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— linear and semidefinite programming
= approximation algorithms and computational complexity
— logic and finite model theory
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LINEAR PROGRAMMING
RELAXATIONS



Vertex cover

Problem:
Given an undirected graph G = (V, E),
find the smallest number of vertices
that touches every edge.
Notation:
ve(G).
Observe:

A C V is a vertex cover of G
iff
V' \ Ais an independent set of G



Linear programming relaxation

LP relaxation:

minimize Y, o\ Xu

subject to
Xy +x,>1 forevery (u,v) € E,
x, >0 for every u € V.

Notation:

fve(G).



Approximation

Approximation:
fve(G) < ve(G) < 2-fve(G)
Integrality gap:

ve(G)
P Fve(G)
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Approximation:
fve(G) < ve(G) < 2-fve(G)
Integrality gap:

ve(G) B
P he(G)

Gap examples:

1. VC(K2n+1) = 2n,
2. fVC(Kszrl) = %(2/’1 + 1).



LP tightenings
Add triangle inequalities:

minimize Y, o\ Xu

subject to
Xy +x,>1 for every (u,v) € E,
xy, >0 for every u e V,

Xy + Xy +xw > 2  for every triangle {u,v,w} in G.



LP tightenings
Add triangle inequalities:

minimize Y, o\ Xu

subject to
Xy +x,>1 for every (u,v) € E,
xy, >0 for every u e V,

Xy + Xy +xw > 2  for every triangle {u,v,w} in G.

Integrality gap:

Remains 2.

Gap examples:

Triangle-free graphs with small independence number.
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Sherali-Adams and Lasserre/Sums-of-Squares Hierarchies

Hierarchy:

Systematic ways of
generating all linear inequalities
that are valid over the integral hull.

Given a polytope:

P ={xeR": Ax > b},
PZ = convexhull{x € {0,1}" : Ax > b}.

Produce explicit nested polytopes:

P:PI:_)PZQ_HQPnflgpn:PZ
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Pk: Lasserre/Sums-of-squares (SOS) Hierarchy

Given linear inequalities
L1y >0,...,L, >0

produce all linear inequalities of the form

Q-+ LiQ+Y (7 —x)Q=L>0

j=1 i=1
where
Q=>_ Q7 with
Lel
and
deg(Qo), deg(L; @;), deg((x? — xi)@;) < k.
Then:

Pk = {x € R": L(x) > 0 for each produced L > 0}



P Sherali-Adams (SA) Hierarchy

Given linear inequalities
L1 >0,...,L, >0

produce all linear inequalities of the form

Qo+ZLij+Z(X,-2—Xi)Q; =L>0

j=1 i=1
where
Qi ZZCe HXi H(l—Xi) with ¢, >0
ted i€A, ieBy
and
deg(Qo), deg(L; Q;), deg((x? — x1) Qi) < k.
Then:

Pk = {x € R": L(x) > 0 for each produced L > 0}



Example: triangles in P3

For each triangle {u,v,w} in G:

(xu + xv + xw — 2).

Qi = a;i + bixy + cixy + dixy + € xuxy + fiXuXw + giXy Xw + hiXuXy Xw



Solving P*

Lift-and-project:

e Step 1: lift from R” up to R(1)* and linearize the problem
e Step 2: project from R(*+1D* down to R”

Proposition:

Optimization of linear functions over PX
can be solved in time m©@1)pO(k)
Proof:

1. for SA-P¥: by linear programming
2. for SOS-P: by semidefinite programming



An Important Open Problem

Define

sakfvc(G): optimum fractional vertex cover of SA-PX
soskfvc(G) : optimum fractional vertex cover of SOS-P*



An Important Open Problem

Define

sakfvc(G): optimum fractional vertex cover of SA-PX
soskfvc(G) : optimum fractional vertex cover of SOS-P*

Open problem:

ve(G) 7
— <2
szp sos*fve(G) <



Q>



What's Known

Known (conditional hardness):
e 1.0001-approximating vc(G) is NP-hard by PCP Theorem
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What's Known

Known (conditional hardness):
e 1.0001-approximating vc(G) is NP-hard by PCP Theorem
e 1.36-approximating vc(G) is NP-hard
e 2-approximating vc(G) is NP-hard assuming UGC

Known (unconditional hardness):
o supg ve(G)/sakfve(G) = 2
e supg ve(G)/sdp-fve(G) =2 for any k = n°(V)

e variants: pentagonal, antipodal triangle, local hypermetric, ...

Gap examples:
Frankl-Rodl Graphs: FRY = (F3, {{x,y} : x +y € AT}).

[Dinur, Safra, Khot, Regev, Kleinberg, Charikar, Hatami, Magen,
Georgiou, Lovasz, Arora, Alekhnovich, Pitassi; 2000's]
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COUNTING LOGIC



Bounded-Variable Logics

First-order logic of graphs:

E(x,y)
x=y
¢
ONY
Ix(¢)

x and y are joined by an edge

x and y denote the same vertex
negation of ¢ holds

both ¢ and ¥ hold

there exists a vertex x that satisfies ¢



Bounded-Variable Logics

First-order logic of graphs:

E(x,y) : xandy are joined by an edge

x =y : xandy denote the same vertex

¢ . negation of ¢ holds

¢ Ay 1 both ¢ and v hold

dx(¢) : there exists a vertex x that satisfies ¢

First-order logic with k variables (or width k) :

Lk: collection of formulas for which
all subformulas have at most k free variables.



Example
Paths:

Pi(x,y) := E(x,y)
Pa(x,y) := 3z1(E(x, z1) A P1(z1,y))
P3(x,y) := 3z2(E(x, 22) A P2(22,y))

Pit1(x,y) := 3zi(E(x,z;) A Pi(zi,y))



Example
Paths:

Pi(x,y) := E(x,y)
Pa(x,y) := 3z1(E(x, z1) A P1(z1,y))
P3(x,y) := 3z2(E(x, 22) A P2(22,y))

Pit1(x,y) := 3zi(E(x,z;) A Pi(zi,y))

Bipartiteness of n-vertex graphs:

Vx(=P3(x, x) A =Ps(x, x) A=+ A =Popp91-1(x, x)).



Counting quantifiers

Counting witnesses:

3Zix(¢(x)) : there are at least i vertices x that satisfy ¢(x).



Counting quantifiers

Counting witnesses:

3Zix(¢(x)) : there are at least i vertices x that satisfy ¢(x).

Counting logic with k variables (or counting width k):

Ck: collection of formulas with counting quantifiers
with all subformulas with at most k free variables.



Indistinguishability / Elementary equivalence

Ck-equivalence:

G =¢ H: G and H satisfy the same sentences of Ck.



Combinatorial characterization of C?-equivalence

Color-refinement:

1. color each vertex black,
2. color each vertex by number of neighbors in each color-class,

3. repeat 2 until color-classes don't split any more.
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Combinatorial characterization of C?-equivalence

Color-refinement:

1. color each vertex black,
2. color each vertex by number of neighbors in each color-class,

3. repeat 2 until color-classes don't split any more.

Notation:
G =R H: G and H produce the same coloring (up to order).

Theorem [Immerman and Lander]

G =§ Hif and only if G =R H
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2. there exists permutation matrix P such that PTGP = H,
3. there exists permutation matrix P such that GP = PH.
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LP characterization of color-refinement

Isomorphisms:

1. G=H,
2. there exists permutation matrix P such that PTGP = H,
3. there exists permutation matrix P such that GP = PH.

LP relaxation of =:
G =F H : there exists doubly stochastic S such that GS = SH.
iso(G,H) : GS =SH

Se=eclS=¢

S>0.
Theorem [Tinhofer]

G =R H if and only if G =F H.
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SA-levels of fractional isomorphism:

G =}A H : the degree-k SA level of iso(G, H) is feasible.



Higher levels of SA Hierarchy

SA-levels of fractional isomorphism:

G =}A H : the degree-k SA level of iso(G, H) is feasible.

Theorem [AA and Maneva 2013]:

GE%AH:>GEEH:>GEié1H.



Higher levels of SA Hierarchy

SA-levels of fractional isomorphism:

G =}A H : the degree-k SA level of iso(G, H) is feasible.

Theorem [AA and Maneva 2013]:

GE%AH:>GEEH:>GE%é1H.

Moreover:

1. This interleaving is strict for k > 2 [Grohe-Otto 2015]
2. A combined LP characterizes =¢ exactly [Grohe-Otto 2015]
3. Alternative (and independent) formulation by [Malkin 2014]



Higher Levels of SOS Hierarchy

SA and SOS-levels of fractional isomorphism:
1. G =X H : the degree-k SA level of iso(G, H) is feasible.
2. G =95 H : the degree-k SOS level of iso(G, H) is feasible.



Higher Levels of SOS Hierarchy

SA and SOS-levels of fractional isomorphism:

1. G =X H : the degree-k SA level of iso(G, H) is feasible.

2. G =95 H : the degree-k SOS level of iso(G, H) is feasible.
Theorem [AA and Ochremiak 2018]: There exists ¢ > 1 such that:

G=SAH— G={"SH— G=}*H.
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APPLICATIONS



Local LPs (and SDPs)

Basic k-local LPs:
1. one variable x, for each k-tuple u € vk,
2. one inequality Zuevk auy - Xu > by for every k-tuple v € vk,
3. coefficients a, depend only on the type atpg(u,v),
4. coefficients b, depend only on the type atp¢(v).



Local LPs (and SDPs)

Basic k-local LPs:
1. one variable x, for each k-tuple u € vk,
2. one inequality Zuevk auy - Xu > by for every k-tuple v € vk,
3. coefficients a,, depend only on the type atpg(u,v),
4. coefficients b, depend only on the type atp¢(v).

k-local LP:

Union of basic k-local LPs
with coefficients a;(x y) and by(yy indexed
by isomorphism types t(x,y) and t(y).



Example 1: fractional vertex cover

Fractional vertex cover: Given a graph G = (V. E)

ZUEVXU S w
Xy +x, >1 forevery (u,v) € E,

xy, >0 for every u € V.



Example 1: fractional vertex cover

Fractional vertex cover: Given a graph G = (V. E)

ZUEVXU S w
Xy +x, >1 forevery (u,v) € E,

xy, >0 for every u € V.

1. Objective function: basic 1-local LP
2. Edge constraint: basic 2-local LP

3. Positive constraint: basic 1-local LP



Example 2: fractional matching polytope

Fractional matching polytope: Given a graph G = (V, E)

ZUVGEXUV 2 w
Xuv = Xvu for every u,v € V

Yovey X <1 for every u € V
0<x, <1 for every u,v € V



Example 2: fractional matching polytope

Fractional matching polytope: Given a graph G = (V, E)

ZUVGEXUV 2 w

Xuv = Xvu for every u,v € V
Yovey X <1 for every u € V
0<x, <1 for every u,v € V

1. Objective function: basic 2-local LP
2. Symmetry constraint: two basic 2-local LPs

3. Degree-at-most-one constraint: basic 2-local LP



Example 3: metric polytope

Metric polytope: Given a graph G = (V, E)

1
2 ZUVGE Xuy = W
Xyy = Xy for every u,v € V

Xow < Xy + Xow for every u,v,w € V
Xuy + Xow + Xuw < 2 for every u,v,w € V
0<x, <1 for every u,v € V

Objective function: basic 2-local LP
Symmetry constraint: two basic 2-local LPs
Triangle inequality: basic 3-local LP
Perimetric inequality: basic 3-local LP

AN

Unit cube constraint: two basic 2-local LPs



Preservation of local LPs and SDPs

Theorem Let P be a k-local LP or SDP.

1. LP: If G =£ H, then P(G) is feasible iff P(H) is feasible.
2. SDP: If G =5 H, then P(G) is feasible iff P(H) is feasible.



Preservation of local LPs and SDPs

Theorem Let P be a k-local LP or SDP.

1. LP: If G =£ H, then P(G) is feasible iff P(H) is feasible.
2. SDP: If G =5 H, then P(G) is feasible iff P(H) is feasible.

"Just do it’ proof for LP:
1. Let {x4} be a feasible solution for P(G).
2. Let {Xuv} be a feasible solution for sakiso(G, H).

3. Define:
W = Z Xu,v * Xu-
ueGk
4. Check that {y} is a feasible solution for P(H).



More examples of local LPs

More examples:
1. maximum flows (2-local)
2. if Pis r-local LP, then sak-P is rk-local LP.
3. if P is r-local LP, then sos*-P is rk-local SDP.
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For large k and every € > 0 find graphs G and H such that
1. G Eg2k H
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Back to integrality gaps for vertex cover

Goal:

For large k and every € > 0 find graphs G and H such that
1. G Eg2k H
2. ve(G) > (2 — €)ve(H)

It would follow that:

ve(G)
s o
Slé;p soskfve(G)
Proof:
ve(G) > (2 —€)ve(H) by 2.
> (2 — €)soskfve(H) obvious
> (2 — €)soskfve(G) by 1. and 2-locality



GOAL

For large k and every € > 0 find graphs G and H such that
1. G Eg2k H
2. ve(G) > (2 — €)ve(H)
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Choose:

G = any d-regular expander graph (i.e., \2(G) < \1(G)),
H = any d-regular bipartite graph.
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A weak (easy) case: k = 1 with gap = 2

Choose:

G = any d-regular expander graph (i.e., \2(G) < \1(G)),
H = any d-regular bipartite graph.

Then:
ve(G)=(1—¢€)n
ve(H) = n/2
G=RH
G=$H

Tight in two ways:

G#S H
G =5 H = vc(G) < 2ve(H)

by expansion
by bipartition
by regularity
by Tinhofer's Theorem

bipartiteness is C3-definable,
[AA-Dawar 2018]



A different weak (harder) case: k = Q(n) but gap = 1.08

Theorem [AA-Dawar 2018]

There exist graphs G, and H, such that
1. G, Eg(n) H,
2. ve(Gp) > 1.08 - ve(H,)
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1/3: Locally consistent systems of linear equations

Ingredient 1: A linear system Ax = b over F, where:

A€ F*" and b € F}
e every row of A has at most three 1's

e every subset of em equations has at least dn unique variables

every candidate solution satisfies at most % + € equations

Probabilistic construction:
1. set m = cn for a large constant ¢ = c(e)
2. choose three ones uniformly at random in each row of A

3. choose b uniformly at random in [F7.

Half-deterministic construction:
1. set m = cn for a large constrant ¢ = c(e)
2. let A be incidence matrix of bipartite expander

3. choose b uniformly at random in 7.
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2/3: Indistinguishable systems of linear equations

Ingredient 2: A pair of linear systems Sy and S; over Fy where:
1. 50 E§C2(n) 51
2. every candidate solution for Sy satisfies at most % equations

3. some solution solution exists for S1

Construction of Sp:
1. start with Ax = b from previous section
2. duplicate each variable x — (x(9), x(1))

3. replace each equation x; + x; + xx = b by 8 equations

xl-(u)+><J-(v)+xl((W):b+u+V+W



2/3: Indistinguishable systems of linear equations

Ingredient 2: A pair of linear systems Sy and S; over Fy where:
1. S Eg(n) 5
2. every candidate solution for Sy satisfies at most % equations
3. some solution solution exists for S;

Construction of Sp:
1. start with Ax = b from previous section
2. duplicate each variable x — (x(9), x(1))

3. replace each equation x; + x; + xx = b by 8 equations
xl-(u) +><j-(v) —I—Xl((W) =b+utv+w

Construction of S;:

1. same but start with Ax = 0 (the homogeneous system)



3/3: Reduction to vertex cover

Ingredient 3: A pair of graphs Gy and G; where:
1. Gy Eg(n) Gy
2. ve(Gp) > 26m
3. ve(Gr) < 24m



3/3: Reduction to vertex cover

Ingredient 3: A pair of graphs Gy and G; where:
1. Gy Eg(n) Gy
2. ve(Gp) > 26m
3. ve(Gr) < 24m

Construction:

a standard reduction from F5-SAT to vertex cover



Open Problem 1

ve(G)

——— > 1.367
Slcj;p sos*fve(G) > 136



Open Problem 2

find strongly regular graphs G and H with same parameters
so that ve(G) > (2 — €)ve(H).
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