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Proof complexity

Algorithms & complexity: P-algorithms
Proof complexity: NP-algorithms

Main motivations:

1980s and 1990s:
NP vs. co-NP (Cook-Reckhow, ...)
Foundations of mathematics (Paris-Wilkie,...)

2000s and 2010s:

A theory of automated theorem proving (SAT)
Analysis of hard instances for specific algs






Injections

o 2
e

there is no injective map
from {1,...,,n+1} into {1,...,n}

L

Pigeonhole Principle:



Pigeonhole Principle

1. Often quite hidden:
e.g. mutilated chessboard puzzle

http://commun ity.fortunecity.ws



Pigeonhole Principle

2. Often applied to (exponentially) large sets:
e.g. every x with (x,q) = 1 has an “order mod g’
(a smallest k such that x<=1 mod q)

/]

1. List x1, X%, X3, ..., xX3mod g. All in {1,...,9-1}.
2. By PHP, there arei<js.t. X = x' mod q.

3. Then x"=1 mod q.

4. Let k be smallest s.t. x*=1 mod g.



Pigeonhole Principle

3. Entails the induction principle:
e.g. P(0) & (P(x) => P(x+1) for all x < n) => P(n).

1. Assume P(0) & (P(x) => P(x+1) for all x < n).
2. But assume also !P(n).
3. Define the map

F(x) = x when P(x) holds
F(x) =x-1  when P(x) fails

4. Check F maps {0,...,,n} injectively in {O0,...,n-1}.



Questions about PHP

1. For automated theorem proving:
Is it available in automatic proof search?

2. For computational complexity:
Is the expressive power of counting necessary?
Or does “flat” AND/OR/NOT language suffice?

3. For mathematical logic:
How does PHP compare to induction principle?



Weak PHPs

Weak Pigeonhole Principle:

there is no injective mapping
from{1,...,2n}into {1,...,n}

Even Weaker Pigeonhole Principle:

there is no injective mapping
from {1,...,n%?} into {1,...,n}



Remarks about WPHPs

1. WPHP rather than PHP is often enough:
Ex 1: every non-zero x has an order mod p
Ex2: existence proofs by probabilistic method

2. Exact counting looks no longer necessary:
approximate counting seems enough

3. Relationship with induction principle:
Question: How fundamental is WPHP as an axiom?



Elementary Reasoning: Take O

Weak theories of arithmetic:

- Basic Peano axioms for +, ;, < (maybe #, exp, ...

——

- Induction for predicates in (complexity) class C

Examples:

- 1A, (inc
- 1Ay +#  (ino
- 1Ay + exp (inc

uction for linear hierarchy LINH)
uction for poly hierarchy PH)
uction for elementary hierarchy)



Paris-Wilkie(-Woods) Program

Develop a notion of feasibly elementary proof:

Infinitude of primes (Euclid)? [Macintyre]
Bertrand’s postulate (Erdos)?
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Main remaining question about WPHP:
Does |IA, prove WPHP?
.
0 A different deep open question:
0 s 1A, finitely axiomatizable?



Elementary Reasoning: Take 1

Propositional proof complexity:

- Express the principle in propositional logic
- Study the length of its proofs in standard p.s.

Examples:

- Resolution

Hilbert-style proof systems (a.k.a. Frege)
- Cutting planes, Lovasz-Schrijver, SOS

- Etc.



ABOUT PHP(n+1,n)



Propositional Encoding of PHP

Pigeonhole Principle PHP(m,n) with m > n:

Variables:

P, forl<i<m,1<j<n.

Clauses:
Pi,v..vP forl<i<m
P, vIP,  forl<i<js<m,l<ks<n.



Propositional Encoding of IND

Induction Principle IND(n):

Variables:
P. forO<i<n.

Clauses:
I:)O
IP.vP,, forO0<i<n-1.
P

N



Elementary Reasoning: Resolution

Resolution:

Goal:
starting at given clauses,
produce the empty clause



Proof of Induction Principle

1. P, (given clause)

2. P, v P, (given clause)

3. P, (resolve 1 and 2)

4. P, v P, (given clause)

5. P, (resolve 3 and 4)
2n+l. P, (resolve 2n-1 and 2n)
2n+2. 1P, (given clause)

2n+3. O (resolve 2n+1 and 2n+2)



Lower Bound for PHP(n+1,n)

Theorem [Haken 1986]
Every resolution proof of PHP(n+1,n)

requires exp(Q(n)) clauses.

Bottom line:

PHP is stronger than IND,
at least in the resolution setting.




Elementary Reasoning: Frege

Hilbert style proof system (a.k.a. Frege):

AvBv(C&D) Av B



Complexity of Counting

Theorem [Wallace 1964]:
There exist formulas TH(x,,...,X,)

of n%1)-size and O(log n)-depth
expressing “x,+-+x, > k”.

Theorem [Ajtai 1983, FSS 1983, Hastad 1986]:
Depth-d formulas for TH, ,(xy,...,x,)

must have size exp(n1/0(d),




Upper bound for PHP(n+1,n)

Theorem [Buss 1986]:
PHP(n+1,n) has Frege proofs of size n®1)

with depth-O(log n) formulas.

Proof idea:

1. PHP(n+1, n) =>TH (P ,,...,P n+1 ) (& has small proofs)
2. PHP(n+1, n) =>ITH_(P, ,,...,P,1 ;) (& has small proofs)
3. Cut to derive 0.




Tightness of upper bound

Jewel Theorem of PPC [Ajtai 1988, PBI, KPW]:
Frege proofs of PHP(n+1,n)
using depth-d formulas
must have size exp(Q(n?/exr(d),

Corollary:
|A, + # does not prove PHP




ON THE WPHP FRONT



Upper Bound for PHP(2n, n)

Theorem [Paris-Wilkie-Woods 1988, MPW 2001]:
PHP(2n, n) has Frege proofs with (log n)°1)-DNFs
of size exp((log n)°1)

Proof idea:

1: given an alleged injective [2n] -> [n].
2: copy and compose [4n] -> [2n] -> [n].

After log n steps: [n?] -> ... ->[2n] -> [n].



Proof idea:

1’: given an alleged injective [n?] -> [n].
2’: copy and compose [n4] -> [n?] -> [n]

,.Atfter log(n)/loglog(n) steps: '[.é”]def -> [n].

But:
Definable injective [2"] ,.; -> [n] does not exist
(by Cantor’s argument)

Iterated composition is definable in depth-2:
F(F(F(F(a)))) = b
iff
VigelF(@)=c&F(c)=d&F(d)=e &F(e) =b)



Better Upper Bound?

Fact [Stockmeyer 1983, Ajtai 1993]:

There are depth-O(1) size-n®W circuits C(xy,...,X,)
that on input x,,...,x, output w in {0,...,n} s.t.

0.999 < (x,+...+x.)/w < 1.001

Proof idea: (a probabilistic algorithm)

1. for k=1,...,n,
2. take a few rar Remove 1} of size n/k.
3. output largest randomness! e ajwithx = 1.



Better Upper Bound?

Question:
Does PHP(2n, n) have Frege proofs of size n®1)
using depth-O(1) formulas?

g Problem is:

Faile
1. PHP Steps 1, 2 and 3 need
2. PHP n%1-size depth-O(1) proofs!

3. Py rsrPannIt0tn = ¥ == S\ L 1M 20 n/199n — V-
4. Cut to derive 0.




Lower Bounds for PHP(2n, n)

The question remains:

Does jewel theorem extend to PHP(2n, n)?
If yes then IA, does not prove WPHP

Theorem [BT1986, ABE2001, SBI2002, R2003]:
1. Resolution needs size exp(Q(n)).

2. Frege with 2-DNFs needs size exp(n®1)).

3. Frege with (log n)%42-DNFs needs size exp(n®1)).

4. Frege with (log n)°?>-DNFs needs size exp(n®1)),




RECENT PROGRESS



Relativized WPHP

Relativized Weak Pigeonhole Principle:

if 2n out of n? pigeons fly into n holes,
then some hole is doubly occupied

Mapping formulation:

if f maps [2n] into [n?] and
g maps [n?] into [n]
then either f is not injective
or g is not injective on the range of f.



Mapping view of RPHP(2n, n?, n)




Propositional Encoding

RPHP(2n, n?, n):

Variables:
P, forl<i<2n,1<j<n?
R. forl1<i<n?

|

Q; forl<i<n?1<j<n.
Clauses:

Piiv..vP

P, Vv IP;,

IP,; VR,

IRivQi,v..vQ,

IR, v IR, vI1Q; v !1Q;,



Remarks about RWPHP

1. Technical but still natural:
Example:
Want WPHP on quadratic residues mod n.
But g.r. mod n are not well-characterized.

2. Approximate counting still looks enough:
> 1.99 n pigeon-flights
VS.
< 1.01 n pigeon-landings.



Lower/Upper Bounds for RWPHP

Theorem [AMO 2013]
Frege proofs of PHP(2n, n?, n) with DNFs

require size exp((log n)14°)

Theorem [AMO 2013]
PHP(2n, n?, n) has Frege proofs with DNFs

of size exp((log n)°1)).




Remarks on these Results

1. First lower bound for DNF-Frege that does not
proceed by reduction to Jewel Theorem of PPC.

2. Goes beyond (log n)%2°-DNF-Frege by methods
that looked exhausted!

3. A quasipolynomial lower bound where
guasipolynomial upper bounds exist.

4. Upper bound proceeds by showing that WPHP and
RWPHP are actually equivalent up to +- 1 depth.



Upper Bound Proof

Reduction to PHP(2n, n):

If f : [2n] -> [n?] is injective and
g : [n?] -> [n] is injective on Rng(f),
then (f o g) : [2n] -> [n] is injective.

Composition is definable both as 2-DNF and 2-CNF:
V. (f(a) =c &g(c) =b)

g(f(a)) =b iff
A (f(a) =c & g(c) = b)



