
LIMITS OF
LINEAR AND SEMIDEFINITE RELAXATIONS

FOR COMBINATORIAL PROBLEMS

Albert Atserias
Universitat Politècnica de Catalunya

Barcelona, Spain



linear and semidefinite programming

approximation algorithms and computational complexity

logic and finite model theory



Part I

LINEAR PROGRAMMING

RELAXATIONS



Vertex cover

Problem:

Given an undirected graph G = (V ,E ),
find the smallest number of vertices

that touches every edge.

Notation:

vc(G ).

Observe:

A ⊆ V is a vertex cover of G
iff

V \ A is an independent set of G



Linear programming relaxation

LP relaxation:

minimize
∑

u∈V xu

subject to

xu + xv ≥ 1 for every (u, v) ∈ E ,

xu ≥ 0 for every u ∈ V .

Notation:

fvc(G ).



Approximation

Approximation:

fvc(G ) ≤ vc(G ) ≤ 2 · fvc(G )

Integrality gap:

sup
G

vc(G )

fvc(G )

= 2.

Gap examples:

1. vc(K2n+1) = 2n,

2. fvc(K2n+1) = 1
2 (2n + 1).



Approximation

Approximation:

fvc(G ) ≤ vc(G ) ≤ 2 · fvc(G )

Integrality gap:

sup
G

vc(G )

fvc(G )
= 2.

Gap examples:

1. vc(K2n+1) = 2n,

2. fvc(K2n+1) = 1
2 (2n + 1).



Approximation

Approximation:

fvc(G ) ≤ vc(G ) ≤ 2 · fvc(G )

Integrality gap:

sup
G

vc(G )

fvc(G )
= 2.

Gap examples:

1. vc(K2n+1) = 2n,

2. fvc(K2n+1) = 1
2 (2n + 1).



LP tightenings

Add triangle inequalities:

minimize
∑

u∈V xu

subject to

xu + xv ≥ 1 for every (u, v) ∈ E ,

xu ≥ 0 for every u ∈ V ,

xu + xv + xw ≥ 2 for every triangle {u, v ,w} in G .

Integrality gap:

Remains 2.

Gap examples:

Triangle-free graphs with small independence number.



LP tightenings

Add triangle inequalities:

minimize
∑

u∈V xu

subject to

xu + xv ≥ 1 for every (u, v) ∈ E ,

xu ≥ 0 for every u ∈ V ,

xu + xv + xw ≥ 2 for every triangle {u, v ,w} in G .

Integrality gap:

Remains 2.

Gap examples:

Triangle-free graphs with small independence number.



Sherali-Adams and Lasserre/Sums-of-Squares Hierarchies

Hierarchy:

Systematic ways of
generating all linear inequalities

that are valid over the integral hull.

Given a polytope:

P = {x ∈ Rn : Ax ≥ b},
PZ = convexhull{x ∈ {0, 1}n : Ax ≥ b}.

Produce explicit nested polytopes:

P = P1 ⊇ P2 ⊇ · · · ⊇ Pn−1 ⊇ Pn = PZ



Sherali-Adams and Lasserre/Sums-of-Squares Hierarchies

Hierarchy:

Systematic ways of
generating all linear inequalities

that are valid over the integral hull.

Given a polytope:

P = {x ∈ Rn : Ax ≥ b},
PZ = convexhull{x ∈ {0, 1}n : Ax ≥ b}.

Produce explicit nested polytopes:

P = P1 ⊇ P2 ⊇ · · · ⊇ Pn−1 ⊇ Pn = PZ



Sherali-Adams and Lasserre/Sums-of-Squares Hierarchies

Hierarchy:

Systematic ways of
generating all linear inequalities

that are valid over the integral hull.

Given a polytope:

P = {x ∈ Rn : Ax ≥ b},
PZ = convexhull{x ∈ {0, 1}n : Ax ≥ b}.

Produce explicit nested polytopes:

P = P1 ⊇ P2 ⊇ · · · ⊇ Pn−1 ⊇ Pn = PZ



Pk : Lasserre/Sums-of-squares (SOS) Hierarchy

Given linear inequalities

L1 ≥ 0, . . . , Lm ≥ 0

produce all linear inequalities of the form

Q0 +
m∑
j=1

LjQj +
n∑

i=1

(x2
i − xi )Qi = L ≥ 0

where

Qj =
∑
`∈I

Q2
j` with

and

deg(Q0), deg(LjQj), deg((x2
i − xi )Qi ) ≤ k.

Then:

Pk = {x ∈ Rn : L(x) ≥ 0 for each produced L ≥ 0}



Pk : Lasserre/Sums-of-squares (SOS) Hierarchy

Given linear inequalities

L1 ≥ 0, . . . , Lm ≥ 0

produce all linear inequalities of the form

Q0 +
m∑
j=1

LjQj +
n∑

i=1

(x2
i − xi )Qi = L ≥ 0

where

Qj =
∑
`∈I

Q2
j` with

and

deg(Q0), deg(LjQj), deg((x2
i − xi )Qi ) ≤ k.

Then:

Pk = {x ∈ Rn : L(x) ≥ 0 for each produced L ≥ 0}



Pk : Lasserre/Sums-of-squares (SOS) Hierarchy

Given linear inequalities

L1 ≥ 0, . . . , Lm ≥ 0

produce all linear inequalities of the form

Q0 +
m∑
j=1

LjQj +
n∑

i=1

(x2
i − xi )Qi = L ≥ 0

where

Qj =
∑
`∈I

Q2
j` with

and

deg(Q0), deg(LjQj), deg((x2
i − xi )Qi ) ≤ k.

Then:

Pk = {x ∈ Rn : L(x) ≥ 0 for each produced L ≥ 0}



Pk : Lasserre/Sums-of-squares (SOS) Hierarchy

Given linear inequalities

L1 ≥ 0, . . . , Lm ≥ 0

produce all linear inequalities of the form

Q0 +
m∑
j=1

LjQj +
n∑

i=1

(x2
i − xi )Qi = L ≥ 0

where

Qj =
∑
`∈I

Q2
j` with

and

deg(Q0), deg(LjQj), deg((x2
i − xi )Qi ) ≤ k.

Then:

Pk = {x ∈ Rn : L(x) ≥ 0 for each produced L ≥ 0}



Pk : Lasserre/Sums-of-squares (SOS) Hierarchy

Given linear inequalities

L1 ≥ 0, . . . , Lm ≥ 0

produce all linear inequalities of the form

Q0 +
m∑
j=1

LjQj +
n∑

i=1

(x2
i − xi )Qi = L ≥ 0

where

Qj =
∑
`∈I

Q2
j` with

and

deg(Q0), deg(LjQj), deg((x2
i − xi )Qi ) ≤ k.

Then:

Pk = {x ∈ Rn : L(x) ≥ 0 for each produced L ≥ 0}



Pk : Lasserre/Sums-of-squares (SOS) Hierarchy

Given linear inequalities

L1 ≥ 0, . . . , Lm ≥ 0

produce all linear inequalities of the form

Q0 +
m∑
j=1

LjQj +
n∑

i=1

(x2
i − xi )Qi = L ≥ 0

where

Qj =
∑
`∈I

Q2
j` with

and

deg(Q0), deg(LjQj), deg((x2
i − xi )Qi ) ≤ k.

Then:

Pk = {x ∈ Rn : L(x) ≥ 0 for each produced L ≥ 0}



Pk : Sherali-Adams (SA) Hierarchy

Given linear inequalities

L1 ≥ 0, . . . , Lm ≥ 0

produce all linear inequalities of the form

Q0 +
m∑
j=1

LjQj +
n∑

i=1

(x2
i − xi )Qi = L ≥ 0

where

Qi =
∑
`∈J

c`
∏
i∈A`

xi
∏
i∈B`

(1− xi ) with c` ≥ 0

and

deg(Q0), deg(LjQj), deg((x2
i − xi )Qi ) ≤ k.

Then:

Pk = {x ∈ Rn : L(x) ≥ 0 for each produced L ≥ 0}



Example: triangles in P3

For each triangle {u, v ,w} in G :

Q0+

(xu + xv − 1)Q1+

(xu + xw − 1)Q2+

(xv + xw − 1)Q3+

(x2
u − xu)Q4+

(x2
v − xv )Q5+

(x2
w − xw )Q6

= ?

(xu + xv + xw − 2).

Qi = ai +bixu + cixv +dixw + eixuxv + fixuxw + gixvxw +hixuxvxw



Solving Pk

Lift-and-project:

• Step 1: lift from Rn up to R(n+1)k and linearize the problem

• Step 2: project from R(n+1)k down to Rn

Proposition:

Optimization of linear functions over Pk

can be solved in time† mO(1)nO(k).

Proof:

1. for SA-Pk : by linear programming

2. for SOS-Pk : by semidefinite programming



An Important Open Problem

Define

sak fvc(G ): optimum fractional vertex cover of SA-Pk

sosk fvc(G ) : optimum fractional vertex cover of SOS-Pk

Open problem:

sup
G

vc(G )

sos4fvc(G )

?
< 2



An Important Open Problem

Define

sak fvc(G ): optimum fractional vertex cover of SA-Pk

sosk fvc(G ) : optimum fractional vertex cover of SOS-Pk

Open problem:

sup
G

vc(G )

sos4fvc(G )

?
< 2



What’s Known

Known (conditional hardness):

• 1.0001-approximating vc(G ) is NP-hard by PCP Theorem

• 1.36-approximating vc(G ) is NP-hard

• 2-approximating vc(G ) is NP-hard assuming UGC

Known (unconditional hardness):

• supG vc(G )/sak fvc(G ) = 2

• supG vc(G )/sdp-fvc(G ) = 2 for any k = no(1)

• variants: pentagonal, antipodal triangle, local hypermetric, ...

Gap examples:

Frankl-Rödl Graphs: FRn
γ = (Fn

2, {{x , y} : x + y ∈ An
γ}).

[Dinur, Safra, Khot, Regev, Kleinberg, Charikar, Hatami, Magen,

Georgiou, Lovasz, Arora, Alekhnovich, Pitassi; 2000’s]



What’s Known

Known (conditional hardness):

• 1.0001-approximating vc(G ) is NP-hard by PCP Theorem

• 1.36-approximating vc(G ) is NP-hard

• 2-approximating vc(G ) is NP-hard assuming UGC

Known (unconditional hardness):

• supG vc(G )/sak fvc(G ) = 2

• supG vc(G )/sdp-fvc(G ) = 2 for any k = no(1)

• variants: pentagonal, antipodal triangle, local hypermetric, ...

Gap examples:

Frankl-Rödl Graphs: FRn
γ = (Fn

2, {{x , y} : x + y ∈ An
γ}).

[Dinur, Safra, Khot, Regev, Kleinberg, Charikar, Hatami, Magen,

Georgiou, Lovasz, Arora, Alekhnovich, Pitassi; 2000’s]



What’s Known

Known (conditional hardness):

• 1.0001-approximating vc(G ) is NP-hard by PCP Theorem

• 1.36-approximating vc(G ) is NP-hard

• 2-approximating vc(G ) is NP-hard assuming UGC

Known (unconditional hardness):

• supG vc(G )/sak fvc(G ) = 2

• supG vc(G )/sdp-fvc(G ) = 2 for any k = no(1)

• variants: pentagonal, antipodal triangle, local hypermetric, ...

Gap examples:

Frankl-Rödl Graphs: FRn
γ = (Fn

2, {{x , y} : x + y ∈ An
γ}).

[Dinur, Safra, Khot, Regev, Kleinberg, Charikar, Hatami, Magen,

Georgiou, Lovasz, Arora, Alekhnovich, Pitassi; 2000’s]



What’s Known

Known (conditional hardness):

• 1.0001-approximating vc(G ) is NP-hard by PCP Theorem

• 1.36-approximating vc(G ) is NP-hard

• 2-approximating vc(G ) is NP-hard assuming UGC

Known (unconditional hardness):

• supG vc(G )/sak fvc(G ) = 2

• supG vc(G )/sdp-fvc(G ) = 2 for any k = no(1)

• variants: pentagonal, antipodal triangle, local hypermetric, ...

Gap examples:

Frankl-Rödl Graphs: FRn
γ = (Fn

2, {{x , y} : x + y ∈ An
γ}).

[Dinur, Safra, Khot, Regev, Kleinberg, Charikar, Hatami, Magen,

Georgiou, Lovasz, Arora, Alekhnovich, Pitassi; 2000’s]



What’s Known

Known (conditional hardness):

• 1.0001-approximating vc(G ) is NP-hard by PCP Theorem

• 1.36-approximating vc(G ) is NP-hard

• 2-approximating vc(G ) is NP-hard assuming UGC

Known (unconditional hardness):

• supG vc(G )/sak fvc(G ) = 2

• supG vc(G )/sdp-fvc(G ) = 2 for any k = no(1)

• variants: pentagonal, antipodal triangle, local hypermetric, ...

Gap examples:

Frankl-Rödl Graphs: FRn
γ = (Fn

2, {{x , y} : x + y ∈ An
γ}).

[Dinur, Safra, Khot, Regev, Kleinberg, Charikar, Hatami, Magen,

Georgiou, Lovasz, Arora, Alekhnovich, Pitassi; 2000’s]



What’s Known

Known (conditional hardness):

• 1.0001-approximating vc(G ) is NP-hard by PCP Theorem

• 1.36-approximating vc(G ) is NP-hard

• 2-approximating vc(G ) is NP-hard assuming UGC

Known (unconditional hardness):

• supG vc(G )/sak fvc(G ) = 2

• supG vc(G )/sdp-fvc(G ) = 2 for any k = no(1)

• variants: pentagonal, antipodal triangle, local hypermetric, ...

Gap examples:

Frankl-Rödl Graphs: FRn
γ = (Fn

2, {{x , y} : x + y ∈ An
γ}).

[Dinur, Safra, Khot, Regev, Kleinberg, Charikar, Hatami, Magen,

Georgiou, Lovasz, Arora, Alekhnovich, Pitassi; 2000’s]



What’s Known

Known (conditional hardness):

• 1.0001-approximating vc(G ) is NP-hard by PCP Theorem

• 1.36-approximating vc(G ) is NP-hard

• 2-approximating vc(G ) is NP-hard assuming UGC

Known (unconditional hardness):

• supG vc(G )/sak fvc(G ) = 2

• supG vc(G )/sdp-fvc(G ) = 2 for any k = no(1)

• variants: pentagonal, antipodal triangle, local hypermetric, ...

Gap examples:

Frankl-Rödl Graphs: FRn
γ = (Fn

2, {{x , y} : x + y ∈ An
γ}).

[Dinur, Safra, Khot, Regev, Kleinberg, Charikar, Hatami, Magen,

Georgiou, Lovasz, Arora, Alekhnovich, Pitassi; 2000’s]



What’s Known

Known (conditional hardness):

• 1.0001-approximating vc(G ) is NP-hard by PCP Theorem

• 1.36-approximating vc(G ) is NP-hard

• 2-approximating vc(G ) is NP-hard assuming UGC

Known (unconditional hardness):

• supG vc(G )/sak fvc(G ) = 2

• supG vc(G )/sdp-fvc(G ) = 2 for any k = no(1)

• variants: pentagonal, antipodal triangle, local hypermetric, ...

Gap examples:

Frankl-Rödl Graphs: FRn
γ = (Fn

2, {{x , y} : x + y ∈ An
γ}).

[Dinur, Safra, Khot, Regev, Kleinberg, Charikar, Hatami, Magen,

Georgiou, Lovasz, Arora, Alekhnovich, Pitassi; 2000’s]



What’s Known

Known (conditional hardness):

• 1.0001-approximating vc(G ) is NP-hard by PCP Theorem

• 1.36-approximating vc(G ) is NP-hard

• 2-approximating vc(G ) is NP-hard assuming UGC

Known (unconditional hardness):

• supG vc(G )/sak fvc(G ) = 2

• supG vc(G )/sdp-fvc(G ) = 2 for any k = no(1)

• variants: pentagonal, antipodal triangle, local hypermetric, ...

Gap examples:

Frankl-Rödl Graphs: FRn
γ = (Fn

2, {{x , y} : x + y ∈ An
γ}).

[Dinur, Safra, Khot, Regev, Kleinberg, Charikar, Hatami, Magen,

Georgiou, Lovasz, Arora, Alekhnovich, Pitassi; 2000’s]



Part II

COUNTING LOGIC



Bounded-Variable Logics

First-order logic of graphs:

E (x , y) : x and y are joined by an edge
x = y : x and y denote the same vertex
¬φ : negation of φ holds
φ ∧ ψ : both φ and ψ hold
∃x(φ) : there exists a vertex x that satisfies φ

First-order logic with k variables (or width k) :

Lk : collection of formulas for which
all subformulas have at most k free variables.



Bounded-Variable Logics

First-order logic of graphs:

E (x , y) : x and y are joined by an edge
x = y : x and y denote the same vertex
¬φ : negation of φ holds
φ ∧ ψ : both φ and ψ hold
∃x(φ) : there exists a vertex x that satisfies φ

First-order logic with k variables (or width k) :

Lk : collection of formulas for which
all subformulas have at most k free variables.



Example

Paths:

P1(x , y) := E (x , y)

P2(x , y) := ∃z1(E (x , z1) ∧ P1(z1, y))

P3(x , y) := ∃z2(E (x , z2) ∧ P2(z2, y))

...

Pi+1(x , y) := ∃zi (E (x , zi ) ∧ Pi (zi , y))

...

Bipartiteness of n-vertex graphs:

∀x(¬P3(x , x) ∧ ¬P5(x , x) ∧ · · · ∧ ¬P2dn/2e−1(x , x)).



Example

Paths:

P1(x , y) := E (x , y)

P2(x , y) := ∃z1(E (x , z1) ∧ P1(z1, y))

P3(x , y) := ∃z2(E (x , z2) ∧ P2(z2, y))

...

Pi+1(x , y) := ∃zi (E (x , zi ) ∧ Pi (zi , y))

...

Bipartiteness of n-vertex graphs:

∀x(¬P3(x , x) ∧ ¬P5(x , x) ∧ · · · ∧ ¬P2dn/2e−1(x , x)).



Counting quantifiers

Counting witnesses:

∃≥ix(φ(x)) : there are at least i vertices x that satisfy φ(x).

Counting logic with k variables (or counting width k):

C k : collection of formulas with counting quantifiers
with all subformulas with at most k free variables.



Counting quantifiers

Counting witnesses:

∃≥ix(φ(x)) : there are at least i vertices x that satisfy φ(x).

Counting logic with k variables (or counting width k):

C k : collection of formulas with counting quantifiers
with all subformulas with at most k free variables.



Indistinguishability / Elementary equivalence

C k-equivalence:

G ≡C
k H : G and H satisfy the same sentences of C k .



Combinatorial characterization of C 2-equivalence

Color-refinement:

1. color each vertex black,

2. color each vertex by number of neighbors in each color-class,

3. repeat 2 until color-classes don’t split any more.

Notation:

G ≡R H : G and H produce the same coloring (up to order).

Theorem [Immerman and Lander]

G ≡C
2 H if and only if G ≡R H



Combinatorial characterization of C 2-equivalence

Color-refinement:

1. color each vertex black,

2. color each vertex by number of neighbors in each color-class,

3. repeat 2 until color-classes don’t split any more.

Notation:

G ≡R H : G and H produce the same coloring (up to order).

Theorem [Immerman and Lander]

G ≡C
2 H if and only if G ≡R H



Combinatorial characterization of C 2-equivalence

Color-refinement:

1. color each vertex black,

2. color each vertex by number of neighbors in each color-class,

3. repeat 2 until color-classes don’t split any more.

Notation:

G ≡R H : G and H produce the same coloring (up to order).

Theorem [Immerman and Lander]

G ≡C
2 H if and only if G ≡R H



LP characterization of color-refinement

Isomorphisms:

1. G ∼= H,
2. there exists permutation matrix P such that PTGP = H,
3. there exists permutation matrix P such that GP = PH.

LP relaxation of ∼=:

G ≡F H : there exists doubly stochastic S such that GS = SH.

iso(G ,H) : GS = SH

Se = eTS = e

S ≥ 0.

Theorem [Tinhofer]

G ≡R H if and only if G ≡F H.



LP characterization of color-refinement

Isomorphisms:

1. G ∼= H,
2. there exists permutation matrix P such that PTGP = H,
3. there exists permutation matrix P such that GP = PH.

LP relaxation of ∼=:

G ≡F H : there exists doubly stochastic S such that GS = SH.

iso(G ,H) : GS = SH

Se = eTS = e

S ≥ 0.

Theorem [Tinhofer]

G ≡R H if and only if G ≡F H.



LP characterization of color-refinement

Isomorphisms:

1. G ∼= H,
2. there exists permutation matrix P such that PTGP = H,
3. there exists permutation matrix P such that GP = PH.

LP relaxation of ∼=:

G ≡F H : there exists doubly stochastic S such that GS = SH.

iso(G ,H) : GS = SH

Se = eTS = e

S ≥ 0.

Theorem [Tinhofer]

G ≡R H if and only if G ≡F H.



Higher levels of SA Hierarchy

SA-levels of fractional isomorphism:

G ≡SA
k H : the degree-k SA level of iso(G ,H) is feasible.

Theorem [AA and Maneva 2013]:

G ≡SA
k H =⇒ G ≡C

k H =⇒ G ≡SA
k−1 H.

Moreover:

1. This interleaving is strict for k > 2 [Grohe-Otto 2015]

2. A combined LP characterizes ≡C
k exactly [Grohe-Otto 2015]

3. Alternative (and independent) formulation by [Malkin 2014]



Higher levels of SA Hierarchy

SA-levels of fractional isomorphism:

G ≡SA
k H : the degree-k SA level of iso(G ,H) is feasible.

Theorem [AA and Maneva 2013]:

G ≡SA
k H =⇒ G ≡C

k H =⇒ G ≡SA
k−1 H.

Moreover:

1. This interleaving is strict for k > 2 [Grohe-Otto 2015]

2. A combined LP characterizes ≡C
k exactly [Grohe-Otto 2015]

3. Alternative (and independent) formulation by [Malkin 2014]



Higher levels of SA Hierarchy

SA-levels of fractional isomorphism:

G ≡SA
k H : the degree-k SA level of iso(G ,H) is feasible.

Theorem [AA and Maneva 2013]:

G ≡SA
k H =⇒ G ≡C

k H =⇒ G ≡SA
k−1 H.

Moreover:

1. This interleaving is strict for k > 2 [Grohe-Otto 2015]

2. A combined LP characterizes ≡C
k exactly [Grohe-Otto 2015]

3. Alternative (and independent) formulation by [Malkin 2014]



Higher Levels of SOS Hierarchy

SA and SOS-levels of fractional isomorphism:

1. G ≡SA
k H : the degree-k SA level of iso(G ,H) is feasible.

2. G ≡SOS
k H : the degree-k SOS level of iso(G ,H) is feasible.

Theorem [AA and Ochremiak 2018]: There exists c > 1 such that:

G ≡SA
ck H =⇒ G ≡SOS

k H =⇒ G ≡SA
k H.



Higher Levels of SOS Hierarchy

SA and SOS-levels of fractional isomorphism:

1. G ≡SA
k H : the degree-k SA level of iso(G ,H) is feasible.

2. G ≡SOS
k H : the degree-k SOS level of iso(G ,H) is feasible.

Theorem [AA and Ochremiak 2018]: There exists c > 1 such that:

G ≡SA
ck H =⇒ G ≡SOS

k H =⇒ G ≡SA
k H.



Part III

APPLICATIONS



Local LPs (and SDPs)

Basic k-local LPs:

1. one variable xu for each k-tuple u ∈ V k ,

2. one inequality
∑

u∈V k au,v · xu ≥ bv for every k-tuple v ∈ V k ,

3. coefficients au,v depend only on the type atpG (u, v),

4. coefficients bv depend only on the type atpG (v).

k-local LP:

Union of basic k-local LPs
with coefficients at(x,y) and bt(y) indexed
by isomorphism types t(x, y) and t(y).



Local LPs (and SDPs)

Basic k-local LPs:

1. one variable xu for each k-tuple u ∈ V k ,

2. one inequality
∑

u∈V k au,v · xu ≥ bv for every k-tuple v ∈ V k ,

3. coefficients au,v depend only on the type atpG (u, v),

4. coefficients bv depend only on the type atpG (v).

k-local LP:

Union of basic k-local LPs
with coefficients at(x,y) and bt(y) indexed
by isomorphism types t(x, y) and t(y).



Example 1: fractional vertex cover

Fractional vertex cover: Given a graph G = (V ,E )

∑
u∈V xu ≤W

xu + xv ≥ 1 for every (u, v) ∈ E ,

xu ≥ 0 for every u ∈ V .

1. Objective function: basic 1-local LP

2. Edge constraint: basic 2-local LP

3. Positive constraint: basic 1-local LP



Example 1: fractional vertex cover

Fractional vertex cover: Given a graph G = (V ,E )

∑
u∈V xu ≤W

xu + xv ≥ 1 for every (u, v) ∈ E ,

xu ≥ 0 for every u ∈ V .

1. Objective function: basic 1-local LP

2. Edge constraint: basic 2-local LP

3. Positive constraint: basic 1-local LP



Example 2: fractional matching polytope

Fractional matching polytope: Given a graph G = (V ,E )∑
uv∈E xuv ≥W

xuv = xvu for every u, v ∈ V∑
v∈V xuv ≤ 1 for every u ∈ V

0 ≤ xuv ≤ 1 for every u, v ∈ V

1. Objective function: basic 2-local LP

2. Symmetry constraint: two basic 2-local LPs

3. Degree-at-most-one constraint: basic 2-local LP



Example 2: fractional matching polytope

Fractional matching polytope: Given a graph G = (V ,E )∑
uv∈E xuv ≥W

xuv = xvu for every u, v ∈ V∑
v∈V xuv ≤ 1 for every u ∈ V

0 ≤ xuv ≤ 1 for every u, v ∈ V

1. Objective function: basic 2-local LP

2. Symmetry constraint: two basic 2-local LPs

3. Degree-at-most-one constraint: basic 2-local LP



Example 3: metric polytope

Metric polytope: Given a graph G = (V ,E )

1
2

∑
uv∈E xuv ≥W

xuv = xvu for every u, v ∈ V

xuw ≤ xuv + xvw for every u, v ,w ∈ V

xuv + xvw + xuw ≤ 2 for every u, v ,w ∈ V

0 ≤ xuv ≤ 1 for every u, v ∈ V

1. Objective function: basic 2-local LP

2. Symmetry constraint: two basic 2-local LPs

3. Triangle inequality: basic 3-local LP

4. Perimetric inequality: basic 3-local LP

5. Unit cube constraint: two basic 2-local LPs



Preservation of local LPs and SDPs

Theorem Let P be a k-local LP or SDP.

1. LP: If G ≡C
k H, then P(G ) is feasible iff P(H) is feasible.

2. SDP: If G ≡C
ck H, then P(G ) is feasible iff P(H) is feasible.

’Just do it’ proof for LP:

1. Let {xu} be a feasible solution for P(G ).

2. Let {Xu,v} be a feasible solution for sak iso(G ,H).

3. Define:
yv :=

∑
u∈G k

Xu,v · xu.

4. Check that {yv} is a feasible solution for P(H).



Preservation of local LPs and SDPs

Theorem Let P be a k-local LP or SDP.

1. LP: If G ≡C
k H, then P(G ) is feasible iff P(H) is feasible.

2. SDP: If G ≡C
ck H, then P(G ) is feasible iff P(H) is feasible.

’Just do it’ proof for LP:

1. Let {xu} be a feasible solution for P(G ).

2. Let {Xu,v} be a feasible solution for sak iso(G ,H).

3. Define:
yv :=

∑
u∈G k

Xu,v · xu.

4. Check that {yv} is a feasible solution for P(H).



More examples of local LPs

More examples:

1. maximum flows (2-local)

2. if P is r -local LP, then sak -P is rk-local LP.

3. if P is r -local LP, then sosk -P is rk-local SDP.



Back to integrality gaps for vertex cover

Goal:

For large k and every ε > 0 find graphs G and H such that

1. G ≡C
c·2k H

2. vc(G ) ≥ (2− ε)vc(H)

It would follow that:

sup
G

vc(G )

sosk fvc(G )
= 2

Proof:

vc(G ) ≥ (2− ε)vc(H) by 2.
≥ (2− ε)sosk fvc(H) obvious
≥ (2− ε)sosk fvc(G ) by 1. and 2-locality



Back to integrality gaps for vertex cover

Goal:

For large k and every ε > 0 find graphs G and H such that

1. G ≡C
c·2k H

2. vc(G ) ≥ (2− ε)vc(H)

It would follow that:

sup
G

vc(G )

sosk fvc(G )
= 2

Proof:

vc(G ) ≥ (2− ε)vc(H) by 2.
≥ (2− ε)sosk fvc(H) obvious
≥ (2− ε)sosk fvc(G ) by 1. and 2-locality



Back to integrality gaps for vertex cover

Goal:

For large k and every ε > 0 find graphs G and H such that

1. G ≡C
c·2k H

2. vc(G ) ≥ (2− ε)vc(H)

It would follow that:

sup
G

vc(G )

sosk fvc(G )
= 2

Proof:

vc(G ) ≥ (2− ε)vc(H) by 2.
≥ (2− ε)sosk fvc(H) obvious
≥ (2− ε)sosk fvc(G ) by 1. and 2-locality



GOAL

For large k and every ε > 0 find graphs G and H such that

1. G ≡C
c·2k H

2. vc(G ) ≥ (2− ε)vc(H)



A weak (easy) case: k = 1 with gap = 2

Choose:

G = any d-regular expander graph (i.e., λ2(G )� λ1(G )),
H = any d-regular bipartite graph.

Then:

vc(G ) = (1− ε)n by expansion
vc(H) = n/2 by bipartition
G ≡R H by regularity
G ≡C

2 H by Tinhofer’s Theorem

Tight in two ways:

G 6≡C
3 H bipartiteness is C 3-definable,

G ≡C
2 H =⇒ vc(G ) ≤ 2vc(H) [AA-Dawar 2018]



A weak (easy) case: k = 1 with gap = 2

Choose:

G = any d-regular expander graph (i.e., λ2(G )� λ1(G )),
H = any d-regular bipartite graph.

Then:

vc(G ) = (1− ε)n by expansion
vc(H) = n/2 by bipartition
G ≡R H by regularity
G ≡C

2 H by Tinhofer’s Theorem

Tight in two ways:

G 6≡C
3 H bipartiteness is C 3-definable,

G ≡C
2 H =⇒ vc(G ) ≤ 2vc(H) [AA-Dawar 2018]



A weak (easy) case: k = 1 with gap = 2

Choose:

G = any d-regular expander graph (i.e., λ2(G )� λ1(G )),
H = any d-regular bipartite graph.

Then:

vc(G ) = (1− ε)n by expansion
vc(H) = n/2 by bipartition
G ≡R H by regularity
G ≡C

2 H by Tinhofer’s Theorem

Tight in two ways:

G 6≡C
3 H bipartiteness is C 3-definable,

G ≡C
2 H =⇒ vc(G ) ≤ 2vc(H) [AA-Dawar 2018]



A different weak (harder) case: k = Ω(n) but gap = 1.08

Theorem [AA-Dawar 2018]

There exist graphs Gn and Hn such that

1. Gn ≡C
Ω(n) Hn

2. vc(Gn) ≥ 1.08 · vc(Hn)



Part IV

PROOF INGREDIENTS



1/3: Locally consistent systems of linear equations

Ingredient 1: A linear system Ax = b over F2 where:

• A ∈ Fm×n
2 and b ∈ Fn

2

• every row of A has at most three 1’s

• every subset of εm equations has at least δn unique variables

• every candidate solution satisfies at most 1
2 + ε equations

Probabilistic construction:

1. set m = cn for a large constant c = c(ε)

2. choose three ones uniformly at random in each row of A

3. choose b uniformly at random in Fn
2.

Half-deterministic construction:

1. set m = cn for a large constrant c = c(ε)

2. let A be incidence matrix of bipartite expander

3. choose b uniformly at random in Fn
2.



1/3: Locally consistent systems of linear equations

Ingredient 1: A linear system Ax = b over F2 where:

• A ∈ Fm×n
2 and b ∈ Fn

2

• every row of A has at most three 1’s

• every subset of εm equations has at least δn unique variables

• every candidate solution satisfies at most 1
2 + ε equations

Probabilistic construction:

1. set m = cn for a large constant c = c(ε)

2. choose three ones uniformly at random in each row of A

3. choose b uniformly at random in Fn
2.

Half-deterministic construction:

1. set m = cn for a large constrant c = c(ε)

2. let A be incidence matrix of bipartite expander

3. choose b uniformly at random in Fn
2.



1/3: Locally consistent systems of linear equations

Ingredient 1: A linear system Ax = b over F2 where:

• A ∈ Fm×n
2 and b ∈ Fn

2

• every row of A has at most three 1’s

• every subset of εm equations has at least δn unique variables

• every candidate solution satisfies at most 1
2 + ε equations

Probabilistic construction:

1. set m = cn for a large constant c = c(ε)

2. choose three ones uniformly at random in each row of A

3. choose b uniformly at random in Fn
2.

Half-deterministic construction:

1. set m = cn for a large constrant c = c(ε)

2. let A be incidence matrix of bipartite expander

3. choose b uniformly at random in Fn
2.



1/3: Locally consistent systems of linear equations

Ingredient 1: A linear system Ax = b over F2 where:

• A ∈ Fm×n
2 and b ∈ Fn

2

• every row of A has at most three 1’s

• every subset of εm equations has at least δn unique variables

• every candidate solution satisfies at most 1
2 + ε equations

Probabilistic construction:

1. set m = cn for a large constant c = c(ε)

2. choose three ones uniformly at random in each row of A

3. choose b uniformly at random in Fn
2.

Half-deterministic construction:

1. set m = cn for a large constrant c = c(ε)

2. let A be incidence matrix of bipartite expander

3. choose b uniformly at random in Fn
2.



1/3: Locally consistent systems of linear equations

Ingredient 1: A linear system Ax = b over F2 where:

• A ∈ Fm×n
2 and b ∈ Fn

2

• every row of A has at most three 1’s

• every subset of εm equations has at least δn unique variables

• every candidate solution satisfies at most 1
2 + ε equations

Probabilistic construction:

1. set m = cn for a large constant c = c(ε)

2. choose three ones uniformly at random in each row of A

3. choose b uniformly at random in Fn
2.

Half-deterministic construction:

1. set m = cn for a large constrant c = c(ε)

2. let A be incidence matrix of bipartite expander

3. choose b uniformly at random in Fn
2.



1/3: Locally consistent systems of linear equations

Ingredient 1: A linear system Ax = b over F2 where:

• A ∈ Fm×n
2 and b ∈ Fn

2

• every row of A has at most three 1’s

• every subset of εm equations has at least δn unique variables

• every candidate solution satisfies at most 1
2 + ε equations

Probabilistic construction:

1. set m = cn for a large constant c = c(ε)

2. choose three ones uniformly at random in each row of A

3. choose b uniformly at random in Fn
2.

Half-deterministic construction:

1. set m = cn for a large constrant c = c(ε)

2. let A be incidence matrix of bipartite expander

3. choose b uniformly at random in Fn
2.



1/3: Locally consistent systems of linear equations

Ingredient 1: A linear system Ax = b over F2 where:

• A ∈ Fm×n
2 and b ∈ Fn

2

• every row of A has at most three 1’s

• every subset of εm equations has at least δn unique variables

• every candidate solution satisfies at most 1
2 + ε equations

Probabilistic construction:

1. set m = cn for a large constant c = c(ε)

2. choose three ones uniformly at random in each row of A

3. choose b uniformly at random in Fn
2.

Half-deterministic construction:

1. set m = cn for a large constrant c = c(ε)

2. let A be incidence matrix of bipartite expander

3. choose b uniformly at random in Fn
2.



2/3: Indistinguishable systems of linear equations

Ingredient 2: A pair of linear systems S0 and S1 over F2 where:

1. S0 ≡C
Ω(n) S1

2. every candidate solution for S0 satisfies at most 3
4 equations

3. some solution solution exists for S1

Construction of S0:

1. start with Ax = b from previous section

2. duplicate each variable x 7→ (x (0), x (1))

3. replace each equation xi + xj + xk = b by 8 equations

x
(u)
i + x

(v)
j + x

(w)
k = b + u + v + w

Construction of S1:

1. same but start with Ax = 0 (the homogeneous system)



2/3: Indistinguishable systems of linear equations

Ingredient 2: A pair of linear systems S0 and S1 over F2 where:

1. S0 ≡C
Ω(n) S1

2. every candidate solution for S0 satisfies at most 3
4 equations

3. some solution solution exists for S1

Construction of S0:

1. start with Ax = b from previous section

2. duplicate each variable x 7→ (x (0), x (1))

3. replace each equation xi + xj + xk = b by 8 equations

x
(u)
i + x

(v)
j + x

(w)
k = b + u + v + w

Construction of S1:

1. same but start with Ax = 0 (the homogeneous system)



2/3: Indistinguishable systems of linear equations

Ingredient 2: A pair of linear systems S0 and S1 over F2 where:

1. S0 ≡C
Ω(n) S1

2. every candidate solution for S0 satisfies at most 3
4 equations

3. some solution solution exists for S1

Construction of S0:

1. start with Ax = b from previous section

2. duplicate each variable x 7→ (x (0), x (1))

3. replace each equation xi + xj + xk = b by 8 equations

x
(u)
i + x

(v)
j + x

(w)
k = b + u + v + w

Construction of S1:

1. same but start with Ax = 0 (the homogeneous system)



2/3: Indistinguishable systems of linear equations

Ingredient 2: A pair of linear systems S0 and S1 over F2 where:

1. S0 ≡C
Ω(n) S1

2. every candidate solution for S0 satisfies at most 3
4 equations

3. some solution solution exists for S1

Construction of S0:

1. start with Ax = b from previous section

2. duplicate each variable x 7→ (x (0), x (1))

3. replace each equation xi + xj + xk = b by 8 equations

x
(u)
i + x

(v)
j + x

(w)
k = b + u + v + w

Construction of S1:

1. same but start with Ax = 0 (the homogeneous system)



2/3: Indistinguishable systems of linear equations

Ingredient 2: A pair of linear systems S0 and S1 over F2 where:

1. S0 ≡C
Ω(n) S1

2. every candidate solution for S0 satisfies at most 3
4 equations

3. some solution solution exists for S1

Construction of S0:

1. start with Ax = b from previous section

2. duplicate each variable x 7→ (x (0), x (1))

3. replace each equation xi + xj + xk = b by 8 equations

x
(u)
i + x

(v)
j + x

(w)
k = b + u + v + w

Construction of S1:

1. same but start with Ax = 0 (the homogeneous system)



2/3: Indistinguishable systems of linear equations

Ingredient 2: A pair of linear systems S0 and S1 over F2 where:

1. S0 ≡C
Ω(n) S1

2. every candidate solution for S0 satisfies at most 3
4 equations

3. some solution solution exists for S1

Construction of S0:

1. start with Ax = b from previous section

2. duplicate each variable x 7→ (x (0), x (1))

3. replace each equation xi + xj + xk = b by 8 equations

x
(u)
i + x

(v)
j + x

(w)
k = b + u + v + w

Construction of S1:

1. same but start with Ax = 0 (the homogeneous system)



3/3: Reduction to vertex cover

Ingredient 3: A pair of graphs G0 and G1 where:

1. G0 ≡C
Ω(n) G1

2. vc(G0) ≥ 26m

3. vc(G1) ≤ 24m

Construction:

a standard reduction from F2-SAT to vertex cover



3/3: Reduction to vertex cover

Ingredient 3: A pair of graphs G0 and G1 where:

1. G0 ≡C
Ω(n) G1

2. vc(G0) ≥ 26m

3. vc(G1) ≤ 24m

Construction:

a standard reduction from F2-SAT to vertex cover



Open Problem 1

sup
G

vc(G )

sos4fvc(G )
> 1.36?



Open Problem 2

find strongly regular graphs G and H with same parameters
so that vc(G ) ≥ (2− ε)vc(H).



Acknowledgments

ERC-2014-CoG 648276 (AUTAR) EU.


	LINEAR PROGRAMMING RELAXATIONS
	COUNTING LOGIC
	APPLICATIONS
	PROOF INGREDIENTS

