcanzar la cantidad deseada.

▶ Para muchas denominaciones, el algoritmo “greedy” funciona
(es decir, da una solución con el ḿınimo número de monedas).

▶ Se llaman “canonical coin systems”.
▶ Incluyen los casos t́ıpicos de la mayoŕıa de los páıses:

▶ 1, 2, 5, 10, 20, 50, 100, 200;
▶ 1, 5, 10, 25, 50, 100;
▶ 1, 29, 493;
▶ . . .

▶ Para otras denominaciones, no siempre!

https://en.wikipedia.org/wiki/Change-making_problem.

https://en.wikipedia.org/wiki/Change-making_problem

Giving change, III
O bien: Algoritmos “greedy”, VI

▶ ¿Cómo se expresa el problema “giving change” en los
términos de los esquemas de búsqueda combinatoria que
hemos indicado anteriormente?

▶ Las denominaciones 1, 5, 10, 25 (las monedas de dólar de
curso habitual) forman un “canonical coin system”. Resuelve
“giving change” en dólares mediante un algoritmo “greedy”

▶ Plantea y resuelve el mismo problema con las denominaciones
del sistema euro, completo: Jutge P81629 en la lista
Combinatorial Search Schemes (II).

▶ Encuentra casos en que el enfoque “greedy” no de la solución
óptima.

▶ ¿Cómo obtener optimalidad en todos los casos?
▶ “Backtracking” es siempre una opción.
▶ Después del parcial veremos que será preferible Programación

Dinámica.

Programación Dinámica, I
Lectura recomendada: orı́genes por Richard Bellman en persona

Recordemos (“greedy-choice property”):

Toda decisión válida que sea óptima para el subproblema local es
también óptima para el problema global.

Puntos clave hacia la Programación Dinámica:

▶ Es dif́ıcil, o imposible, argumentar cuál de las decisiones
locales, óptima o no, llevará a la solución globalmente óptima:

el mantra “greedy” es frecuentemente inaplicable;

▶ sin embargo, a veces, un primo suyo tal vez sea cierto, a saber,

el Principio de Optimalidad de Bellman:

la parte de la solución globalmente óptima que

corresponde a cualquier subproblema local es, a su vez,

una solución localmente óptima.

▶ Ejemplo: “Giving change”.

https://pubsonline.informs.org/doi/pdf/10.1287/opre.50.1.48.17791

Programación Dinámica, I
Lectura recomendada: orı́genes por Richard Bellman en persona

Recordemos (“greedy-choice property”):

Toda decisión válida que sea óptima para el subproblema local es
también óptima para el problema global.

Puntos clave hacia la Programación Dinámica:

▶ Es dif́ıcil, o imposible, argumentar cuál de las decisiones
locales, óptima o no, llevará a la solución globalmente óptima:

el mantra “greedy” es frecuentemente inaplicable;

▶ sin embargo, a veces, un primo suyo tal vez sea cierto, a saber,

el Principio de Optimalidad de Bellman:

la parte de la solución globalmente óptima que

corresponde a cualquier subproblema local es, a su vez,

una solución localmente óptima.

▶ Ejemplo: “Giving change”.

https://pubsonline.informs.org/doi/pdf/10.1287/opre.50.1.48.17791

Programación Dinámica, I
Lectura recomendada: orı́genes por Richard Bellman en persona

Recordemos (“greedy-choice property”):

Toda decisión válida que sea óptima para el subproblema local es
también óptima para el problema global.

Puntos clave hacia la Programación Dinámica:

▶ Es dif́ıcil, o imposible, argumentar cuál de las decisiones
locales, óptima o no, llevará a la solución globalmente óptima:

el mantra “greedy” es frecuentemente inaplicable;

▶ sin embargo, a veces, un primo suyo tal vez sea cierto, a saber,

el Principio de Optimalidad de Bellman:

la parte de la solución globalmente óptima que

corresponde a cualquier subproblema local es, a su vez,

una solución localmente óptima.

▶ Ejemplo: “Giving change”.

https://pubsonline.informs.org/doi/pdf/10.1287/opre.50.1.48.17791

Programación Dinámica, II
Modus operandi más habitual

Programación Dinámica tabulada:

▶ Organiza los subproblemas y sus soluciones óptimas en forma
de tabla.

▶ Inventa y justifica una regla para llenar cada entrada de esa
tabla,

▶ a partir de entradas de la tabla que sabes que puedes haber
logrado llenar antes.

▶ Frecuentemente parece, a primera vista, ineficiente; pero no lo
es tanto, y suele admitir además mejoras ad-hoc.

▶ (La Programación Dinámica no siempre es tabulada; pero en
este curso sólo tratamos la variante tabulada.)

Giving change, IV
Cuando tus “monedas” no permiten solución “greedy”

En el ejemplo “giving change”, primer planteamiento:

▶ Tabla T con tantas filas como denominaciones de moneda
distintas, más una: “número de denominaciones en uso”.

▶ Y con tantas columnas como indica la cantidad final M a
obtener (o la más alta si se quiere poder usar la misma tabla
para varios casos), más una.

▶ La entrada T [i , h] indica cuántas monedas se usan para
obtener la cantidad h ≥ 0, pero usando solamente las i ≥ 0
denominaciones de moneda más pequeñas.

T [i , h] =

min(T [i − 1, h], 1 + T [i , h − di]).

si i > 0 y h ≥ di .

Giving change, IV
Cuando tus “monedas” no permiten solución “greedy”

En el ejemplo “giving change”, primer planteamiento:

▶ Tabla T con tantas filas como denominaciones de moneda
distintas, más una: “número de denominaciones en uso”.

▶ Y con tantas columnas como indica la cantidad final M a
obtener (o la más alta si se quiere poder usar la misma tabla
para varios casos), más una.

▶ La entrada T [i , h] indica cuántas monedas se usan para
obtener la cantidad h ≥ 0, pero usando solamente las i ≥ 0
denominaciones de moneda más pequeñas.

T [i , h] =

min(T [i − 1, h], 1 + T [i , h − di]).

si i > 0 y h ≥ di .

Giving change, IV
Cuando tus “monedas” no permiten solución “greedy”

En el ejemplo “giving change”, primer planteamiento:

▶ Tabla T con tantas filas como denominaciones de moneda
distintas, más una: “número de denominaciones en uso”.

▶ Y con tantas columnas como indica la cantidad final M a
obtener (o la más alta si se quiere poder usar la misma tabla
para varios casos), más una.

▶ La entrada T [i , h] indica cuántas monedas se usan para
obtener la cantidad h ≥ 0, pero usando solamente las i ≥ 0
denominaciones de moneda más pequeñas.

T [i , h] =

min(T [i − 1, h], 1 + T [i , h − di]).

si i > 0 y h ≥ di .

Giving change, IV
Cuando tus “monedas” no permiten solución “greedy”

En el ejemplo “giving change”, primer planteamiento:

▶ Tabla T con tantas filas como denominaciones de moneda
distintas, más una: “número de denominaciones en uso”.

▶ Y con tantas columnas como indica la cantidad final M a
obtener (o la más alta si se quiere poder usar la misma tabla
para varios casos), más una.

▶ La entrada T [i , h] indica cuántas monedas se usan para
obtener la cantidad h ≥ 0, pero usando solamente las i ≥ 0
denominaciones de moneda más pequeñas.

T [i , h] =

min(T [i − 1, h], 1 + T [i , h − di]).

si i > 0 y h ≥ di .

Giving change, IV
Cuando tus “monedas” no permiten solución “greedy”

En el ejemplo “giving change”, primer planteamiento:

▶ Tabla T con tantas filas como denominaciones de moneda
distintas, más una: “número de denominaciones en uso”.

▶ Y con tantas columnas como indica la cantidad final M a
obtener (o la más alta si se quiere poder usar la misma tabla
para varios casos), más una.

▶ La entrada T [i , h] indica cuántas monedas se usan para
obtener la cantidad h ≥ 0, pero usando solamente las i ≥ 0
denominaciones de moneda más pequeñas.

T [i , h] =

min(T [i − 1, h], 1 + T [i , h − di]).

si i > 0 y h ≥ di .

Giving change, IV
Cuando tus “monedas” no permiten solución “greedy”

En el ejemplo “giving change”, primer planteamiento:

▶ Tabla T con tantas filas como denominaciones de moneda
distintas, más una: “número de denominaciones en uso”.

▶ Y con tantas columnas como indica la cantidad final M a
obtener (o la más alta si se quiere poder usar la misma tabla
para varios casos), más una.

▶ La entrada T [i , h] indica cuántas monedas se usan para
obtener la cantidad h ≥ 0, pero usando solamente las i ≥ 0
denominaciones de moneda más pequeñas.

T [i , h] =

min(T [i − 1, h], 1 + T [i , h − di]).

si i > 0 y h ≥ di .

Giving change, V
Muchos detalles a los que prestar atención

¿Significado preciso de las filas?

¡Afecta a la indexación de la lista de denominaciones!

▶ ¿T [0, h]? En particular T [0, 0]. . .

T [0, 0] = 0

▶ T [0, h] ha de indicar “imposible” para h > 0. ¿Qué haremos
con esas entradas?

T [0, h] = float("inf")

▶ ¿Dónde nos convienen las denominaciones?

En las posiciones 1 en adelante de una lista, denoms,

evitando d0.

▶ Las necesitaremos ordenar.

¿Qué “placeholder” podemos poner en denoms[0]?

denoms[0] = float("-inf")

Giving change, V
Muchos detalles a los que prestar atención

¿Significado preciso de las filas?

¡Afecta a la indexación de la lista de denominaciones!

▶ ¿T [0, h]? En particular T [0, 0]. . .

T [0, 0] = 0

▶ T [0, h] ha de indicar “imposible” para h > 0. ¿Qué haremos
con esas entradas?

T [0, h] = float("inf")

▶ ¿Dónde nos convienen las denominaciones?

En las posiciones 1 en adelante de una lista, denoms,

evitando d0.

▶ Las necesitaremos ordenar.

¿Qué “placeholder” podemos poner en denoms[0]?

denoms[0] = float("-inf")

Giving change, V
Muchos detalles a los que prestar atención

¿Significado preciso de las filas?

¡Afecta a la indexación de la lista de denominaciones!

▶ ¿T [0, h]? En particular T [0, 0]. . .

T [0, 0] = 0

▶ T [0, h] ha de indicar “imposible” para h > 0. ¿Qué haremos
con esas entradas?

T [0, h] = float("inf")

▶ ¿Dónde nos convienen las denominaciones?

En las posiciones 1 en adelante de una lista, denoms,

evitando d0.

▶ Las necesitaremos ordenar.

¿Qué “placeholder” podemos poner en denoms[0]?

denoms[0] = float("-inf")

Giving change, V
Muchos detalles a los que prestar atención

¿Significado preciso de las filas?

¡Afecta a la indexación de la lista de denominaciones!

▶ ¿T [0, h]? En particular T [0, 0]. . .

T [0, 0] = 0

▶ T [0, h] ha de indicar “imposible” para h > 0. ¿Qué haremos
con esas entradas?

T [0, h] = float("inf")

▶ ¿Dónde nos convienen las denominaciones?

En las posiciones 1 en adelante de una lista, denoms,

evitando d0.

▶ Las necesitaremos ordenar.

¿Qué “placeholder” podemos poner en denoms[0]?

denoms[0] = float("-inf")

Giving change, V
Muchos detalles a los que prestar atención

¿Significado preciso de las filas?

¡Afecta a la indexación de la lista de denominaciones!

▶ ¿T [0, h]? En particular T [0, 0]. . .

T [0, 0] = 0

▶ T [0, h] ha de indicar “imposible” para h > 0. ¿Qué haremos
con esas entradas?

T [0, h] = float("inf")

▶ ¿Dónde nos convienen las denominaciones?

En las posiciones 1 en adelante de una lista, denoms,

evitando d0.

▶ Las necesitaremos ordenar.

¿Qué “placeholder” podemos poner en denoms[0]?

denoms[0] = float("-inf")

Giving change, V
Muchos detalles a los que prestar atención

¿Significado preciso de las filas?

¡Afecta a la indexación de la lista de denominaciones!

▶ ¿T [0, h]? En particular T [0, 0]. . .

T [0, 0] = 0

▶ T [0, h] ha de indicar “imposible” para h > 0. ¿Qué haremos
con esas entradas?

T [0, h] = float("inf")

▶ ¿Dónde nos convienen las denominaciones?

En las posiciones 1 en adelante de una lista, denoms,

evitando d0.

▶ Las necesitaremos ordenar.

¿Qué “placeholder” podemos poner en denoms[0]?

denoms[0] = float("-inf")

Giving change, V
Muchos detalles a los que prestar atención

¿Significado preciso de las filas?

¡Afecta a la indexación de la lista de denominaciones!

▶ ¿T [0, h]? En particular T [0, 0]. . .

T [0, 0] = 0

▶ T [0, h] ha de indicar “imposible” para h > 0. ¿Qué haremos
con esas entradas?

T [0, h] = float("inf")

▶ ¿Dónde nos convienen las denominaciones?

En las posiciones 1 en adelante de una lista, denoms,

evitando d0.

▶ Las necesitaremos ordenar.

¿Qué “placeholder” podemos poner en denoms[0]?

denoms[0] = float("-inf")

Giving change, V
Muchos detalles a los que prestar atención

¿Significado preciso de las filas?

¡Afecta a la indexación de la lista de denominaciones!

▶ ¿T [0, h]? En particular T [0, 0]. . .

T [0, 0] = 0

▶ T [0, h] ha de indicar “imposible” para h > 0. ¿Qué haremos
con esas entradas?

T [0, h] = float("inf")

▶ ¿Dónde nos convienen las denominaciones?

En las posiciones 1 en adelante de una lista, denoms,

evitando d0.

▶ Las necesitaremos ordenar.

¿Qué “placeholder” podemos poner en denoms[0]?

denoms[0] = float("-inf")

Giving change, V
Muchos detalles a los que prestar atención

¿Significado preciso de las filas?

¡Afecta a la indexación de la lista de denominaciones!

▶ ¿T [0, h]? En particular T [0, 0]. . .

T [0, 0] = 0

▶ T [0, h] ha de indicar “imposible” para h > 0. ¿Qué haremos
con esas entradas?

T [0, h] = float("inf")

▶ ¿Dónde nos convienen las denominaciones?

En las posiciones 1 en adelante de una lista, denoms,

evitando d0.

▶ Las necesitaremos ordenar.

¿Qué “placeholder” podemos poner en denoms[0]?

denoms[0] = float("-inf")

Giving change, V
Muchos detalles a los que prestar atención

¿Significado preciso de las filas?

¡Afecta a la indexación de la lista de denominaciones!

▶ ¿T [0, h]? En particular T [0, 0]. . .

T [0, 0] = 0

▶ T [0, h] ha de indicar “imposible” para h > 0. ¿Qué haremos
con esas entradas?

T [0, h] = float("inf")

▶ ¿Dónde nos convienen las denominaciones?

En las posiciones 1 en adelante de una lista, denoms,

evitando d0.

▶ Las necesitaremos ordenar.

¿Qué “placeholder” podemos poner en denoms[0]?

denoms[0] = float("-inf")

Giving change, VI

def gcdptable(denoms, upper_lim):

t = {} # t is a *dictionary* (!!) t[i,j] = t[(i,j)]

for quantity in range(upper_lim + 1):

"init table for no coins"

t[0, quantity] = float("inf")

t[0, 0] = 0

for denom in range(1, len(denoms)): # Re-indexed ’denoms’

for quantity in range(upper_lim + 1):

if denoms[denom] <= quantity:

"shall we use one more denoms[denom] coin?"

t[denom, quantity] = min(

t[denom - 1, quantity],

1 + t[denom, quantity - denoms[denom]])

else:

"cannot use that denomination anymore"

t[denom, quantity] = t[denom - 1, quantity]

return t

Giving change, VII
Pero, ¿cuál es realmente la solución completa?

def trace(gctab, denoms, q):

r = Counter() # Beware! ’denoms’ are not re-indexed

d = len(denoms) - 1

while q:

"non-generalizable: we can tell which case of the two"

if d == 0:

"only unit coins are used now"

r[denoms[d]] += q

break

elif gctab[d, q] == gctab[d-1, q]:

"coins of denoms[d] units were not employed"

d -= 1

else:

r[denoms[d]] += 1

q -= denoms[d]

return r

Giving change, VII
Pero, ¿cuál es realmente la solución completa?

def trace(gctab, denoms, q):

r = Counter() # Beware! ’denoms’ are not re-indexed

d = len(denoms) - 1

while q:

"non-generalizable: we can tell which case of the two"

if d == 0:

"only unit coins are used now"

r[denoms[d]] += q

break

elif gctab[d, q] == gctab[d-1, q]:

"coins of denoms[d] units were not employed"

d -= 1

else:

r[denoms[d]] += 1

q -= denoms[d]

return r

Giving change, VIII
¿Realmente necesitamos toda la tabla?

¿Ha de estar siempre presente la denominación 1?

Condición necesaria y suficiente para poder resolver todos los casos.

▶ ¿Podemos simplificar la estructura de datos?

▶ Muchas veces, la manera de simplificar el programa es
simplificar la estructura de datos.

▶ ¿Necesitamos tener siempre todas las filas?

▶ ¡En cada momento, nos basta tener la que estamos
calculando!

Giving change, VIII
¿Realmente necesitamos toda la tabla?

¿Ha de estar siempre presente la denominación 1?

Condición necesaria y suficiente para poder resolver todos los casos.

▶ ¿Podemos simplificar la estructura de datos?

▶ Muchas veces, la manera de simplificar el programa es
simplificar la estructura de datos.

▶ ¿Necesitamos tener siempre todas las filas?

▶ ¡En cada momento, nos basta tener la que estamos
calculando!

Giving change, IX

dptable = [float("inf")]*(upper_lim + 1)

dptable[0] = 0

for i in range(1, upper_lim + 1):

"dptable[i]: how many coins needed to add up to i"

for coin in coins:

"try using it"

if coin <= i:

dptable[i] = min(dptable[i], 1 + dptable[i-coin])

Calculando la tabla aśı, dptable[h] > upper lim significa que
no es posible alcanzar h, de lo cual informamos apropiadamente.

En otro caso, la solución está en dptable[h].

Giving change, X
Para conservar la solución completa

Cada vez que se modifica la tabla principal, se anota el motivo del
cambio en una tabla secundaria:

for coin in coins:

if coin <= i:

if 1 + dptable[i - coin] <= dptable[i]:

dptable[i] = 1 + dptable[i - coin]

best[i] = coin

¡Idea generalizable!

Giving change, XI
Para reconstruir la solución completa

Usando luego best (un dict), la reconstruimos aśı:

def trace(best, goal):

coins = list()

while goal:

used = best[goal]

coins.append(used)

goal -= used

return coins

Mochila, XVI
Brev́ısimamente

La mochila, ¿por Programación Dinámica?

▶ ¿Qué representa cada dimensión de la tabla?

▶ ¿Qué representa el contenido de las casillas?

▶ ¿Cómo queda entonces la correspondiente ecuación de
Bellman?

T [i , h] = max(T [i − 1, h], vi + T [i − 1, h − wi])

. . . a condición de que. . .

wi ≤ h

A completar mediante cuidadosa consideración de las boundary
conditions.

Mochila, XVI
Brev́ısimamente

La mochila, ¿por Programación Dinámica?

▶ ¿Qué representa cada dimensión de la tabla?

▶ ¿Qué representa el contenido de las casillas?

▶ ¿Cómo queda entonces la correspondiente ecuación de
Bellman?

T [i , h] = max(T [i − 1, h], vi + T [i − 1, h − wi])

. . . a condición de que. . .

wi ≤ h

A completar mediante cuidadosa consideración de las boundary
conditions.

Mochila, XVI
Brev́ısimamente

La mochila, ¿por Programación Dinámica?

▶ ¿Qué representa cada dimensión de la tabla?

▶ ¿Qué representa el contenido de las casillas?

▶ ¿Cómo queda entonces la correspondiente ecuación de
Bellman?

T [i , h] = max(T [i − 1, h], vi + T [i − 1, h − wi])

. . . a condición de que. . .

wi ≤ h

A completar mediante cuidadosa consideración de las boundary
conditions.

Mochila, XVI
Brev́ısimamente

La mochila, ¿por Programación Dinámica?

▶ ¿Qué representa cada dimensión de la tabla?

▶ ¿Qué representa el contenido de las casillas?

▶ ¿Cómo queda entonces la correspondiente ecuación de
Bellman?

T [i , h] = max(T [i − 1, h], vi + T [i − 1, h − wi])

. . . a condición de que. . .

wi ≤ h

A completar mediante cuidadosa consideración de las boundary
conditions.

Mochila, XVI
Brev́ısimamente

La mochila, ¿por Programación Dinámica?

▶ ¿Qué representa cada dimensión de la tabla?

▶ ¿Qué representa el contenido de las casillas?

▶ ¿Cómo queda entonces la correspondiente ecuación de
Bellman?

T [i , h] = max(T [i − 1, h], vi + T [i − 1, h − wi])

. . . a condición de que. . .

wi ≤ h

A completar mediante cuidadosa consideración de las boundary
conditions.

Supersecuencias, I
Conecta con aplicaciones en Bioinformática

Dadas dos secuencias (por ejemplo strings), ¿cuál es la secuencia
más corta posible que tiene a ambas como subsecuencias?

(O una de ellas en caso de que haya varias.)

Como antes, empezamos por calcular solamente su longitud;
añadimos luego código para trazar la supersecuencia solución.

Si r es una de las supersecuencias comunes ḿınimas de s y t,
¿qué podemos averiguar sobre r?

Supersecuencias, I
Conecta con aplicaciones en Bioinformática

Dadas dos secuencias (por ejemplo strings), ¿cuál es la secuencia
más corta posible que tiene a ambas como subsecuencias?

(O una de ellas en caso de que haya varias.)

Como antes, empezamos por calcular solamente su longitud;
añadimos luego código para trazar la supersecuencia solución.

Si r es una de las supersecuencias comunes ḿınimas de s y t,
¿qué podemos averiguar sobre r?

Supersecuencias, I
Conecta con aplicaciones en Bioinformática

Dadas dos secuencias (por ejemplo strings), ¿cuál es la secuencia
más corta posible que tiene a ambas como subsecuencias?

(O una de ellas en caso de que haya varias.)

Como antes, empezamos por calcular solamente su longitud;
añadimos luego código para trazar la supersecuencia solución.

Si r es una de las supersecuencias comunes ḿınimas de s y t,
¿qué podemos averiguar sobre r?

Supersecuencias, II
Consideraciones

1. ¿Cómo seŕıan los casos de secuencias de entrada vaćıas?

2. ¿Cómo seŕıa un caso en que ambas secuencias empiezan por
la misma letra?
▶ Entonces el resultado también.
▶ Y el resto del resultado es. . . un subproblema con secuencias

más cortas.

3. Queda pendiente el caso de que las primeras letras de las dos
secuencias sean diferentes.
▶ Entonces el resultado ha de empezar por una de ellas.
▶ Y el resto del resultado es. . . un subproblema con una

secuencia mantenida igual y la otra más corta.

Supersecuencias, II
Consideraciones

1. ¿Cómo seŕıan los casos de secuencias de entrada vaćıas?

2. ¿Cómo seŕıa un caso en que ambas secuencias empiezan por
la misma letra?
▶ Entonces el resultado también.
▶ Y el resto del resultado es. . .

un subproblema con secuencias
más cortas.

3. Queda pendiente el caso de que las primeras letras de las dos
secuencias sean diferentes.
▶ Entonces el resultado ha de empezar por una de ellas.
▶ Y el resto del resultado es. . . un subproblema con una

secuencia mantenida igual y la otra más corta.

Supersecuencias, II
Consideraciones

1. ¿Cómo seŕıan los casos de secuencias de entrada vaćıas?

2. ¿Cómo seŕıa un caso en que ambas secuencias empiezan por
la misma letra?
▶ Entonces el resultado también.
▶ Y el resto del resultado es. . . un subproblema con secuencias

más cortas.

3. Queda pendiente el caso de que las primeras letras de las dos
secuencias sean diferentes.
▶ Entonces el resultado ha de empezar por una de ellas.
▶ Y el resto del resultado es. . .

un subproblema con una
secuencia mantenida igual y la otra más corta.

Supersecuencias, II
Consideraciones

1. ¿Cómo seŕıan los casos de secuencias de entrada vaćıas?

2. ¿Cómo seŕıa un caso en que ambas secuencias empiezan por
la misma letra?
▶ Entonces el resultado también.
▶ Y el resto del resultado es. . . un subproblema con secuencias

más cortas.

3. Queda pendiente el caso de que las primeras letras de las dos
secuencias sean diferentes.
▶ Entonces el resultado ha de empezar por una de ellas.
▶ Y el resto del resultado es. . . un subproblema con una

secuencia mantenida igual y la otra más corta.

Supersecuencias, III
Tabla bidimensional

S[i, j]:

longitud de la supersecuencia más corta de s[i:] y t[j:].

Si s[i] == t[j]: 1 + S[i+1, j+1].

Si s[i] != t[j]: 1 + min(S[i+1, j], S[i, j+1]).

Boundary conditions: cuando s[i:] y/o t[j:] es vaćıa.

Ojo! Esta vez, las entradas de la tabla dependen de otras entradas
con ı́ndices superiores.

Supersecuencias, III
Tabla bidimensional

S[i, j]:

longitud de la supersecuencia más corta de s[i:] y t[j:].

Si s[i] == t[j]:

1 + S[i+1, j+1].

Si s[i] != t[j]: 1 + min(S[i+1, j], S[i, j+1]).

Boundary conditions: cuando s[i:] y/o t[j:] es vaćıa.

Ojo! Esta vez, las entradas de la tabla dependen de otras entradas
con ı́ndices superiores.

Supersecuencias, III
Tabla bidimensional

S[i, j]:

longitud de la supersecuencia más corta de s[i:] y t[j:].

Si s[i] == t[j]: 1 + S[i+1, j+1].

Si s[i] != t[j]:

1 + min(S[i+1, j], S[i, j+1]).

Boundary conditions: cuando s[i:] y/o t[j:] es vaćıa.

Ojo! Esta vez, las entradas de la tabla dependen de otras entradas
con ı́ndices superiores.

Supersecuencias, III
Tabla bidimensional

S[i, j]:

longitud de la supersecuencia más corta de s[i:] y t[j:].

Si s[i] == t[j]: 1 + S[i+1, j+1].

Si s[i] != t[j]: 1 + min(S[i+1, j], S[i, j+1]).

Boundary conditions: cuando s[i:] y/o t[j:] es vaćıa.

Ojo! Esta vez, las entradas de la tabla dependen de otras entradas
con ı́ndices superiores.

Supersecuencias, III
Tabla bidimensional

S[i, j]:

longitud de la supersecuencia más corta de s[i:] y t[j:].

Si s[i] == t[j]: 1 + S[i+1, j+1].

Si s[i] != t[j]: 1 + min(S[i+1, j], S[i, j+1]).

Boundary conditions: cuando s[i:] y/o t[j:] es vaćıa.

Ojo! Esta vez, las entradas de la tabla dependen de otras entradas
con ı́ndices superiores.

Supersecuencias, III
Tabla bidimensional

S[i, j]:

longitud de la supersecuencia más corta de s[i:] y t[j:].

Si s[i] == t[j]: 1 + S[i+1, j+1].

Si s[i] != t[j]: 1 + min(S[i+1, j], S[i, j+1]).

Boundary conditions: cuando s[i:] y/o t[j:] es vaćıa.

Ojo! Esta vez, las entradas de la tabla dependen de otras entradas
con ı́ndices superiores.

Supersecuencias, IV
Aproximación al programa

initialize

for i in reversed(range(len(s))):

for j in reversed(range(len(t))):

if s[i] == t[j]:

S[i, j] = 1 + S[i+1, j+1]

else:

S[i, j] = 1 + min(S[i+1, j], S[i, j+1])

return S[0, 0]

Supersecuencias, V
Cómo trazar la solución

Método general: tabla secundaria que indica, para cada i y j, en
caso de ser diferentes las letras s[i] y t[j], si hemos de tomar en
ese punto la letra de s o la de t.

Para construirla, en el caso s[i] != t[j] reemplazamos la
operación min por una comprobación de desigualdad y apuntamos
en la tabla secundaria de cuál de los dos strings dados viene la
letra a usar (por ejemplo, con los valores -1 o 1, reservando el cero
para cuando s[i] == t[j]).

Es también posible tomar la decisión mediante comparaciones del
estilo de S[i, j] == 1 + S[i+1, j] sobre la tabla principal.

Discretización no supervisada
“Unsupervised Discretization” o “One-Dimensional Clustering”

Dada una lista de float’s, hay que
particionarla en un número reducido de
segmentos (“bins”, “buckets”, “clusters”. . .).

Resuelto (si que casi nadie se enterase) por los
cartógrafos en la rama de cartograf́ıa llamada
choropleth maps; la solución que
describimos ahora, ellos la llaman Jenks’

natural breaks.

Es un caso particular de la segmentación por
“K-Means”.

(Fuente: Expert Health

Data Programming, Inc

(EHDP): Vitalnet)

https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization
https://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization
https://www.ehdp.com/vitalnet/output-map.htm
https://www.ehdp.com/vitalnet/output-map.htm
https://www.ehdp.com/vitalnet/output-map.htm

Segmentación por “K-Means”
“Clustering” que sigue el criterio de minimizar el error cuadrático

El caso general:

Con vectores de números reales en dimensión d .

▶ Datos: n vectores xi , entero positivo k ;

▶ Resultado: particionar los vectores en k clusters Cj ;

▶ representaremos cada “cluster” Cj por un vector cj

(su centroide);

▶ los centroides han de minimizar el error cuadrático medio:
1

n

∑
j

∑
xi∈Cj

d(xi , cj)
2

Nota:
No exigimos que los cj se escojan de entre los datos xi .

Malas noticias: NP-hard para dimensión 2 o más.

Segmentación por “K-Means”
“Clustering” que sigue el criterio de minimizar el error cuadrático

El caso general:

Con vectores de números reales en dimensión d .

▶ Datos: n vectores xi , entero positivo k ;

▶ Resultado: particionar los vectores en k clusters Cj ;

▶ representaremos cada “cluster” Cj por un vector cj

(su centroide);

▶ los centroides han de minimizar el error cuadrático medio:
1

n

∑
j

∑
xi∈Cj

d(xi , cj)
2

Nota:
No exigimos que los cj se escojan de entre los datos xi .

Malas noticias: NP-hard para dimensión 2 o más.

Y, ¿cómo lo resuelve la gente?

Si por milagro tuviéramos los centroides:

Entonces es fácil encontrar los “clusters”: cada punto va a su
centroide más próximo, porque, si no, el error crece.

Si por milagro tuviéramos los “clusters”:

Entonces es fácil encontrar los centroides: minimizamos∑
xi∈C d(xi , c)

2 forzando la derivada a cero; el resultado (no pod́ıa
ser otro) es que cada centroide queda en el baricentro de su
“cluster” porque, si no, el error crece.

Y, ¿cómo lo resuelve la gente?

Si por milagro tuviéramos los centroides:

Entonces es fácil encontrar los “clusters”: cada punto va a su
centroide más próximo, porque, si no, el error crece.

Si por milagro tuviéramos los “clusters”:

Entonces es fácil encontrar los centroides: minimizamos∑
xi∈C d(xi , c)

2 forzando la derivada a cero; el resultado (no pod́ıa
ser otro) es que cada centroide queda en el baricentro de su
“cluster” porque, si no, el error crece.

La heuŕıstica de Lloyd
Mucha gente la llama K-Means, confundiendo el problema con la solución aproximada

Vamos alternando
entre las dos cosas que sabemos hacer, empezando por k
candidatos iniciales a centroide:

▶ recalcular los “clusters”,

▶ recalcular los centroides,

▶ repetir.

https://www.naftaliharris.com/blog/

visualizing-k-means-clustering/

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

K-Means: ḿınimo global en dimension 1, I
Dynamic Programming: estrategia de Wang y Song, a.k.a. Jenks’ Natural Breaks

Input: número de “clusters” k, y n floats, con n ≥ k ; x1 to xn en
orden creciente (pasa un sort si no).

Tabulamos: C [i ,m], coste de un “clustering” de los puntos x1 to xi
en m “clusters”, para m ≤ k y m ≤ i ; la solución está en C [n, k].

Inicialización: C [i ,m] = 0 si m = 0.

¿Relación con “un cluster menos”? Identificamos el punto más
pequeño del último “cluster”.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148156
https://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization

K-Means: ḿınimo global en dimension 1, I
Dynamic Programming: estrategia de Wang y Song, a.k.a. Jenks’ Natural Breaks

Input: número de “clusters” k, y n floats, con n ≥ k ; x1 to xn en
orden creciente (pasa un sort si no).

Tabulamos: C [i ,m], coste de un “clustering” de los puntos x1 to xi
en m “clusters”, para m ≤ k y m ≤ i ; la solución está en C [n, k].

Inicialización: C [i ,m] = 0 si m = 0.

¿Relación con “un cluster menos”? Identificamos el punto más
pequeño del último “cluster”.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148156
https://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization

K-Means: ḿınimo global en dimension 1, I
Dynamic Programming: estrategia de Wang y Song, a.k.a. Jenks’ Natural Breaks

Input: número de “clusters” k, y n floats, con n ≥ k ; x1 to xn en
orden creciente (pasa un sort si no).

Tabulamos: C [i ,m], coste de un “clustering” de los puntos x1 to xi
en m “clusters”, para m ≤ k y m ≤ i ; la solución está en C [n, k].

Inicialización: C [i ,m] = 0 si m = 0.

¿Relación con “un cluster menos”? Identificamos el punto más
pequeño del último “cluster”.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148156
https://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization

K-Means: ḿınimo global en dimension 1, I
Dynamic Programming: estrategia de Wang y Song, a.k.a. Jenks’ Natural Breaks

Input: número de “clusters” k, y n floats, con n ≥ k ; x1 to xn en
orden creciente (pasa un sort si no).

Tabulamos: C [i ,m], coste de un “clustering” de los puntos x1 to xi
en m “clusters”, para m ≤ k y m ≤ i ; la solución está en C [n, k].

Inicialización: C [i ,m] = 0 si m = 0.

¿Relación con “un cluster menos”? Identificamos el punto más
pequeño del último “cluster”.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148156
https://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization

K-Means: ḿınimo global en dimension 1, I
Dynamic Programming: estrategia de Wang y Song, a.k.a. Jenks’ Natural Breaks

Input: número de “clusters” k, y n floats, con n ≥ k ; x1 to xn en
orden creciente (pasa un sort si no).

Tabulamos: C [i ,m], coste de un “clustering” de los puntos x1 to xi
en m “clusters”, para m ≤ k y m ≤ i ; la solución está en C [n, k].

Inicialización: C [i ,m] = 0 si m = 0.

¿Relación con “un cluster menos”? Identificamos el punto más
pequeño del último “cluster”.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148156
https://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization

K-Means: ḿınimo global en dimension 1, I
Dynamic Programming: estrategia de Wang y Song, a.k.a. Jenks’ Natural Breaks

Input: número de “clusters” k, y n floats, con n ≥ k ; x1 to xn en
orden creciente (pasa un sort si no).

Tabulamos: C [i ,m], coste de un “clustering” de los puntos x1 to xi
en m “clusters”, para m ≤ k y m ≤ i ; la solución está en C [n, k].

Inicialización: C [i ,m] = 0 si m = 0.

¿Relación con “un cluster menos”? Identificamos el punto más
pequeño del último “cluster”.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148156
https://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization

K-Means: ḿınimo global en dimension 1, II
¿Cuál es la diferencia entre m clusters y m − 1 clusters?

C [i ,m] = minm≤j≤i (C [j − 1,m − 1] +
∑

j≤ℓ≤i d(xℓ, cj ,i)
2)

donde

cj ,i =
1

i−j+1

∑
j≤ℓ≤i xℓ

K-Means: ḿınimo global en dimension 1, II
¿Cuál es la diferencia entre m clusters y m − 1 clusters?

C [i ,m] = minm≤j≤i (C [j − 1,m − 1] +
∑

j≤ℓ≤i d(xℓ, cj ,i)
2)

donde

cj ,i =
1

i−j+1

∑
j≤ℓ≤i xℓ

K-Means: ḿınimo global en dimension 1, III
Demo available

https://www.cs.upc.edu/~balqui/demoWSJ/

Alpha stage!

▶ Algún d́ıa futuro me preocuparé por la estética,

▶ y por la usabilidad!. . .

Requiere:

▶ el número de clusters,

▶ los puntos que se supone que ya se han procesado y

▶ el nuevo punto a incorporar.

https://www.cs.upc.edu/~balqui/demoWSJ/

K-Means: ḿınimo global en dimension 1, IV
¿Cómo podemos hacerlo mejor?

Esta estrategia lleva a un algoritmo O(n3).

Mejora: no calcular individualmente cada cj ,i sino actualizar cj ,i−1

(¿cómo hacerlo? Un poco de álgebra te lo dice.)

Ahorramos aśı una computación lineal que reduce el coste a O(n2).

(La alternativa de Jenks: in Cartograf́ıa sólo precisamos las
fronteras entre clusters, sin los centroides. Es posible tunear la
fórmula, reemplazando en el esquema de minimización los
centroides por su definición.)

Hay quien afirma que se puede hacer en O(n log n). Ese texto no
ha pasado revisión por pares.

Caminos ḿınimos, I
¿Aristas con costes? ¿Pueden ser negativos?

Problemas de caminos ḿınimos en grafos

Muy comunes: muchos problemas prácticos se pueden modelar aśı.

Empezamos por el caso “single-source”: el vértice inicial de todos
los caminos es fijo. El grafo es dirigido.

▶ ¿Costes variables en los arcos, o todos iguales?

Si todos son iguales, ¡Breadth-First Search!

▶ ¿Hay arcos con costes negativos?

▶ Si no: Dijkstra (o extensiones como A*).

▶ Si los hay. . . ¿hay un ciclo de coste total negativo?

En ese caso, el problema se complica. Solucionado muy
recientemente.

▶ Si no los hay: Bellman-Ford:

Un fragmento de un camino ḿınimo. . . ¡es ḿınimo!

¡Incluso en presencia de costes negativos!

Caminos ḿınimos, I
¿Aristas con costes? ¿Pueden ser negativos?

Problemas de caminos ḿınimos en grafos

Muy comunes: muchos problemas prácticos se pueden modelar aśı.

Empezamos por el caso “single-source”: el vértice inicial de todos
los caminos es fijo. El grafo es dirigido.

▶ ¿Costes variables en los arcos, o todos iguales?

Si todos son iguales, ¡Breadth-First Search!

▶ ¿Hay arcos con costes negativos?

▶ Si no: Dijkstra (o extensiones como A*).

▶ Si los hay. . . ¿hay un ciclo de coste total negativo?

En ese caso, el problema se complica. Solucionado muy
recientemente.

▶ Si no los hay: Bellman-Ford:

Un fragmento de un camino ḿınimo. . . ¡es ḿınimo!

¡Incluso en presencia de costes negativos!

Caminos ḿınimos, I
¿Aristas con costes? ¿Pueden ser negativos?

Problemas de caminos ḿınimos en grafos

Muy comunes: muchos problemas prácticos se pueden modelar aśı.

Empezamos por el caso “single-source”: el vértice inicial de todos
los caminos es fijo. El grafo es dirigido.

▶ ¿Costes variables en los arcos, o todos iguales?

Si todos son iguales, ¡Breadth-First Search!

▶ ¿Hay arcos con costes negativos?

▶ Si no: Dijkstra (o extensiones como A*).

▶ Si los hay. . . ¿hay un ciclo de coste total negativo?

En ese caso, el problema se complica. Solucionado muy
recientemente.

▶ Si no los hay: Bellman-Ford:

Un fragmento de un camino ḿınimo. . . ¡es ḿınimo!

¡Incluso en presencia de costes negativos!

Caminos ḿınimos, II
Si el Principio de Optimalidad se cumple. . .

Grafo dirigido de n vértices, vértice inicial s: “tabulamos” la
distancia dist[v, i] de s a v en, como mucho, i pasos.

Si dist[v, i] es óptima y el último arco es (u, v), entonces
dist[u, i-1] necesariamente es óptima.

dist[v , i] = min(dist[v , i − 1], dist[u, i − 1] + cost[u, v])

Caminos ḿınimos, II
Si el Principio de Optimalidad se cumple. . .

Grafo dirigido de n vértices, vértice inicial s: “tabulamos” la
distancia dist[v, i] de s a v en, como mucho, i pasos.

Si dist[v, i] es óptima y el último arco es (u, v), entonces
dist[u, i-1] necesariamente es óptima.

dist[v , i] = min(dist[v , i − 1], dist[u, i − 1] + cost[u, v])

for all v in V:

dist[v] = float(’inf’)

dist[s] = 0

for i in range(1, n):

for all the edges (u, v):

if dist[v] > dist[u] + cost[u,v]:

dist[v] = dist[u] + cost[u, v]

Caminos ḿınimos, II
Si el Principio de Optimalidad se cumple. . .

Grafo dirigido de n vértices, vértice inicial s: “tabulamos” la
distancia dist[v, i] de s a v en, como mucho, i pasos.

Si dist[v, i] es óptima y el último arco es (u, v), entonces
dist[u, i-1] necesariamente es óptima.

dist[v , i] = min(dist[v , i − 1], dist[u, i − 1] + cost[u, v])

for all v in V: # Bellman-Ford en PA2

dist[v] = float(’inf’)

prev[v] = None

dist[s] = 0

for i in range(1, n):

for all the edges (u, v):

if dist[v] > dist[u] + cost[u,v]:

dist[v] = dist[u] + cost[u, v]

prev[v] = u

Caminos ḿınimos, III
¿Qué es lo que decidimos considerar un subproblema?

“All-pairs shortest paths”:

Dado un grafo (dirigido o no), ¿cuáles son las distancias más
cortas entre todos los pares de vértices?

▶ Puede haber costes negativos, pero no ciclos de coste total
negativo.

▶ Vértices de 0 a N − 1,

▶ subproblemas definidos por un segmento inicial de esa
secuencia de vértices;

▶ sólo se permiten los vértices de ese segmento inicial como
vértices intermedios de un camino.

▶ Inicialmente: segmento nulo, no se permiten vértices como
pasos intermedios; la distancia viene dada por los arcos
individuales: si desde un vértice se alcanza directamente otro.

Caminos ḿınimos, IV
¡Recordemos comprobar el Principio de Optimalidad!

Esencia del algoritmo de Floyd(-Warshall(-Roy)):

▶ Si ya tenemos en nuestra tabla de distancias todas las que
sólo usan vértices intermedios anteriores a k :

¿Cómo las usamos para contar también con k?

▶ La nueva opción k se usará o bien cero veces, ¡o bien
exactamente una!

dist(i, j, k) = min(dist(i, j, k-1),
dist(i, k, k-1) + dist(k, j, k-1))

▶ Y si pasar por k es preferible, anotamos en la tabla secundaria
que el mejor camino de i a j pasa por k .

▶ La tabla secundaria permite reconstruir recursivamente los
caminos ḿınimos si se necesitan.

(Existe una opción alternativa para esta reconstrucción: véase
el enlace a Wikipedia dado arriba.)

https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm

Caminos ḿınimos, IV
¡Recordemos comprobar el Principio de Optimalidad!

Esencia del algoritmo de Floyd(-Warshall(-Roy)):

▶ Si ya tenemos en nuestra tabla de distancias todas las que
sólo usan vértices intermedios anteriores a k :

¿Cómo las usamos para contar también con k?

▶ La nueva opción k se usará o bien cero veces, ¡o bien
exactamente una!

dist(i, j, k) = min(dist(i, j, k-1),
dist(i, k, k-1) + dist(k, j, k-1))

▶ Y si pasar por k es preferible, anotamos en la tabla secundaria
que el mejor camino de i a j pasa por k .

▶ La tabla secundaria permite reconstruir recursivamente los
caminos ḿınimos si se necesitan.

(Existe una opción alternativa para esta reconstrucción: véase
el enlace a Wikipedia dado arriba.)

https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm

Caminos ḿınimos, IV
¡Recordemos comprobar el Principio de Optimalidad!

Esencia del algoritmo de Floyd(-Warshall(-Roy)):

▶ Si ya tenemos en nuestra tabla de distancias todas las que
sólo usan vértices intermedios anteriores a k :

¿Cómo las usamos para contar también con k?

▶ La nueva opción k se usará o bien cero veces, ¡o bien
exactamente una!

dist(i, j, k) = min(dist(i, j, k-1),
dist(i, k, k-1) + dist(k, j, k-1))

▶ Y si pasar por k es preferible, anotamos en la tabla secundaria
que el mejor camino de i a j pasa por k .

▶ La tabla secundaria permite reconstruir recursivamente los
caminos ḿınimos si se necesitan.

(Existe una opción alternativa para esta reconstrucción: véase
el enlace a Wikipedia dado arriba.)

https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm

Búsqueda exhaustiva, III
Si hay que probar todas las posibles soluciones, hagámoslo bien

¿No encuentras más opción que la búsqueda exhaustiva?

(No olvides preguntar si alguien ha demostrado NP-hardness; más
explicaciones sobre esto en la segunda mitad del curso.)

1. Empieza por existencia, deja la optimización para después;

2. Usa la libreŕıa estándar para programar rápidamente una
búsqueda exhaustiva, aunque sea exponencialmente lenta, y
pruébala.

3. Se puede usar también para contabilizar repeticiones de
subproblemas.

4. Si es demasiado lenta, plantea una solución por backtracking.

5. Subproblemas frecuentemente repetidos? Consideramos
aplicar Programación Dinámica (dynamic programming), tal
vez tras “backtracking”, o tal vez directamente para empezar.

Búsqueda exhaustiva, IV

Una vez en este punto:

▶ Plantea el problema en términos de optimización.

▶ ¿“Best-first search”?

(Es decir, A* y familia (“iterative deepening”. . .)

https://en.wikipedia.org/wiki/Best-first_search.)

▶ ¿“Branch-and-bound”? ¿“Branch-and-cut”?, ¿AO* con
“alpha-beta pruning”?. . .)

https://en.wikipedia.org/wiki/Best-first_search

	Presentación
	Búsqueda combinatoria
	Búsqueda exhaustiva
	Estructura de subproblemas
	Backtracking
	Esquemas ``greedy''
	Programación Dinámica (Dynamic Programming)

	Teoría de lenguajes formales
	Contexto y principios
	Lenguajes regulares
	Lenguajes incontextuales
	La jerarquía de Chomsky
	Máquinas de Turing

	Calculabilidad e indecidibilidad
	Funciones recursivas parciales
	Indecidibilidad
	Enumerabilidad recursiva

	Clases de complejidad
	Cotas de tiempo o de espacio
	Problemas NP-completos

