Weak Pigeonhole Principles, Circuits for Approximate Counting, and Bounded-Depth Proofs

Albert Atserias
Universitat Politècnica de Catalunya
Barcelona, Spain

Proof complexity

Algorithms & complexity: P-algorithms

Proof complexity: NP-algorithms

Main motivations:

1980s and 1990s:

NP vs. co-NP (Cook-Reckhow, ...)
Foundations of mathematics (Paris-Wilkie,...)

2000s and 2010s:

A theory of automated theorem proving (SAT) Analysis of hard instances for specific algs

Bijections

Injections

Pigeonhole Principle:

there is no injective map from {1,...,n+1} into {1,...,n}

Pigeonhole Principle

1. Often quite hidden:

e.g. mutilated chessboard puzzle

http://community.fortunecity.ws

Pigeonhole Principle

2. Often applied to (exponentially) large sets:

e.g. every x with (x,q) = 1 has an "order mod q" (a smallest k such that $x^k = 1$ mod q)

- 1. List x^1 , x^2 , x^3 , ..., $x^q \mod q$. All in $\{1,...,q-1\}$.
- 2. By PHP, there are i < j s.t. $x^j = x^i \mod q$.
- 3. Then $x^{j-i} = 1 \mod q$.
- 4. Let k be smallest s.t. $x^k = 1 \mod q$.

Pigeonhole Principle

3. Entails the induction principle:

e.g.
$$P(0) & (P(x) => P(x+1) \text{ for all } x < n) => P(n).$$

- 1. Assume P(0) & (P(x) => P(x+1) for all x < n).
- 2. But assume also !P(n).
- 3. Define the map

$$F(x) = x$$
 when $P(x)$ holds
 $F(x) = x-1$ when $P(x)$ fails

4. Check F maps {0,...,n} injectively in {0,...,n-1}.

Questions about PHP

1. For automated theorem proving:

Is it available in automatic proof search?

2. For computational complexity:

Is the expressive power of counting necessary? Or does "flat" AND/OR/NOT language suffice?

3. For mathematical logic:

How does PHP compare to induction principle?

Weak PHPs

Weak Pigeonhole Principle:

there is no injective mapping from {1,...,2n} into {1,...,n}

Even Weaker Pigeonhole Principle:

there is no injective mapping from {1,...,n}

Remarks about WPHPs

1. WPHP rather than PHP is often enough:

Ex 1: every non-zero x has an order mod p

Ex2: existence proofs by probabilistic method

2. Exact counting looks no longer necessary:

approximate counting seems enough

3. Relationship with induction principle:

Question: How fundamental is WPHP as an axiom?

Elementary Reasoning: Take 0

Weak theories of arithmetic:

- Basic Peano axioms for +, ·, < (maybe #, exp, ...)
- Induction for predicates in (complexity) class C

Examples:

- $I\Delta_0$ (induction for linear hierarchy LINH)
- $I\Delta_0$ + # (induction for poly hierarchy PH)
- $I\Delta_0$ + exp (induction for elementary hierarchy)

Paris-Wilkie(-Woods) Program

Develop a notion of feasibly elementary proof:

- Infinitude of primes (Euclid)? [Macintyre]
- Bertrand's postulate (Erdös)?

- Oudrationsidussitus/Coursell

Exam

 $- I\Delta_0$

 $- I\Delta_0$

- IΔ₀

Main remaining question about WPHP:

Does $I\Delta_0$ prove WPHP?

A different deep open question:

Is $I\Delta_0$ finitely axiomatizable?

Elementary Reasoning: Take 1

Propositional proof complexity:

- Express the principle in propositional logic
- Study the length of its proofs in standard p.s.

Examples:

- Resolution
- Hilbert-style proof systems (a.k.a. Frege)
- Cutting planes, Lovász-Schrijver, SOS
- Etc.

ABOUT PHP(n+1,n)

Propositional Encoding of PHP

Pigeonhole Principle PHP(m,n) with m > n:

Variables:

```
P_{i,j} for 1 \le i \le m, 1 \le j \le n.
```

Clauses:

```
P_{i,1} v ... v P_{i,n} for 1 \le i \le m !P_{i,k} v !P_{j,k} for 1 \le i < j \le m, 1 \le k \le n.
```

Propositional Encoding of IND

Induction Principle IND(n):

```
Variables: P_{i} \qquad \text{for } 0 \leq i \leq n. Clauses: P_{0} \qquad !P_{i} \vee P_{i+1} \qquad \text{for } 0 \leq i \leq n-1. !P_{n}
```

Elementary Reasoning: Resolution

Resolution:

$$a_1 v ... v a_r v x$$
 $b_1 v ... v b_s v !x$

$$a_1 v ... v a_r v b_1 v ... v b_s$$

Goal:

starting at given clauses, produce the empty clause

Proof of Induction Principle

```
(given clause)
          P_0
                       (given clause)
2.
          !P_0 \vee P_1
                        (resolve 1 and 2)
3.
          P_1
4.
          !P_1 \vee P_2
                       (given clause)
                        (resolve 3 and 4)
5.
          P_2
2n+1.
                        (resolve 2n-1 and 2n)
          P_n
          !Pn
2n+2.
                        (given clause)
                        (resolve 2n+1 and 2n+2)
2n+3.
```

Lower Bound for PHP(n+1,n)

Theorem [Haken 1986]

Every resolution proof of PHP(n+1,n) requires $exp(\Omega(n))$ clauses.

Bottom line:

PHP is stronger than IND, at least in the resolution setting.

Elementary Reasoning: Frege

Hilbert style proof system (a.k.a. Frege):

Complexity of Counting

Theorem [Wallace 1964]:

There exist formulas $TH_k(x_1,...,x_n)$ of $n^{O(1)}$ -size and $O(\log n)$ -depth expressing " $x_1+...+x_n > k$ ".

Theorem [Ajtai 1983, FSS 1983, Håstad 1986]:

Depth-d formulas for $TH_{n/2}(x_1,...,x_n)$ must have size $exp(n^{1/O(d)})$.

Upper bound for PHP(n+1,n)

Theorem [Buss 1986]:

PHP(n+1,n) has Frege proofs of size n^{O(1)} with depth-O(log n) formulas.

Proof idea:

- 1. PHP(n+1, n) => $TH_n(P_{1,1},...,P_{n+1,n})$ (& has small proofs)
- 2. $PHP(n+1, n) => !TH_n(P_{1,1},...,P_{n+1,n})$ (& has small proofs)
- 3. Cut to derive 0.

Tightness of upper bound

Jewel Theorem of PPC [Ajtai 1988, PBI, KPW]:

Frege proofs of PHP(n+1,n) using depth-d formulas must have size $\exp(\Omega(n^{1/\exp(d)}))$.

Corollary:

 $I\Delta_0$ + # does not prove PHP

ON THE WPHP FRONT

Upper Bound for PHP(2n, n)

Theorem [Paris-Wilkie-Woods 1988, MPW 2001]:

PHP(2n, n) has Frege proofs with $(\log n)^{O(1)}$ -DNFs of size exp $((\log n)^{O(1)})$

Proof idea:

1: given an alleged injective [2n] -> [n].

2: copy and compose [4n] -> [2n] -> [n].

••

After log n steps: $[n^2] -> ... -> [2n] -> [n]$.

Proof idea:

1': given an alleged injective [n²] -> [n].

2': copy and compose $[n^4] \rightarrow [n^2] \rightarrow [n]$

•••

After $\log(n)/\log\log(n)$ steps: $[2^n]_{def} \rightarrow [n]$.

But:

Definable injective [2ⁿ]_{def} -> [n] does not exist (by Cantor's argument)

Iterated composition is definable in depth-2:

$$F(F(F(F(a)))) = b$$

iff
 $V_{c. d. e}(F(a) = c \& F(c) = d \& F(d) = e \& F(e) = b)$

Better Upper Bound?

Fact [Stockmeyer 1983, Ajtai 1993]:

There are depth-O(1) size- $n^{O(1)}$ circuits $C(x_1,...,x_n)$ that on input $x_1,...,x_n$ output w in $\{0,...,n\}$ s.t. $0.999 < (x_1+...+x_n)/w < 1.001$

Proof idea: (a probabilistic algorithm)

- 1. for k=1,...,n,
- 2. take a few rar
- 3. output larges

Remove randomness!

n} of size n/k. /e a j with x_j = 1.

Better Upper Bound?

Question:

Does PHP(2n, n) have Frege proofs of size n^{O(1)} using depth-O(1) formulas?

```
Problem is:

1. PHP

Steps 1, 2 and 3 need

2. PHP

n<sup>O(1)</sup>-size depth-O(1) proofs!

3. C(p<sub>1,1</sub>,...,p<sub>2n,n</sub>,1<sub>1.01n</sub> - 0 - < C(P<sub>1,1</sub>,...,p<sub>2n,n</sub>)<sub>1.99n</sub> - 0.

4. Cut to derive 0.
```

Lower Bounds for PHP(2n, n)

The question remains:

Does jewel theorem extend to PHP(2n, n)? If yes then $I\Delta_0$ does not prove WPHP

Theorem [BT1986, ABE2001, SBI2002, R2003]:

- 1. Resolution needs size $exp(\Omega(n))$.
- 2. Frege with 2-DNFs needs size $exp(n^{\Omega(1)})$.
- 3. Frege with $(\log n)^{0.49}$ -DNFs needs size $\exp(n^{\Omega(1)})$.
- 4. Frege with $(\log n)^{0.99}$ -DNFs needs size $\exp(n^{\Omega(1)})$.

RECENT PROGRESS

Relativized WPHP

Relativized Weak Pigeonhole Principle:

if 2n out of n² pigeons fly into n holes, then some hole is doubly occupied

Mapping formulation:

if f maps [2n] into [n²] and g maps [n²] into [n] then either f is not injective or g is not injective on the range of f.

Mapping view of RPHP(2n, n², n)

Propositional Encoding

RPHP(2n, n², n):

Variables:

```
\begin{split} P_{i,j} & \quad \text{for } 1 \leq i \leq 2n, \ 1 \leq j \leq n^2. \\ R_i & \quad \text{for } 1 \leq i \leq n^2. \\ Q_{i,j} & \quad \text{for } 1 \leq i \leq n^2, \ 1 \leq j \leq n. \end{split}
```

Clauses:

Remarks about RWPHP

1. Technical but still natural:

Example:

Want WPHP on quadratic residues mod n.

But q.r. mod n are not well-characterized.

2. Approximate counting still looks enough:

> 1.99 n pigeon-flights

VS.

< 1.01 n pigeon-landings.

Lower/Upper Bounds for RWPHP

Theorem [AMO 2013]

Frege proofs of PHP(2n, n^2 , n) with DNFs require size exp((log n)^{1.49})

Theorem [AMO 2013]

PHP(2n, n^2 , n) has Frege proofs with DNFs of size exp((log n)^{O(1)}).

Remarks on these Results

- 1. First lower bound for DNF-Frege that does not proceed by reduction to Jewel Theorem of PPC.
- **2.** Goes beyond $(\log n)^{0.99}$ -DNF-Frege by methods that looked exhausted!
- **3.** A quasipolynomial lower bound where quasipolynomial upper bounds exist.
- **4.** Upper bound proceeds by showing that WPHP and RWPHP are actually equivalent up to +- 1 depth.

Upper Bound Proof

Reduction to PHP(2n, n):

```
If f: [2n] \rightarrow [n^2] is injective and
```

 $g:[n^2] \rightarrow [n]$ is injective on Rng(f),

then $(f \circ g) : [2n] \rightarrow [n]$ is injective.

Composition is definable both as 2-DNF and 2-CNF:

$$\bigvee_{c} (f(a) = c \& g(c) = b)$$

g(f(a)) = b iff
 $\bigwedge_{c} (!f(a) = c \& g(c) = b)$