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Part I

LINEAR PROGRAMMING

RELAXATIONS



Vertex cover

Problem:

Given an undirected graph G = (V ,E ),
find the smallest number of vertices

that touches every edge.

Notation:

vc(G ).

Observe:

A ⊆ V is a vertex cover of G
iff

V \ A is an independent set of G



Linear programming relaxation

LP relaxation:

minimize
∑

u∈V xu

subject to

xu + xv ≥ 1 for every (u, v) ∈ E ,

xu ≥ 0 for every u ∈ V .

Notation:

fvc(G ).



Approximation

Approximation:

fvc(G ) ≤ vc(G ) ≤ 2 · fvc(G )

Integrality gap:

sup
G

vc(G )

fvc(G )

= 2.

Gap examples:

1. vc(K2n+1) = 2n,

2. fvc(K2n+1) = 1
2 (2n + 1).
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LP tightenings

Add triangle inequalities:

minimize
∑

u∈V xu

subject to

xu + xv ≥ 1 for every (u, v) ∈ E ,

xu ≥ 0 for every u ∈ V ,

xu + xv + xw ≥ 2 for every triangle {u, v ,w} in G .

Integrality gap:

Remains 2.

Gap examples:

Triangle-free graphs with small independence number.
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Sherali-Adams and Lasserre/Sums-of-Squares Hierarchies

Hierarchy:

Systematic ways of
generating all linear inequalities

that are valid over the integral hull.

Given a polytope:

P = {x ∈ Rn : Ax ≥ b},
PZ = convexhull{x ∈ {0, 1}n : Ax ≥ b}.

Produce explicit nested polytopes:

P = P1 ⊇ P2 ⊇ · · · ⊇ Pn−1 ⊇ Pn = PZ
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Pk : Lasserre/Sums-of-squares (SOS) Hierarchy

Given linear inequalities

L1 ≥ 0, . . . , Lm ≥ 0

produce all linear inequalities of the form

Q0 +
m∑
j=1

LjQj +
n∑

i=1

(x2
i − xi )Qi = L ≥ 0

where

Qj =
∑
`∈I

Q2
j` with

and

deg(Q0), deg(LjQj), deg((x2
i − xi )Qi ) ≤ k.

Then:

Pk = {x ∈ Rn : L(x) ≥ 0 for each produced L ≥ 0}
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Pk : Sherali-Adams (SA) Hierarchy

Given linear inequalities

L1 ≥ 0, . . . , Lm ≥ 0

produce all linear inequalities of the form

Q0 +
m∑
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LjQj +
n∑
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(x2
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Example: triangles in P3

For each triangle {u, v ,w} in G :

Q0+

(xu + xv − 1)Q1+

(xu + xw − 1)Q2+

(xv + xw − 1)Q3+

(x2
u − xu)Q4+

(x2
v − xv )Q5+

(x2
w − xw )Q6

= ?

(xu + xv + xw − 2).

Qi = ai +bixu + cixv +dixw + eixuxv + fixuxw + gixvxw +hixuxvxw



Solving Pk

Lift-and-project:

• Step 1: lift from Rn up to R(n+1)k and linearize the problem

• Step 2: project from R(n+1)k down to Rn

Proposition:

Optimization of linear functions over Pk

can be solved in time† mO(1)nO(k).

Proof:

1. for SA-Pk : by linear programming

2. for SOS-Pk : by semidefinite programming



An Important Open Problem

Define

sak fvc(G ): optimum fractional vertex cover of SA-Pk

sosk fvc(G ) : optimum fractional vertex cover of SOS-Pk

Open problem:

sup
G

vc(G )

sos4fvc(G )

?
< 2
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What’s Known

Known (conditional hardness):

• 1.0001-approximating vc(G ) is NP-hard by PCP Theorem

• 1.36-approximating vc(G ) is NP-hard

• 2-approximating vc(G ) is NP-hard assuming UGC

Known (unconditional hardness):

• supG vc(G )/sak fvc(G ) = 2

• supG vc(G )/sdp-fvc(G ) = 2 for any k = no(1)

• variants: pentagonal, antipodal triangle, local hypermetric, ...

Gap examples:

Frankl-Rödl Graphs: FRn
γ = (Fn

2, {{x , y} : x + y ∈ An
γ}).

[Dinur, Safra, Khot, Regev, Kleinberg, Charikar, Hatami, Magen,

Georgiou, Lovasz, Arora, Alekhnovich, Pitassi; 2000’s]
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Part II

COUNTING LOGIC



Bounded-Variable Logics

First-order logic of graphs:

E (x , y) : x and y are joined by an edge
x = y : x and y denote the same vertex
¬φ : negation of φ holds
φ ∧ ψ : both φ and ψ hold
∃x(φ) : there exists a vertex x that satisfies φ

First-order logic with k variables (or width k) :

Lk : collection of formulas for which
all subformulas have at most k free variables.
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Example

Paths:

P1(x , y) := E (x , y)

P2(x , y) := ∃z1(E (x , z1) ∧ P1(z1, y))

P3(x , y) := ∃z2(E (x , z2) ∧ P2(z2, y))

...

Pi+1(x , y) := ∃zi (E (x , zi ) ∧ Pi (zi , y))

...

Bipartiteness of n-vertex graphs:

∀x(¬P3(x , x) ∧ ¬P5(x , x) ∧ · · · ∧ ¬P2dn/2e−1(x , x)).
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Counting quantifiers

Counting witnesses:

∃≥ix(φ(x)) : there are at least i vertices x that satisfy φ(x).

Counting logic with k variables (or counting width k):

C k : collection of formulas with counting quantifiers
with all subformulas with at most k free variables.



Counting quantifiers

Counting witnesses:

∃≥ix(φ(x)) : there are at least i vertices x that satisfy φ(x).

Counting logic with k variables (or counting width k):

C k : collection of formulas with counting quantifiers
with all subformulas with at most k free variables.



Indistinguishability / Elementary equivalence

C k-equivalence:

G ≡C
k H : G and H satisfy the same sentences of C k .



Combinatorial characterization of C 2-equivalence

Color-refinement:

1. color each vertex black,

2. color each vertex by number of neighbors in each color-class,

3. repeat 2 until color-classes don’t split any more.

Notation:

G ≡R H : G and H produce the same coloring (up to order).

Theorem [Immerman and Lander]

G ≡C
2 H if and only if G ≡R H
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LP characterization of color-refinement

Isomorphisms:

1. G ∼= H,
2. there exists permutation matrix P such that PTGP = H,
3. there exists permutation matrix P such that GP = PH.

LP relaxation of ∼=:

G ≡F H : there exists doubly stochastic S such that GS = SH.

iso(G ,H) : GS = SH

Se = eTS = e

S ≥ 0.

Theorem [Tinhofer]

G ≡R H if and only if G ≡F H.
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Higher levels of SA Hierarchy

SA-levels of fractional isomorphism:

G ≡SA
k H : the degree-k SA level of iso(G ,H) is feasible.

Theorem [AA and Maneva 2013]:

G ≡SA
k H =⇒ G ≡C

k H =⇒ G ≡SA
k−1 H.

Moreover:

1. This interleaving is strict for k > 2 [Grohe-Otto 2015]

2. A combined LP characterizes ≡C
k exactly [Grohe-Otto 2015]

3. Alternative (and independent) formulation by [Malkin 2014]
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Higher Levels of SOS Hierarchy

SA and SOS-levels of fractional isomorphism:

1. G ≡SA
k H : the degree-k SA level of iso(G ,H) is feasible.

2. G ≡SOS
k H : the degree-k SOS level of iso(G ,H) is feasible.

Theorem [AA and Ochremiak 2018]: There exists c > 1 such that:

G ≡SA
ck H =⇒ G ≡SOS

k H =⇒ G ≡SA
k H.
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Part III

APPLICATIONS



Local LPs (and SDPs)

Basic k-local LPs:

1. one variable xu for each k-tuple u ∈ V k ,

2. one inequality
∑

u∈V k au,v · xu ≥ bv for every k-tuple v ∈ V k ,

3. coefficients au,v depend only on the type atpG (u, v),

4. coefficients bv depend only on the type atpG (v).

k-local LP:

Union of basic k-local LPs
with coefficients at(x,y) and bt(y) indexed
by isomorphism types t(x, y) and t(y).
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Example 1: fractional vertex cover

Fractional vertex cover: Given a graph G = (V ,E )

∑
u∈V xu ≤W

xu + xv ≥ 1 for every (u, v) ∈ E ,

xu ≥ 0 for every u ∈ V .

1. Objective function: basic 1-local LP

2. Edge constraint: basic 2-local LP

3. Positive constraint: basic 1-local LP
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Example 2: fractional matching polytope

Fractional matching polytope: Given a graph G = (V ,E )∑
uv∈E xuv ≥W

xuv = xvu for every u, v ∈ V∑
v∈V xuv ≤ 1 for every u ∈ V

0 ≤ xuv ≤ 1 for every u, v ∈ V

1. Objective function: basic 2-local LP

2. Symmetry constraint: two basic 2-local LPs

3. Degree-at-most-one constraint: basic 2-local LP
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Example 3: metric polytope

Metric polytope: Given a graph G = (V ,E )

1
2

∑
uv∈E xuv ≥W

xuv = xvu for every u, v ∈ V

xuw ≤ xuv + xvw for every u, v ,w ∈ V

xuv + xvw + xuw ≤ 2 for every u, v ,w ∈ V

0 ≤ xuv ≤ 1 for every u, v ∈ V

1. Objective function: basic 2-local LP

2. Symmetry constraint: two basic 2-local LPs

3. Triangle inequality: basic 3-local LP

4. Perimetric inequality: basic 3-local LP

5. Unit cube constraint: two basic 2-local LPs



Preservation of local LPs and SDPs

Theorem Let P be a k-local LP or SDP.

1. LP: If G ≡C
k H, then P(G ) is feasible iff P(H) is feasible.

2. SDP: If G ≡C
ck H, then P(G ) is feasible iff P(H) is feasible.

’Just do it’ proof for LP:

1. Let {xu} be a feasible solution for P(G ).

2. Let {Xu,v} be a feasible solution for sak iso(G ,H).

3. Define:
yv :=

∑
u∈G k

Xu,v · xu.

4. Check that {yv} is a feasible solution for P(H).
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More examples of local LPs

More examples:

1. maximum flows (2-local)

2. if P is r -local LP, then sak -P is rk-local LP.

3. if P is r -local LP, then sosk -P is rk-local SDP.



Back to integrality gaps for vertex cover

Goal:

For large k and every ε > 0 find graphs G and H such that

1. G ≡C
c·2k H

2. vc(G ) ≥ (2− ε)vc(H)

It would follow that:

sup
G

vc(G )

sosk fvc(G )
= 2

Proof:

vc(G ) ≥ (2− ε)vc(H) by 2.
≥ (2− ε)sosk fvc(H) obvious
≥ (2− ε)sosk fvc(G ) by 1. and 2-locality
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GOAL

For large k and every ε > 0 find graphs G and H such that

1. G ≡C
c·2k H

2. vc(G ) ≥ (2− ε)vc(H)



A weak (easy) case: k = 1 with gap = 2

Choose:

G = any d-regular expander graph (i.e., λ2(G )� λ1(G )),
H = any d-regular bipartite graph.

Then:

vc(G ) = (1− ε)n by expansion
vc(H) = n/2 by bipartition
G ≡R H by regularity
G ≡C

2 H by Tinhofer’s Theorem

Tight in two ways:

G 6≡C
3 H bipartiteness is C 3-definable,

G ≡C
2 H =⇒ vc(G ) ≤ 2vc(H) [AA-Dawar 2018]
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A different weak (harder) case: k = Ω(n) but gap = 1.08

Theorem [AA-Dawar 2018]

There exist graphs Gn and Hn such that

1. Gn ≡C
Ω(n) Hn

2. vc(Gn) ≥ 1.08 · vc(Hn)



Part IV

PROOF INGREDIENTS



1/3: Locally consistent systems of linear equations

Ingredient 1: A linear system Ax = b over F2 where:

• A ∈ Fm×n
2 and b ∈ Fn

2

• every row of A has at most three 1’s

• every subset of εm equations has at least δn unique variables

• every candidate solution satisfies at most 1
2 + ε equations

Probabilistic construction:

1. set m = cn for a large constant c = c(ε)

2. choose three ones uniformly at random in each row of A

3. choose b uniformly at random in Fn
2.

Half-deterministic construction:

1. set m = cn for a large constrant c = c(ε)

2. let A be incidence matrix of bipartite expander

3. choose b uniformly at random in Fn
2.
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2/3: Indistinguishable systems of linear equations

Ingredient 2: A pair of linear systems S0 and S1 over F2 where:

1. S0 ≡C
Ω(n) S1

2. every candidate solution for S0 satisfies at most 3
4 equations

3. some solution solution exists for S1

Construction of S0:

1. start with Ax = b from previous section

2. duplicate each variable x 7→ (x (0), x (1))

3. replace each equation xi + xj + xk = b by 8 equations

x
(u)
i + x

(v)
j + x

(w)
k = b + u + v + w

Construction of S1:

1. same but start with Ax = 0 (the homogeneous system)
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3/3: Reduction to vertex cover

Ingredient 3: A pair of graphs G0 and G1 where:

1. G0 ≡C
Ω(n) G1

2. vc(G0) ≥ 26m

3. vc(G1) ≤ 24m

Construction:

a standard reduction from F2-SAT to vertex cover
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Open Problem 1

sup
G

vc(G )

sos4fvc(G )
> 1.36?



Open Problem 2

find strongly regular graphs G and H with same parameters
so that vc(G ) ≥ (2− ε)vc(H).
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