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CONVEX POLYTOPES



Convex polytopes as linear inequalities

Polytope:

P={xecR":Ax > b}

Created by Wikipedia User:Cyp




Convex polytopes as convex hulls

Polytope:

P = COIIV({Xla CI ,Xm})

Created by Wikipedia User:Cyp




Integer hull of P C R”




Integer hull

Integer hull of P C R"™:

P = conv(PNZ")




Case of special interest: relaxations of 0-1 problems

Polytopes inscribed in the unit cube:

conv{x € {0,1}" : Ax > b} = conv({x1,...,%¢})




Case of special interest: relaxations of 0-1 problems

Polytopes inscribed in the unit cube:

conv{x € {0,1}" : Ax > b} = conv({x1,...,X¢})

Obvious relaxation:
e What's available: P ={x€R": Ax>b, 0 <x <e}
e What we want: P,
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EXPLICIT REPRESENTATIONS OF P,



Gomory-Chvatal cuts: C(P)

Inference rules:

ot 2 (ct,...,cm € RT)
S Galx > S cb; e Com

T

a'x>b

- - an”

a5 @57

New polytope:
1. start at inequalities defining P
2. first close them under (1)
3. then close them under (2)
C(P) is defined by resulting inequalities



Completeness

Completeness [Chvatal 1973]:
P2 C(P)D C(C(P))2---2CH(P)=P,



Completeness

Completeness [Chvatal 1973]:
P2 C(P)2 C(C(P))D---2CO(P)=P
(with t < n?logn if P C [0,1]" [ES03]).



Chvatal's “slogan”

Slogan:

[combinatorics = linear programming + number theory]

(the box is Chviétal's)



A little problem

Theorem [Eisenbrand 1999]:

ax+b=0

Given P as input, the separation problem for C(P) is NP-hard




Lift-and-project methods and semialgebraic proofs

In the 1990’s:

e Sherali and Adams. “A hierarchy of relaxations between the
continuous and [...] 0-1 programming problems”, 1990.

e Lovasz and Schrijver. “Cones of Matrices and Set-Functions
and 0-1 Optimization”, 1991.

e Balas, Ceria, and Cornuéjols. “A lift-and-project cutting plane
algorithm for mixed 0-1 programs”, 1993.



Lift-and-project methods and semialgebraic proofs

In the 1990’s:

e Sherali and Adams. “A hierarchy of relaxations between the
continuous and [...] 0-1 programming problems”, 1990.

e Lovasz and Schrijver. “Cones of Matrices and Set-Functions
and 0-1 Optimization”, 1991.

e Balas, Ceria, and Cornuéjols. “A lift-and-project cutting plane
algorithm for mixed 0-1 programs”, 1993.

Semi-algebraic proof systems:

e Grigoriev and Vorobyov. “Complexity of Null- and
Positivstellensatz Proofs”, 2001.

e Grigoriev, Hirsch, and Pasechnik. "Complexity of
semi-algebraic proofs”, 2002.



Lift-and-project cuts, graphically

3.
=

Steps:

3D-graphics by Mathematica

1. lift by products and new variables y;; (= x;x;)

2. linearize by using x; = x,? = y; and forgetting products
3. project by a linear map that eliminates y-variables




Lift-and-project cuts: N(P)

Inference rules:

L(x)>0 L(x) >0
Lp)x =0 L(x)(L—x) =0 (3)
@ : (4)

xl-2—x,-20 x;—xi220

Qi(x) >0 -+ Qm(x)>0
>y ciQi(x) >0

(c1,...,cm €RT) (5)

New polytope:
1. Start at inequalities defining P,
2. first lift them through (3) and (4) to degree 2,
3. then project them through (5):
N(P) is defined by resulting linear inequalities.



Example: x —1/4 >0 with x >0and 1 —x >0

>
9

>
I
=
N

,,,,,,,,,




Add a new dimension y(= x?)

x=0

x=1/4

,,,,,,, =x

0,0)

(1/4,0)

(1,0)




Addy >0and1—-y >0

,,,,,,, =x

x=0 x=1/4 x=1
O,1) (1/4,1) (1,1)
(0,0) (1/4,0) (1,0)




Add (x —1/4)x > 0and (x —1/4)(1 —x) >0

x=0 x=1/4 x=1 y=5x/4-1/4
y=1
O, (1/4,1) (1D
y =x/4
i)
0
0,0) (1/4,0) (1,0)
y
A
: / (0,~1/4)
,,,,,,, —




Add y = x to enforce x

2:

,,,,,,, =x

X
x=0 x=1/4 x=1 y=5x/4-1/4
y=x
P =1
©,1) (1/4,1) 111 Y
(1/4,1/4) y =x/4
)
0
0,0) (1/4,0) (1,0)
y
A
: / (0,~1/4)




Project back to dimension x




Completeness and algorithmic goodness

Completeness [Lovédsz-Schrijver]:

P2 N(P)2 N(N(P)) 2--- 2 NU)(P) = P,

Tractable separation problem [Lovasz-Schrijver]:

For N(P), solvable in time poly(s + n).
For N(9)(P), solvable in time poly(s + n9).

(s is the bit-size of the given representation of P)



Lift-and-project degree-d cuts: Ny(P)



Lift-and-project degree-d cuts: Ny(P)

Inference rules:

Q(x)>0 QR(x) >0 (6)
R(x)x; >0 Q(x)(1—x;)>0
0 0 )

xl-2—x,-20 x,-—xl-2>0

Qi(x) >0 -+ Qm(x)>0
2oy ciQi(x) >0

(c1,...,cm €RT) (8)

New polytope:
1. Start at inequalities defining P,
2. first lift them through (6) and (7) up to degree d,
3. then project them through (8):
N4(P) is defined by resulting linear inequalities.



Lift-and-project degree-d semidefinite cuts: Ny o (P)

Inference rules:

Q(x)>0 QR(x) >0 )
R(x)x; >0 Q(x)(1—x;)>0
0 0 0 (10)

x2—x; >0 x,-—xl-2>0 QR(x)2>0

f —

Qu(x) >0 -+ Qm(x)>0
Yo ciQi(x) >0

(c1,...,cm €RT)  (11)

New polytope:
1. Start at inequalities defining P,
2. first lift them through (9) and (10) up to degree d,
3. then project them through (11):
Ny +(P) is defined by resulting linear inequalities.



Comparison

Sandwich:
P > N(P) D Ny(P) D Ny (P)2 P

for every d > 2.

Tractable separation problem:

For Ng_+(P), solvable in time poly(s + n9).

(again s is the bit-size of the given representation of P)



Measures

Lovasz-Schrijver rank / LS semidefinite rank:
e min k such that N(K)(P) = ()
e min k such that Ngrk)(P) =0

Sherali-Adams degree / Lasserre degree:
e min d such that Ny(P) =0
e min d such that Ny +(P) =0



Measures

Lovasz-Schrijver rank / LS semidefinite rank:
e min k such that N(K)(P) = ()
e min k such that Ngrk)(P) =0

Sherali-Adams degree / Lasserre degree:
e min d such that Ny(P) =0
e min d such that Ny +(P) =0

(YOU NAME IT (LS size, LS, tree-size, SOS, etc...)]
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UPPER BOUNDS



Stable set polytope
STAB(G) and FRAC(G) for a graph G = (V,E):

0<x,<1 for every vertex u € V
1—x,—x,>0 for every edge {u,v} € E

Clique constraints are valid for STAB(G):

1- qu >0 for every clique S in G
ues

Question:

What is smallest d > 1 so that
all clique constraints are valid in Ny (FRAC(G))?



Stable set polytope (cntd)

Answer is d = 2! [Lovasz-Schrijver]:



Stable set polytope (cntd)

Answer is d = 2! [Lovasz-Schrijver]:

(1= xu = xv)x (x5 — xu) (12, %)



Stable set polytope (cntd)

Answer is d = 2! [Lovasz-Schrijver]:

Zu Zv:v;éu (1 - Xu— XV)XU+ZU (XS o XU)(n_2)+(1 o ZUXU)2



Stable set polytope (cntd)

Answer is d = 2! [Lovasz-Schrijver]:

Zu Zv:v;éu (1 - Xu— XV)XU+ZU (XS o XU)(n_2)+(1 o ZUXU)2



Stable set polytope (cntd)

Answer is d = 2! [Lovasz-Schrijver]:

Zu Zv:v;éu (1 - Xu— XV)XU+ZU (XS o XU)(n_2)+(1 o ZUXU)2

1->,Xu



Stable set polytope (cntd)

Answer is d = 2! [Lovasz-Schrijver]:

Zu Zv:v;éu (1 - Xu— XV)XU+ZU (Xg o XU)(n_2)+(1 o ZUXU)2
1- iuxu

Corollary [Grotschel-Lovasz-Schrijver 1981]:

The weighted maximum independent set problem
is solvable in polynomial time on perfect graphs.



Pigeonhole principle n+ 1 to n

Representing the usual clauses:

a. Xji1V---VXi, = ZkX,'7k—1ZO
b. =Xk V —Xj k = 1—Xk—Xxxk=>0



Pigeonhole principle n+ 1 to n

Representing the usual clauses:

a. Xji1V---VXi, = ZkX,'7k—1ZO
b. =Xk V —Xj k = 1—Xk—Xxxk=>0

But wait!:



Pigeonhole principle n+ 1 to n

Representing the usual clauses:

a. Xji1V---VXi, = ZkX,'7k—1ZO
b. =Xk V —Xj k = 1—Xk—Xxxk=>0

But wait!:

1->xixk>0 from b. in one N, round as in clique



Pigeonhole principle n+ 1 to n

Representing the usual clauses:

a. Xji1V---VXi, = ZkX,'7k—1ZO
b. =Xk V —Xj k = 1—Xk—Xxxk=>0

But wait!:

1->xixk>0 from b. in one N, round as in clique
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Pigeonhole principle n+ 1 to n

Representing the usual clauses:

a. Xji1V---VXi, = ZkX,'7k—1ZO
b. =Xk V —Xj k = 1—Xk—Xxxk=>0

But wait!:
1->xixk>0 from b. in one N, round as in clique
n—> > iXik=>0 from previous by addition

YidoeXik—(n+1)>0 from a. by addition



Pigeonhole principle n+ 1 to n

Representing the usual clauses:

a. Xji1V---VXi, = ZkX,'7k—1ZO
b. =Xk V —Xj k = 1—Xk—Xxxk=>0

But wait!:
1->xixk>0 from b. in one N, round as in clique
n—> > iXik=>0 from previous by addition

YidoeXik—(n+1)>0 from a. by addition
-1>0 from previous two by addition



Some additional facts

Proof complexity:
e width-w resolution ref. = N,, =0
e size-s resolution ref. = size-O(s) LS ref. [Pudldk 1999]
o tree-size-s LS ref. = N(V71€5) — () [Pitassi-Segerlind 2012]



Some additional facts

Proof complexity:
e width-w resolution ref. = N,, =0
e size-s resolution ref. = size-O(s) LS ref. [Pudldk 1999]
o tree-size-s LS ref. = N(V71€5) — () [Pitassi-Segerlind 2012]

Combinatorial problems:
e No 4 on MAX-CUT gives 0.878-approximation [GW96]
e Ny solves all its known gap examples [Mossel 2013]

e N5 solves graph isomorphism on planar graphs [AM12]



Some additional facts

Proof complexity:
e width-w resolution ref. = N,, =0
e size-s resolution ref. = size-O(s) LS ref. [Pudldk 1999]
o tree-size-s LS ref. = N(V71€5) — () [Pitassi-Segerlind 2012]

Combinatorial problems:
e No 4 on MAX-CUT gives 0.878-approximation [GW96]
e Ny solves all its known gap examples [Mossel 2013]

e N5 solves graph isomorphism on planar graphs [AM12]

Interpolation:

LS has feasible interpolation [Pudldk 1999]
LS has feasible interpolation [Dash 2001]



Part IV

LOWER BOUNDS



How to prove lower bounds?

Goal:

Build a feasible solution for Ny(P)
by patching together local (i.e. partial) fractional solutions

Useful observation:

local fractional solution = prob. dist. on local 0-1 solutions



How to prove lower bounds? (cntd)

System of d-local distributions for P:
H = {nx: X C [nl, X| < d}

such that
1. pux: a prob. dist. on {0,1}X with support in P|x N {0,1}X
2. px(x) =3y yox iy (y) foreach X C Y and x € {0, 1}



How to prove lower bounds? (cntd)

System of d-local distributions for P:
H = {nx: X C [nl, X| < d}

such that
1. pux: a prob. dist. on {0,1}X with support in P|x N {0,1}X
2. px(x) =3y yox iy (y) foreach X C Y and x € {0, 1}

Theorem: The following are equivalent:

1. there is a system of d-local distributions for P,

2. Ng(P) # 0.

(analogue for Ny too)



3-XOR-SAT

Systems of linear equations mod 2:

Xy OXjy OXig = @

Xim @ Xj, @ Xk, = am
Encoding:

Each equation in CNF, then as a polytope in R3.



From Gaussian-width to N, -degree

Gaussian calculus:

Dic/xi=a EBjeJXj =b
Drcinyk=a®b

Lemma [Schoenebeck 2008]
If refuting S requires Gaussian-width > d,
then Nd/2,+(5) 7é (.
Corollary [Schoenebeck 2008, Grigoriev 2001]:

Tseitin formulas, random systems mod 2, etc require
Lasserre degree Q(n) and tree-like LS size 24",



Schoenebeck’s construction

Define:
o Let C beall (A a) such that Skgq @;caxi = a,
o let 7(A) :=(—1)? if (A,a) € C (note: (A,1—a) ¢C),
e let A~ B if (AAB,c) € C for some c for |A|,|B| < d/2,
e and

2
px(x) = (Z W(B)TXZX(B)>

[A] \B~A
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SOME OPEN PROBLEMS



Open problems

Use it for SAT:

Can we integrate semialgebraic methods into symbolic solvers?
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Lower bounds on LS size:

Prove a superpolynomial lower bound for dag-like LS (or LS)



Open problems

Use it for SAT:

Can we integrate semialgebraic methods into symbolic solvers?

Lower bounds on LS size:

Prove a superpolynomial lower bound for dag-like LS (or LS)

“Learning” the linear transformation?:

Under y; := 1 — 2x;, parities are [[;, yi = £1. Useful?



Open problems

Use it for SAT:

Can we integrate semialgebraic methods into symbolic solvers?

Lower bounds on LS size:

Prove a superpolynomial lower bound for dag-like LS (or LS)

“Learning” the linear transformation?:

Under y; := 1 — 2x;, parities are [[;, yi = £1. Useful?

Find MAX-CUT gaps or improve over GW:

Does degree-n°1) Lasserre leave a 0.878 gap for MAX-CUT?
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