On Continuous and Combinatorial Relaxations of Graph Isomorphism

Albert Atserias
Universitat Politècnica de Catalunya
Barcelona, Catalonia, EU

Based on joint work with
Elitza Maneva (University of Barcelona)
Indistinguishability
Overview:

1. Iterated degree sequences and Weisfeiler-Lehman algorithm
2. Fractional isomorphisms and Sherali-Adams relaxations
3. Transfer Lemma
4. Indistinguishability in counting logics
5. Applications
Part I

ITERATED DEGREE SEQUENCES
Iterated degree sequences

Let $G = (V, E)$ be a graph.
Use u to denote a vertex, and $N_G(u)$ for its neighborhood.

Start at the degree sequence:

$$d_1(u) := |N_G(u)|,$$
$$d_1(G) := \{ \{ d_1(u) : u \in V \} \}.$$

Iterate:

$$d_{i+1}(u) := \{ \{ d_i(v) : v \in N_G(u) \} \},$$
$$d_{i+1}(G) := \{ \{ d_{i+1}(u) : u \in V \} \}.$$

Take the limit:

$$D(G) := (d_1(G), d_2(G), d_3(G), \ldots).$$
Indistinguishability by iterated degree sequences

Definition:

\[G \cong_D H \text{ iff } D(G) = D(H). \]
Indistinguishability by iterated degree sequences

\cong_D is strong...

Theorem [Babai-Erdös-Selkow 80]:

Let $G = G(n, 1/2)$ be drawn randomly. Then, a.s. as $n \to \infty$, for every H with n vertices we have $G \cong_D H$ iff $G \cong H$.
Indistinguishability by iterated degree sequences

\[\cong_D \text{ is strong...} \]

Theorem [Babai-Erdős-Selkow 80]:

Let \(G = G(n, 1/2) \) be drawn randomly. Then, a.s. as \(n \to \infty \), for every \(H \) with \(n \) vertices we have \(G \cong_D H \) iff \(G \cong H \).

But also **weak...**

Fact [Obvious]:

If \(G \) and \(H \) are both \(d \)-regular, then \(G \cong_D H \).
Types of k-tuples

For a k-tuple of vertices $\overline{u} = (u_1, \ldots, u_k) \in V^k$,

Define:

$$tp_G(\overline{u}) = \text{“complete information about adjacencies, non-adjacencies, equalities and non-equalities between the components } u_1, \ldots, u_k \text{”}.$$

Example:

$$tp_G(u_1, u_2, u_3) = \{ \overline{E}(1, 1), E(1, 2), E(1, 3), \overline{E}(2, 1), \overline{E}(2, 2), \overline{E}(3, 2), E(3, 1), \overline{E}(3, 2), \overline{E}(3, 3), 1 \neq 2, 1 \neq 3, 2 = 3 \}$$
Start at the type sequence:

\[\ell_0(\overline{u}) := \text{tp}_G(\overline{u}), \]
\[\ell_0(G) := \{ \{ \ell_0(\overline{u}) : \overline{u} \in V^k \} \}. \]

Iterate:

\[\ell_{i+1}(\overline{u}) := \{ \{ \text{tp}_G(\overline{u}v), \ell_i(\overline{u}[1/v]), \ldots, \ell_i(\overline{u}[k/v]) : v \in V \} \}, \]
\[\ell_{i+1}(G) := \{ \{ \ell_{i+1}(\overline{u}) : \overline{u} \in V^k \} \}. \]

Take the limit:

\[D^k(G) := (\ell_0(G), \ell_1(G), \ldots). \]
Definition:

\[G \cong^{k}_{\text{WL}} H \text{ iff } D^{k}(G) = D^{k}(H). \]
Indistinguishability by k-dim WL

\cong^k_{WL} is strong...

At least as strong as vertex-refinement:

$$G \not\cong_D H \implies G \not\cong^1_{WL} H$$

Theorem [Kucera 87]:

Let $G = G_{\text{reg}}(n, d)$ be drawn randomly. Then, a.s. as $n \to \infty$, for every H with n vertices we have $G \cong^2_{WL} H$ iff $G \cong H$.

Indistinguishability by k-dim WL

\cong^k_{WL} is strong...

At least as strong as vertex-refinement:

$$G \not\cong^D H \implies G \not\cong^1_{\text{WL}} H$$

Theorem [Kucera 87]:

Let $G = G_{\text{reg}}(n, d)$ be drawn randomly. Then, a.s. as $n \to \infty$, for every H with n vertices we have $G \cong^2_{\text{WL}} H$ iff $G \cong H$.

Relevant note:

\cong^k_{WL} is decidable in time $n^{O(k)}$.
Is k-dim WL weak at all?

Truth is:

For years no two \cong_{WL}^{37}-indistinguishable graphs were known...
It was even *conjectured* that no such graphs existed...
Is k-dim WL weak at all?

Truth is:

For years no two \cong_{WL}^{37}-indistinguishable graphs were known...
It was even conjectured that no such graphs existed...

Theorem [Cai-Fürer-Immerman 92]:

There exists explicitly defined graphs G_n and H_n, with n vertices each and maximum degree 3, such that

$$G_n \cong_{\text{WL}}^{\Omega(n)} H_n \quad \text{yet} \quad G_n \not\cong H_n.$$

Note:

Reasoning about \cong_{WL}^{k} requires an excursion into finite model theory (more on this later).
CFI-construction

1. Start with a 3-regular graph G without $\Omega(n)$-separators.
CFI-construction

1. Start with a 3-regular graph G without $\Omega(n)$-separators.

2. Replace each vertex by gadget:
CFI-construction

1. Start with a 3-regular graph G without $\Omega(n)$-separators.

2. Replace each vertex by gadget:

3. Let G_n be the result and let $H_n = G_n + \text{“one flip”}$.
Part II

SHERALI-ADAMS RELAXATIONS
Adjacency matrices

Let $G = (V^G, E^G)$ and $H = (V^H, E^H)$ be graphs.

Say $V^G = V^H = \{1, \ldots, n\}$.

Let A and B be their adjacency matrices.

\[
A = \begin{pmatrix}
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0
\end{pmatrix}
\]

\[
B = \begin{pmatrix}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0
\end{pmatrix}
\]
Permutation matrices and isomorphisms

A permutation matrix P is a real matrix such that

$$
\sum_{j=1}^{n} P_{ij} = 1 \quad \text{for every } i \in \{1, \ldots, n\},
$$

$$
\sum_{i=1}^{n} P_{ij} = 1 \quad \text{for every } j \in \{1, \ldots, n\},
$$

$$
P_{ij} \in \{0, 1\} \quad \text{for every } i, j \in \{1, \ldots, n\}.
$$

Properties:

- $P^T P = I$,
- $A \mapsto AP$: permutes the columns of A,
- $A \mapsto P^T A$: permutes the rows of A,
- $A \mapsto P^T AP$: permutes the vertices.

Fact: The following are equivalent:

1. $G \cong H$,
2. there exists $P \in \mathcal{P}_n$ such that $P^T AP = B$,
3. there exists $P \in \mathcal{P}_n$ such that $AP = PB$.
A doubly stochastic matrix S is a real matrix such that:

\[
\sum_{j=1}^{n} S_{ij} = 1 \quad \text{for every } i \in \{1, \ldots, n\},
\]
\[
\sum_{i=1}^{n} S_{ij} = 1 \quad \text{for every } j \in \{1, \ldots, n\},
\]
\[
S_{ij} \geq 0 \quad \text{for every } i, j \in \{1, \ldots, n\}.
\]

Relaxation of isomorphism:

- Replace “there exists $P \in \mathcal{P}_n$ such that $AP = PB$”
- by this “there exists $S \in S_n$ such that $AS = SB$”.

In other words, let $I(G, H)$ be the LP for S_n plus

\[
\sum_{i=1}^{n} A_{ui} S_{iv} = \sum_{j=1}^{n} S_{uj} B_{jv}
\]

for every $u, v \in V^G \times V^H$.
Indistinguishability by fractional isomorphisms

Definition:

\[G \cong_F H \text{ iff } I(G, H) \neq \emptyset. \]
Indistinguishability by fractional isomorphisms

Suppose \(G \cong_F H \). Then:

- \(|E^G| = |E^H| \),
- actually \(d_1(G) = d_1(H) \),
- and even \(D(G) = D(H) \).
Indistinguishability by fractional isomorphisms

Suppose $G \cong_F H$. Then:

- $|E^G| = |E^H|$,
- actually $d_1(G) = d_1(H)$,
- and even $D(G) = D(H)$.

Indeed:

Theorem [Ramana-Scheinerman-Ullman 94]

\[G \cong_F H \iff G \cong_D H. \]
Let

\[P = \{ x \in \mathbb{R}^n : Ax \geq b \}, \]

\[P^Z = \text{convexhull}\{ x \in \{0, 1\}^n : Ax \geq b \}. \]

The Sherali-Adams levels are nested polytopes:

\[P = P^0 \supset P^1 \supset P^2 \supset \cdots \supset P^n = P^Z \]

and the SA-rank of \(P \) is:

\[\min\{ k : P^k = P^Z \}. \]
Definition of P^k in four steps

Let

$$P^k = \left\{ x \in \mathbb{R}^n : \begin{bmatrix} a_1^T x \geq b_1 \\ \vdots \\ a_m^T x \geq b_m \end{bmatrix} \right\}.$$

be the LP.
Definition of P^k in four steps

Step 1: Multiply each $a_i^T x \geq b_i$ by all multipliers of the form

$$\prod_{i \in I} x_i \prod_{j \in J} (1 - x_j)$$

for $I, J \subseteq [n]$, $|I \cup J| \leq k - 1$, $I \cap J = \emptyset$.

Definition of P^k in four steps

Step 1: Multiply each $a_i^T x \geq b_i$ by all multipliers of the form

$$\prod_{i \in I} x_i \prod_{j \in J} (1 - x_j)$$

for $I, J \subseteq [n]$, $|I \cup J| \leq k - 1$, $I \cap J = \emptyset$.

Step 1 leaves an equivalent system of polynomials of degree k.
Definition of P^k in four steps

Step 2: Expand the products and replace each square x_i^2 by x_i.
Step 2: Expand the products and replace each square x_i^2 by x_i.

Step 2 leaves a system of multi-linear polynomials of degree k. This is the **integrality** step: valid on $\{0, 1\}^n$ only.
Definition of P^k in four steps

Step 3: Linearize each monomial $\prod_{i \in I} x_i$ by introducing a new variable y_I.
Definition of P^k in four steps

Step 3: Linearize each monomial $\prod_{i \in I} x_i$ by introducing a new variable y_I.

Step 3 leaves a linear program Q^k on the y_I-variables in \mathbb{R}^{n^k}. This is the relaxation step.
Definition of P^k in four steps

Step 4: Define

$$P^k := \{ x \in \mathbb{R}^n : \exists y \in Q^k \text{ s.t. } y\{i\} = x_i \text{ for every } i \}.$$
Definition of P^k in four steps

Step 4: Define

$$P^k := \{ x \in \mathbb{R}^n : \exists y \in Q^k \text{ s.t. } y\{i\} = x_i \text{ for every } i \}.$$

Step 4 takes us back to \mathbb{R}^n. It’s the *projection* step: from \mathbb{R}^{n_k} to \mathbb{R}^n.

Note:

The polytope P^k is definable by an LP on n^k variables and $m \cdot n^k$ inequalities.

Therefore:

Feasibility and optimization of linear functions over P^k can be solved in time $m^{O(1)} n^{O(k)}$.
Definition:

\[G \cong^k_{SA} H \text{ iff } I(G, H)^k \neq \emptyset. \]
Part III

TRANSFER LEMMA
Statement of the transfer lemma

Transfer Lemma:

\[G \cong_{WL}^k H \implies G \cong_{SA}^{k-1} H \implies G \cong_{WL}^{k-1} H. \]

Interpretation:

A geometric concept is captured by purely combinatorial means. A combinatorial concept is captured by purely geometric means.
Proof of the transfer lemma

Intermediate notions of indistinguishability:

\[G \cong_{\text{WL}}^k H \Rightarrow G \cong_{\text{C}}^k H \Rightarrow G \cong_{\text{CS}}^{k-1} H \Rightarrow G \cong_{\text{EP}}^{k-1} H \Rightarrow G \cong_{\text{SA}}^{k-1} H \]

and

\[G \cong_{\text{SA}}^{k-1} H \Rightarrow G \cong_{\text{C}}^{k-1} H \Rightarrow G \cong_{\text{WL}}^{k-1} H. \]
Proof of the transfer lemma

Intermediate notions of indistinguishability:

\[G \cong_{WL}^k H \Rightarrow G \cong_{C}^k H \Rightarrow G \cong_{CS}^{k-1} H \Rightarrow G \cong_{EP}^{k-1} H \Rightarrow G \cong_{SA}^{k-1} H \]

and

\[G \cong_{SA}^{k-1} H \Rightarrow G \cong_{C}^{k-1} H \Rightarrow G \cong_{WL}^{k-1} H. \]

Here:

\[\cong_{C}^k \] is indistinguishability by properties definable in first-order logic with counting quantifiers and width \(k \).
Part IV

COUNTING LOGICS
Indistinguishability
Counting quantifiers

Counting witnesses:

\[\exists \geq i x(\phi(x)) : \text{there are at least } i \text{ vertices } x \text{ that satisfy } \phi(x). \]

Example:

\[\psi_d(x) := \exists \geq d y(E(x, y)) \land \neg \exists^{d+1} y(E(x, y)), \]
\[\phi := \neg \exists \geq 1 x(\neg \psi_d(x)). \]

Note:

We used only **two** first-order variables (\(x\) and \(y\)) where \(d + 1\) are required in pure first-order logic.
Bounded width formulas

Example: First paths

\[P_1(x, y) := E(x, y) \]
\[P_2(x, y) := \exists z_1 (E(x, z_1) \land P_1(z_1, y)) \]
\[P_3(x, y) := \exists z_2 (E(x, z_2) \land P_2(z_2, y)) \]
\[\vdots \]
\[P_{i+1}(x, y) := \exists z_i (E(x, z_i) \land P_i(z_i, y)). \]

and then

\[\forall x (\neg P_3(x, x) \land \neg P_5(x, x) \land \cdots \land \neg P_{2\lceil n/2 \rceil-1}(x, x)). \]

Counting logic with \(k \) variables:

\(C^k \): collection of formulas for which all subformulas have at most \(k \) free variables.
Indistinguishability by C^k

Definition:

$G \sim_C^k H$ iff for every $\phi \in C^k$ we have $G \models \phi \iff H \models \phi$.
Pebble game (without counting moves)

Forced win for Spoiler.
Pebble game (without counting moves)
Pebble game (without counting moves)
Pebble game (without counting moves)

Forced win for Spoiler.
Pebble game (without counting moves)
Pebble game (without counting moves)

Forced win for Spoiler.
Pebble game WITH counting moves

Forced win for Spoiler.
Pebble game with counting moves
Pebble game with counting moves

Forced win for Spoiler.
Pebble game with counting moves

Forced win for Spoiler.
Pebble game with counting moves

Forced win for Spoiler.
Pebble game with counting moves

Forced win for Spoiler.
Pebble game with counting moves
Pebble game with counting moves

Forced win for Spoiler.
Pebble game with counting moves

Forced win for Spoiler.
Pebble game with counting moves

Forced win for Spoiler.
Pebble game with counting moves

Forced win for Spoiler.
Pebble game with counting moves

Forced win for Spoiler.
Pebble game with counting moves

Forced win for Spoiler.
A winning strategy for the Duplicator in $G \simeq^k H$ is a non-empty collection \mathcal{F} of partial isomorphisms from G to H such that for every $f \in \mathcal{F}$ we have:
Systems with the back-and-forth properties

A winning strategy for the Duplicator in $G \cong^k \forall H$ is a non-empty collection \mathcal{F} of partial isomorphisms from G to H such that for every $f \in \mathcal{F}$ we have:

1. (bounded) $|\text{Dom}(f)| \leq k$,

Systems with the back-and-forth properties

A winning strategy for the Duplicator in \(G \cong^{k}_C H \) is a non-empty collection \(\mathcal{F} \) of partial isomorphisms from \(G \) to \(H \) such that for every \(f \in \mathcal{F} \) we have:

1. (bounded) \(|\text{Dom}(f)| \leq k \),
2. (subfunction) For every \(g \subseteq f \) we have \(g \in \mathcal{F} \),
Systems with the back-and-forth properties

A **winning strategy** for the Duplicator in $G \cong^k \mathcal{O} H$ is a non-empty collection \mathcal{F} of partial isomorphisms from G to H such that for every $f \in \mathcal{F}$ we have:

1. (bounded) $|\text{Dom}(f)| \leq k$,
2. (subfunction) For every $g \subseteq f$ we have $g \in \mathcal{F}$,
3. (back) If $|\text{Dom}(f)| < k$ then:
 - for every $X \subseteq V_G$ there exists $Y \subseteq V_H$ with $|Y| = |X|$ s.t.
 - for every $v \in Y$ there exists $u \in X$ with $f \cup \{(u, v)\} \in \mathcal{F}$,
A **winning strategy** for the Duplicator in $G \cong^k \sim H$ is a non-empty collection \mathcal{F} of partial isomorphisms from G to H such that for every $f \in \mathcal{F}$ we have:

1. (bounded) $|\text{Dom}(f)| \leq k$,
2. (subfunction) For every $g \subset f$ we have $g \in \mathcal{F}$,
3. (back) If $|\text{Dom}(f)| < k$ then:
 - for every $X \subseteq V_G$ there exists $Y \subseteq V_H$ with $|Y| = |X|$ s.t.
 - for every $v \in Y$ there exists $u \in X$ with $f \cup \{(u, v)\} \in \mathcal{F}$,
4. (forth) If $|\text{Dom}(f)| < k$ then:
 - for every $Y \subseteq V_H$ there exists $X \subseteq V_G$ with $|X| = |Y|$ s.t.
 - for every $u \in X$ there exists $v \in Y$ with $f \cup \{(u, v)\} \in \mathcal{F}$.
Theorem [Immerman-Lander 90, Cai-Fürer-Immerman 92]

\[G \cong^k_{\text{WL}} H \iff G \cong^{k+1}_{C} H. \]

Relevant note: From its definition, it is not even obvious that \(G \cong^k_{C} H \) is decidable in time \(n^{O(k)} \).
Wanted:

\[G \cong_{SA}^k H \implies G \cong_{C}^k H \]

Ingredient 1:

Birkhoff decomposition theorem: every doubly stochastic matrix is a **convex combination** of permutation matrices.

Ingredient 2:

Permutations preserve sizes of sets.
From systems with B&F to feasible solutions

Wanted:

\[G \cong^k_C H \implies G \cong^{k-1}_{SA} H \]

Ingredient 1:

A sliding game to account for \(AS = SB \);
here is where the \(-1\) is lost.

Ingredient 2:

Normalizing winning strategies into uniform ones.
Part V

APPLICATIONS (or what to do of this?)
Isomorphism testing for special graphs

Theorem [Immerman-Lander 90, Grohe 98, ...]

1. If G is a tree, then $G \cong^2_C H$ iff $G \cong H$, for every H.
2. If G is planar, then $G \cong^{15}_C H$ iff $G \cong H$, for every H.
3. ...

Corollary

For all such graph classes, an explicit and poly-size LP solves graph isomorphism.
Consider the standard LP-relaxation of vertex cover:

\[
\begin{align*}
\text{minimize} \quad & \sum_{u \in V} x_u \\
\text{subject to} \quad & x_u + x_v \geq 1 \quad \text{for every} \ (u, v) \in E, \\
& x_u \geq 0 \quad \text{for every} \ u \in V.
\end{align*}
\]
SA-rank lower bounds

Consider the standard LP-relaxation of vertex cover:

\[
\begin{align*}
\text{minimize} & \quad \sum_{u \in V} x_u \\
\text{subject to} & \quad x_u + x_v \geq 1 \quad \text{for every } (u, v) \in E, \\
& \quad x_u \geq 0 \quad \text{for every } u \in V.
\end{align*}
\]

We expect that the inequality

\[
\sum_{u \in V} x_u \geq \text{vc}(G) \tag{1}
\]

will not, in general, be valid over $P^k(G)$ for any $k = O(1)$.
Consider the standard LP-relaxation of vertex cover:

\[
\begin{align*}
\text{minimize} & \quad \sum_{u \in V} x_u \\
\text{subject to} & \quad x_u + x_v \geq 1 \quad \text{for every } (u, v) \in E, \\
& \quad x_u \geq 0 \quad \text{for every } u \in V.
\end{align*}
\]

We expect that the inequality

\[
\sum_{u \in V} x_u \geq \text{vc}(G) \tag{1}
\]

will not, in general, be valid over \(P^k(G) \) for any \(k = O(1) \).

Indeed:

Theorem [exercise, also follows Schoenebeck 08]

There exist graphs \(G \) for which (2) is not valid over \(P^{\Omega(n)}(G) \).
Sketch:

1. Start with the n-vertex CFI graphs $G \cong \Omega(n)$ H yet $G \not\cong H$.
2. In particular $(G, G) \cong \Omega(n)$ (G, H) yet $G \cong G$ and $G \not\cong H$.
3. Apply the reduction from graph isomorphism to vertex cover.
4. Get graphs $A \cong \Omega(n)$ B with $vc(A) \neq vc(B)$.
5. Apply transfer lemma and get $A \cong \Omega(n)$ B.

Final step:

$$A \cong^{2k}_{SA} B \implies opt(P^k(A)) = opt(P^k(B)).$$
Consider the standard LP-relaxation of \textit{max-cut}:

\[
\text{maximize } \frac{1}{2} \sum_{uv \in E} x_{uv} \\
\text{subject to }
\begin{align*}
 x_{uv} &= x_{vu} \\
 x_{uw} &\leq x_{uv} + x_{vw} \\
 x_{uv} + x_{vw} + x_{wu} &\leq 2 \\
 0 &\leq x_{uv} \leq 1
\end{align*}
\]
SA-rank lower bounds

Consider the standard LP-relaxation of max-cut:

\[
\begin{align*}
&\text{maximize } \frac{1}{2} \sum_{uv \in E} x_{uv} \\
&\text{subject to} \\
&\quad x_{uv} = x_{vu} \\
&\quad x_{uw} \leq x_{uv} + x_{vw} \\
&\quad x_{uv} + x_{vw} + x_{wu} \leq 2 \\
&\quad 0 \leq x_{uv} \leq 1
\end{align*}
\]

We expect that the inequality

\[
\sum_{u \in V} x_u \leq mc(G) \tag{2}
\]

will not, in general, be valid over \(P^k(G)\) for any \(k = O(1)\).
Consider the standard LP-relaxation of \textit{max-cut}:

\[
\text{maximize } \frac{1}{2} \sum_{uv \in E} x_{uv} \\
\text{subject to}
\]

\[
x_{uv} = x_{vu} \\
x_{uw} \leq x_{uv} + x_{vw} \\
x_{uv} + x_{vw} + x_{wu} \leq 2 \\
0 \leq x_{uv} \leq 1
\]

We expect that the inequality

\[
\sum_{u \in V} x_u \leq \text{mc}(G) \tag{2}
\]

will not, in general, be valid over $P^k(G)$ for any $k = O(1)$. Indeed:

Theorem [follows from Schoenebeck 08]

There exist graphs G for which (2) is not valid over $P^{\Omega(n)}(G)$.

New proof

Sketch:

1. Start with the n-vertex CFI graphs $G \cong_{\Omega(n)} H$ yet $G \not\cong H$.
2. In particular $(G, G) \cong_{\Omega(n)} C(G, H)$ yet $G \cong G$ and $G \not\cong H$.
3. Apply the **reduction** from graph isomorphism to max-cut.
4. Get graphs $A \cong_{\Omega(n)} C B$ with $mc(A) \neq mc(B)$.
5. Apply **transfer lemma** and get $A \cong_{\Omega(n)} SA B$.

Final step:

$$A \cong_{3k}^{SA} B \iff \text{opt}(P^k(A)) = \text{opt}(P^k(B)).$$
Local LPs

Basic k-local LPs:

1. one variable x_u for each k-tuple $u \in V^k$,
2. one inequality $\sum_{u \in V^k} a_{u,v} \cdot x_u \geq b_v$ for every k-tuple $v \in V^k$,
3. coefficients $a_{u,v}$ depend only on the type $t_G(u,v)$,
4. coefficients b_v depend only on the type $t_G(v)$.

Generic k-local LPs:

Unions of generic basic k-local LPs (with coefficients given as a function of the types).

Instantiation of generic k-local LPs:

Let P is a generic k-local LP. Then $P(G)$ is the LP associated to G.
Recall the metric polytope:

\[
\frac{1}{2} \sum_{uv \in E} x_{uv} \geq W \\
x_{uv} = x_{vu} \\
x_{uw} \leq x_{uv} + x_{vw} \\
x_{uv} + x_{vw} + x_{uw} \leq 2 \\
0 \leq x_{uv} \leq 1
\]

1. Objective function: basic 2-local LP
2. Symmetry constraint: two basic 2-local LPs
3. Triangle inequality: basic 3-local LP
4. Perimetric inequality: basic 3-local LP
5. Unit cube constraint: two basic 2-local LPs
Theorem: Let P be a generic k-local LP.

If $G \cong^k_{SA} H$, then $P(G)$ is feasible iff $P(H)$ is feasible.

'**Just do it**' proof:

1. Let $\{x_u\}$ be a feasible solution for $P(G)$.
2. Let $\{X_{u,v}\}$ be a feasible solution for $I(G, H)^k$.
3. Define:
 \[
 y_v := \sum_{u \in G^k} X_{u,v} \cdot x_u.
 \]
4. Check that $\{y_v\}$ is a feasible solution for $P(H)$.
More examples of local LPs

More examples:

1. maximum flows (2-local)
2. matchings on bipartite graphs (2-local)
3. relaxation of max-cut via the metric polytope (3-local)
4. relaxation of vertex cover (2-local)
5. \(r \) SA-levels of \(k \)-local LPs are \(O(kr) \)-local LPs.
Expressibility results

Consider the max-flow LP. It is 2-local. It is integral.

Corollary

$$G \cong^3_C H \Rightarrow \text{mf}(G) = \text{mf}(H).$$

Corollary

There exists a sentence in C^3 that, over st-networks with n vertices, defines those whose maximum flow is at least the out-degree of the source.
Expressibility results

Consider the metric polytope again.

Theorem [Barahona-Majoub 86]:

If G is a K_5 minor-free graph, then $\text{mc}(G) = \text{opt}(P(G))$.

Corollary

If G and H are K_5 minor-free, then $G \cong^4_C H \Rightarrow \text{mc}(G) = \text{mc}(H)$.

Corollary

There exists a sentence in C^4 that, over K_5 minor-free n-vertex graphs, defines those whose max-cut is at least $n/4$.
Part VI

DISCUSSION AND OPEN PROBLEMS
Get new rank lower bounds from inexpressibility results?

Challenging problem:

Prove that an integrality gap of $2 - \epsilon$ resists $\Omega(n)$ SA-levels of vertex-cover.
Challenging problem:

Prove that an integrality gap of $2 - \epsilon$ resists $\Omega(n)$ SA-levels of vertex-cover.

What would be enough?:

Find G and H such that:

1. $mc(G) \geq (2 - \epsilon) \cdot mc(H)$
2. $G \approx_{\frac{n}{C}} H$.
New expressibility/inexpressibility results?

Challenging problem:

Is \textit{perfect matching} definable in $C^{O(1)}$?

(answer is YES for bipartite graphs)
New expressibility/inexpressibility results?

Challenging problem:

Is perfect matching definable in $C^{O(1)}$?
(answer is YES for bipartite graphs)

SOLVED! [Anderson-Dawar-Holm 13]:

YES even for general graphs!
TODA!