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Part I

CONVEX POLYTOPES



Convex polytopes as linear inequalities

Polytope:

P = {x ∈ Rn : Ax ≥ b}

Created by Wikipedia User:Cyp



Convex polytopes as convex hulls

Polytope:

P = conv({x1, . . . , xm})

Created by Wikipedia User:Cyp



Integer hull

Integer hull of P ⊆ Rn:



Integer hull

Integer hull of P ⊆ Rn:

PI = conv(P ∩ Zn)



Case of special interest: relaxations of 0-1 problems

Polytopes inscribed in the unit cube:

conv{x ∈ {0, 1}n : Ax ≥ b} = conv({x1, . . . , xt})

Obvious relaxation:

• What’s available: P = {x ∈ Rn : Ax ≥ b, 0 ≤ x ≤ e}
• What we want: PI
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Part II

EXPLICIT REPRESENTATIONS OF PI



Gomory-Chvátal cuts: C (P)

Inference rules:

aT
1 x ≥ b1 · · · aT

mx ≥ bm∑m
i=1 cia

T
i x ≥

∑m
i=1 cibi

(c1, . . . , cm ∈ R+) (1)

aTx ≥ b

aTx ≥ dbe
(a ∈ Zn) (2)

New polytope:

1. start at inequalities defining P

2. first close them under (1)

3. then close them under (2)

C (P) is defined by resulting inequalities



Completeness

Completeness [Chvátal 1973]:

P ⊇ C (P) ⊇ C (C (P)) ⊇ · · · ⊇ C (t)(P) = PI

(with t ≤ n2 log n if P ⊆ [0, 1]n [ES03]).
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Chvátal’s “slogan”

Slogan:�� ��combinatorics = linear programming + number theory

(the box is Chvátal’s)



A little problem

Theorem [Eisenbrand 1999]:

Given P as input, the separation problem for C (P) is NP-hard

a x+b = 0

x

T



Lift-and-project methods and semialgebraic proofs

In the 1990’s:

• Sherali and Adams. “A hierarchy of relaxations between the
continuous and [...] 0-1 programming problems”, 1990.

• Lovász and Schrijver. “Cones of Matrices and Set-Functions
and 0-1 Optimization”, 1991.

• Balas, Ceria, and Cornuéjols. “A lift-and-project cutting plane
algorithm for mixed 0-1 programs”, 1993.

Semi-algebraic proof systems:

• Grigoriev and Vorobyov. “Complexity of Null- and
Positivstellensatz Proofs”, 2001.

• Grigoriev, Hirsch, and Pasechnik. “Complexity of
semi-algebraic proofs”, 2002.
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Lift-and-project cuts, graphically

1.⇒ 2.⇒ 3.⇒

3D-graphics by Mathematica

Steps:

1. lift by products and new variables yij (= xixj)

2. linearize by using xi = x2
i = yi and forgetting products

3. project by a linear map that eliminates y -variables



Lift-and-project cuts: N(P)

Inference rules:

L(x) ≥ 0

L(x)xi ≥ 0

L(x) ≥ 0

L(x)(1− xi ) ≥ 0
(3)

∅
x2
i − xi ≥ 0

∅
xi − x2

i ≥ 0
(4)

Q1(x) ≥ 0 · · · Qm(x) ≥ 0∑m
i=1 ciQi (x) ≥ 0

(c1, . . . , cm ∈ R+) (5)

New polytope:

1. Start at inequalities defining P,

2. first lift them through (3) and (4) to degree 2,

3. then project them through (5):

N(P) is defined by resulting linear inequalities.



Example: x − 1/4 ≥ 0 with x ≥ 0 and 1− x ≥ 0

0 11/4

x = 0 x = 1/4 x = 1

x



Add a new dimension y(= x2)

y = 0

x = 0 x = 1x = 1/4

(1,0)(1/4,0)(0,0)

x

y



Add y ≥ 0 and 1− y ≥ 0

x = 0 x = 1/4 x = 1

y = 1

y = 0
(1/4,0)(0,0) (1,0)

(0,1) (1,1)(1/4,1)

x

y



Add (x − 1/4)x ≥ 0 and (x − 1/4)(1− x) ≥ 0

x = 0 x = 1/4 x = 1

y = 1

y = 0

y = x/4

y = 5x/4 − 1/4

(0,−1/4)

(1/4,0)(0,0) (1,0)

(0,1) (1,1)(1/4,1)

(1,1/4)

x

y



Add y = x to enforce x2 = x

y = 1

(1/4,1/4)

y = x

x = 0 x = 1/4 x = 1

y = 0

y = x/4

(0,−1/4)

(1/4,0)(0,0) (1,0)

(0,1) (1,1)(1/4,1)

(1,1/4)

y = 5x/4 − 1/4

x

y



Project back to dimension x

0 11/4

x = 0 x = 1/4 x = 1

x



Completeness and algorithmic goodness

Completeness [Lovász-Schrijver]:

P ⊇ N(P) ⊇ N(N(P)) ⊇ · · · ⊇ N(n)(P) = PI

Tractable separation problem [Lovász-Schrijver]:

For N(P), solvable in time poly(s + n).
For N(d)(P), solvable in time poly(s + nd).

(s is the bit-size of the given representation of P)



Lift-and-project degree-d cuts: Nd(P)

Inference rules:

Q(x) ≥ 0

Q(x)xi ≥ 0

Q(x) ≥ 0

Q(x)(1− xi ) ≥ 0
(6)

∅
x2
i − xi ≥ 0

∅
xi − x2

i ≥ 0
(7)

Q1(x) ≥ 0 · · · Qm(x) ≥ 0∑m
i=1 ciQi (x) ≥ 0

(c1, . . . , cm ∈ R+) (8)

New polytope:

1. Start at inequalities defining P,

2. first lift them through (6) and (7) up to degree d ,

3. then project them through (8):

Nd(P) is defined by resulting linear inequalities.
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Lift-and-project degree-d semidefinite cuts: Nd ,+(P)

Inference rules:

Q(x) ≥ 0

Q(x)xi ≥ 0

Q(x) ≥ 0

Q(x)(1− xi ) ≥ 0
(9)

∅
x2
i − xi ≥ 0

∅
xi − x2

i ≥ 0

∅
Q(x)2 ≥ 0

(10)

Q1(x) ≥ 0 · · · Qm(x) ≥ 0∑m
i=1 ciQi (x) ≥ 0

(c1, . . . , cm ∈ R+) (11)

New polytope:

1. Start at inequalities defining P,

2. first lift them through (9) and (10) up to degree d ,

3. then project them through (11):

Nd ,+(P) is defined by resulting linear inequalities.



Comparison

Sandwich:

P ⊇ N(d)(P) ⊇ Nd(P) ⊇ Nd ,+(P) ⊇ PI

for every d ≥ 2.

Tractable separation problem:

For Nd ,+(P), solvable in time poly(s + nd).

(again s is the bit-size of the given representation of P)



Measures

Lovász-Schrijver rank / LS semidefinite rank:

• min k such that N(k)(P) = ∅
• min k such that N

(k)
+ (P) = ∅

Sherali-Adams degree / Lasserre degree:

• min d such that Nd(P) = ∅
• min d such that Nd ,+(P) = ∅

�� ��YOU NAME IT (LS size, LS+ tree-size, SOS, etc...)
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Part III

UPPER BOUNDS



Stable set polytope

STAB(G ) and FRAC(G ) for a graph G = (V ,E ):

0 ≤ xu ≤ 1 for every vertex u ∈ V

1− xu − xv ≥ 0 for every edge {u, v} ∈ E

Clique constraints are valid for STAB(G ):

1−
∑
u∈S

xu ≥ 0 for every clique S in G

Question:

What is smallest d ≥ 1 so that
all clique constraints are valid in Nd ,+(FRAC(G ))?



Stable set polytope (cntd)

Answer is d = 2! [Lovász-Schrijver]:

∑
u

∑
v :v 6=u (1− xu − xv )xu +

∑
u (x2

u − xu)(n− 2) + (1−
∑

u xu)2

=

1−
∑

u xu

Corollary [Grötschel-Lovász-Schrijver 1981]:

The weighted maximum independent set problem
is solvable in polynomial time on perfect graphs.
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Pigeonhole principle n + 1 to n

Representing the usual clauses:

a. xi ,1 ∨ · · · ∨ xi ,n =⇒
∑

kxi ,k − 1 ≥ 0
b. ¬xi ,k ∨ ¬xj ,k =⇒ 1− xi ,k − xj ,k ≥ 0

But wait!:

1−
∑

i xi ,k ≥ 0 from b. in one N+ round as in clique
n −

∑
k

∑
i xi ,k ≥ 0 from previous by addition∑

i

∑
k xi ,k − (n + 1) ≥ 0 from a. by addition

−1 ≥ 0 from previous two by addition
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Some additional facts

Proof complexity:

• width-w resolution ref. ⇒ Nw = ∅
• size-s resolution ref. ⇒ size-O(s) LS ref. [Pudlák 1999]

• tree-size-s LS ref. ⇒ N(
√
n log s) = ∅ [Pitassi-Segerlind 2012]

Combinatorial problems:

• N2,+ on MAX-CUT gives 0.878-approximation [GW96]

• N9,+ solves all its known gap examples [Mossel 2013]

• N15 solves graph isomorphism on planar graphs [AM12]

Interpolation:

LS has feasible interpolation [Pudlák 1999]
LS+ has feasible interpolation [Dash 2001]
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Part IV

LOWER BOUNDS



How to prove lower bounds?

Goal:

Build a feasible solution for Nd(P)
by patching together local (i.e. partial) fractional solutions

Useful observation:

local fractional solution ≡ prob. dist. on local 0-1 solutions



How to prove lower bounds? (cntd)

System of d-local distributions for P:

H = {µX : X ⊆ [n], |X | ≤ d}

such that

1. µX : a prob. dist. on {0, 1}X with support in P|X ∩ {0, 1}X

2. µX (x) =
∑

y:y⊇x µY (y) for each X ⊆ Y and x ∈ {0, 1}X

Theorem: The following are equivalent:

1. there is a system of d-local distributions for P,

2. Nd(P) 6= ∅.

(analogue for Nd ,+ too)
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3-XOR-SAT

Systems of linear equations mod 2: xi1 ⊕ xj1 ⊕ xk1 = a1
...

xim ⊕ xjm ⊕ xkm = am


Encoding:

Each equation in CNF, then as a polytope in R3.



From Gaussian-width to N+-degree

Gaussian calculus:⊕
i∈I xi = a

⊕
j∈J xj = b⊕

k∈I4J xk = a⊕ b

Lemma [Schoenebeck 2008]

If refuting S requires Gaussian-width > d ,
then Nd/2,+(S) 6= ∅.

Corollary [Schoenebeck 2008, Grigoriev 2001]:

Tseitin formulas, random systems mod 2, etc require
Lasserre degree Ω(n) and tree-like LS+ size 2Ω(n).



Schoenebeck’s construction

Define:

• Let C be all (A, a) such that S `d
⊕

i∈A xi = a,

• let π(A) := (−1)a if (A, a) ∈ C (note: (A, 1− a) 6∈ C),

• let A ∼ B if (A4B, c) ∈ C for some c for |A|, |B| ≤ d/2,

• and

µX (x) :=
∑
[A]

(∑
B∼A

π(B )̂IX=x(B)

)2



Part V

SOME OPEN PROBLEMS



Open problems

Use it for SAT:

Can we integrate semialgebraic methods into symbolic solvers?

Lower bounds on LS size:

Prove a superpolynomial lower bound for dag-like LS+ (or LS)

“Learning” the linear transformation?:

Under yi := 1− 2xi , parities are
∏

i∈I yi = ±1. Useful?

Find MAX-CUT gaps or improve over GW:

Does degree-no(1) Lasserre leave a 0.878 gap for MAX-CUT?
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