
Proof Complexity
and

Its Relations to SAT-Solving

Albert Atserias
Universitat Politècnica de Catalunya

Centre de Recerca Matemàtica
Barcelona, Catalonia, Spain

1 / 46



Overview of the talk

PART I: PROOF COMPLEXITY AND SAT

1. Propositional Logic
2. SAT-Solvers
3. Frege Systems
4. Cut-Free and Cut-Only Proofs

PART II: COMPLEXITY OF PROOF SEARCH

1. Proof Search and Automatability
2. Proof of NP-hardness for Resolution
3. An Open Problem

2 / 46



Part I

PROOF COMPLEXITY AND SAT

3 / 46



Satisfiability

Example 1: 15 variables and 40 = 20 + 20 clauses

x1 ∨ x2 ∨ x6 x1 ∨ x3 ∨ x7 x1 ∨ x4 ∨ x8 x1 ∨ x5 ∨ x9
x2 ∨ x3 ∨ x10 x2 ∨ x4 ∨ x11 x2 ∨ x5 ∨ x12 x3 ∨ x4 ∨ x13
x3 ∨ x5 ∨ x14 x4 ∨ x5 ∨ x15 x6 ∨ x7 ∨ x10 x6 ∨ x8 ∨ x11
x6 ∨ x9 ∨ x12 x7 ∨ x8 ∨ x13 x7 ∨ x9 ∨ x14 x8 ∨ x9 ∨ x15
x10 ∨ x11 ∨ x13 x10 ∨ x12 ∨ x14 x11 ∨ x12 ∨ x15 x13 ∨ x14 ∨ x15
x1 ∨ x2 ∨ x6 x1 ∨ x3 ∨ x7 x1 ∨ x4 ∨ x8 x1 ∨ x5 ∨ x9
x2 ∨ x3 ∨ x10 x2 ∨ x4 ∨ x11 x2 ∨ x5 ∨ x12 x3 ∨ x4 ∨ x13
x3 ∨ x5 ∨ x14 x4 ∨ x5 ∨ x15 x6 ∨ x7 ∨ x10 x6 ∨ x8 ∨ x11
x6 ∨ x9 ∨ x12 x7 ∨ x8 ∨ x13 x7 ∨ x9 ∨ x14 x8 ∨ x9 ∨ x15
x10 ∨ x11 ∨ x13 x10 ∨ x12 ∨ x14 x11 ∨ x12 ∨ x15 x13 ∨ x14 ∨ x15

4 / 46



Diagonal Ramsey Numbers R(k , k)

R(3, 3) ≤ 6

In every party of six,
either three of them are mutual friends,
or three of them are mutual strangers.

5 / 46



Ramsey Numbers, Erdős, and the Aliens

Erdős asks us to imagine an alien force, vastly more pow-
erful than us, landing on Earth and demanding the value
of R(5, 5) or they will destroy our planet. In that case, he
claims, we should marshal all our computers and all our
mathematicians and attempt to find the value. But sup-
pose, instead, that they ask for R(6, 6). In that case, he
believes, we should attempt to destroy the aliens.

Joel Spencer, Ten Lectures on the Probabilistic Method,
1994.

6 / 46



Encodings Can Be Subtle

Different encoding: nk vs k2n2.

bu,v : “the pair {u, v} is colored blue (else red)”
xi ,u : “u is the i-th vertex of a blue k-clique”
yi ,v : “v is the i-th vertex of a red k-clique”

xi ,1 ∨ · · · ∨ xi ,n for all i ,
xi ,u ∨ xj ,u for all i ̸= j and all u,
xi ,u ∨ xj ,v ∨ bu,v for all i ̸= j and all u ̸= v ,

yi ,1 ∨ · · · ∨ yi ,n for all i ,
yi ,u ∨ yj ,u for all i ̸= j and all u,

yi ,u ∨ yj ,v ∨ bu,v for all i ̸= j and all u ̸= v ,

7 / 46



More satisfiability

Example 2: Automaton accepts some n-symbol word.

q0start q1 q2

a

a

b

a

xi : “the i-th symbol in word is a (else b)”
st,q : “after reading t symbols the state is q”

s0,q0
st,q0 ∨ xt ∨ st+1,q0 ∨ st+1,q1 for t = 0, 1, . . . , n
st,q0 ∨ xt ∨ st+1,q2 for t = 0, 1, . . . , n
st,q0 ∨ xt ∨ st+1,q0 for t = 0, 1, . . . , n
st,q0 ∨ xt ∨ st+1,q1 for t = 0, 1, . . . , n
st,q0 ∨ xt ∨ st+1,q2 for t = 0, 1, . . . , n
...
sn,q2

8 / 46



Cook-Levin and Fagin Theorems

Theorem [Cook-Levin 1971] SAT is NP-complete.

A is in NP
iff
A can be reduced to SAT
by polynomial-time reductions.

Theorem [Fagin 1974] NP = ESO.

A is in NP
iff
A is a satisfiability problem itself, i.e.,
iff
A is the set of finite models of
a formula of the existential fragment

of second-order logic ∃R ∀x ∃y qf

9 / 46



SAT-Solvers

An algorithm which:

Given a set of clauses F , finds:

either a satisfying assignment
or a proof of unsatisfiability

Caution:

For formulas with 1000 variables,
the search space is ridiculously HUGE!

10 / 46



“200 TB maths proof is largest ever” [Nature 2016]

Theorem [Heule-Kullmann-Marek 2016]
The numbers 1, . . . , 7825 cannot be partitioned
into two parts each without Pythagorean triples.

But the numbers 1, . . . , 7824, can.

a2 + b2 = c2

a2 + b2 = c2

11 / 46



The Coloring of 1, . . . , 7824

a2 + b2 ̸= c2

a2 + b2 ̸= c2

Source of image: Wikipedia
12 / 46



Certificates

Recall:

Given a set of clauses F , algorithm finds:

either a satisfying assignment
or a proof of unsatisfiability

An annoying asymetry:

Satisfying assignments are always small.
Proofs of unsatisfiability tend to be exponentially bigger.

This, among other reasons, motivates the study of
propositional proof complexity.

13 / 46



Frege Systems, aka Hilbert-style Proof Systems

Language:

→, ¬

Modus ponens:

A A → B

B

Axioms:

A → (B → A)
(C → (B → A)) → ((C → B) → (C → A))
(D → (B → A)) → (B → (D → A))
(B → A) → (¬A → ¬B)
¬¬A → A
A → ¬¬A

14 / 46



Gottlob Frege, Begriffsschrift, Universität Jena, 1879

Source: Wikipedia
Guus Hoekman

15 / 46



Cook-Reckhow Theorem: Birth of Proof Complexity

Theorem [Cook-Reckhow’1979]
Any two Frege systems polynomially simulate each other.

Notes:

• Polynomial simulation ≡ polynomial time translations exist.

• Also for “Extended Frege Systems”: abbreviations allowed.

• Mild conditions apply: soundness, implicational completeness,
complete basis of connectives.

16 / 46



Tait Style Systems

Language: ∧, ∨, xi , xi (Negation Normal Form: A and A)

Rules: Axiom, Weakening, Conjunction, Cut

A ∨ A

A

A ∨ B

A ∨ C B ∨ D

A ∨ B ∨ (C ∧ D)

A ∨ C B ∨ C

A ∨ B

Soundness: Obvious
Completeness: Also almost obvious; even cut-free!
Quantitative completeness:

2#vars(F ) ·#gates(F ).

Resolution
def≡ cut-only proofs from clauses to clauses.

17 / 46



Proofs

Goal: Prove F is unsatisfiable. Means: Build up F from axioms.

F

F ∨ Q

F ∨ Q ∨ Q0

+
...

+
...

F ∨ Q ∨ Q0

+
...

+
...

F ∨ Q

F ∨ Q ∨ Q1

+
...

+
...

F ∨ Q ∨ Q1

+
...

+
...

18 / 46



Decision Trees

Goal: Prove F is unsatisfiable. Means: Reduce F to axioms

F 7→ 1
Q?

F 7→ 1
Q 7→ 0

Q0?

F 7→ 1
Q 7→ 0
Q0 7→ 0

Q00?

...
−

...
−

F 7→ 1
Q 7→ 0
Q0 7→ 1

Q01?

...
−

...
−

F 7→ 1
Q 7→ 1

Q1?

F 7→ 1
Q 7→ 1
Q1 7→ 0

Q10?

...
−

...
−

F 7→ 1
Q 7→ 1
Q1 7→ 1

Q11?

...
−

...
−

19 / 46



Quantitative Equivalence (With a But)

Theorem [Buss-Pudlak’1995]

1. If there is a decision tree proof of F with L nodes,
then there is a proof of F with poly(L) lines.

2. If there is a proof of F with L lines,
then there is a decision tree proof of F with poly(L) nodes.

Notes:

• 1 is direct because trees are very regular: turn upside down.

• 1 gives proofs whose lines are disjunctions of (co-)queries.

• 1 remains true if lines are clauses and queries are literals.

• 2 is not direct because proofs can be very irregular; indeed:

• 2 provably not true if lines are clauses and queries are literals.

Separation: Pebbling Formulas [Ben-Sasson-Wigderson’99].

20 / 46



Quantitative Equivalence (With a But)

Theorem [Buss-Pudlak’1995]

1. If there is a decision tree proof of F with L nodes,
then there is a proof of F with poly(L) lines.

2. If there is a proof of F with L lines,
then there is a decision tree proof of F with poly(L) nodes.

Notes:

• 1 is direct because trees are very regular: turn upside down.

• 1 gives proofs whose lines are disjunctions of (co-)queries.

• 1 remains true if lines are clauses and queries are literals.

• 2 is not direct because proofs can be very irregular; indeed:

• 2 provably not true if lines are clauses and queries are literals.

Separation: Pebbling Formulas [Ben-Sasson-Wigderson’99].

20 / 46



Quantitative Equivalence (With a But)

Theorem [Buss-Pudlak’1995]

1. If there is a decision tree proof of F with L nodes,
then there is a proof of F with poly(L) lines.

2. If there is a proof of F with L lines,
then there is a decision tree proof of F with poly(L) nodes.

Notes:

• 1 is direct because trees are very regular: turn upside down.

• 1 gives proofs whose lines are disjunctions of (co-)queries.

• 1 remains true if lines are clauses and queries are literals.

• 2 is not direct because proofs can be very irregular; indeed:

• 2 provably not true if lines are clauses and queries are literals.

Separation: Pebbling Formulas [Ben-Sasson-Wigderson’99].

20 / 46



Quantitative Equivalence (With a But)

Theorem [Buss-Pudlak’1995]

1. If there is a decision tree proof of F with L nodes,
then there is a proof of F with poly(L) lines.

2. If there is a proof of F with L lines,
then there is a decision tree proof of F with poly(L) nodes.

Notes:

• 1 is direct because trees are very regular: turn upside down.

• 1 gives proofs whose lines are disjunctions of (co-)queries.

• 1 remains true if lines are clauses and queries are literals.

• 2 is not direct because proofs can be very irregular; indeed:

• 2 provably not true if lines are clauses and queries are literals.

Separation: Pebbling Formulas [Ben-Sasson-Wigderson’99].

20 / 46



Quantitative Equivalence (With a But)

Theorem [Buss-Pudlak’1995]

1. If there is a decision tree proof of F with L nodes,
then there is a proof of F with poly(L) lines.

2. If there is a proof of F with L lines,
then there is a decision tree proof of F with poly(L) nodes.

Notes:

• 1 is direct because trees are very regular: turn upside down.

• 1 gives proofs whose lines are disjunctions of (co-)queries.

• 1 remains true if lines are clauses and queries are literals.

• 2 is not direct because proofs can be very irregular; indeed:

• 2 provably not true if lines are clauses and queries are literals.

Separation: Pebbling Formulas [Ben-Sasson-Wigderson’99].

20 / 46



Quantitative Equivalence (With a But)

Theorem [Buss-Pudlak’1995]

1. If there is a decision tree proof of F with L nodes,
then there is a proof of F with poly(L) lines.

2. If there is a proof of F with L lines,
then there is a decision tree proof of F with poly(L) nodes.

Notes:

• 1 is direct because trees are very regular: turn upside down.

• 1 gives proofs whose lines are disjunctions of (co-)queries.

• 1 remains true if lines are clauses and queries are literals.

• 2 is not direct because proofs can be very irregular; indeed:

• 2 provably not true if lines are clauses and queries are literals.

Separation: Pebbling Formulas [Ben-Sasson-Wigderson’99].

20 / 46



Quantitative Equivalence (With a But)

Theorem [Buss-Pudlak’1995]

1. If there is a decision tree proof of F with L nodes,
then there is a proof of F with poly(L) lines.

2. If there is a proof of F with L lines,
then there is a decision tree proof of F with poly(L) nodes.

Notes:

• 1 is direct because trees are very regular: turn upside down.

• 1 gives proofs whose lines are disjunctions of (co-)queries.

• 1 remains true if lines are clauses and queries are literals.

• 2 is not direct because proofs can be very irregular; indeed:

• 2 provably not true if lines are clauses and queries are literals.

Separation: Pebbling Formulas [Ben-Sasson-Wigderson’99].

20 / 46



Quantitative Equivalence (With a But)

Theorem [Buss-Pudlak’1995]

1. If there is a decision tree proof of F with L nodes,
then there is a proof of F with poly(L) lines.

2. If there is a proof of F with L lines,
then there is a decision tree proof of F with poly(L) nodes.

Notes:

• 1 is direct because trees are very regular: turn upside down.

• 1 gives proofs whose lines are disjunctions of (co-)queries.

• 1 remains true if lines are clauses and queries are literals.

• 2 is not direct because proofs can be very irregular; indeed:

• 2 provably not true if lines are clauses and queries are literals.

Separation: Pebbling Formulas [Ben-Sasson-Wigderson’99].

20 / 46



Solution: Decision DAGs

ℓ1 ∨ ℓ2?

ℓ1 ∨ ℓ2 7→ 0 ℓ1 ∨ ℓ2 7→ 1

ℓ1?

ℓ2?

ℓ1 ∨ ℓ2 7→ 0 ℓ1 ∨ ℓ2 7→ 1

0 1

0

0

1

1

21 / 46



Resolution

Definition Given F = C1 ∧ · · · ∧ Cm with each Ci a clause, a
Resolution refutation of F is a cut-only proof

C1, . . . ,Cm,D1,D2, . . . ,DL = ∅

of the ∅ from the Ci .

Proposition
Up to multiplicative constants, the following are the same:

1. Decision trees with clause-queries and L nodes.

2. Decision dags with literal-queries and L nodes.

3. Tree-like DNF-proofs of length L.

4. Dag-like clause-proofs of length L.

5. Resolution refutations of length L.

22 / 46



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search
2. Greedy unit clause propagation
3. Memoization following conflict analysis: aka clause learning
4. Backjumping possibly more than one level
5. Frequent restarts keeping (some of the) learned clauses
6. Deletions
7. Ultrafast unit clause propagation (2 watched literal rule)
8. Ultrafast decision heuristic based on activity (VSIDS)
9. Preprocessing and inprocessing
10. Symmetry breaking
11. ...

23 / 46



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search
2. Greedy unit clause propagation
3. Memoization following conflict analysis: aka clause learning
4. Backjumping possibly more than one level
5. Frequent restarts keeping (some of the) learned clauses
6. Deletions
7. Ultrafast unit clause propagation (2 watched literal rule)
8. Ultrafast decision heuristic based on activity (VSIDS)
9. Preprocessing and inprocessing
10. Symmetry breaking
11. ...

23 / 46



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search

2. Greedy unit clause propagation
3. Memoization following conflict analysis: aka clause learning
4. Backjumping possibly more than one level
5. Frequent restarts keeping (some of the) learned clauses
6. Deletions
7. Ultrafast unit clause propagation (2 watched literal rule)
8. Ultrafast decision heuristic based on activity (VSIDS)
9. Preprocessing and inprocessing
10. Symmetry breaking
11. ...

23 / 46



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search
2. Greedy unit clause propagation

3. Memoization following conflict analysis: aka clause learning
4. Backjumping possibly more than one level
5. Frequent restarts keeping (some of the) learned clauses
6. Deletions
7. Ultrafast unit clause propagation (2 watched literal rule)
8. Ultrafast decision heuristic based on activity (VSIDS)
9. Preprocessing and inprocessing
10. Symmetry breaking
11. ...

23 / 46



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search
2. Greedy unit clause propagation
3. Memoization following conflict analysis: aka clause learning

4. Backjumping possibly more than one level
5. Frequent restarts keeping (some of the) learned clauses
6. Deletions
7. Ultrafast unit clause propagation (2 watched literal rule)
8. Ultrafast decision heuristic based on activity (VSIDS)
9. Preprocessing and inprocessing
10. Symmetry breaking
11. ...

23 / 46



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search
2. Greedy unit clause propagation
3. Memoization following conflict analysis: aka clause learning
4. Backjumping possibly more than one level

5. Frequent restarts keeping (some of the) learned clauses
6. Deletions
7. Ultrafast unit clause propagation (2 watched literal rule)
8. Ultrafast decision heuristic based on activity (VSIDS)
9. Preprocessing and inprocessing
10. Symmetry breaking
11. ...

23 / 46



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search
2. Greedy unit clause propagation
3. Memoization following conflict analysis: aka clause learning
4. Backjumping possibly more than one level
5. Frequent restarts keeping (some of the) learned clauses

6. Deletions
7. Ultrafast unit clause propagation (2 watched literal rule)
8. Ultrafast decision heuristic based on activity (VSIDS)
9. Preprocessing and inprocessing
10. Symmetry breaking
11. ...

23 / 46



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search
2. Greedy unit clause propagation
3. Memoization following conflict analysis: aka clause learning
4. Backjumping possibly more than one level
5. Frequent restarts keeping (some of the) learned clauses
6. Deletions

7. Ultrafast unit clause propagation (2 watched literal rule)
8. Ultrafast decision heuristic based on activity (VSIDS)
9. Preprocessing and inprocessing
10. Symmetry breaking
11. ...

23 / 46



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search
2. Greedy unit clause propagation
3. Memoization following conflict analysis: aka clause learning
4. Backjumping possibly more than one level
5. Frequent restarts keeping (some of the) learned clauses
6. Deletions
7. Ultrafast unit clause propagation (2 watched literal rule)

8. Ultrafast decision heuristic based on activity (VSIDS)
9. Preprocessing and inprocessing
10. Symmetry breaking
11. ...

23 / 46



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search
2. Greedy unit clause propagation
3. Memoization following conflict analysis: aka clause learning
4. Backjumping possibly more than one level
5. Frequent restarts keeping (some of the) learned clauses
6. Deletions
7. Ultrafast unit clause propagation (2 watched literal rule)
8. Ultrafast decision heuristic based on activity (VSIDS)

9. Preprocessing and inprocessing
10. Symmetry breaking
11. ...

23 / 46



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search
2. Greedy unit clause propagation
3. Memoization following conflict analysis: aka clause learning
4. Backjumping possibly more than one level
5. Frequent restarts keeping (some of the) learned clauses
6. Deletions
7. Ultrafast unit clause propagation (2 watched literal rule)
8. Ultrafast decision heuristic based on activity (VSIDS)
9. Preprocessing and inprocessing

10. Symmetry breaking
11. ...

23 / 46



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search
2. Greedy unit clause propagation
3. Memoization following conflict analysis: aka clause learning
4. Backjumping possibly more than one level
5. Frequent restarts keeping (some of the) learned clauses
6. Deletions
7. Ultrafast unit clause propagation (2 watched literal rule)
8. Ultrafast decision heuristic based on activity (VSIDS)
9. Preprocessing and inprocessing
10. Symmetry breaking
11. ...

23 / 46



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 46



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 46



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 46



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 46



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 46



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 46



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 46



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 46



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 46



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 46



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 46



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 46



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 46



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 46



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 46



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 46



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 46



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 46



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 46



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 46



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 46



Comparison with Resolution

Theorem [Beame-Kautz-Sabharwal’2004]
If a CNF F with n variables has a Resolution refutation of length L,
then there is a sequence of non-deterministic ideal choices for
CDCL with restarts, rebranching, and any non-redundant learning
scheme that learns the empty clause in O(nL) steps.

Notes

• The “rebranching” is never done in real solvers

• Later removed at cost O(n4L) [Pipatsrisawat-Darwiche’09]

• Is non-determinism essential? ... now answered (next lecture)

• For bounded width Resolution (e.g., 2-SAT, bounded
tree-width), randomness suffices to ensure nO(width) steps
[Atserias-Fichte-Thurley’09]

25 / 46



Comparison with Resolution

Theorem [Beame-Kautz-Sabharwal’2004]
If a CNF F with n variables has a Resolution refutation of length L,
then there is a sequence of non-deterministic ideal choices for
CDCL with restarts, rebranching, and any non-redundant learning
scheme that learns the empty clause in O(nL) steps.

Notes

• The “rebranching” is never done in real solvers

• Later removed at cost O(n4L) [Pipatsrisawat-Darwiche’09]

• Is non-determinism essential? ... now answered (next lecture)

• For bounded width Resolution (e.g., 2-SAT, bounded
tree-width), randomness suffices to ensure nO(width) steps
[Atserias-Fichte-Thurley’09]

25 / 46



Comparison with Resolution

Theorem [Beame-Kautz-Sabharwal’2004]
If a CNF F with n variables has a Resolution refutation of length L,
then there is a sequence of non-deterministic ideal choices for
CDCL with restarts, rebranching, and any non-redundant learning
scheme that learns the empty clause in O(nL) steps.

Notes

• The “rebranching” is never done in real solvers

• Later removed at cost O(n4L) [Pipatsrisawat-Darwiche’09]

• Is non-determinism essential? ... now answered (next lecture)

• For bounded width Resolution (e.g., 2-SAT, bounded
tree-width), randomness suffices to ensure nO(width) steps
[Atserias-Fichte-Thurley’09]

25 / 46



Comparison with Resolution

Theorem [Beame-Kautz-Sabharwal’2004]
If a CNF F with n variables has a Resolution refutation of length L,
then there is a sequence of non-deterministic ideal choices for
CDCL with restarts, rebranching, and any non-redundant learning
scheme that learns the empty clause in O(nL) steps.

Notes

• The “rebranching” is never done in real solvers

• Later removed at cost O(n4L) [Pipatsrisawat-Darwiche’09]

• Is non-determinism essential? ... now answered (next lecture)

• For bounded width Resolution (e.g., 2-SAT, bounded
tree-width), randomness suffices to ensure nO(width) steps
[Atserias-Fichte-Thurley’09]

25 / 46



Comparison with Resolution

Theorem [Beame-Kautz-Sabharwal’2004]
If a CNF F with n variables has a Resolution refutation of length L,
then there is a sequence of non-deterministic ideal choices for
CDCL with restarts, rebranching, and any non-redundant learning
scheme that learns the empty clause in O(nL) steps.

Notes

• The “rebranching” is never done in real solvers

• Later removed at cost O(n4L) [Pipatsrisawat-Darwiche’09]

• Is non-determinism essential? ... now answered (next lecture)

• For bounded width Resolution (e.g., 2-SAT, bounded
tree-width), randomness suffices to ensure nO(width) steps
[Atserias-Fichte-Thurley’09]

25 / 46



Comparison with Resolution

Theorem [Beame-Kautz-Sabharwal’2004]
If a CNF F with n variables has a Resolution refutation of length L,
then there is a sequence of non-deterministic ideal choices for
CDCL with restarts, rebranching, and any non-redundant learning
scheme that learns the empty clause in O(nL) steps.

Notes

• The “rebranching” is never done in real solvers

• Later removed at cost O(n4L) [Pipatsrisawat-Darwiche’09]

• Is non-determinism essential? ... now answered (next lecture)

• For bounded width Resolution (e.g., 2-SAT, bounded
tree-width), randomness suffices to ensure nO(width) steps
[Atserias-Fichte-Thurley’09]

25 / 46



Lower Bounds for Resolution

Theorem [Haken’1986]
Every Resolution refutation of the Pigeonhole Principle formulas
PHPn+1

n must have length 2Ω(n).

Pigeonhole Principle Formulas PHPn+1
n :

pu,j : “pigeon u ∈ {1, . . . , n + 1} flies to hole j ∈ {1, . . . , n}”

pu,1 ∨ · · · ∨ pu,n for all u
pu,j ∨ pv ,j for all u ̸= v and all j

26 / 46



Random Restriction Method in Three Steps: I

STEP I: Choose a suitable collection H of partial assignments α,
so that the restricted formula PHPn+1

n |α is isomorphic to a smaller
instance PHPm+1

m of itself.

Here:

Let H be the set of partial assignments α that describe
partial matchings of n −m pigeons to n −m holes.

α(pu,j) = 1 if u is matched to j
α(pu,j) = 0 if u is matched to j ′ ̸= j
α(pu,j) = 0 if u is not matched and j is matched
α(pu,j) = pu,j if u is not matched and j is not matched.

We will choose m = n/2.

27 / 46



Random Restriction Method in Three Steps: II

STEP II: Define a suitable notion of weak clause that is very likely
true under a random partial assignment from H.

Here:

A pigeon u is n-weak in the clause if the clause has
• n/2 positive literals pu,j1 , . . . , pu,jn/2 of pigeon u, or
• a negative literal pu,j of pigeon u.

A clause is n-weak if there are n/2 many n-weak pigeons in it.

Rough estimation of probability:

• Fix a weak clause C ; choose α ∈ H at random.
• Roughly (n −m)/2 = n/4 of the matched pigeons are weak.
• Roughly 1/2 of the positive ones satisfy C .
• Roughly 1− 1/(n −m) ≥ 1/2 of the negative ones satisfy C .

Pr
α∈H

[C |α ̸= 1] ≲ (1/2)n/4
28 / 46



Random Restriction Method in Three Steps: III

STEP III: Show that every Resolution refutation of PHPm+1
m must

contain at least one n-weak clause.

Here:

• For contradiction, fix a refutation without n-weak clauses.
• By m = n/2, in all clauses, not all pigeons are n-weak.
• Walking up the dag from the empty clause to the axioms, do:
• Sustain a partial matching from m pigeons to m holes.
• The partial matching will falsify the current clause.
• And the unmatched pigeon will not be weak in current clause.
• Initially: any matching works since all falsify the empty clause.
• At an inference step resolving on pu,j :
• Follow the falsified clause.
• If unmatched pigeon became weak, exchange with non-weak.
• Eventually we reach a clause of PHPm+1

m .
• Contradiction: our partial matchings do not falsify those.
QED

29 / 46



Part II

COMPLEXITY OF PROOF SEARCH

30 / 46



Automatability : Searching for Short Proofs

Definition [Bonet-Pitassi-Raz’1999]
A proof system P is automatable in time T (s) if there is an
algorithm that given a tautology F finds a P-proof of F in
time T (s∗), where s∗ is the size of the smallest P-proof of F .

A Fundamental Question

Which proof systems are automatable in non-trivial time?

31 / 46



Automatability : Searching for Short Proofs

Definition [Bonet-Pitassi-Raz’1999]
A proof system P is automatable in time T (s) if there is an
algorithm that given a tautology F finds a P-proof of F in
time T (s∗), where s∗ is the size of the smallest P-proof of F .

A Fundamental Question

Which proof systems are automatable in non-trivial time?

31 / 46



A Non-Trivial Notion

An Early Lower Bound:

Theorem [Krajicek-Pudlak’1994]
Extended Frege systems are not automatable in time T (s),
unless n-bit RSA cryptosystem can be broken in time T (poly(n)).

An Early Upper Bound:

Theorem [Beame-Pitassi’1998]
Tree-like Resolution is automatable in time T (s) = sO(log s).

32 / 46



A Non-Trivial Notion

An Early Lower Bound:

Theorem [Krajicek-Pudlak’1994]
Extended Frege systems are not automatable in time T (s),
unless n-bit RSA cryptosystem can be broken in time T (poly(n)).

An Early Upper Bound:

Theorem [Beame-Pitassi’1998]
Tree-like Resolution is automatable in time T (s) = sO(log s).

32 / 46



Beame-Pitassi Algorithm

1. guess the root literal ℓ
(2n choices only)

2. recurse with parameter s/2
(abort the branch if it fails)

3. recurse with parameter s
(it must succeed; subtle
because the chosen ℓ
need not be optimal).

ℓ

≤ s/2

≤ s

0 1

T (n, s) ≤ 2nT (n − 1, s/2) + T (n − 1, s)

T (n, s) = nO(log s) ≤ sO(log s).

33 / 46



Non-Automatability of Resolution

Theorem [Atserias-Müller’2019]
Resolution is not automatable in time T (s), [poly-time]
unless n-variable SAT is solvable in time T (poly(n)) [P = NP].

Theorem [de Rezende’2021]
Tree-Like Resolution is not automatable in time T (s) = so(log s),
unless n-variable SAT is solvable in randomized time 2o(n).

Notes:

• Compare with Beame-Pitassi algorithm!

• Improved earlier results of [Alekhnovich-Razborov’2001]

• Introduced a new method for proving non-automatability

• Correctness of the reduction involves proving a lower bound!

34 / 46



Non-Automatability of Resolution

Theorem [Atserias-Müller’2019]
Resolution is not automatable in time T (s), [poly-time]
unless n-variable SAT is solvable in time T (poly(n)) [P = NP].

Theorem [de Rezende’2021]
Tree-Like Resolution is not automatable in time T (s) = so(log s),
unless n-variable SAT is solvable in randomized time 2o(n).

Notes:

• Compare with Beame-Pitassi algorithm!

• Improved earlier results of [Alekhnovich-Razborov’2001]

• Introduced a new method for proving non-automatability

• Correctness of the reduction involves proving a lower bound!

34 / 46



Non-Automatability of Resolution

Theorem [Atserias-Müller’2019]
Resolution is not automatable in time T (s), [poly-time]
unless n-variable SAT is solvable in time T (poly(n)) [P = NP].

Theorem [de Rezende’2021]
Tree-Like Resolution is not automatable in time T (s) = so(log s),
unless n-variable SAT is solvable in randomized time 2o(n).

Notes:

• Compare with Beame-Pitassi algorithm!

• Improved earlier results of [Alekhnovich-Razborov’2001]

• Introduced a new method for proving non-automatability

• Correctness of the reduction involves proving a lower bound!

34 / 46



Proof Strategy for NP-Hardness

We want a polynomial-time reduction:

from n-variable SAT
to min proof-size approximation for Resolution (R).

F GF

poly(n) time

Requirements:

1. If F is satisfiable, then SIZER(GF ) ≤ poly(n).

2. If F is unsatisfiable, then SIZER(GF ) ̸≤ exp(Ω(n)).

35 / 46



Choice of the Formula GF : the REF Formulas

REFF ,s = “the CNF formula F has an R-refutation of length s”

Variables:

Du,i ,b : “line u contains variable xi with sign b ∈ {0, 1}”
Iu,j : “line u is an initial assumption; the j-th clause of F”
Vu,i : “line u is derived by resolving on variable xi”
Lu,v : “line u is derived using v as left assumption”
Ru,v : “line u is derived using v as right assumption”
Au : “line u is active; i.e., actually used in the proof”

Clauses (a sample):

Au ∨ Vu,i ∨ Lu,v ∨ Dv ,i ,1 Au ∨ Vu,i ∨ Ru,v ∨ Dv ,i ,0 Ds,i ,b

Au ∨ Vu,i ∨ Lu,v ∨ Av Au ∨ Vu,i ∨ Ru,v ∨ Av As

· · ·
36 / 46



Requirement 1 : The Upper Bound

If F is satisfiable, then SIZER(REFF ,nc ) ≤ poly(n).

Proof idea:

Use a satisfying assignment α of F to nail down the refutation!

Proof sketch:

• Prove that every active line contains a literal satisfied by α.

• Concretely, derive the clauses

Tu := Au ∨
n∨

i=1

Du,i ,α(i) for u = 1, 2, . . . , L.

• Produce empty clause by resolving Ts with As and the Ds,i ,b.

QED

37 / 46



Requirement 2 : The Lower Bound

If F is unsatisfiable, then SIZER(REFF ,nc ) ̸≤ exp(Ω(n)).

Proof idea:

Use a model β∗ of REFF ,2n to construct
a collection of “pseudo-models” β for REFF ,nc .

β∗ |= REFF ,2n

2n

β ̸|= ¬REFF ,nc

nc

38 / 46



The Lower Bound in Three Steps

• Identify a set H of α such that REFF ,s |α ∼= REFF ,s/2.

• Here: let α set 1/2 of all lines as inactive (but not the last).

• And let α also set all other variables of those lines.

• Identify a notion of weak clause made likely true by random α.

• Here: the clauses that mention more than n/2 lines.

• Calculation: Prα∈H [C |α ̸= 1] ≤ (3/4)n/2.

• Prove that refutations of REFF ,s/2 must contain weak clauses.

• Walk up the dag from empty clause to axioms, and do:

• Sustain a matching between active lines and the lines in β∗.

• The corresponding assignments are the “pseudo-models” β.

QED

39 / 46



Reminder

Theorem
Resolution is not automatable in time T (s), [poly-time]
unless n-variable SAT is solvable in time T (poly(n)) [P = NP].

✓

Theorem
Tree-Like Resolution is not automatable in time T (s) = so(log s),
unless n-variable SAT is solvable in randomized time 2o(n).

40 / 46



The Tree-Like Case

We want a reduction:

from n-variable SAT
to min proof-size approximation for tree-like R (called R∗).

F GF

exp(o(n)) time

Requirements:

1. If F is satisfiable, then SIZER∗(GF ) ≤ exp(O(
√
n)).

2. If F is unsatisfiable, then SIZER∗(GF ) ̸≤ exp(Ω(n)).

41 / 46



Modification of the Formula GF : Shallow REF

Key Observation:

In the “F is unsatisfiable” case,
the model β∗ of REFF ,2n happens to be:
tree-like and layered, and have depth n.

β∗ |= REFF ,2n

√
n

√
n

2n

√
n

√
n

2n

√
n

√
n

2n

√
n

√
n

2n

√
n

√
n

2n

β ̸|= ¬REFF ,2√n

2
√
n

42 / 46



Modification of the Formula in More Details

• Modify the formula GF ; now REFF ,s |γ with s = 2
√
n.

• The γ restricts A,D, I ,V , L,R in a way compatible with β∗:
• Instead of arbitrary dag-depth, impose depth n.
• Instead of arbitrary structure, impose

√
n layers of depth

√
n.

• Instead of poly(n)-size layers, allow layers of size 2
√
n.

• Instead of full connectivity between layers, place expanders.
• Their bounded degree d ensures tree-like size d

√
n = 2O(

√
n).

• Their expansion property ensures matchability with β∗.

2
√
n

• • •• • •• • •
• • •

√
n

43 / 46



Reminder

Theorem
Resolution is not automatable in time T (s), [poly-time]
unless n-variable SAT is solvable in time T (poly(n)) [P = NP].

✓

Theorem
Tree-Like Resolution is not automatable in time T (s) = so(log s),
unless n-variable SAT is solvable in randomized time 2o(n).

✓

44 / 46



Big Remaining Open Problem

WEAK AUTOMATABILITY OF RESOLUTION?

For Resolution specifically:

Is it computationally feasible to
distinguish satisfiable formulas
from shortly refutable formulas?

Notes:

• Automatability is about short vs. not short refutability.

• Weak automatability is about short vs. impossible refutability.

• Therefore: it cannot be harder than NP ∩ co-NP.

• For Resolution, the problem is PARITY GAMES hard [BPT].

• For (Extended) Frege, the problem is RSA-hard [KP,BPR].

45 / 46



Big Remaining Open Problem

WEAK AUTOMATABILITY OF RESOLUTION?

For Resolution specifically:

Is it computationally feasible to
distinguish satisfiable formulas
from shortly refutable formulas?

Notes:

• Automatability is about short vs. not short refutability.

• Weak automatability is about short vs. impossible refutability.

• Therefore: it cannot be harder than NP ∩ co-NP.

• For Resolution, the problem is PARITY GAMES hard [BPT].

• For (Extended) Frege, the problem is RSA-hard [KP,BPR].

45 / 46



Big Remaining Open Problem

WEAK AUTOMATABILITY OF RESOLUTION?

For Resolution specifically:

Is it computationally feasible to
distinguish satisfiable formulas
from shortly refutable formulas?

Notes:

• Automatability is about short vs. not short refutability.

• Weak automatability is about short vs. impossible refutability.

• Therefore: it cannot be harder than NP ∩ co-NP.

• For Resolution, the problem is PARITY GAMES hard [BPT].

• For (Extended) Frege, the problem is RSA-hard [KP,BPR].

45 / 46



Big Remaining Open Problem

WEAK AUTOMATABILITY OF RESOLUTION?

For Resolution specifically:

Is it computationally feasible to
distinguish satisfiable formulas
from shortly refutable formulas?

Notes:

• Automatability is about short vs. not short refutability.

• Weak automatability is about short vs. impossible refutability.

• Therefore: it cannot be harder than NP ∩ co-NP.

• For Resolution, the problem is PARITY GAMES hard [BPT].

• For (Extended) Frege, the problem is RSA-hard [KP,BPR].

45 / 46



Big Remaining Open Problem

WEAK AUTOMATABILITY OF RESOLUTION?

For Resolution specifically:

Is it computationally feasible to
distinguish satisfiable formulas
from shortly refutable formulas?

Notes:

• Automatability is about short vs. not short refutability.

• Weak automatability is about short vs. impossible refutability.

• Therefore: it cannot be harder than NP ∩ co-NP.

• For Resolution, the problem is PARITY GAMES hard [BPT].

• For (Extended) Frege, the problem is RSA-hard [KP,BPR].

45 / 46



Big Remaining Open Problem

WEAK AUTOMATABILITY OF RESOLUTION?

For Resolution specifically:

Is it computationally feasible to
distinguish satisfiable formulas
from shortly refutable formulas?

Notes:

• Automatability is about short vs. not short refutability.

• Weak automatability is about short vs. impossible refutability.

• Therefore: it cannot be harder than NP ∩ co-NP.

• For Resolution, the problem is PARITY GAMES hard [BPT].

• For (Extended) Frege, the problem is RSA-hard [KP,BPR].

45 / 46



Big Remaining Open Problem

WEAK AUTOMATABILITY OF RESOLUTION?

For Resolution specifically:

Is it computationally feasible to
distinguish satisfiable formulas
from shortly refutable formulas?

Notes:

• Automatability is about short vs. not short refutability.

• Weak automatability is about short vs. impossible refutability.

• Therefore: it cannot be harder than NP ∩ co-NP.

• For Resolution, the problem is PARITY GAMES hard [BPT].

• For (Extended) Frege, the problem is RSA-hard [KP,BPR].

45 / 46



THE END

46 / 46


	PROOF COMPLEXITY AND SAT
	COMPLEXITY OF PROOF SEARCH

