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Abstract. Tasks in architectural and interior design range from defining the build-
ing floor plans and ensuring desired functionality, to deciding furnishing styles and
arrangement choices; all to best fit certain pre-established purposes. The process of
design, as a whole, has remained hard to master for computer-based optimization
in general and for computational intelligence approaches in particular. Numerous
attempts to tackle different subfields of this problem in a machine learning fash-
ion have emerged over the last few years, aiming to offer partial automatization
of human tasks, personalized support for specialists in field and professional guid-
ance for amateurs. In this paper, we present an overview of current advances of
computational intelligence in architectural science with a focus on interior design.
We describe various learning models applied to interior design challenges such as
furniture type selection, style compatibility, furniture arrangement, or ornamental
decoration. This is accompanied by the description of ongoing research towards the
development of a commercial robust and scalable solution for automatic furniture
arrangement, given a room plan.
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Introduction

Architecture has been an endeavour at the heart of human societies throughout history.
Architectural theory, and the use of mathematics and geometry as an integral part of it,
can be traced back to ancient cultures in India, Egypt and Greece [1].

This well-established field has undergone continuous progress in different fronts,
from the use of materials to engineering and design. Modern architecture can be said to
have undergone a further radical change through the adoption of computer-based meth-
ods for both engineering and design. Interestingly, the pervasive introduction of increas-
ingly sophisticated methods of computer-aided design (CAD) and engineering (CAE)
temporarily displaced mathematics from its central role in architectural practice. As re-
marked in [2], this seems to be a trend currently in the process of reversion, paradoxi-
cally due to the formal complexity allowed by CAD systems, which begs for the use of
parsimonious data models.

This need of data modelling has naturally led to a more recent step forward in the
use of computers in architecture, which is the integration and application of computa-
tional intelligence (CI) approaches in design processes, so as to answer an older question



posed by MacCallum [3]: does intelligent CAD exist? Note that research on the use of
Machine Learning (ML) in design was already quite active in the 1990’s [4]. In the ar-
chitectural engineering field, artificial intelligence (AI) is currently present in subfields
such as building design, interior furniture organization, ornamental decoration and style,
aiming to offer automatization of human tasks, personalized support for specialists in
field, professional guidance for amateurs, etc.

In this brief paper, we review the present capabilities of AI, with a focus on CI
and ML, in the field of architectural design and, more specifically, in interior design, in-
cluding an examination of the underlying data models. We expose the models’ strengths
and limitations; their dependency on the specific context; their similarities and evolution
across design main subfields; and the possibilities opened by the potential combinations
of methods.

This overview across fields is a first contribution of our ongoing research leading to
the development of a real-world, commercial solution to offer automatic custom room
plan-adapted furnishing suggestions to clients. Besides, the models behind the solution
must be robust and scalable in order to incorporate the numerous existing furniture op-
tions and to fit various room layouts. Furnishing options must comply not only with user
preferences, but must also be able to incorporate professional design expert knowledge
-learned and incorporated by the model, resulting in suggestions as close to professional
design as possible.

The remaining of the paper is structured as follows: in section 1, we present a brief
overview of the main subfields of architectural building in which CI models have been
applied. We do the same for interior design in section 2, highlighting the connections
with building design models and detailing model capabilities, contextual constraints and
limitations in several sub-fields, including furniture selection and arrangement, furni-
ture style assessment and ornamental decoration. Section 3 describes our own work-in-
progress on a CI model aimed to tackle the room interior furnishing problem, includ-
ing furniture selection and arrangement, in two stages: a data-driven, probabilistic phase,
followed by a stochastic optimization process.

1. Architectural design and computational intelligence

1.1. Design as a learning problem

One of the earlier studies introducing the concept of model learning in design from an
AI perspective can be found in [5] and it addresses the relationship between the design
phenomenon and the possibility of learning in this context, in a way that would bene-
fit the designer. The model is based on an analytical, formal representation of cognitive
activities in design. The resulting system, LinD, tested various correlations and learning
areas that can be further exploited in a learning fashion, including: abstraction / detail-
ing, association / disassociation, derivation / randomization, generalization / specializa-
tion, and similarity measurement. This study is especially relevant for it emphasizes that
design implies learning hidden and often complex patterns from observed data.

Some of the most common tasks addressed in this field include the automatization of
floor plan generation (layout of the spatial allocation) and exterior building layout design
(overall construction form and exterior façade) The models detailed next mainly focus
on applications to floor plan design and building overall-shape manipulation.



1.2. Overview and evolution of architectural design models

Non-learning algorithms: Floor plan generation, also known as the spatial allocation
problem, can be defined as the process of designing the layout of an architectural space.
Many classical algorithms tackle it by starting from specifying some constraints, such as
desired number of rooms, pre-configured rooms sizes and by exhaustively enumerating
all feasible possibilities. Because of their exponential growth in complexity, these meth-
ods become infeasible for complex scenarios. As a result, the spatial allocation problem
is restricted to building simplistic, regular layouts with rigorous specifications such as
those of schools, health facilities, etc. [6]. Other approaches, focused on locally opti-
mizing an initial room manual arrangement, treat the problem in a similar fashion to the
design of VLSI circuit layouts [7]. The main limitation of such methods is the need of
an expert to manually design the initial layout.

Procedural architecture: The shape grammars paradigm has been used for both au-
tomating floor plan generation and procedural building exterior layout design [8,9,10].
However, the main drawback of using grammars is the need to introduce all the grammar
rules manually. Moreover, the static nature of such rules limits the model to produce new
layouts as valid, plausible variations, to assist the designer with continuous suggestions.

Probabilistic approaches: In responde to the challenges regarding solution space di-
mensionality, problem complexity, and rigidness of complete specification of the layout
rules, various data-driven probabilistic models have emerged. Their main advantages in-
clude: the possibility of incompletely specifying the layout requirements; the ability to
fix arbitrary constraints and sample from the probabilistic network the rest of the pa-
rameters; the definition of a model for training on real world data followed by sampling
reasonable layout characteristics, such as adjacency relations, number, types and sizes of
rooms; and the fact that discretely sampling from the probabilistic model overcomes, in
a heuristic manner, the performance impact caused by searching or exploring the large,
complex solution space. Probabilistic models have successfully been used in architec-
tural design for representing learnable relations between complex objects’ components
[11] and learning plausible room sizes and arrangement dependencies [12].

Stochastic optimization: It could be argued that the probabilistic approach alone, as
well as other similar methods for specifying layout requirements such as constraints set
[13] show limitations including the lack of ability to capture architectural style, room
functionality, and produce raw estimations. Thus, the goal to capture and reproduce plau-
sible, real-world ready results, is usually conducted through a final step of stochastic op-
timization, given a set of constraints and a goal function -representing the goodness of
the layout [12]. Other approaches use Simulated Annealing (SA) [14] and Monte Carlo
Markov Chain (MCMC) to explore the vast space of solutions and produce plausible
yet diverse city scale results [15]. Stochastic optimization was successfully applied to
furniture arrangement [16] and for the optimization of interior ergonomics [17].

Evolutionary computation: Genetic algorithms have also been applied to both the lay-
out generation problem [14] and building façade definition [18]. Although this power-
ful paradigm has not yet shown promising results in the architectural engineering field,
failing at providing real-world inspired solutions [14] and yielding poor overall perfor-
mance and generalization [18], it is still worth considering for its strength to generate



diverse, highly customized, user preference oriented results as opposed to standard, de-
signer guided blueprints.

Generative models: The problem of generating diverse building models in a scalable
fashion resulting in virtual worlds (with applications such as game-environment con-
struction) has been addressed through methods that aim at learning from existing, real-
world entities to generate new feasible ones. The study reported in [11], for instance, fo-
cuses on generating various new plausible object models from a few, real ones by evolv-
ing new compatible components. This is accomplished through a probabilistic model
linking properties of the components’ shapes and learning the plausible variations within
a context. In [19], the authors created a model able to, first, determine the space of plausi-
ble, local variations of building layout and, second, merge such local derivations through
a linked transitions graph with valid pathways at a global level, enabling easy transition
in the building space neighborhood. As compared to the previous explored trends, in
which the focus was optimizing layout details, the goal here is generating considerably
more models while preserving overall consistency and diversity, starting from only a few
ones. The realistic generation capabilities and cross-components similarity learning of
these models also have application to interior design for ornamental decoration of rooms
[20], where new artifacts need to be generated and well-placed in the room preserving
user preferences and the overall style [21] and functionality of the space. However, rig-
orous hard-constraints need to be enforced for the generation of real-world models in
order to maintain their complex functionality. As a result, the application of this type of
methods is still mostly for the design of virtual environments.

2. Interior design and computational intelligence

Although addressing a distinct problem, interior design has experienced a parallel evolu-
tion to architecture in terms of adoption of computer-based approaches and the use of AI
methods. It shares the main goals of architectural design, including the partial automati-
zation of tasks and the design of frameworks to assist professional interior designers by
incorporating expert knowledge. The main components of such automatization process
to create fully functional furnished rooms are also the main research directions in interior
design:

Furniture selection: Automatically deciding what type of furniture entities are right
for a given room. This problem should consider the room type (e.g. kitchen, bedroom,
living room), the desired functionality to incorporate (e.g. sleeping, work, leisure) and
users’ preferences (e.g. percentage of furnishing space, life style, developed activities
within the room).

Furniture arrangement: Naturally following furniture selection, the task of auto-
matically arranging the furniture includes, besides the hard constraints (e.g. room type
regulations, physical space available, ergonomics), soft (subjective) constraints like per-
sonal life style, daily activities, arrangement tastes. Given the strong interdependencies
between this and the former problem, moving back and forth to reach a desired solution
(e.g. deciding on a different size furniture piece to best fit in place and, contrarily, first
fixing certain furniture types to later determine their position) is often necessary and,
therefore, they can be combined into a single challenge.



Style compatibility: In order to obtain a realistic, professional-looking interior de-
sign, the overall appearance of the synthesized room is an important factor. Challenges
in this area include automatically assessing style compatibility between furniture pieces;
both in terms of same objects and across different object types.

Ornamental decoration: In the light of the continuous attempt to automatize de-
sign in all perspectives, ornamental decoration challenges include deciding the types of
artifacts, their placement according to user preferences and overall usage, personal ar-
rangement style: agglomerative vs. sparse, ordering degree, etc.

We focus next on describing promising models in each of these components, build-
ing upon the more general overview of the models described in the previous section.

2.1. Furniture selection and arrangement

Data-driven and probabilistic approaches: Interior design is characterized by com-
plexity, which often results in a very large solution space that can be efficiently ex-
plored or estimated through learning probabilistic models [11,22], although at well-
known costs, such as ambiguity, crude estimations of parameters for complex scenarios,
or failure to capture the problem in all its dimensions.

Specifically, when dealing with furnishing a room, including both selection and ar-
rangement of objects, most data-driven approaches include a probabilistic model such as
Bayesian networks or Gaussian Mixture Models (GMM) [23], which capture aspects of
the data that hard to express in an analytical manner.

In [23], Fisher et al. used a Bayesian model for learning the furniture occurrence in
different types of rooms and a GMM for capturing arrangement patterns. Although in this
case the system is initially trained on a fairly small, user-provided data set, its limitations
in capturing robust, abstract patters are compensated in a later stage of training on an
automatically enlarged data set, to which relevant, similar scenes are included. Another
important contribution of this study is a clustering algorithm, trained on a large database
of scenes, able to capture contextual similarity resulting in an efficient, reliable grouping
of interchangeable objects. This helps in scene variation and solutions diversity, also
helping the model to avoid overfitting. Another key aspect of this model is the training in
two stages, which compensates for the lack of data and the absence of diversity through
enlarging the initial data set with similar scenes from a large database, in an automatic
fashion, based on context similarity.

Another data driven approach, with a novel contribution for capturing furniture
grouping functionality, can be found in [24] and is based on a new concept of “Wall Grid
Structure” (WGS) that addresses the same problem as in our ongoing research, reported
in section 3, namely furnishing an empty room given its plan. The algorithm consists of
two main stages: the learning stage, using a database of same-type rooms from Google
Warehouse followed by a synthesize stage that consists of furnishing the desired room.
Focusing on the learning stage, the author introduces the concept of “functional groups
(FGs)”, necessary in order to obtain a unique and compatible artistic style of the object
collections, rather than putting objects together only by functionality. These FGs con-
tribute to reduce overall scenario complexity, by removing certain degrees of freedom,
hard to capture in all their completeness in the learning phase (e.g. a table should have
all the chairs the same model, and the overall look and feel should be pleasant).

The FGs are represented as graphs and treated as a single entity in the next steps in
the model. Grouping furniture pieces in sets (FGs) that preserve functionality and style



while reducing problem complexity and boosting scene quality represents an inspiration
for addressing the size of the furniture database in our own scenario. Compared to GMM,
the WGS-based model learns bi-directional linkage probabilities of model categories and
positions, being able to find one given the other. In the synthesizing step, the appropriate
WGS is computed for the given room, followed by probabilistic suggestion of FGs: first
one main FG (e.g. a bed in a bedroom, a table in a conference room), followed by a
“supplementary” one to complete the room.

Although probabilistic models have successfully been used to capture abstract pat-
terns in data-driven approaches, the synthesizing real-world-ready scenes remains an
open problem. Moreover, a pure data-oriented model is still far from capable of capturing
rigorous and stylish furnishing subtleties.

Stochastic optimization: In the light of these challenges, other analytical approaches
have emerged, aiming to produce a mathematical formulation of both hard constraints
(e.g. related to architectural feasibility and regulations) and soft subjective constraints.
These approaches are usually based on stochastic optimization models such as SA [16]
or MCMC [17], defining an energy function that presumably incorporates defined con-
straints -which aim to encapsulate underlying rules and patterns that designers apply in
their work. They typically include a research phase dedicated to determining such rules
as well as ways to analytically translate and combine them in density functions and tackle
the interior design challenge from a more structured, algorithmic angle, as opposed to
the looseness allowed by data-driven approaches. These methods usually define a set
of steps that aim at efficient, iterative, convergence, while having a reset mechanism to
avoid getting stuck in local minima.

In our own research, we also draw inspiration from such methods, because of their
ability to incorporate specific, important design guidelines that help fine-tuning the po-
tentially rough approximations obtained in the initial data-driven stage, through opti-
mization.

Related work is presented in [16], where furniture arrangement is accomplished
through an iterative optimization approach, given a complete specified room plan and a
finite set of fixed entities. The system learns a priori various features regarding the objects
such as visibility, availability space, common usage, hierarchy and positioning (absolute
and relative to other objects). In this work, SA is accompanied by a Metropolis-Hastings
state-search step to minimize a cost function, which integrates the most relevant features
claimed by authors to be necessary to obtain a realistic, “human-approved” room layout,
such as accessibility, visibility, pathways connecting doors, pairwise object constraints
A possible set of steps designed to iterate through the furniture configurations solution
space is defined in [16] includes: a) small objects rotations and translations, which con-
tributes to convergence; b) swapping objects, used for avoidance of local minima; and c)
moving pathways control points.

Similar work was carried out in [17], where a software-guided interior synthesis
system based on an MCMC sampler was presented. Such framework aims at guiding
a user to furnish a room in a professional-like manner, by incorporating functional and
visual criteria to the offered suggestions. The system has the capability to allow the user
fix, at each step, any desired furniture piece, and receive positioning suggestions for
the other ones accordingly. As in [16], the system incorporates pre-established interior
guidelines, expressed analytically through independent terms and combined in a density
function. The criteria used in this model are split in functional terms (including: a) clear-



ance (e.g. objects are accessible and not blocked; b) circulation, which ensures that the
main flows and room utility are not affected by furniture positioning; c) pairwise rela-
tionships, defined between dependent (coupled) furniture pieces (e.g., table with chairs,
TV with sofa); and d) conversation feature, which supports furniture arrangements that
encourage socialization aspects: conversations and collective activities), but also in vi-
sual terms (including: a) balance and room symmetry ; b) alignment -exact positioning
and orientation of furniture relative to close proximity-; and c) emphasis, describing the
point in the room with “layout dominance” (e.g., a fireplace, a TV, or a painting).

Evolutionary computation: An interesting CI approach using GAs was presented in
[25]. The authors focus on obtaining a unique arrangement in which the user tastes are
the main priority, rather than on a more standard, designer-oriented model. This is always
a tradeoff and comes at a cost of much more user involvement to evaluate each genera-
tion of individuals, maximizing both user preferences and ergonomics. Specifically, as in
genetic modeling, the process of obtaining the final layout is an iterative one, each stage
involving the evaluation of current room layouts, followed by the generation of new ones
through selection -using a fitness function based on defined ergonomics and user feed-
back, cross-over and mutation-classical approach, facilitated by a gene-like representa-
tion of the room furniture arrangement: comprising each piece of furniture’s coordinates
and angles, expressed as binary features.

2.2. Style compatibility

Focusing specifically on style comparison across different furniture types, the recent
work of Liu et al. [21], presents a novel approach for computing object compatibility. Al-
though much research in the area of 3D models similarity can be found in the literature,
this work focuses on furniture compatibility detection across different kinds of furniture,
rather than within-class compatibility. The proposed algorithm is based on representing
models as “part-aware geometric feature vectors”, as opposed to mixing features in a
general representation. The authors report that this helps to obtain features that measure
the style/aspect of the objects rather than the shape, which is important for discouraging
low scores for objects in the same class and results in focusing on compatibility rather
than similarity. The objects (always belonging to different classes) are compared in an
asymmetric fashion, decoupling the need for objects in different classes to preserve en-
tity structure and therefore allowing more complex objects (e.g. with more parts) to be
represented in a higher-dimensional space. As a consequence, when comparing two ob-
jects, they are initially projected in a common k-dimensional space by multiplying each
with the class-specific, pre-learned matrix, followed by distance measurement.

2.3. Ornamental decoration

Generative oriented models: An area related to room layout generation is that of auto-
matic ornamental decoration. Although it may be seen as an optional feature, it is par-
ticularly important for transforming an empty room into a livable one. Specifically, the
aim is to populate the empty furniture pieces (e.g. as shelves, wardrobes, tables, walls)
with adequate artifacts, preserving the style and overall arrangement while suggesting
utility and functionality as a whole. Consideration of user preferences and personal ar-
rangement styles is another decisive factor in achieving a pleasant layout. A data-driven,



ML approach in this area was presented in [20]. As stated by authors, obtaining a unique
solution through a stochastic optimization procedure is an unfeasible task, resulting in
lack of diversity in artifacts types and forms and very similar decoration results. There-
fore, compared to furniture synthesis models, a valid space of solutions is defined here
using a set of inequality constraints, and the optimization process aims at bringing the
solution within this valid space, as opposed to a point in the search space. Optimization
steps such as object addition, deletion and interchange are defined and applied in random
order sequences in order to drive the solution towards the goal while ensuring diversity.

3. Ongoing research: proposed model

As mentioned in the introduction, this brief review of the state-of-the-art on the use of AI
(with a focus on CI and ML) in architectural and interior design serves as a background
for our work-in-progress, which aims to tackle the room interior furnishing problem,
including furniture selection and arrangement. At his point, we propose a preliminary
model designed in two stages: a data-driven, probabilistic model-based one, followed by
a stochastic optimization one. Pipelining these two strategies will entail a first phase of
capturing underlying patterns through a data learning technique, ensuring generalization
(i.e. exploration), followed by a second phase of specialization (e.g. exploitation) aiming
at more refined results that abide to style criteria and strict regulations. This strategy
will help avoid data overfitting in the first stage while assuring model convergence in the
latter.

3.1. Data-driven probabilistic learning phase

Specifically, the initial stage will comprise a probabilistic model able to capture abstract
trends in real-world data such as furniture type occurrence and arrangement patterns
and output a variety of realistically furnished room scenes, with diversified furnishing
options, styles and functionality.

Dealing with a complex, high dimensionality solution space, energy-based optimiza-
tion models are not a feasible option for its exploration. This approach has the strength
to efficiently sample the problem parameters, offering a loosely, yet structured represen-
tation of the underlying patters governing the problem (i.e. occurrence and arrangement
of furniture). Other advantages include the ability to incompletely specify the initial pa-
rameters and “fix” certain ones to obtain reasonable approximations for the others.

Limitations, such as often producing crude estimations of the parameters, ambiguity,
inability to capture all problem complexity, are addressed through stochastic optimiza-
tion in the second part of the model, which now becomes feasible, after initially reducing
the problem dimension through discrete sampling and thus roughly estimating the solu-
tion set. Results obtained at this point, despite incorporating main scene targets, might
lack certain subtleties such as style uniformity across all furniture pieces, general align-
ment, maximum accessibility and functionality of furniture pieces, right balance of en-
tities (e.g. table dimensions having appropriate number of chairs) or preferred furniture
rotations towards right angles (e.g. parallel to main room axes).



3.2. Stochastic optimization phase

Automatic fine-tuning of the previous phase results can be achieved through the stochas-
tic optimization of an energy function, using a predefined set of steps. Inspired from
previous work, the density function should encapsulate, in an analytical way, specific
and important rules in areas like: ergonomics, designer guidelines, psychological factors,
safety regulations. Besides these, the energy function might also include terms express-
ing personal preferences, such as: furnishing percentage, cardinal orientation of certain
objects (e.g. bed should face north), type and amount of goods to be deposited in that
room, etc.

Because stochastic optimization models are known to be prone to get stuck in lo-
cal minima, the step set should include both “converging ones” (e.g. that drive the so-
lution towards a lower energy, such as furniture small movements and rotations, replac-
ing pieces with similar ones, deletion attempts) and “resetting ones” (e.g. that produce
a jump, associated with an energy spike, such as: swapping furniture positions, adding
new furniture types, etc.) Consequently, this model step aims at fine-tuning the prelimi-
nary obtained scenes through a step-by-step optimization, resulting in professional-like
furniture layout options.

4. Conclusions and future work

Architectural and interior design have become strongly computer-based activities over
the last few decades. Almost in parallel, CI techniques have incrementally found their
niche in these disciplines. In this paper, we have presented a brief overview of the cur-
rent state-of-the-art in the diverse forms of application of CI methods in these fields of
design. Various models, applied to challenges such as partial automatization of human
tasks, personalized support for specialists in field, etc. have been described, including an
overview comparison of their strengths and limitations.

In contrast to the dominant trend towards automatic generation of detailed, com-
plete and feasible virtual environments, we have also succinctly described our ongoing
research towards the development of a commercial solution for automatic generation
of furnishing suggestions to potential customers, according to personalised room plans.
The model comprises two stages: a data-driven, probabilistic learning phase for gen-
erating custom, plausible room layouts, followed by a stochastic optimization for fine-
tuning the previous obtained solutions. Imposed by the expected real-world use, numer-
ous challenges have to be addressed, such as high scalability, robustness, flexibility and
customization - incorporating various preferences such as furnishing choices, desired
functionality and usability.
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