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The Proof Analysis Problem

Noel Arteche∗ Albert Atserias† Susanna F. de Rezende‡ Erfan Khaniki§

Abstract

Atserias and Müller (JACM, 2020) proved that for every unsatisfiable CNF formula 𝜑 , the formula
Ref(𝜑)—stating that “𝜑 has small Resolution refutations”—does not have subexponential-size Resolution
refutations. Conversely, when 𝜑 is satisfiable, Pudlák (TCS, 2003) showed how to construct a polynomial-
size Resolution refutation of Ref(𝜑) given a satisfying assignment of 𝜑 . A question that had remained
open is: do all short Resolution refutations of Ref(𝜑) explicitly leak a satisfying assignment of 𝜑?

We answer this question affirmatively by providing a polynomial-time algorithm that extracts a
satisfying assignment for 𝜑 given any short Resolution refutation of Ref(𝜑). The algorithm follows
from a new feasibly constructive proof of the Atserias–Müller lower bound, formalizable in Cook’s
theory PV1 of bounded arithmetic. This implies that Extended Frege can efficiently prove (a suitable
formalization of the statement) that automating Resolution is NP-hard.

Motivated by this algorithm, we introduce a newmeta-computational problem concerning Resolution
lower bounds: the Proof Analysis Problem (PAP). For a fixed proof system𝑄 , the Proof Analysis Problem
for𝑄 asks, given a CNF formula 𝜑 and a𝑄-proof of a Resolution lower bound for 𝜑 , encoded as ¬Ref(𝜑),
whether 𝜑 is satisfiable. In contrast to the Proof Analysis Problem for Resolution, which is in P, we
prove that PAP for Extended Frege (EF) is NP-complete. In particular, EF can prove Resolution lower
bounds on satisfiable formulas without necessarily revealing a satisfying assignment.

Our results yield new insights into proof search and the meta-mathematics of Resolution lower
bounds: (i) for every proof system that simulates EF as well as for Resolution, the system is (weakly)
automatable if and only if it can be (weakly) automated exclusively on formulas stating Resolution
lower bounds; (ii) we provide explicit Ref formulas that are exponentially hard for bounded-depth Frege
systems; and (iii) for every strong enough theory of arithmetic 𝑇 we construct explicit unsatisfiable
CNF formulas that are exponentially hard for Resolution but for which 𝑇 cannot prove even a quadratic
Resolution lower bound. This latter result applies to arbitrarily strong theories like PA or ZFC, and does
not require any complexity-theoretic assumptions.
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1 Introduction

The most natural computational problem arising in proof complexity is that of proof search: what is the
complexity of finding proofs? In the late 90s, the notion of automatability, defined by Bonet, Pitassi, and Raz
[BPR00], emerged as a central concept in the theory of propositional proof complexity. A proof system 𝑄 is
automatable if there is a deterministic algorithm that finds a 𝑄-proof of a formula 𝜑 in time polynomial in
the shortest one available. Except for Tree-like Resolution, which is automatable in quasi-polynomial time
[BP96], no other non-trivial proof system is known to be automatable in polynomial or quasi-polynomial
time.

Krajíček and Pudlák [KP98] and Bonet, Pitassi, and Raz [BPR00] proved that under standard worst-case
number-theoretic assumptions in cryptography, strong proof systems like TC0-Frege and Extended Frege
are not automatable. These results can be transferred to AC0-Frege under slightly stronger hardness
assumptions [BDG+04], but it seems hard to push them further. Essentially, their proof techniques require
some amount of basic number theory to be formalized in the system, something that is likely unworkable
for Resolution. Since then, efforts focused on showing the hardness of automating Resolution and related
weak systems [Pud03; AR08; GL10; AM11; HP11; Ats13; BPT14; MPW19], culminating in the final answer
by Atserias and Müller [AM20], who proved that Resolution is not automatable unless P = NP. This is the
optimal hardness assumption since P = NP implies the automatability of any proof system.

The technique used in [AM20] relies on the insight that Resolution cannot reason about its own lower
bounds. To every CNF formula 𝜑 , they associate a new formula Ref𝑠 (𝜑) that encodes the statement “there
is a size-𝑠 Resolution refutation of 𝜑”. As a tautology, ¬Ref𝑠 (𝜑) is a natural propositional encoding of a
Resolution lower bound. (We postpone to the preliminaries the details of the encoding of the Ref formula
we use, where we also discuss previously studied variations.)

Pudlák [Pud03] had shown already in 2003 that whenever 𝜑 is satisfiable, the formula Ref𝑠 (𝜑) is
easily refutable by Resolution. On the other hand, Atserias and Müller [AM20] proved that whenever 𝜑 is
unsatisfiable, Resolution will require exponential size to refute Ref𝑠 (𝜑), for 𝑠 being some fixed polynomial
in the number of variables of 𝜑 , which we omit in the subscript for the rest of this introduction for the sake
of clarity.

As a consequence, an automating algorithm running on formulas of the form Ref(𝜑) can be used to
decide SAT in polynomial time: if 𝜑 ∈ SAT, then the algorithm must find a short refutation of Ref(𝜑)
that Pudlák guarantees must exist; on the other hand, if 𝜑 ∉ SAT, then there are no short refutations of
Ref(𝜑), so we can stop the automating algorithm after a polynomial number of steps and be certain that 𝜑
is unsatisfiable.

The proof strategy behind the Resolution lower bound on Ref formulas was soon adapted to a variety
of weak proof systems (those where size lower bounds are known), although the Ref-like formulas used
in these spin-off results are no longer natural lower-bound statements for these systems. In general, as
pointed out by Pudlák, the question of whether a proof system can prove any of its own lower bounds “is
widely open, except for Resolution, and we consider it more important than automatability” [Pud20, p. 3].
It is currently open, for example, whether systems like constant-depth Frege have polynomial-size proofs
of any of their own lower bounds.

The feat of the Resolution lower bound on Ref formulas, combined with the upper bound for satisfiable
formulas, implies that Resolution can only reason about “trivial” Resolution lower bounds (i.e., lower
bounds on satisfiable formulas, which do not have refutations of any size). This highlights the upper bound
construction as something even more remarkable, given that Resolution cannot efficiently argue about its
own soundness [AB04]. Intriguingly, the known upper bound for Ref(𝜑) for satisfiable 𝜑 crucially relies
on Resolution guessing a satisfying assignment and using it as the backbone of the refutation. It is then
natural to ask whether this is necessary:
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(𝑄1) Is it the case that whenever there is a short Resolution refutation of Ref(𝜑), the proof must leak a
satisfying assignment?

By “leaking” we mean that a satisfying assignment is always readable in polynomial time from the
given refutation. It is important to note that given a refutation 𝜋 of Ref(𝜑), one cannot simply restrict 𝜋 in
a way that corresponds to Ref(𝜑↾𝑥1=0) and Ref(𝜑↾𝑥1=1) to extract a satisfying assignment. This is because
the variables of 𝜑 are not variables of Ref(𝜑). In principle, such a self-reducibility trick seems to require
access to an automating algorithm, so that one could successively look for refutations of Ref(𝜑↾𝑥1=0) or
Ref(𝜑↾𝑥1=1), then Ref(𝜑↾𝑥1=𝑏1,𝑥2=0) or Ref(𝜑↾𝑥1=𝑏1,𝑥2=1), and so on for all variables. Without access to an
automating algorithm, it is not at all clear whether satisfying assignments can be extracted efficiently.

Yet another way of phrasing the lower bound on Ref formulas is to see it as the correctness proof of a
lower bound analysis algorithm. Namely, the result proves that there is an algorithm that given a Resolution
refutation 𝜋 of Ref(𝜑) decides whether 𝜑 is satisfiable. The algorithm consists simply of checking whether
𝜋 is correct and short enough. The correctness of this procedure requires the proof of the lower bound, and
this framing naturally leads to the following second natural question regarding Ref formulas:

(𝑄2) Is there an algorithm that given an Extended Frege proof 𝜋 of a Resolution lower bound ¬Ref(𝜑) decides
in polynomial time whether 𝜑 is satisfiable?

If the answer were affirmative, this would settle the long-standing open problem of the NP-hardness of
automating Extended Frege: given a CNF formula 𝜑 , construct the formula Ref(𝜑) and run the automating
algorithm to find a short Extended Frege refutation. If an algorithm as the one asked for in (𝑄2) existed,
then we could apply it on this refutation to analyze whether 𝜑 is satisfiable. This distills the main idea
in [AM20], and the framing of the question in terms of algorithm design suggests that such an algorithm
might well be possible without the need for unconditional Extended Frege lower bounds.

Overall, the two questions (𝑄1) and (𝑄2) above hint at the central role of meta-mathematical lower
bound statements in the theory of proof search. We believe this calls for a deeper structural understanding
that could lead to much-needed conceptual insights in automatability.

1.1 Contributions

Motivated by questions (𝑄1) and (𝑄2) above, we introduce a new meta-computational problem relating
proofs and computation: the Proof Analysis Problem.

For every propositional proof system 𝑄 , the Proof Analysis Problem for 𝑄 (PAP𝑄 ) consists in analyzing
Resolution lower bounds proven by𝑄 . More formally, given a CNF formula𝜑 and a𝑄-proof of the Resolution
lower bound encoded by the formula ¬Ref(𝜑), the task is to decide whether 𝜑 is satisfiable.

The Proof Analysis Problem for 𝑄 (PAP𝑄 )

Input A CNF formula 𝜑 , a size parameter 𝑠 in unary and a 𝑄-proof 𝜋 of the
formula ¬Ref𝑠 (𝜑).

Output Is 𝜑 satisfiable?

The problem can be seen as the computational task of distinguishing “true” Resolution lower bounds
(those where 𝜑 is actually unsatisfiable) from “trivial” ones (those where the lower bound trivially holds
because 𝜑 is satisfiable and there is therefore no Resolution refutation, of any size). For those proof systems
for which PAP𝑄 ∈ P, we say that𝑄 is analyzable. We remark that the Ref formula in the definition of PAP𝑄
is always referring to Resolution refutations, while the proof system 𝑄 where Ref(𝜑) is being derived can
be arbitrarily strong.
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For the case of Resolution itself, the problem PAPRes is easy to compute thanks to the lower bound
on Ref formulas [AM20]: if 𝜋 is a correct refutation of Ref(𝜑) and it is small, then 𝜑 must be satisfiable.
Until now, however, to the best of our knowledge this was the extent of what could be said about PAP-like
problems. In particular, we are not aware of any other upper or lower bounds on this problem for proofs
systems other than Resolution.

In the language of PAP, questions (𝑄1) and (𝑄2) can be neatly rephrased as follows:

(𝑄1) Does PAPRes admit a search-to-decision reduction?

(𝑄2) Is Extended Frege analyzable? Namely, is PAPEF in P?

In this work we kick-start the systematic study of these Proof Analysis Problems and settle questions
(𝑄1) and (𝑄2) above. This in turn yields a series of interesting consequences for the meta-mathematics of
proof complexity lower bounds as well as proof search. We outline our results next.

1.1.1 An algorithm for assignment extraction

On the topic of question (𝑄1), our main result is that the search version of PAPRes can be solved determinis-
tically in polynomial time.

Theorem 1.1 (Assignment extraction algorithm, informal). The search version of the Proof Analysis Problem
for Resolution can be solved in deterministic polynomial time whenever the size parameter 𝑠 is at least 𝑛3. That
is, there is an algorithm that, given a CNF formula 𝜑 over 𝑛 variables and poly(𝑛) clauses and a Resolution
refutation 𝜋 of Ref𝑠 (𝜑) with 𝑠 ≥ 𝑛3, extracts a satisfying assignment for 𝜑 in time polynomial in 𝑛, 𝑠 and the
size |𝜋 | of 𝜋 , whenever 𝜑 is satisfiable.

The question can be stated more formally in terms of Levin reductions. A Levin reduction between
search problems 𝑅1 and 𝑅2 is a Karp-style many-one reduction that maps instances of 𝑅1 to instances of 𝑅2,
with the additional property that it also maps solutions of 𝑅1 to solutions of 𝑅2, and back. The reduction
𝜑 ↦→ Ref(𝜑) showing that SAT reduces to the Proof Size Problem for Resolution with an exponential gap
is clearly Levin in one direction: given a satisfying assignment of 𝜑 , Pudlák’s construction can craft a
refutation of Ref(𝜑). However, it had remained open whether this Levin reduction could be made two-way:
given a refutation 𝜋 of Ref(𝜑), can one always extract a satisfying assignment to 𝜑 in polynomial time?

For most if not all natural NP-complete languages, the corresponding search problems tend to be
complete under Levin reductions. However, the same decision problem could admit different search
problems associated to it, and it is known that if P ≠ NP ∩ coNP, then there are NP search problems that
do not reduce to each other under Levin reductions, while their decision versions are NP-complete (and
hence do reduce to each other) under Karp reductions (see, for example, [KM00; FFNR03]). To the best of
our knowledge, until now the only natural examples of candidates to be NP-hard search problems without
Levin reductions were precisely certain problems arising in the context of meta-complexity. One is the
Minimum Circuit Size Problem (MCSP), for which Mazor and Pass [MP24] recently proved that a certain
gap version is not NP-complete under Levin reductions, assuming the existence of indistinguishability
obfuscation (iO). The other candidate was precisely the reduction from SAT to the Proof Size Problem for
Resolution. Theorem 1.1 settles this, giving a two-way Levin reduction.

The existence of the extraction algorithm answers question (𝑄1) in the affirmative: Resolution refutations
of Ref𝑠 (𝜑) must leak a satisfying assignment. This has a certain information-theoretic flavor: the fact that
satisfying assignments can always be efficiently extracted implies that the most succinct description of
a refutation of Ref𝑠 (𝜑) must include the description of a satisfying assignment for 𝜑 . We can make this
precise in the language of Kolmogorov complexity using the framework of information efficiency of Krajíček
[Kra22], who studied the minimum time-bounded Kolmogorov complexity (Kt) of propositional proofs.

3



Theorem 1.2 (Assignment extraction as information efficiency, informal). For every satisfiable CNF for-
mula 𝜑 over 𝑛 variables and poly(𝑛) clauses,

infoRes(¬Ref(𝜑)) ≈ min{Kt(𝛼 | 𝜑) | 𝜑 (𝛼) = 1},

where info𝑄 (𝜓 ) ≔ min{Kt(𝜋 | 𝜓 ) | 𝜋 : 𝑄 ⊢ 𝜓 } is Krajíček’s information efficiency function.

To the best of our knowledge, this is one of the first applications of Krajíček’s framework.

1.1.2 The Proof Analysis Problem for strong proof systems

Motivated by (𝑄2), we ask whether PAP is in P for strong proof systems. We conclude that the answer is
likely negative by proving optimal conditional lower bounds in the form of NP-hardness for every proof
system that p-simulates Extended Frege (EF).

Theorem 1.3 (NP-hardness of PAPEF, informal). For every propositional proof system 𝑆 that p-simulates
Extended Frege, the Proof Analysis Problem for 𝑆 is NP-complete.

This means that, unlike Resolution, strong proof systems are seemingly able to prove “trivial” Resolution
lower bounds on satisfiable formulas without having to first prove that the underlying formula is satisfiable.
In particular, this means Extended Frege is strong enough to obfuscate the satisfying assignments. As a
consequence, for strong proof systems like Extended Frege, one cannot hope to prove they are NP-hard to
automate following a strategy similar to that of [AM20].

1.1.3 Formalization of the Atserias–Müller lower bound in PV1

The inspiration for why the extraction algorithm in Theorem 1.1 might exist in the first place comes
from witnessing theorems in bounded arithmetic. We work here with Cook’s theory PV1 and Buss’s S12,
which are first-order theories of arithmetic formalizing polynomial-time reasoning. In these theories, if
a statement of the form ∀𝑥∃𝑦𝜑 (𝑥,𝑦) with a low-complexity 𝜑 (𝑥,𝑦) is provable in the theory, then there
exists a polynomial-time algorithm that witnesses 𝑦 given 𝑥 . This implies, in particular, that if a problem is
proven NP-hard in one of these theories, then the reduction will be a Levin reduction.

The key observation for us is that the statement of the lower bound is itself of this form, a ∀Σ𝑏1 sentence:

“for every formula 𝜑 and every Resolution refutation 𝜋 of Ref(𝜑),
there exists a satisfying assignment for 𝜑 , or else 𝜋 is large.”

Thus, if the previous statement were provable in PV1, we would get a polynomial-time function extracting
satisfying assignments given 𝜑 and 𝜋 .

While the extraction algorithm presented in Theorem 1.1 is given directly in natural language, it is still
worth formalizing the lower bound in bounded arithmetic to obtain a variety of applications.

Theorem 1.4 (Atserias–Müller lower bound [AM20] in PV1, informal). The theory PV1 proves the statement
that for every CNF formula 𝜑 over 𝑛 variables and every size parameter 𝑠 ∈ N, if 𝜑 is unsatisfiable and 𝜋 is a
correct Resolution refutation of Ref𝑠 (𝜑), then |𝜋 | ≥ 2Ω (𝑠/𝑛2 ) .

Formalizations in bounded arithmetic tend to be particularly interesting when they lead to new proofs
of known statements. This has been the case, for example, with Razborov’s formalizations of circuit lower
bounds leading to the now-famous proof of Håstad’s switching lemma via a simpler counting argument
[Raz95]. Remarkably, the method introduced by Razborov to formalize the switching lemma is recognized
for enabling proofs to at least two major conjectures in combinatorics [ALWZ21; PP24]. Another example
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is a recent new proof of the Schwartz-Zippel lemma [AT24], proven via a hybrid argument formalizable in
S12. Our formalization of the lower bound on Ref formulas also relies on a new proof. We elaborate on this
in the technical overview.

We remark that our bound of the form 2Ω (𝑠/𝑛2 ) is slightly worse than the original one, which we state
here for convenience.

Theorem 1.5 (Atserias–Müller lower bound [AM20]). For every CNF formula 𝜑 over 𝑛 variables and every
size parameter 𝑠 ∈ N, if 𝜑 is unsatisfiable and 𝜋 is a correct Resolution refutation of Ref𝑠 (𝜑), then |𝜋 | ≥ 2Ω (𝑠/𝑛) .

The difference in the bound means that we can only show that PV1 proves hardness of Ref𝑠 (𝜑) for
𝑠 ≥ 𝑛3. We leave it open whether PV1 can achieve the original 2Ω (𝑠/𝑛) bound via a different argument.
In any case, this is not particularly important for our applications. We comment on this further in the
technical overview.

1.1.4 Formalization of Pudlák’s upper bound in Resolution

We complement the formalization of the lower bound with a formalization of the upper bound [Pud03],
showing that there are short refutations of Ref(𝜑) whenever 𝜑 is satisfiable. This construction can be
carried out by a constant-depth circuit and could be formalized in S12, but certainly also in much weaker
theories. We prove the somewhat surprising fact that the construction can be proven correct in Resolution
itself.

Theorem 1.6 (Pudlák’s upper bound [Pud03] in Resolution, informal). There is a polynomial-size depth-2
Boolean circuit 𝑃 (𝛼, 𝜑, 𝑠) of fan-in 2 that given a CNF formula 𝜑 , a satisfying assignment 𝛼 , and 𝑠 ∈ N, outputs
a Resolution refutation 𝜋 of Ref𝑠 (𝜑). Furthermore, the correctness of this circuit 𝑃 has polynomial-size proofs
in Resolution.

That is, not only Resolution has short refutations of Ref(𝜑) when 𝜑 is satisfiable: Resolution can show
that the circuits generating these refutations from satisfying assignments are correct. This, again, is in
striking contrast with the fact that Resolution does not have small proofs of its own soundness [AB04].

1.1.5 Propositional fragments of Atserias–Müller: automatability in terms of Ref formulas

The main consequence of the extraction algorithm together with its formalization in bounded arithmetic is
the following precise characterization theorem relating the provability of a formula ¬𝜑 to the provability of
the formula ¬Ref(Ref(𝜑)). (For the sake of clarity, we ignore for now the exact size parameters of the Ref
formulas, which are always some fixed polynomials; in general, when we write 𝑆 ⊢poly 𝜑 we mean that 𝑆
has polynomial-size proofs of 𝜑 , and by “reasonable proof system” we mean essentially that the system is
closed under modus ponens.)

Theorem 1.7 (Propositional fragments of Atserias–Müller, informal). Let 𝑆 be a reasonable propositional
proof system that simulates Extended Frege. Then, for every sequence {𝜑𝑛}𝑛∈N of unsatisfiable CNF formulas,

𝑆 ⊢poly ¬𝜑𝑛 if and only if 𝑆 ⊢poly ¬Ref(Ref(𝜑𝑛)) .

The lower bound on Ref formulas says that for every unsatisfiable 𝜑 , the corresponding Ref(𝜑) is hard
for Resolution, making Ref(Ref(𝜑)) unsatisfiable. The latter encodes the statement “Ref(𝜑) is hard for
Resolution”, and our theorem shows that when restricted to the reasoning power of a specific proof system
𝑆 , such a lower bound has small proofs if, and only if, 𝑆 has short proofs of the unsatisfiability of 𝜑 in the
first place. That is, the fragment of the Atserias–Müller lower bound that has short proofs in 𝑆 is precisely
the one corresponding to the formulas that 𝑆 can prove unsatisfiable with short proofs.
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This characterization is surprisingly tight and has consequences for automatability and proof search.
Since we can relate the proof size of 𝜑 in 𝑆 to the proof size of Ref(Ref(𝜑)), this means that looking for
proofs of Ref(Ref(𝜑)) can be a proxy for searching for proofs of 𝜑 .

Theorem 1.8 (Automatability in terms of Ref formulas, informal). For every reasonable proof system 𝑆 that
simulates Extended Frege as well as for Resolution itself,

(i) 𝑆 is automatable if, and only if, 𝑆 is automatable exclusively on Ref formulas;

(ii) 𝑆 is weakly automatable if, and only if, 𝑆 is weakly automatable exclusively on Ref formulas.

We remark again that these Ref formulas are always talking about Resolution, not about 𝑆 . That is, for
every strong enough proof system, efficient proof search over all tautologies is equivalent to efficient proof
search over Resolution lower bounds.

Until now no such general structural result was known that related proof search generally to proof
search for a particular class of formulas. This goes in line with a question of Pich and Santhanam [PS22],
who asked whether automating a proof system on truth-table tautologies (i.e., formulas stating circuit lower
bounds) implies the automatability of the system on all tautologies. We have proved that this is the case for
the class of formulas stating Resolution lower bounds in place of truth-table tautologies.

1.1.6 Unprovability of Resolution lower bounds

Theorem 1.6, together with Theorem 1.5, further imply that true Resolution lower bounds can be essentially
arbitrarily hard to prove. Namely, if 𝑆 is a propositional proof system where {𝜑𝑛}𝑛∈N is a sequence of
formulas that 𝑆 cannot refute in polynomial size, then 𝑆 cannot refute {Ref(Ref(𝜑𝑛))}𝑛∈N either.

Theorem 1.9 (Propositional unprovability of Resolution lower bounds, informal). Let 𝑄 be a reasonable
propositional proof system that simulates Resolution. If {𝜑𝑛}𝑛∈N is a sequence of hard unsatisfiable CNF
formulas for 𝑄 , where 𝜑𝑛 has 𝑛 variables and size |𝜑𝑛 | = poly(𝑛), then

(i) the formulas Ref𝑛2 (𝜑𝑛) over 𝑁 = poly(𝑛) variables are all unsatisfiable and require size 2𝑁 Ω (1)
to be

refuted in Resolution;

(ii) yet, 𝑄 does not have polynomial-size refutations of the formulas Ref𝑁 2 (Ref𝑛2 (𝜑𝑛)) stating quadratic
lower bounds on Ref𝑛2 (𝜑𝑛).

There is nothing special about quadratic lower bounds being unprovable—one can get arbitrarily small
polynomial lower bounds by tweaking the encoding. See the discussion after Theorem 1.11.

We note that Iwama showed in 1997 that the Proof Size Problem for Resolution is NP-complete [Iwa97].
This means, in particular, that its complement in coNP-complete and hence, unless NP = coNP, no
propositional proof system can efficiently derive all tautological Ref formulas (i.e., all true Resolution lower
bounds), or else there would be a polynomially bounded proof system. While this has a similar flavor to our
result, our theorem is different in at least two aspects. First, from an explicit family of hard tautologies we
obtain an explicit family of hard Ref formulas for the system, in a generic way. Second, the parameters are
essentially optimal: we identify a sequence of unsatisfiable formulas for which an exponential (and hence
maximal) Resolution lower bound holds —while the system 𝑄 in question cannot even prove a quadratic
lower bound.

As a corollary of Theorem 1.9, for example, we get the first explicit lower bounds for Ref formulas in
bounded-depth Frege systems.

Corollary 1.10 (Hard Ref formulas for bounded-depth Frege, informal). For every 𝑑 ≤ 𝑂 (log𝑛/log log𝑛),
the formulas Ref(Ref(PHP𝑛)) are all unsatisfiable but require size exp

(
Ω(𝑛1/(2𝑑+1) )

)
to be refuted in depth-𝑑

Frege systems.
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This corollary contrasts again with the open question of Pudlák [Pud20] about whether constant-depth
Frege proves any of its own lower bounds.

Finally, using similar ideas, we obtain unconditional independence results for first-order theories of
arithmetic.

Theorem 1.11 (First-order unprovability of Resolution lower bounds, informal). Let 𝑇 be a consistent
first-order theory extending Robinson Arithmetic by a set of polynomial-time recognizable axioms. Then, there
exits a sequence of unsatisfiable propositional formulas {𝜓𝑁 }𝑁 ∈N described uniformly by a polynomial-time
algorithm, where𝜓𝑁 has 𝑁 variables, such that

(i) Resolution refutations of the formula𝜓𝑁 require size 2𝑁 Ω (1)
;

(ii) there exists 𝑐 > 0 such that the theory 𝑇 cannot prove Ω(𝑁 𝑐) lower bounds on the Resolution size of
these refutations; that is, there is 𝑁0 ∈ N such that the lower bound expressed by the first-order sentence
∀𝑁∀𝜋 (𝑁 > 𝑁0 ∧ RefRes(𝜓𝑁 , 𝜋) → |𝜋 | > 𝑁 𝑐) is unprovable in 𝑇 .

We remark that the theory𝑇 in this theorem can be arbitrary strong. This implies that, unconditionally,
theories like Peano Arithmetic (PA) cannot prove all true Resolution lower bounds. The same ideas apply
to Zermelo-Fraenkel Set Theory (ZFC) and similarly powerful formal systems.

We also note that the constant 𝑐 > 0 in the exponent of the unprovable lower bound depends on the
definition of𝜓𝑁 . In general, one can alter𝜓𝑁 to get an unprovable lower bound of the form Ω(𝑁 𝑐) for any
fixed constant 𝑐 > 0.

1.2 Technical overview

Next we provide a technical overview of the main proof ideas and how these are combined to yield our
main results and corollaries.

1.2.1 Assignment extraction: techniques

We obtain the extraction algorithm in Theorem 1.1 by derandomizing the proof of the Resolution lower
bound for the Ref formulas. The original proof revolves around the concept of block-width (called index-
width in [AM20]) in Resolution refutations of Ref𝑠 (𝜑). The variables of the formula are arranged into 𝑠
blocks, each encoding a clause in the purported refutation of size 𝑠 . The block-width of a refutation 𝜋 is then
the largest number of blocks mentioned in a clause of the refutation 𝜋 . The proof proceeded in two steps:

1. derive a block-width lower bound, showing that if 𝜑 ∉ SAT, then the block-width of any refutation of
Ref𝑠 (𝜑) must be large;

2. by a random restriction argument, argue that if the refutation 𝜋 is small, there exists a restriction that
makes the block-width of the restricted refutation small, contradicting the previous point.

Our algorithm works by following these steps in reverse. First, given a refutation 𝜋 from which we want
to extract a satisfying assignment, instead of sampling a restriction at random from a specific distribution,
we construct a restriction deterministically in a greedy fashion, tailored to the specifics of 𝜋 . This is
reminiscent of the kind of greedy deterministic restrictions used by Cook and Pitassi [CP90] to formalize
Haken’s lower bound for the pigeonhole principle in bounded arithmetic, and more broadly in the style
of Beame and Pitassi [BP96], Clegg, Edmonds, and Impagliazzo [CEI96] and Ben-Sasson and Wigderson
[BW01]. Our algorithm runs in deterministic polynomial time and always succeeds in finding a restriction
that reduces the block-width to 𝑂 (

√︁
𝑠 log |𝜋 |).

In the second step, we look at the proof of the block-width lower bound and interpret it as a Prover-
Delayer game in the style of Atserias and Dalmau [AD08]. The Prover issues queries about the values of
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the variables of Ref𝑠 (𝜑), or forgets previously recorded such values, and the Delayer replies following a
concrete strategy that allows them to keep playing until a large number of blocks appear queried. Our
algorithm traverses the Resolution refutation guided by the Delayer’s strategy in the Prover-Delayer game.
We can then prove that this Delayer’s strategy will, after a polynomial number of steps, reach either

(a) a clause of high block-width, or

(b) a clause encoding a satisfying assignment to 𝜑 .

Since the greedy deterministic restriction in the first step made sure the block-width is small, the Delayer
will be guaranteed to find a satisfying assignment.

We note that our deterministic restriction only achieves a reduction of block-width to 𝑂 (
√︁
𝑠 log |𝜋 |),

while using a random restriction one could achieve up to 𝑂 (log |𝜋 |). In fact, if one allows randomness in
the extraction algorithm, then an argument similar to the random restriction of [AM20] yields a zero-error
probabilistic polynomial-time extraction algorithm that works even when the refutation 𝜋 being analyzed
is for the formula Ref𝑛2 (𝜑). In contrast, the price to pay for determinism is that the size parameter 𝑠 should
be at least 𝑛3.

1.2.2 NP-hardness of PAPEF

The idea behind the hardness proof in Theorem 1.3 is best explained as a reduction from the Minimum
Circuit Size Problem (MCSP) —although given thatMCSP is not known to be NP-hard, the actual proof in
the main text is a bit more technical and goes instead via a reduction from Vertex Cover. In 2004, Razborov
[Raz04] proved that Resolution cannot efficiently prove circuit size lower bounds. This statement is captured
by the the well-known truth-table tautologies tt(𝑓 , 𝑠) stating that a truth-table 𝑓 can be computed by a
circuit of size 𝑠 . Then, the formula Ref𝑡 (tt(𝑓 , 𝑠)) states that there exists a size-𝑡 Resolution refutation of
tt(𝑓 , 𝑠). By Razborov’s lower bound there are no such Resolution refutations, meaning that Ref𝑡 (tt(𝑓 , 𝑠))
is unsatisfiable for values of 𝑡 polynomial in |tt(𝑓 , 𝑠) |.

An interesting feature of Razborov’s lower bound is that it is agnostic about whether 𝑓 is actually hard
for circuits of size 𝑠 . Namely, even if 𝑓 was computable by size-𝑠 circuits, making tt(𝑓 , 𝑠) satisfiable and
hence Ref𝑡 (tt(𝑓 , 𝑠)) unsatisfiable for a trivial reason, Razborov’s argument can still prove the unsatisfiabilty
of this Ref formula without exhibiting a satisfying assignment for tt(𝑓 , 𝑠).

Now, suppose that Razborov’s lower bound was formalizable in, say, Extended Frege1 in a uniform
manner. That is, suppose there is a polynomial-time algorithm that given a truth-table 𝑓 and size parameters
𝑠 and 𝑡 outputs an EF proof 𝜋 such that

𝜋 : EF ⊢ ¬Ref𝑡 (tt(𝑓 , 𝑠)) .

Then, if PAPEF happened to be in P, there would be a polynomial-time algorithm that given 𝜋 would
decide whether tt(𝑓 , 𝑠) ∈ SAT, which is the same as deciding MCSP. Hence, PAPEF (or PAP for whatever
system capable of formalizing Razborov’s proof) would be at least as hard asMCSP.

For our proof we do not formalize Razborov’s lower bounds, and instead instantiate this idea for a
specific propositional encoding of Vertex Cover for which Resolution lower bounds follow from Haken’s
lower bound for the pigeonhole principle. Here we leverage the formalization of Cook and Pitassi, who
showed that Haken’s lower bound is provable in EF [CP90].

1We note that it is not known nor clear at all that Razborov’s argument goes through in EF. The assumption is only for the
sake of exposition.
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1.2.3 Formalization of the upper and lower bounds

A large part of our technical contribution consists in formalizing the proofs leading to the NP-hardness
of automating Resolution. We summarize below some of the challenges encountered, and the solutions
devised.

TheAtserias–Müller lower bound in PV1. Different proofs of the lower bound exist in the literature, but
none of them seem directly formalizable in PV1. The original proof has the caveat of the random restriction
argument, which might be formalizable in Jeřábek’s theory APC1, but likely not in PV1. In addition, the
block-width lower bound is proven by relating small refutations to the canonical exponential-size tree-like
refutation of any formula, which could be hard to reason about in bounded theories.

In the work of de Rezende, Göös, Nordström, Pitassi, Robere, and Sokolov [dRGN+21] two alternative
proofs were presented. The first proof consists of a random restriction followed by a block-width lower
bound proven via a reduction to the retraction weak pigeonhole principle. The random restriction presents
the same formalization issues as the original proof, and the block-width reduction is equally problematic:
the decision tree reduction they use has low depth, which is necessary to transfer the lower bounds on
(block-)width, but the size of the decision tree itself seems to be superpolynomial, and hence cannot be
reasoned about in PV1. The second proof of de Rezende et al. uses this same block-width lower bound
followed by the size-width trade-offs of Ben-Sasson and Wigderson [BW01]. The block-width lower bound
is still problematic, of course, but in addition to this, the statement of Ben-Sasson andWigderson—“for every
small Resolution refutation, there exists another Resolution refutation in small width”—is itself impossible
to formalize in bounded arithmetic. The reason for this is that, as demonstrated by Thapen, in general these
narrow proofs can require superpolynomial size [Tha16], and therefore the statement of Ben-Sasson and
Wigderson cannot possibly be a bounded formula.

Finally, Garlík [Gar19] has proven lower bounds on the Ref formulas for the so-called non-relativized
encoding. Unfortunately for us, his proofs encounter the same barrier: they rely on random restriction
arguments, which are in any case more involved than the original ones.

We resolve these issues by coming up with new proof, inspired by the extraction algorithm, that modifies
both ingredients in the original proof, yielding Theorem 1.4. The random restriction argument is replaced
by a greedy deterministic restriction just like the one used in the extraction algorithm. For the block-width
lower bound, we show that the argument can be completely described by a Prover-Delayer game without
referring to the exponential-size canonical tree-like refutation, making the entire proof formalizable in PV1.

We remark that moving from the random restriction to the deterministic one comes at the cost of a
slightly worse lower bound. The original size bound on Ref formulas is of the form 2Ω (𝑠/𝑛) and hence yields
2Ω (𝑛) Resolution size lower bounds for all Ref𝑠 formulas with 𝑠 ≥ 𝑛2. Our deterministic restriction, in line
with the parameters of the extraction algorithm, achieves a lower bound of 2Ω (𝑠/𝑛2 ) which is exponential in
Ω(𝑛) for 𝑠 ≥ 𝑛3. It seems reasonable that the original proof with the random restriction can be formalized
in APC1, but we have not carried out this formalization.

Pudlák’s upper bound in Resolution. For the upper bound in Resolution (Theorem 1.6), our proof
is based on a careful analysis of the construction that makes it possible to describe the construction by a
low-depth circuit. Carrying out the proof of the correctness of this circuit in Resolution is tedious, but
ultimately clear once the right description of the circuit is provided.

An interesting technical ingredient is the fact that the correctness statement itself (“if 𝛼 is a satisfying
assignment, then the circuit outputs a correct refutation”) is an implication that cannot be immediately
expressed as a CNF formula that Resolution can handle. To deal with this, we devise a construction using
extension variables that simulates negations of CNF formulas in Resolution, whichwe name pseudo-negations.
With the aid of this pseudo-negation operators, Resolution can carry out modus ponens inferences.
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1.2.4 Consequences

Characterization of the propositional fragments of Atserias–Müller. Our characterization theorem
(Theorem 1.7) is a consequence of the formalization of the lower bound in PV1 (Theorem 1.4) and the upper
bound in Resolution itself (Theorem 1.6). Those results, in the propositional setting, imply that

1. for the extraction algorithm 𝐸, we have EF ⊢ Ref(Ref(𝜑), 𝜋) → Sat(𝜑, 𝐸 (𝜑, 𝜋)); and
2. for Pudlák’s algorithm 𝑃 , we have Res ⊢ Sat(𝜑, 𝛼) → Ref(Ref(𝜑), 𝑃 (𝜑, 𝛼)).

Here, we highlight the variables of the Ref formula encoding a refutation 𝜋 as the second argument of
Ref. In particular, the Resolution proof of the correctness of 𝑃 is also possible in EF. Then, simple use of
contraposition allows us to go from ¬𝜑 to ¬Ref(Ref(𝜑)), and vice versa. That is, if EF can prove ¬𝜑 , then
it can also prove it in the encoding ¬Sat(𝜑, 𝛼), and when substituting 𝐸 (𝜑, 𝜋) for 𝛼 , where 𝜋 are the only
free variables, contraposition on item (1) gives us that EF derives ¬Ref(Ref(𝜑), 𝜋). The other direction is
analogous.

Automatability in terms of Ref formulas. For the characterization of automatability in Theorem 1.8 to
go through we build on Theorem 1.7 and additionally show that the characterization given there is not only
in terms of proof size, but it is actually constructive. Given a proof of ¬𝜑 in 𝑆 we can efficiently construct a
proof of ¬Ref(Ref(𝜑)), and vice versa. In this way, searching for proofs of Ref(Ref(𝜑)) is a proxy for the
proofs of 𝜑 .

Remarkably, our proof techniques fail for proof systems strictly between Extended Frege and Resolution.
The upper bound in Resolution does imply that from a refutation of Ref(Ref(𝜑)) we can obtain a refutation
of 𝜑 . Unfortunately, it is our extraction algorithm (Theorem 1.1) what guaranteed that if 𝜑 has a refutation
of size 𝑡 , then Ref(Ref(𝜑)) has a refutation of size poly(𝑡). In Extended Frege this is true thanks to the
extraction algorithm, but it seems conceivable that weaker systems might be able to easily prove ¬𝜑 without
being able to prove ¬Ref(Ref(𝜑)) efficiently. (For Resolution itself this result does go through, for the
more ad-hoc reason that Ref formulas talk about Resolution itself).

Unprovability of Resolution lower bounds. For Theorem 1.9 we exploit Theorem 1.6: if there is a
short refutation of Ref(Ref(𝜑)), then there is a short refutation of 𝜑 . Since we formalized the upper bound
construction in Resolution, the result applies to any proof system that contains Resolution (and behaves
naturally in the sense that is closed undermodus ponens). Then, if 𝜑 is a hard formula for𝑄 and𝑄 simulates
Resolution, we have that Ref(𝜑) is unsatisfiable. By the lower bound on Ref formulas (Theorem 1.5), this
formula is exponentially hard for Resolution, making Ref(Ref(𝜑)) unsatisfiable as well —but hard to refute
for 𝑄 .

In the first-order setting, Theorem 1.11 relies again on the formalization of the upper bound on Ref
formulas. This time, instead of starting from a sequence of hard propositional formulas, we can leverage
Gödel’s second incompleteness theorem to start from a sentence (the consistency of𝑇 ) that is unconditionally
unprovable in 𝑇 . From this follows that 𝑇 cannot prove the soundness of a certain propositional system
based on 𝑇 (the so-called strong proof system of 𝑇 [Pud20]). We then consider the Ref(·) formula around
these soundness statements. We conclude that if 𝑇 could derive the lower bound on the Ref(·) formulas in
question, it would also be able to prove the soundness of the strong proof system of𝑇 and, as a consequence,
𝑇 would derive its own consistency. Since Gödel’s incompleteness theorem gives us sentences that are
unconditionally independent of 𝑇 , the corresponding Resolution lower bounds are also unconditionally
unprovable in 𝑇 . This works essentially for any theory of arithmetic subject to Gödel’s incompleteness
phenomenon, and does not rely on any complexity-theoretic assumptions.
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1.3 Related work

Our work fits into a trend in complexity theory concerned with the meta-mathematics of computational
complexity, which has gained remarkable momentum in recent years. Most of this work has been primarily
concerned with the formalization of cornerstone results of computational complexity in bounded arithmetic
and establishing unprovability and logical independence as barrier results. The literature is too vast to
review here, so refer the reader to the recent survey of Oliveira [Oli25]. In parallel, there has been a growing
body of work deploying tools and ideas from mathematical logic to prove complexity-theoretic statements
(see, e.g., [Gay21; Mül21; Kha22a; Kha22b; PS22; Nar22; PS23; Kra23; Gay23; Kha24; ACG24; AKPS24; Kra24;
Nar24; Gay24]). Our work continues in this direction.

Two recent works conceptually related to our investigations on Ref formulas merit further discussion.
Santhanam and Tzameret [ST21] initiated a general study of Ref formulas for arbitrarily strong proof
systems. In particular, they studied iterations of these formulas, which are reminiscent of the nested
Ref(Ref(𝜑)) formulas that feature in our work. Their Ref formulas are not limited to Resolution, and they
consider the iterated version of Ref𝑄 when Ref𝑄 talks about an arbitrarily strong proof system 𝑄 . While
we are unable to connect our work on analyzability to their results, our characterization of proof size in
terms of Ref formulas (Theorem 1.7) has conceptual ties to their Iterated Lower Bounds Hypothesis.

The other relevant work is the research of Li, Li, and Ren [LLR24], who studied the provability of
Resolution lower bounds in relativized theories of bounded arithmetic in the context of TFNP. Until their
work, the only formalization of proof complexity lower bounds that we are aware of is that of Cook and
Pitassi [CP90]. Li, Li, and Ren studied so-called refuter problems in proof complexity: given a purported
Resolution refutation of, say, PHP𝑛 , that is smaller than the known lower bounds, find a mistake in the
proof (which must certainly exist, due to these very lower bounds). They connect the provability of lower
bounds to the complexity of solving these refuter problems in subclasses of TFNP. While their results
yield formalizations of some proof complexity lower bounds, our results are essentially incomparable. First,
their provability results are for relativized theories of bounded arithmetic, where the given Resolution
refutation is accessed through an oracle, while our proofs are in the non-relativized theories, where we can
quantify over the objects in question. Second, they consider the provability of lower bounds for explicit
families of tautologies like the pigeonhole principle or the Tseitin formulas. In contrast, the lower bound
we are concerned is a sort of meta lower bound: it tells us that the Ref(𝜑) formulas are hard whenever 𝜑 is
unsatisfiable. We believe, however, that the TFNP perspective on analyzability might shed light on some of
our open questions.

1.4 Open problems

Analyzability of constant-depth Frege and other weak proof systems. Similar techniques to those
of [AM20] have been employed to prove the NP-hardness of automating other weak proof systems like
Regular and Ordered Resolution [Bel20; BY24], 𝑘-DNF Resolution [Gar24], Cutting Planes [GKMP20],
Nullstellensatz and Polynomial Calculus [dRGN+21], the OBDD proof system [IR22] and, more recently,
evenAC0-Frege [Pap24]. All proof systems weaker than Resolution are analyzable just because Resolution is
(i.e, their corresponding PAP problems are in P), since analyzability is downwards closed under simulations.
For the stronger systems, the question remains open. Are these systems analyzable? What about their
search versions?

We highlight the analyzability of constant-depth Frege as a particularly interesting problem. While
we have proven some unconditional lower bounds on Ref formulas here, it is open whether AC0-Frege
can prove any true Resolution lower bounds at all. It has been conjectured in the past that the PHP lower
bound might be formalizable in these systems, at least in quasi-polynomial size. If this was possible, the
NP-hardness of PAPEF in Theorem 1.3 could be improved all the way to these systems.
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FP-completeness of the search version of PAPRes. While we have shown that assignment extraction
can be performed in polynomial time, our algorithm does not seem to be possible anywhere below P. The
algorithm seems hard to parallelize, which raises the question of whether the search version of PAPRes is in
NC or even below. This is related to the question of whether the formalization of the lower bound on Ref
formulas is provable in theories weaker than PV1. If the statement was provable in, say, VNC1, witnessing
theorems would give us a extraction in FNC1. We conjecture that this improvement is in fact impossible,
and that the search problem of PAPRes is complete for FP under AC0-reductions, but we are unable to prove
it. The reduction, if true, likely requires some new technical idea. This would imply, amongst other things,
that V0 does not prove the lower bound on Ref formulas, unconditionally.

On the weak automatability of Resolution. Recall that a proof system is weakly automatable if there
exists a proof system that p-simulates it and is automatable. By our Theorem 1.8, the weak automatability of
Resolution is equivalent to a proof system𝑄 simulating Resolution and being automatable on Ref formulas.
If 𝑄 ≥ EF, then our theorem would imply that 𝑄 itself would be automatable on all formulas, hitting
cryptographic hardness results [KP98; BPR00; BDG+04; ACG24]. However, if 𝑄 is strictly weaker than EF,
our statement does not apply and the automatability of 𝑄 on Ref formulas does not imply automatability
on all formulas. This does not seem to contradict any hardness assumptions. Of course, no such𝑄 is known
to be efficiently automatable on Resolution lower bound statements, but this raises again the question of
whether some non-trivial algorithm weakly automating Resolution might be plausible.

1.5 Structure of the paper

The paper is structured as follows. After the preliminaries in Section 2, we dedicate Section 3 to formally
defining the Proof Analysis Problem and stating some basic facts about it. Section 4 proves Theorem 1.1,
describing the algorithm for the search version of PAPRes and Theorem 1.2. Section 5 proves Theorem 1.3,
giving NP-hardness of PAPEF and stronger systems. In Section 6 and Section 7 we formalize, respectively,
the Resolution lower bound and upper bound on Ref formulas that yield Theorem 1.4 and Theorem 1.6.
Section 8 translates this to the propositional setting to show that Extended Frege has polynomial-size proofs
of the NP-hardness of automating Resolution. Finally, Section 9 gives the proof of the characterization in
Theorem 1.7 and proves Theorem 1.8 on the equivalence of automatabilty of Ref formulas, while Section 9.3
proves Theorem 1.9 and Theorem 1.11 on the unprovability of Resolution lower bounds.

2 Preliminaries

We assume the reader to be familiar with the central concepts of computational complexity theory. Below,
we review the essential definitions and facts involving proof complexity and bounded arithmetic that
feature in the paper. For a more comprehensive treatment of proof complexity, we refer to Krajíček [Kra19].
For bounded arithmetic, the recent survey of Oliveira [Oli25] covers all the necessary material in the style
of the meta-mathematics of computational complexity, which aligns with the style of our work. Other
classical texts in logic and bounded arithmetic also cover these contents (see, e.g., [HP93; Kra95; Bus97;
Bus98]).

2.1 Levin reductions

For decision problems 𝐴, 𝐵 ⊆ {0, 1}∗, we use the notation 𝐴 ≤p
m 𝐵 to express that 𝐴 many-one reduces

(or Karp reduces) to 𝐵, meaning that there is a polynomial-time computable function 𝑓 such that for all
𝑥 ∈ {0, 1}∗ we have 𝑥 ∈ 𝐴 if and only if 𝑓 (𝑥) ∈ 𝐵. We will be concerned with a strengthening of Karp
reductions for search problems. A search problem for us is a relation 𝑅 ⊆ {0, 1}∗ × {0, 1}∗. A search problem
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𝑅 is in FP if there exists a polynomial-time function that on input 𝑥 , outputs some 𝑦 such that (𝑥,𝑦) ∈ 𝑅, if
such a 𝑦 exists.

We will say that 𝑅1 Levin reduces to 𝑅2 and write 𝑅1 ≤p
Levin 𝑅2 if there exists a triple of polynomial-

time computable functions (𝑓 , 𝑔, ℎ) such that for all 𝑥,𝑤 ∈ {0, 1}∗, it holds that (i) if (𝑥,𝑤) ∈ 𝑅1, then
(𝑓 (𝑥), 𝑔(𝑥,𝑤)) ∈ 𝑅2, and (ii) if (𝑓 (𝑥),𝑤) ∈ 𝑅2, then (𝑥, ℎ(𝑥,𝑤)) ∈ 𝑅1. Whenever membership in 𝑅1 and 𝑅2
is checkable in polynomial time, it holds that the sets dom𝑅1 and dom𝑅2 are in NP and dom𝑅1 ≤p

m dom𝑅2.

2.2 Proof complexity

Following the classical definition of Cook and Reckhow [CR79], a propositional proof system 𝑆 for the
set Taut of propositional tautologies is a polynomial-time function 𝑆 : {0, 1}∗ → Taut whose range is
exactly Taut. We think of 𝑆 at the polynomial-time verifier mapping proofs to the statements they prove;
i.e., if 𝑆 (𝜋) = 𝜑 , then we say 𝜋 is an 𝑆-proof of 𝜑 . It is often convenient to think of a proof system as
establishing unsatisfiability; thus, if 𝜑 is an unsatisfiable formula and 𝜋 is an 𝑆-proof of the tautology ¬𝜑 ,
then we say that 𝜋 is an 𝑆-refutation of 𝜑 , or an 𝑆-proof of the unsatisfiability of 𝜑 . Since we deal exclusively
with classical logic, here and below we tacitly gloss over the distinction between the formulas ¬¬𝜑 and 𝜑 ;
this is particularly useful for literals ℓ , where ¬ℓ is sometimes used to denote the complementary literal.

For a tautology 𝜑 and a proof system 𝑆 , we denote by size𝑆 (𝜑) ≔ min𝜋 :𝑆 (𝜋 )=𝜑 |𝜋 | the size of its smallest
𝑆-proof. A proof system 𝑆 is polynomially bounded if there exists a constant 𝑐 ∈ N such that for all 𝜑 ∈ Taut
we have size𝑆 (𝜑) ≤ |𝜑 |𝑐 . For a sequence 𝜑 = {𝜑𝑛}𝑛∈N of tautologies, we write 𝑆 ⊢poly 𝜑 or simply 𝑆 ⊢poly 𝜑𝑛
to express that size𝑆 (𝜑𝑛) = |𝜑 |𝑂 (1) as 𝑛 grows. When we want to emphasize that it is via a specific proof
𝜋 that 𝑆 proves 𝜑𝑛 , we write 𝜋 : 𝑆 ⊢ 𝜑𝑛 . More generally, for 𝑠 ∈ N, we write 𝑆 ⊢𝑠 𝜑𝑛 to express that there
exists an 𝑆-proof 𝜋 of size |𝜋 | ≤ 𝑠 such that 𝜋 : 𝑆 ⊢ 𝜑𝑛 .

We say that a proof system 𝑆 simulates another system𝑄 , written 𝑆 ≥ 𝑄 , if there exists a constant 𝑐 ∈ N
such that for every 𝜑 ∈ Taut we have size𝑆 (𝜑) ≤ size𝑄 (𝜑)𝑐 . We additionally say that 𝑆 p-simulates 𝑄 and
write 𝑆 ≥p 𝑄 if there exists a polynomial-time computable function sending 𝑄-proofs to 𝑆-proofs of the
same formula; i.e., there exists a polynomial-time computable function 𝑓 such that for every 𝜑 ∈ Taut and
every 𝜋 : 𝑄 ⊢ 𝜑 , we have 𝑓 (𝜋) : 𝑆 ⊢ 𝜑 . We say that two proof systems 𝑆 and 𝑄 are polynomially equivalent
if 𝑆 ≥p 𝑄 and 𝑄 ≥p 𝑆 . A proof system 𝑆 is optimal if 𝑆 ≥ 𝑄 for every propositional proof system 𝑄 , and
respectively p-optimal if 𝑆 ≥p 𝑄 for every propositional proof system 𝑄 .

A literal is a propositional variable or its negation. Given a formula 𝜑 (𝑥1, . . . , 𝑥𝑛), a literal substitution
is a mapping of the form 𝜌 : {𝑥1, . . . , 𝑥𝑛} → {𝑥1, . . . , 𝑥𝑛,¬𝑥1, . . . ,¬𝑥𝑛, 0, 1} that replaces variables by other
literals or substitutes constants in their place. We denote by 𝜑↾𝜌 the substituted formula 𝜑 (𝜌 (𝑥1), . . . , 𝜌 (𝑥𝑛)),
with the convention that every resulting occurrence of ¬¬𝑥𝑖 is replaced by 𝑥𝑖 . A restriction is a particular
case of a variable substitution, where all variables are mapped to either 0, 1, or themselves. We say that a
proof system 𝑆 is closed under substitutions (respectively, closed under restrictions) if there exists a constant
𝑑 ∈ N such that for every tautology 𝜑 and every literal substitution (respectively, restriction) 𝜌 , it holds
that size𝑆 (𝜑↾𝜌 ) ≤ size𝑆 (𝜑)𝑑 . All the explicit proof systems dealt with in this work (i.e., the ones described
below, like Resolution or Frege or Extended Frege systems) are closed under literal substitutions. In these
cases, a proof of the substituted formula can be obtained directly by applying the substitution line by line
to every formula appearing in a proof 𝜋 of 𝜑 , and we hence denote by 𝜋↾𝜌 the corresponding substituted
proof of 𝜑↾𝜌 .

2.2.1 Resolution

A central proof system in this work is Resolution (Res). We usually see this as a refutation system for
CNF formulas. Accordingly, we sometimes write 𝜋 : Res ⊢ ¬𝜑 for a CNF formula 𝜑 , to mean that 𝜋
is a Resolution refutation of 𝜑 , hence a proof of the tautology ¬𝜑 . In this way, Res is a Cook-Reckhow
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proof system for the fragment of Taut made of the formula of the form ¬𝜑 , where 𝜑 is an unsatisfiable
CNF formula. Through the standard Tseitin transformation of an arbitrary propositional formula into
equisatisfiable CNF form, Res can also be seen as a Cook-Reckhow proof system for Taut itself; we do not
need the details of this in this paper.

A literal is a propositional atom or its negation, a clause is a disjunction of literals, and a CNF formula
is a conjunction of clauses. We see clauses as sets of literals, and write simply 𝐶 ⊆ 𝐷 to express that
𝐶 is a subclause of 𝐷 . A Resolution refutation of an unsatisfiable CNF formula 𝜑 = 𝐶1 ∧ · · · ∧ 𝐶𝑚 over
variables 𝑥1, . . . , 𝑥𝑛 is a sequence 𝐷1, . . . , 𝐷𝑠 of clauses over 𝑥1, . . . , 𝑥𝑛 such that 𝐷𝑠 = ⊥, denoting the empty
clause, and for every 𝑖 ∈ [𝑠 − 1], the clause 𝐷𝑖 either (a) is one of the clauses 𝐶1, . . . ,𝐶𝑚 of 𝜑 , or (b) is a
weakening of a previous clause, meaning that 𝐷𝑖 ⊇ 𝐷 𝑗 for some 1 ≤ 𝑗 < 𝑖 , or (c) has been obtained from
two previous clauses 𝐷 𝑗 = 𝐴 ∨ 𝑥 and 𝐷𝑘 = 𝐵 ∨ ¬𝑥 , for 𝑗, 𝑘 < 𝑖 , by an application of the Resolution rule:

𝐴 ∨ 𝑥 𝐵 ∨ ¬𝑥 (Res)
𝐴 ∨ 𝐵

We say that 𝐴 ∨ 𝐵 was obtained by resolving over 𝑥 . The length of 𝜋 , denoted by length(𝜋), is 𝑠 .
To every Resolution refutation 𝜋 we can associate a directed acyclic graph in a natural way, and we

often do so implicitly. We denote by depth(𝜋) the length of the longest path in the dag, starting from the
root labeled by the empty clause ⊥. The number of vertices in this graph is precisely length(𝜋).

We will also deal with a mild extension of the Resolution system, known as 𝑘-DNF Resolution [Kra01],
denoted Res(𝑘) for 𝑘 ≥ 1. The system Res(𝑘) is also a refutational system, but lines are 𝑘-DNF formulas,
which are unbounded fan-in disjuctions of𝑘-terms, conjunctions of up to𝑘 literals. A clause is a 1-disjunction.
The system consists of a weakeaning and an introduction rule,

𝐴 (Weak)
𝐴 ∨ 𝐵

𝐴 ∨ ℓ1 𝐵 ∨ (ℓ2 ∧ · · · ∧ ℓ𝑠) (∧-Intro)
𝐴 ∨ 𝐵 ∨ (ℓ1 ∧ · · · ∧ ℓ𝑠)

together with a Cut rule that generalizes the Resolution rule,

𝐴 ∨ (ℓ1 ∧ · · · ∧ ℓ𝑠) 𝐵 ∨ ¬ℓ1 ∨ · · · ∨ ¬ℓ𝑠 (Cut)
𝐴 ∨ 𝐵

where 𝐴 and 𝐵 are 𝑘-DNF formulas and 𝑠 ≤ 𝑘 .
It is easy to see that Resolution (Res) corresponds to Res(1).

2.2.2 Frege systems

Through this work we reason about Resolution refutations within much stronger systems for propositional
logic. A Frege system [CR79] consists of a finite set of axiom schemas and inference rules that are sound and
implicationally complete for the language of propositional tautologies built from the Boolean connectives
negation (¬), conjunction (∧), and disjunction (∨). A Frege proof is then a sequence of formulas where each
formula is obtained by either substitution of an axiom schema or by application of an inference rule on
previously derived formulas. The specific choice of rules does not affect proof size up to polynomial factors,
as long as there are only finitely many rules and these are sound and implicationally complete [CR79].
We refer to Cook and Reckhow [CR79] or Krajíček [Kra19, §2.1] for specific examples of choices for these
rules and axioms. One can alternatively define Frege systems in the formalism of Natural Deduction or the
Sequent Calculus for classical propositional logic, but we will not be concerned with these syntactic details.

Of central importance for us is the Extended Frege (EF) system [CR79], in which proof lines can be
succinctly written as Boolean circuits rather than formulas [Jeř05]. In general, for a circuit class C, one can
consider the proof system C-Frege, in which lines are restricted to be Boolean circuits of that type. We are
particularly interested in the AC0

𝑑
-Frege systems, in which lines are restricted to be Boolean circuits of
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unbounded fan-in and constant depth 𝑑 . We also consider more generally bounded-depth Frege systems,
where the depth 𝑑 is bounded, but not necessarily a constant.

For bounded-depth Frege systems, we have strong lower bounds available. The most famous such
lower bound is the one for the Pigeonhole Principle (PHP). For every𝑚 ∈ N and 𝑛 ∈ N such that𝑚 > 𝑛,
the formula PHP𝑚𝑛 stands for the CNF formula over variables 𝑝𝑖, 𝑗 for 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛] consisting of the
clauses ∨

𝑗∈[𝑛]
𝑝𝑖, 𝑗 for all 𝑖 ∈ [𝑚], (PHP-1)

¬𝑝𝑖, 𝑗 ∨ ¬𝑝𝑖, 𝑗 ′ for all 𝑖 ∈ [𝑚] and 𝑗, 𝑗 ′ ∈ [𝑛], 𝑗 ≠ 𝑗 ′ (PHP-2)
¬𝑝𝑖, 𝑗 ∨ ¬𝑝𝑖′, 𝑗 for all 𝑖, 𝑖′ ∈ [𝑚], 𝑖 ≠ 𝑖′ and 𝑗 ∈ [𝑛] (PHP-3)

We sometimes denote by PHP𝑛 the formula PHP𝑛+1𝑛 .
Strong lower bounds are known on the proof complexity of the pigeonhole principle for bounded-depth

Frege systems [Ajt94; PBI93; KPW95]. Here we state only a simplified version of the best such lower bound,
proven by Håstad [Hås23].

Theorem 2.1 ([Hås23]). For every 𝑑 ≤ 𝑂 (log𝑛/log log𝑛), depth-𝑑 Frege systems requires size at least
exp

(
Ω(𝑛1/(2𝑑−1) )

)
to prove ¬PHP𝑛 .

Finally, we often consider extensions of Extended Frege by sets of additional axioms. For a set𝐴 ⊆ Taut
of tautologies that is recognizable in polynomial time, the system EF +𝐴 refers to Extended Frege extended
with the axiom schemas that allow (formula) substitution instances of any formula in 𝐴.

2.2.3 Automatability and proof search

The notion of of automatability, introduced by Bonet, Pitassi, and Raz [BPR00], is a natural formalization of
efficient proof search in propositional proof system. We say that a proof system 𝑆 is automatable if there
exists a constant 𝑐 ∈ N and an algorithm that given a propositional tautology 𝜑 , outputs an 𝑆-proof of
𝜑 in time ( |𝜑 | + size𝑆 (𝜑))𝑐 , meaning that the proof search algorithm succeeds in finding a proof of size
polynomial in the size of the shortest one.

Even when a system might not be automatable, it seems natural to ask whether there exists a system
𝑄 that p-simulates 𝑆 and is itself automatable. In this case, we say that 𝑆 is weakly automatable [AB04].
Weak automatability is equivalent to the existence of an automating algorithm where the output proof
belongs to a system 𝑄 ≥p 𝑆 rather than 𝑆 itself. In particular, weak automatability is closed downwards
under p-simulation.

A more restrictive notion of proof search is given by the Proof Size Problem. Associated to any proposi-
tional proof system 𝑆 we can define the Proof Size Problem for 𝑆 (PSP𝑆 ), defined as the language

PSP𝑆 ≔ {(𝜑, 1𝑠) | there is an 𝑆-proof of 𝜑 in size 𝑠}.

Automating 𝑆 entails approximating minimum proof-size to a polynomial, in polynomial time.

2.3 Bounded arithmetic

We heavily rely on the connection between propositional proof complexity and (weak) theories of arithmetic.
We assume familiarity with basic knowledge of first-order logic and introduce the main theories we are
concerned with.
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2.3.1 The theories PV1 and S12

Theories of bounded arithmetic capture various forms of feasible reasoning and act as a uniform counterpart
of propositional proof systems. The main tool to capture feasibility in mathematical reasoning is to bound
the complexity of formulas over which one can apply induction.

Cook’s PV1. Cook’s theory PV1 [Coo75; KPT91] is an attempt to make precise the idea of polynomial-
time reasoning. It is a universal theory whose vocabulary LPV consists of a function symbol for each
polynomial-time function, and the axioms are precisely the recursive definitions of these functions via
composition and limited recursion on notation, in the style of Cobham’s functional definition of FP [Cob65].
The theory further admits induction on quantifier-free formulas, which define precisely polynomial-time
predicates.

The formal definition of PV1 is rather technical and the details are not particularly relevant to our
proofs, so we refer the reader to Krajíček’s textbook [Kra95, Definition 5.3] for the details. The reason we
rarely care about the technicalities of PV1 is that we often work instead in the theory S12 of Buss, which
happens to be conservative over PV1 for the classes of formulas we are interested in. We discuss this next.

Buss’s S12. We see S12 as a theory sitting in between Robinson’s Arithmetic Q and Peano Arithmetic PA.
Let LPA denote the language of Peano Arithmetic, LPA ≔ {0, 1, +, ·, <}. The axioms of PA consist first of
the axioms of Robinson’s arithmetic Q , which define the basic behavior of the symbols of LPA (see, for
example, [Kra19, §7.4.3] for a definition), together the Induction Scheme

(𝜑 (0) ∧ ∀𝑥 (𝜑 (𝑥) → 𝜑 (𝑥 + 1)) → ∀𝑥𝜑 (𝑥), (Ind𝜑 )

available for every formula 𝜑 .
The language of S12 is the first-order language of bounded arithmetic, LBA B {0, 1, +, ·, <, | · |, ⌊·/2⌋, #}.

This extends the language of Peano Arithmetic LPA above by the symbols |𝑥 |, ⌊𝑥/2⌋ and 𝑥#𝑦. The standard
interpretation of ⌊𝑥/2⌋ is clear. The notation |𝑥 | denotes the length of the binary encoding of the number 𝑥 ,
⌈log(𝑥 + 1)⌉, while the smash symbol 𝑥#𝑦 stands for 2 |𝑥 | · |𝑦 | .

For a term 𝑡 in the language of bounded arithmetic and a variable 𝑥 that does not appear in 𝑡 , a formula
of the form ∀𝑥 (𝑥 < 𝑡 → 𝜑 (𝑥)) or ∃𝑥 (𝑥 < 𝑡 ∧ 𝜑 (𝑥)) is called a bounded formula. The quantifiers guarded
by the bounds on 𝑥 are called bounded quantifiers and we simply write ∀𝑥 < 𝑡 (𝜑 (𝑥)) and ∃𝑥 < 𝑡 (𝜑 (𝑥)). If
the bounded quantifiers are of the form ∀𝑥 < |𝑠 | of ∃𝑥 < |𝑠 | for some term 𝑠 , then they are called sharply
bounded quantifiers. The hierarchy of bounded formulas consists of the classes Σ𝑏𝑛 (and Π𝑏

𝑛), for 𝑛 ≥ 1,
which are defined by counting the alternations of bounded quantifiers ignoring the sharply bounded ones,
starting with an existential (respectively, universal) one. The class Δ𝑏

𝑛 consists of all formulas that admit
an equivalent definition in both Σ𝑏𝑛 and Π𝑏

𝑛 . In particular, the class Δ𝑏
0 stands for all formulas with sharply

bounded quantifiers only.
The theory S12 of Buss [Bus86] extends Robinson’s arithmetic Q by a set BASIC of simple axioms for the

new function symbols (see, e.g., [Kra95, Definition 5.2.1] for the complete list). On top of this, the theory
has the Polynomial Induction scheme (PInd) for Σ𝑏1-formulas: for every 𝜑 ∈ Σ𝑏1 , the theory contains the
axiom

𝜑 (0) ∧ ∀𝑥 (𝜑 (⌊𝑥/2⌋) → 𝜑 (𝑥)) → ∀𝑥𝜑 (𝑥). (PInd𝜑 )

When working over S12, we often invoke instead the schema for Length Induction,

𝜑 (0) ∧ ∀𝑥 (𝜑 (𝑥) → 𝜑 (𝑥 + 1)) → ∀𝑥𝜑 ( |𝑥 |), (LInd𝜑 )

made available for all Σ𝑏1-formulas. This form of induction is provable from (PInd𝜑 ) for 𝜑 ∈ Σ𝑏1 [Kra95,
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Lemma 5.2.5].
Unlike LPV, the language LBA of bounded arithmetic does not contain a function symbol for every

function in FP. However, every such 𝑓 ∈ FP is Σ𝑏1-definable in S12, meaning that there exists a Σ𝑏1 formula
whose interpretation over the standard model N defines 𝑓 and such that S12 proves the totality of this
definition. Thus, in the rest of the paper we choose to use the theory S12(LPV), which is the theory S12 in the
language of bounded arithmetic extended by all PV function symbols, meaning that we have a fresh symbol
for each function in FP, and induction is now available for all Σ𝑏1 (PV) formulas. The theory S12(LPV) is
fully conservative over S12. In what follows we abuse notation and denote this simply as S12.

The final key fact for us is that all ∀Σ𝑏1 formulas provable in S12 are already provable in PV1. That is, the
theory S12 is ∀Σ𝑏1-conservative over PV1 [Bus86]. We use this in some of the formalizations, where we carry
out arguments in S12 but later appeal to its proof in PV1. For a proof of this fact, see, for example Krajíček’s
textbook [Kra95, Thm. 5.3.4 and Cor. 7.2.4].

2.3.2 Exact counting in PV1 and S12

When working in theories of bounded arithmetic, counting the size of different sets requires a great deal of
care. We use the wide-spread Log-notation 𝑛 ∈ Log as a short-hand for the formula ∃𝑥 ( |𝑥 | = 𝑛). A set 𝑋 is
called a bounded definable set with parameter 𝑦 if there exists an arithmetic formula 𝜑 (𝑥,𝑦) and some term
𝑡 (𝑦) such that 𝑋 = {𝑥 < 𝑡 (𝑦) | 𝜑 (𝑥,𝑦)}. We also adopt the standard set-theoretic notation denoting the
interval [0, 𝑎) directly by 𝑎. Then, a Boolean circuit 𝐶 : 2𝑘 → 2 naturally defines a bounded definable set
𝑋𝐶 = {𝑥 < 2𝑘 | 𝐶 (𝑥) = 1} with parameter 𝐶 from which 𝑘 ∈ Log can be extracted, and there exists a PV
function Count which counts Log-sized initial segments of circuit-definable sets; i.e., in the standard model,
Count(𝐶, 𝑎) is the cardinality of the set 𝑋𝐶 ∩ [0, |𝑎 |).

Importantly, if we know that 2𝑘 ∈ Log, then we are able to exactly count the size of 𝑋𝐶 when working in
PV1. This proves crucial when carrying out different combinatorial arguments. As an example, arguments
involving the pigeonhole principle or different averaging arguments are all possible in PV1 thanks to exact
counting, as long as the sizes of the sets in question are in Log.

2.3.3 Buss’s witnessing theorem

Witnessing theorems are a central tool in the field of bounded arithmetic connecting proofs and computation.
Roughly speaking, they show that existential quantifiers can be turned into explicit functions computing
witnesses for these quantifiers, such that the computational complexity of such a function depends tightly
on the logical strength of the theory proving the statement. We mainly rely on Buss’s witnessing theorem
for S12 (and hence also for PV1) , capable of witnessing one level of existential quantifiers via polynomial-time
functions.

Theorem 2.2 (Buss’s witnessing theorem [Bus86]). Let 𝜑 (𝑥,𝑦) be a Σ𝑏1 formula. If S12 ⊢ ∀𝑥∃𝑦𝜑 (𝑥,𝑦), then
there exists a PV function𝑤 such that S12 ⊢ ∀𝑥𝜑 (𝑥,𝑤 (𝑥)).

Buss’s original argument uses proof theory. We refer to Hájek and Pudlák [HP93, Theorem 4.32] for a
model-theoretic proof.

2.3.4 Cook’s propositional translation

Following Krajíček [Kra19, §8.6], we say that a theory of arithmetic 𝑇 corresponds to a propositional proof
system 𝑆 if (i) 𝑇 can prove the soundness of 𝑆 and (ii) every universal consequence ∀𝑥𝜑 (𝑥) of 𝑇 , where 𝜑 is
quantifier-free, admits polynomial-size proofs in 𝑆 when suitably grounded into a sequence of propositional
formulas. (Pudlák alternatively says that 𝑆 is a weak system of the theory 𝑇 [Pud20].)
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We are interested in the correspondence between PV1 and Extended Frege (EF). In this case, the process
used to turn first-order formulas into propositional ones is known as (Cook’s) propositional translation,
introduced in his seminal paper on PV [Coo75]. Given a quantifier-free formula 𝜑 (𝑥), Cook’s translation is a
polynomial-time construction sending 𝜑 to a sequence of polynomial-size propositional formulas {J𝜑K𝑛}𝑛∈N
such that for every 𝑛 ∈ N, the formula J𝜑K𝑛 ∈ Taut if and only if N |= 𝜑 (𝑛). See [Kra19, §12.3] or [Bus97,
§6.1] for a complete definition of the construction. Cook then observed that, under this translation, PV1

and EF do indeed correspond to each other.

Theorem 2.3 (Cook’s correspondence theorem [Coo75]). The theory PV1 and the proof system Extended
Frege correspond to each other. That is,

(i) PV1 proves the soundness of EF;

(ii) if 𝜑 (𝑥) is a quantifier-free formula in the language LBA(PV) and PV1 ⊢ ∀𝑥𝜑 (𝑥), then there exists a
polynomial-time computable function 𝑓 such that for every 𝑛 ∈ N, it holds that 𝑓 (1𝑛) : EF ⊢ J𝜑K𝑛 .

A proof of the theorem can be found in Krajíček’s textbook [Kra19, Theorem 12.4.2].

2.3.5 Strong proof systems of theories of arithmetic

Let 𝑇 be a consistent theory extending Robinson Arithmetic Q by a set of axioms that is decidable in
polynomial time (i.e.,𝑇 extendsQ and is polynomial-time axiomatizable). We denote by 𝑃𝑇 the propositional
proof system in which a proof of the propositional tautology 𝜑 is given by a 𝑇 -proof of the first-order
sentence Taut(⌜𝜑⌝) which states that the propositional formula 𝜑 is made true by every truth-assignment
for its variables; here ⌜𝜑⌝ stands for the code of 𝜑 in a standard arithmetization of propositional formulas.
Following Pudlák [Pud20], we call 𝑃𝑇 the strong proof system of 𝑇 .

We will use two key facts of these proof systems. First, if 𝑇 is a theory for which 𝑃𝑇 is defined and 𝑄 is
a propositional proof system that corresponds to 𝑇 in the sense of Section 2.3.4, then 𝑃𝑇 ≥p 𝑄 [Pud20, §4.2,
Fact 2]. Second, by Gödel’s second incompleteness theorem, 𝑇 does not prove the soundness of 𝑃𝑇 [Pud20,
§4.2, Fact 3].

2.4 The Ref formulas

The main character in this paper is the so-called Ref formula. Given a propositional CNF formula 𝜑 and a
size parameter 𝑠 ∈ N, the formula Ref𝑠 (𝜑) states that 𝜑 has a Resolution refutation consisting of 𝑠 clauses.

It is important to choose an encoding that is simultaneously natural from a modeling point of view
while not making the formulas artificially hard to refute. At a basic level, the main property that such
an encoding should satisfy is that for a concrete 𝜑 and 𝑠 , the formula Ref𝑠 (𝜑) should be satisfiable if and
only if there is a Resolution refutation of 𝜑 in 𝑠 clauses. It also seems natural to require that a Resolution
refutation should be readable in polynomial time from a satisfying assignment to Ref.

While different encodings have appeared in the literature, they tend to agree on a few basic ideas. The
formula Ref𝑠 (𝜑) consists of 𝑠 so-called blocks of variables, each representing a clause in the purported
Resolution refutation. Each block has variables to represent the literals that appear in this block, how it was
obtained (resolved or weakened from an axiom), and it contains pointer variables to indicate from which
blocks it was derived.

The unary encoding of Pudlák. Pudlák [Pud03] uses the seemingly most standard encoding, which we
refer to as the unary encoding for Ref. He used it to prove that the canonical pair of Resolution is symmetric.
This encoding employs pointers in unary, meaning that for every block 𝐵 ∈ [𝑠], there are up to 𝑠 additional
variables to point at the blocks from which 𝐵 was derived.

18



The relativized unary encoding of Atserias andMüller. Atserias and Müller [AM20] start by studying
Pudlák’s encoding. They proved suitable so-called index-width lower bounds for it in Resolution, but they
were unable to prove a size lower bound for it. They then introduced a relativized version, in which each
block can be possibly enabled or disabled. If it is disabled, then the block is not used towards the refutation,
and its associated clauses are immediately satisfied. These additional enabling variables made it possible to
prove the size lower bound from the index-width lower bound for the unrelativized encoding. We refer to
this second encoding as the relativized unary encoding.

We note, however, that the change of encoding is not the source for hardness. Garlík [Gar19] proved
that even when using the original encoding of Pudlák, the formulas are hard for Resolution whenever the
underlying CNF is unsatisfiable.

The binary encoding of de Rezende et al. In their alternative proof of the lower bound on Ref formulas,
de Rezende et al. [dRGN+21] introduce an encoding of Refwhere pointers are encoded in binary. Informally,
for every block 𝐵 ∈ [𝑠], there are 𝑂 (log 𝑠) variables used encode the value 𝐵′ ∈ [𝑠] of the block(s) from
which 𝐵 was derived. We refer to this as the binary encoding. While this encoding also includes the enabling
variables of the relativized encoding, these are inessential, since one can always assign the pointers in a
dummy fashion to effectively disable a block.

We contend that the unary relativized encoding is both the most natural as well as the most versatile.
We see three reasons for this:

1. thanks to the enabling variables, one can naturally turn a Resolution refutation of 𝑡 < 𝑠 clauses into a
satisfying assignment to Ref𝑠 (𝜑) simply by disabling 𝑠 − 𝑡 blocks that are not needed, while in the
relativized encoding one needs to fill in the remaining 𝑠 − 𝑡 clauses with some dummy content;

2. the enabling variables make the random restriction argument leading to the size lower bound much
simpler to prove, and Garlík has shown that the hardness does not comes from this change in syntax;

3. when using a unary encoding rather than the binary one of de Rezende et al., one can easily restrict
some pointers to get an instance of Ref𝑡 (𝜑) for every 𝑡 < 𝑠 , while in the binary encoding, after
disabling a block, the binary pointers might still be able to point to it, making the formulas more
delicate to handle after applying a restriction.

We remark that the choice between unary and binary encodings is ultimately inessential, and all the
results in this paper can be reproven for the binary encoding. We choose the unary encoding mainly for
reason (3) above, which simplifies the write-up.

We now define the formula in detail.

The variables of Ref𝑠 (𝜑). Here, we assume 𝜑 is a CNF formula over 𝑛 variables 𝑥1, . . . , 𝑥𝑛 and𝑚 clauses
and define the following variables, where Lit𝑛 ≔ {𝑥1, . . . , 𝑥𝑛,¬𝑥1, . . . ,¬𝑥𝑛}.

a-lit𝐴ℓ : literal ℓ ∈ Lit𝑛 is present in the clause 𝐴 ∈ [𝑚] of 𝜑 ;
enable𝐵 : block 𝐵 ∈ [𝑠] is enabled;
derived𝐵 : block 𝐵 ∈ [𝑠] was obtained by a Resolution step;
weak𝐵𝐴 : block 𝐵 ∈ [𝑠] is obtained by weakening from clause 𝐴 ∈ [𝑚] of 𝜑 ;
lit𝐵ℓ : literal ℓ ∈ Lit𝑛 is present in the block 𝐵 ∈ [𝑠];
res𝐵𝑥𝑖 : block 𝐵 ∈ [𝑠] was obtained by resolving over the variable 𝑥𝑖 ;
lpoint𝐵𝐵′ : block 𝐵 ∈ [𝑠] was resolved on the left from block 𝐵′ ∈ [𝑠], 𝐵′ < 𝐵;
rpoint𝐵

𝐵′ : block 𝐵 ∈ [𝑠] was resolved on the right from block 𝐵′ ∈ [𝑠], 𝐵′ < 𝐵.
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Building on these variables, the Ref𝑠 (𝜑) formula is defined as follows. We write the clauses as implica-
tions for the sake of readability.

Definition 2.4 (The Ref formulas). Let 𝑛,𝑚, 𝑠 ∈ N, and let Lit𝑛 ≔ {𝑥1, . . . , 𝑥𝑛,¬𝑥1, . . . ,¬𝑥𝑛} denote the of
possible literals over 𝑛 variables. The Ref𝑠 (𝜑) formula is built from the variables defined above, together
with the conjunction of the following clauses:

(
enable𝐵 ∧ res𝐵𝑥𝑖 ∧ lpoint𝐵𝐵′ ∧ lit𝐵

′
ℓ

)
→ lit𝐵ℓ for 𝐵, 𝐵′ ∈ [𝑠], 𝐵′ < 𝐵, 𝑖 ∈ [𝑛], ℓ ∈ Lit𝑛 \{𝑥𝑖}, (Ref-1)(

enable𝐵 ∧ res𝐵𝑥𝑖 ∧ rpoint𝐵𝐵′ ∧ lit𝐵
′

ℓ

)
→ lit𝐵ℓ for 𝐵, 𝐵′ ∈ [𝑠], 𝐵′ < 𝐵, 𝑖 ∈ [𝑛], ℓ ∈ Lit𝑛 \{¬𝑥𝑖}, (Ref-2)(

enable𝐵 ∧ weak𝐵𝐴 ∧ a-lit𝐴ℓ
)
→ lit𝐵ℓ for 𝐵 ∈ [𝑠], 𝐴 ∈ [𝑚], ℓ ∈ Lit𝑛, (Ref-3)(

enable𝐵 ∧ derived𝐵
)
→

∨
𝑖∈[𝑛]

res𝐵𝑥𝑖 for 𝐵 ∈ [𝑠], (Ref-4)(
enable𝐵 ∧ derived𝐵

)
→

∨
𝐵′∈[𝑠 ]
𝐵′<𝐵

lpoint𝐵𝐵′ for 𝐵 ∈ [𝑠], (Ref-5)

(
enable𝐵 ∧ derived𝐵

)
→

∨
𝐵′∈[𝑠 ]
𝐵′<𝐵

rpoint𝐵𝐵′ for 𝐵 ∈ [𝑠], (Ref-6)

(
enable𝐵 ∧ ¬derived𝐵

)
→

∨
𝐴∈[𝑚]

weak𝐵𝐴 for 𝐵 ∈ [𝑠], (Ref-7)(
enable𝐵 ∧ lpoint𝐵𝐵′

)
→ enable𝐵

′
for 𝐵, 𝐵′ ∈ [𝑠], 𝐵′ < 𝐵 (Ref-8)(

enable𝐵 ∧ rpoint𝐵𝐵′

)
→ enable𝐵

′
for 𝐵, 𝐵′ ∈ [𝑠], 𝐵′ < 𝐵 (Ref-9)

¬lit𝑠ℓ for ℓ ∈ Lit𝑛, (Ref-10)
enable𝑠 . (Ref-11)

Remark 2.5. Our encoding of Ref has fewer axioms than that of [AM20]. For example, we do not require
that if a block 𝐵 is resolved on the left by variable 𝑥 from block 𝐵′, then 𝐵′ should contain 𝑥 , or we do not
require that for every resolution step there is a unique resolved variable. We remark that soundness still
holds and Ref is satisfiable if and only if there exists a size-𝑠 refutation, which can easily be read from the
satisfying assignment to the Ref formula. We also remark that the lack of these axioms does not affect the
extraction algorithm or the lower bound in any way: while removing axioms could in principle make the
lower bound easier to prove, the algorithm works just as well if we added the missing axioms, and our
lower bound proof still goes through with the additional axioms. This more succinct encoding, however,
makes it easier to formalize the upper bound construction in Resolution. ◀

Remark 2.6 (Number of variables). The formula Ref𝑠 (𝜑) is defined over 𝑁 = Θ(𝑠2 + 𝑠𝑚 + 𝑠𝑛 +𝑚𝑛) variables
and𝑀 = Θ(𝑠2𝑛2+𝑠𝑚𝑛) clauses. For the case when the a-lit variables are restricted to encode a𝑘-CNF formula
over 𝑛 variables and 𝑠 = 𝑛𝑐 for some constant 𝑐 ≥ 1, we have𝑚 = 𝑂 (𝑛𝑘 ) and 𝑁 = 𝑂 (𝑛max{2𝑐,𝑐+𝑘 }). ◀

Blocks and block-width. If a variable is part of a block 𝐵𝑖 , we say that it mentions 𝐵𝑖 . An important
measure for us will be the block-width of a given clause 𝐶 over the variables of Ref𝑠 (𝜑). This is defined
as the number of different blocks mentioned by the variables of the literals in 𝐶 , not counting the root
block 𝐵⊥. We denote this measure by bw(𝐶), and generalize it to refutations by taking bw(𝜋) to be the
maximum block-width over all the clauses in 𝜋 .
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2.4.1 The Ref formulas for other proof systems

We will also be interested in the Ref formulas for proof systems other than Resolution. In general, for a
Cook-Reckhow system 𝑄 , we denote by Ref𝑄 (𝜑, 𝜋) the formula stating that 𝜋 is a correct 𝑄-refutation of
an unsatisfiable 𝜑 . For convenience, in this context we always consider all proof systems as refutational
systems. The formula Ref𝑄 (𝜑, 𝜋) is simply the propositional formula that verifies that 𝜑 is accepted by the
Boolean circuit that checks𝑄-refutations. This can be obtained by writing the computation of the circuit as
a Boolean formula using the usual Tseitin encoding.
Remark 2.7 (Notation). By default, the Ref formula stands for the formula as defined in Definition 2.4 for
Resolution refutations. If we want to refer to the Ref formula for a different proof system, we explicitly
write Ref𝑄 for the system 𝑄 in question. ◀

2.4.2 The Sat formula and reflection principles

We also have have the Sat(𝜑, 𝛼) formula, encoding that a CNF formula 𝜑 is satisfied by an assignment 𝛼 .
The variables we consider are

𝛼𝑖 : value assigned by 𝛼 to variable 𝑥𝑖 ;
a-lit𝐴ℓ : literal ℓ ∈ Lit𝑛 is present in clause 𝐴 ∈ [𝑚];
sat𝐴ℓ : clause 𝐴 ∈ [𝑚] is satisfied because literal ℓ ∈ Lit𝑛 evaluates to 1 under 𝛼 .

We use a-lit instead of lit to distinguish between these variables and the lit variables of Ref(𝜑, 𝑠).

Definition 2.8 (The Sat formulas). Let 𝑛,𝑚 ∈ N, let 𝜑 denote the set of variables of the form a-lit𝐴ℓ as
above and let 𝛼 denote the set of variables 𝛼𝑖 as above. The formula Sat(𝜑, 𝛼) is the CNF formula over the
variables in 𝜑 , 𝛼 and additionally all the variables sat𝐴ℓ above consisting of the conjunction of the following
clauses,

¬sat𝐴ℓ ∨ a-lit𝐴ℓ for all 𝐴 ∈ [𝑚] and ℓ ∈ {𝑥1, . . . , 𝑥𝑛,¬𝑥1, . . . ,¬𝑥𝑛}, (Sat-1)
¬sat𝐴𝑥𝑖 ∨ 𝛼𝑖 for all 𝐴 ∈ [𝑚] and 𝑖 ∈ [𝑛], (Sat-2)
¬sat𝐴¬𝑥𝑖 ∨ ¬𝛼𝑖 for all 𝐴 ∈ [𝑚] and 𝑖 ∈ [𝑛], (Sat-3)∨
𝑖∈[𝑛]

sat𝐴𝑥𝑖 ∨ sat𝐴¬𝑥𝑖 for all 𝐴 ∈ [𝑚] . (Sat-4)

One can similarly write a Sat formula for evaluating DNF formulas in the obvious ways. It is always
clear from context which version of Sat we are using, so we use the same notation for both.

Proposition 2.9. For every CNF formula 𝜑 , the following statements hold:

(i) if 𝜑 has a Resolution refutation of size 𝑠 , then Sat↾𝜑 has a Resolution refutation of size 𝑂 (𝑠);
(ii) if Sat↾𝜑 has a Resolution refutation of size 𝑠 , then 𝜑 has a Resolution refutation of size 𝑂 (𝑠).

Proof. Assume 𝜑 has 𝑛 variables 𝑥1, . . . , 𝑥𝑛 and 𝑚 clauses 𝐶1, . . . ,𝐶𝑚 . We first show how to go from a
refutation of Sat↾𝜑 to a refutation of 𝜑 . After fixing 𝜑 , the only variables left in Sat are of type sat𝐴ℓ or 𝛼𝑖 .
Since Resolution is closed under literal substitutions, it suffices to define a substitution 𝜎 that replaces all
the original variables by literals of 𝜑 , and argue that all the axioms of Sat↾𝜑,𝜎 follow from clauses of 𝜑 . For
every 𝑖 ∈ [𝑛], every ℓ ∈ {𝑥1, . . . , 𝑥𝑛,¬𝑥1, . . . ,¬𝑥𝑛}, and every 𝐴 ∈ [𝑚], the substitution 𝜎 maps

𝜎 (𝛼𝑖) ≔ 𝑥𝑖 and 𝜎 (sat𝐴ℓ ) ≔
{
ℓ if ℓ ∈ 𝐶𝐴

0 if ℓ ∉ 𝐶𝐴 .
(2.1)
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Let us inspect the axioms of Sat↾𝜑,𝜎 . For an axiom ¬sat𝐴ℓ ∨ a-lit𝐴ℓ of type (Sat-1), if the restriction of this
axiom is present is Sat↾𝜑 it is because ℓ ∉ 𝐶𝐴, or else a-lit𝐴ℓ would be satisfied. Then, 𝜎 (sat𝐴ℓ ) = 0 and the
substitution is satisfied. If the axiom is of type (Sat-2), then either 𝑥𝑖 ∉ 𝐶𝐴, in which case 𝜎 (sat𝐴𝑥𝑖 ) = 0
and ¬sat𝐴𝑥𝑖 ∨ 𝛼𝑖 is satisfied, or 𝜎 (sat

𝐴
𝑥𝑖
) = 𝑥𝑖 and 𝜎 (𝛼𝑖) = 𝑥𝑖 , which gives the trivial clause ¬𝑥𝑖 ∨ 𝑥𝑖 . The case

for (Sat-3) is analogous. Finally, for a clause of type (Sat-4), it is easy to see that the substitution 𝜎 maps
the clause precisely to the clause 𝐶𝐴 itself, which is a clause of 𝜑 .

To go from a refutation of𝜑 to a refutation of Sat↾𝜑 , we do the following. First, rename all the variables𝛼𝑖
by 𝑥𝑖 . Then, for every 𝐴 ∈ [𝑚], note that we can resolve the corresponding clause of type (Sat-4) with
the unit clauses ¬sat𝐴ℓ of type (Sat-1) to obtain

∨
ℓ∈𝐶𝐴

sat𝐴ℓ . Now, for each sat𝐴ℓ in this clause, cut with the
corresponding clause of type (Sat-2) or (Sat-3) to obtain

∨
ℓ∈𝐶𝐴

ℓ , which is just 𝐶𝐴. In this way we have
derived every axiom 𝐶𝐴 of 𝜑 , and we can now proceed with the refutation of 𝜑 in the natural way. □

Finally, we define the reflection principle for any proof system.

Definition 2.10 (The Refl formulas). Let 𝑄 be a Cook-Reckhow propositional proof system and let
𝑛,𝑚, 𝑠 ∈ N. We define Refl𝑄𝑛,𝑚,𝑠 ≔ Sat(𝜑, 𝛼) ∧ Ref𝑄 (𝜑, 𝜋) where the Sat instance is for CNF formulas
with 𝑛 variables and𝑚 clauses and the Ref𝑄 instance is for 𝑄-refutations of such formulas of size 𝑠 , and
refer to the sequence of tautologies Refl𝑄 ≔ {¬Refl𝑄𝑛,𝑚,𝑠 }𝑛,𝑚,𝑠∈N as the reflection principle for 𝑄 .

A useful property of EF is the fact that any propositional system 𝑆 , however strong, can always be seen
as a Frege-like system due to the fact that EF + Refl𝑆 ≥p 𝑆 [Kra19, Theorem 8.4.3].

2.4.3 Reflection principles for first-order theories

The reflection principles above are the propositional analogues of the well-studied first-order reflection
principles for theories of arithmetic. For a strong enough recursively axiomatizable theory of arithmetic 𝑇
and a class Φ of sentences, the schema Φ-Refl𝑇 stands for the collection of all formulas of the form

∃𝜋 Prf𝑇 (⌜𝜑⌝, 𝜋) → 𝜑 (Refl𝑇,𝜑 )

for every 𝜑 ∈ Φ. Here, the notation ⌜𝜑⌝ stands for the encoding of 𝜑 in a fixed suitable arithmetization of
syntax, and Prf𝑇 stands for the provability statement in this arithmetization.

3 The Proof Analysis Problem: definitions and basic facts

For a CNF formula 𝜑 (𝑥1, . . . , 𝑥𝑛), we denote by Ref𝑠 (𝜑) the propositional formula claiming that there exists
a Resolution refutation of 𝜑 in size 𝑠 . Different encodings of this formula have been considered in the
literature. For our purposes, Ref consists of 𝑠 of blocks of variables, each of them describing a clauses in
a purported Resolution refutation of 𝜑 of size 𝑠 . (See Section 2.4 for a full rendering of the variables and
clauses involved in Ref𝑠 (𝜑).)

We are interested in the following decision problem.

Definition 3.1 (The Proof Analysis Problem, PAP𝑄 ). Let 𝑄 be a propositional proof system. We define the
Proof Analysis Problem for 𝑄 to be the language

PAP𝑄 ≔ {(𝜑, 𝜋, 1𝑠) | 𝜑 ∈ SAT and 𝜋 : 𝑄 ⊢ ¬Ref𝑠 (𝜑)}.

We denote by PAP𝑄 [𝑠 (𝑛)] the problem where the size parameter 𝑠 is restricted to be at least 𝑠 (𝑛) and 𝑛
denotes the number of variables of 𝜑 .
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The problem asks, given the proof of a Resolution lower bound in a fixed proof system 𝑄 , to decide
whether the underlying formula is satisfiable or not. Note that whenever 𝜑 is satisfiable there is no
Resolution refutation and thus any lower bound holds, so the problem is well-defined.

Analogous to the notion of whether a proof system is automatable, PAP naturally induces a notion of
whether, for a given proof system, its Resolution lower bounds are “analyzable”.

Definition 3.2 (Analyzability). We say that a propositional proof system 𝑄 is analyzable if there exists
some constant 𝑐 > 0 such that PAP𝑄 [𝑛𝑐] ∈ P.

Remark 3.3. It might seem more intuitive to define a proof system 𝑄 to be analyzable if PAP𝑄 ∈ P, without
restrictions on the size parameter. Note, however, that for most reasonable proof systems, the language
PAP𝑄 taken as a whole contains some degenerate instances that make the problem trivially NP-hard. For
example, if the size parameter is set to 𝑠 = 1, then certainly proving a Resolution lower bound against 𝜑 is
easy already for Resolution itself, and we can map a CNF formula 𝜑 to the PAP𝑄 -instance (𝜑, 𝜋, 1) for some
easy to construct 𝑄-proof 𝜋 that checks there is no Resolution refutation of 𝜑 in one clause. ◀

It is easy to see that for every Cook-Reckhow system 𝑄 , the problem PAP𝑄 is in NP. Similarly, we note
that unlike automatability, analyzability is naturally downwards-closed under p-simulations. Namely, if 𝑆
is p-simulated by 𝑄 and 𝑄 is analyzable, so is 𝑆 ; this is not the case with automatability, where a search
algorithm for 𝑄 may not be used to search for proofs in a weaker 𝑆 .

The following is a corollary of the results of Atserias and Müller [AM20]. Here, by P-uniform we mean
the standard notion of uniformity by which there is a polynomial-time descriptor Turing machine that on
input 1ℓ outputs the circuit solving the problem for inputs of size ℓ (see, e.g., [AB09, Definition 6.12; All25]).

Proposition 3.4. It holds that PAPRes [𝑛2] is in P-uniform AC0. That is, Resolution is analyzable.

Proof. Let us first describe the general polynomial-time algorithm that puts PAPRes [𝑛2] in P, and we later
elaborate on how this can be computed in P-uniform AC0. Indeed, by the Resolution lower bound on Ref
formulas (Theorem 1.5), there exists 𝜀 > 0 such that for every 𝑠 ∈ N, if a formula 𝜑 over 𝑛 variables is
unsatisfiable, then a correct Resolution refutation 𝜋 of Ref𝑠 (𝜑) must have size |𝜋 | > 2𝜀 ·𝑠/𝑛 . Given an input
(𝜑, 𝜋, 1𝑠) to PAPRes [𝑛2], to decide if the instance belongs in the language, it suffices to check (i) that 𝜋 is
a correct Resolution refutation of Ref𝑠 (𝜑) and (ii) that |𝜋 | is smaller than the lower bound 2𝜀 ·𝑠/𝑛 . If (i)
fails, we immediately reject, and otherwise, if (ii) fails, the input size is large enough to brute-force SAT in
polynomial time. Here we use the fact that 𝑠 ≥ 𝑛2, hence |𝜋 | ≥ 2𝜀 ·𝑠/𝑛 ≥ 2𝜀𝑛 , and thus the input size is large
enough.

Let us now argue that this entire computation is possible within P-uniform AC0. For the sake of
precision, let us fix the following natural binary encoding for PAPRes. An input (𝜑, 𝜋, 1𝑠) will be of the
form (1𝑛, 1𝑚,𝐶1, . . . ,𝐶𝑚, 1𝑡 , 𝜋, 1𝑠). Here, the first part of the tuple corresponds to the encoding of 𝜑 , a
CNF formula over 𝑛 variables and 𝑚 clauses 𝐶1, . . . ,𝐶𝑚 , and we assume that these clauses are initially
represented as strings of length 2𝑛 with indicators for every possible literal. The Resolution refutation
of Ref𝑠 (𝜑) is encoded by 1𝑡 and 𝜋 , where 𝜋 is an assignment to the 𝑁 ≔ 𝑁 (𝑛,𝑚, 𝑡, 𝑠) = poly(𝑛,𝑚, 𝑡, 𝑠)
variables of Ref𝑡 (Ref𝑠 (𝜑)), as per Section 2.4, and the number of variables 𝑁 can be easily computed in
polynomial time. For the purpose of unique decoding, we assume that the tuple (1𝑛, 1𝑚,𝐶1, . . . ,𝐶𝑚, 1𝑡 , 𝜋, 1𝑠)
is encoded by bit-doubling: each bit is duplicated and 01 is used as separators. We assume that there are no
separators between the clauses 𝐶1, . . . ,𝐶𝑚 , so a correct input contains only five separators.

Now, when dealing with binary strings of even length ℓ , there are at most 𝑂 (ℓ4) possible ways of
interpreting such strings as a tuple of the form (1𝑛, 1𝑚,𝐶1, . . . ,𝐶𝑚, 1𝑡 , 𝜋, 1𝑠). This is because we can choose
values for 𝑛,𝑚, 𝑡 and 𝑠 in the interval [ℓ/2− 5], where ℓ/2− 5 comes from the fact that we duplicated every
bit and introduced 10 bits for the five separators between 1𝑛 , 1𝑚 , 𝐶1, . . . ,𝐶𝑚 , 1𝑡 , 𝜋 , and 1𝑠 , not counting
separators between 𝐶1 and 𝐶𝑚 . One can then check that this choice of 𝑛,𝑚, 𝑡 and 𝑠 conforms to the desired
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pattern: the segment for the clauses 𝐶1 to 𝐶𝑚 has length exactly 2𝑛𝑚, and the segment for 𝜋 has length
exactly𝑁 = 𝑁 (𝑛,𝑚, 𝑡, 𝑠), as per Remark 2.6. That is, it must hold that ℓ = 2(𝑛+𝑚+2𝑛𝑚+𝑡+𝑁 (𝑛,𝑚, 𝑡, 𝑠)+𝑠)+10
and 𝑠 ≥ 𝑛2. There are at most 𝑂 (ℓ4) such choices for (𝑛,𝑚, 𝑡, 𝑠) ∈ [ℓ/2 − 5]4, hence the upper bound.
Furthermore, it is easy to see that, due to the bit-doubling, every string can only encode correctly one input
of the form (1𝑛, 1𝑚,𝐶1, . . . ,𝐶𝑚, 1𝑡 , 𝜋, 1𝑠), so the decoding is unique.

The P-uniform descriptor machine for inputs of even length ℓ now works as follows. On input 1ℓ , for ℓ
even, it tries all possible 𝑂 (ℓ4) ways of separating the lengths, and for each interpretation (𝑛,𝑚, 𝑡, 𝑠) of the
lengths it constructs a different constant-depth Boolean circuit 𝐷𝑛,𝑚,𝑡,𝑠 , as follows.

(a) If the interpretations of the lengths is inconsistent, in the sense that the string cannot correspond to
something of the form (1𝑛, 1𝑚,𝐶1, . . . ,𝐶𝑚, 1𝑡 , 𝜋, 1𝑠), then it outputs the constant circuit 0.

(b) If the interpretation of the lengths is valid and |𝜋 | < 2𝜀 ·𝑠/𝑛 , then it simply constructs the circuit that
checks that 𝜋 is a correct Resolution refutation of Ref𝑠 (𝜑) in at most 𝑡 clauses; that is, it outputs the
formula Ref𝑡 (Ref𝑠 (𝜑)), which itself depends on the variables encoding 𝜑 . Since Ref formulas are in
CNF, nesting these together with 𝜑 will result in a total depth of 5 (see Section 7.3 for a more detailed
treatment of how the depth increases when nesting the Ref formulas).

(c) If the interpretation of the lengths is valid and |𝜋 | ≥ 2𝜀 ·𝑠/𝑛 , then the descriptor outputs the conjunction
of two circuits: one is the same as before, checking the correctness of 𝜋 as a refutation of Ref𝑠 (𝜑)
in at most 𝑡 clauses, and the other is the trivial circuit of size poly(𝑛,𝑚) · 2𝑛 that brute-forces the
satisfiability of 𝜑 . More formally, this is a big disjunction of fan-in 2𝑛 , where each wire goes to the
formula Sat(𝜑, 𝛼) from Definition 2.8 for different hard-wired values of 𝛼 ∈ {0, 1}𝑛 . Since Sat(𝜑, 𝛼)
is a CNF formula, this brute-forcing circuit has depth 3, and combined with the circuit checking the
correctness of 𝜋 , the entire circuit has depth 5 in this case.

For each interpretation of the lengths there is also a circuit Correct𝑛,𝑚,𝑡,𝑠 that verifies that the input
correctly encodes a PAPRes instance of the right size. This amounts to checking that the separators are in
the right place and the double-bit encoding is correctly implemented, which can all be verified in depth 3.

Finally, the descriptor machine outputs the circuit

𝑅ℓ ≔
∨

(𝑛,𝑚,𝑠,𝑡 ) ∈ [ℓ/2−5]4
𝐷𝑛,𝑚,𝑡,𝑠 ∧ Correct𝑛,𝑚,𝑡,𝑠 (3.1)

consisting of the disjunction of all the circuits above for every interpretation of the lengths.
The final circuit𝑅ℓ correctly computes PAPRes [𝑛2] on inputs of even length ℓ , has depth 6 and polynomial

size. Indeed, the constructions (a) and (b) above both have polynomial size, and whenever we construct the
exponential-size circuit in (c), it is with respect to a segment of the string that has itself size exponential
in 𝑛. Finally, the descriptor machine runs in polynomial time given only the length ℓ of the input string 𝑥 ,
so we can conclude that PAPRes [𝑛2] is in P-uniform AC0. □

The fact that PAPRes is so easy makes it natural to ask whether the same is true for the search version of
the problem.

Definition 3.5 (Search version of PAP). For a propositional proof system 𝑄 , we denote by FPAP𝑄 the
search version of the Proof Analysis Problem for 𝑄 , defined as follows.

FPAP𝑄 (search version of PAP𝑄 )

Input A CNF formula 𝜑 , a size parameter 𝑠 in unary and a proof 𝜋 such
that 𝜋 : 𝑄 ⊢ ¬Ref𝑠 (𝜑).

Output Either a satisfying assignment for 𝜑 , if 𝜑 ∈ SAT, or 0 otherwise.
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Similarly to PAP𝑄 [𝑠 (𝑛)], we define FPAP𝑄 [𝑠 (𝑛)] to be the search problem where the size parameter is at
least 𝑠 (𝑛).

If we impose a polynomial upper bound on the size of 𝜋 , then by the lower bound on Ref formulas,
there is always a satisfying assignment for 𝜑 , and the problem FPAP𝑄 [𝑛𝑐] for any 𝑐 > 0 is in TFNP. The
fact that PAPRes [𝑛2] ∈ P, does not, however, directly imply that FPAPRes [𝑛𝑐] ∈ FP for any 𝑐 > 0. Namely, it
is not clear that given a polynomial-size proof 𝜋 of Ref𝑠 (𝜑) one can extract a satisfying assignment of 𝜑 ,
even if one can conclude that 𝜑 is satisfiable. We show in Section 4 that FPAPRes is in FP—although the
algorithm is not quite as straightforward as the one for the decision problem.

We see PAP and the analyzability of a proof system as closely related to automatability. The following
proposition captures this idea and underlines the relevance on PAP in showing hardness of automatability.

Proposition 3.6. Let 𝑄 ≥ Res. If 𝑄 is both analyzable and automatable, then P = NP.

Proof. If 𝑄 is analyzable and automatable, this means that PAP𝑄 [𝑛𝑐] ∈ P for some constant 𝑐 > 0, and
that there is an automating algorithm 𝐴 for 𝑄 . We call the polynomial-time algorithm for PAP𝑄 [𝑛𝑐] an
analyzer and observe that these two combined can solve 3SAT in polynomial time as follows. Given a
3-CNF formula 𝜑 , construct the formula Ref𝑛𝑐 (𝜑), stating that 𝜑 does not have Resolution refutations
of size 𝑛𝑐 . Since 𝑄 ≥ Res, by the upper bound construction [Pud03, Theorem 4.1; AM20, Lemma 11],
whenever 𝜑 is satisfiable, there will be size-𝑛𝑂 (1) refutations in Resolution, and hence also in 𝑄 , and the
automating algorithm 𝐴 will succeed in finding some refutation in polynomial time. Feed this refutation to
the 𝑄-analyzer to decide whether 𝜑 ∈ SAT. If the automating algorithm failed to output a polynomial-size
proof, then we would already know that 𝜑 ∉ SAT. □

The previous proposition can be seen as an abstract way of stating the NP-hardness of automating
Resolution too. Since PAPRes [𝑛2] ∈ P, that means that Resolution cannot be automatable unless P = NP. In
Section 5 we study the possibility of analyzing algorithms for strong proof systems actually leading to the
hardness of their automatability—and establish that this is highly unlikely.

4 The extraction algorithm

This section proves that the search version of the Proof Analysis Problem for Resolution is in FP. Our
algorithm (in fact, two algorithms) arise from closely observing the lower bound on the Ref formulas and
attempting to make it fully constructive, in a style that would make them amenable to formalization in
weak theories of arithmetic like PV1 (in the style of Cook and Pitassi [CP90]).

Recall that the lower bound can be presented in two steps: first, a random restriction argument takes a
small refutation and produces a low block-width refutation of a restricted formula, followed by a block-width
lower bound for this restricted formula, which overall bounds the size of the original refutation.

Our algorithm works analogously. On input a proof 𝜋 of Ref𝑠 (𝜑), it first finds a restriction 𝜌 such that
𝜋↾𝜌 is a refutation of a restricted version of Ref𝑠 (𝜑) and has low block-width. Then, we have a second
algorithm that, inspired by the proof of the width lower bound, analyses this low block-width refutation
and extracts a satisfying assignment.

We present the algorithm in two steps. First, two alternatives to perform block-width reduction are
described in Section 4.1. These correspond, respectively, to a random restriction and a deterministic
restriction argument similar to the one in the proof of the lower bound for the Ref formulas. In Section 4.2
we explain how to design the algorithm that analyzes low block-width refutations, which is essentially the
Prover-Delayer strategy behind the block-width lower bound for the Ref formulas. Putting them together
yields the desired procedure.
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4.1 The block-width reduction algorithm

Recall that we crucially assume that in our definition of the Ref formula there is a variable enable𝑖 for every
block 𝑖 ∈ [𝑠] that allows us to disable that block (see Definition 2.4). For succinctness, we often denote
enable𝑖 simply by 𝑒𝑖 and refer to is as an enabling variable.

Let us first define a kind of restriction that will come up a lot in our arguments.

Definition 4.1 (Disabling restrictions). We say that a restriction 𝜌 ∈ {0, 1, ∗}𝑁 to the 𝑁 variables of
Ref𝑠 (𝜑) is 𝑑-disabling if it satisfies that (i) exactly 𝑑 blocks are disabled, and the rest are all enabled, (ii)
every variable belonging to a disabled block is assigned a value, and (iii) no other variable is assigned.

A key property of disabling assignments is that they can never falsify any axioms of Ref𝑠 (𝜑), all the
enabling variables disappear after the restriction and Ref𝑠 (𝜑)↾𝜌 is essentially an instance of Ref𝑠−𝑑 (𝜑),
except there are some pointer variables pointing to the 𝑑 disabled blocks that are still hanging.

A first approach to perform block-width reduction in inspired by random restriction arguments, and
requires randomness.

Lemma 4.2 (Randomized block-width reduction). Let 𝑝 ∈ [0, 1) and let 𝑁 be the number of variables of the
Ref𝑠 (𝜑) formula for some CNF formula 𝜑 over 𝑛 variables. There exists a randomized algorithm 𝑅 taking as
input 1𝑁 , and outputting an ⌊𝑠/2⌋-disabling restriction 𝜌 ∈ {0, 1, ∗}𝑁 , such that for every Resolution refutation
𝜋 of the formula Ref𝑠 (𝜑), the following properties hold:

(i) the restriction 𝜌 does not falsify Ref𝑠 (𝜑);

(ii) with probability at least 𝑝 , the block-width of 𝜋↾𝜌 is at most 𝑂 (log |𝜋 | − log(1 − 𝑝));

(iii) the running time of 𝑅(1𝑁 ) is 𝑂 (𝑁 ).

Proof. The proof follows closely the random restriction argument of de Rezende et al. [dRGN+21, Section
6.3]. For simplicity, let us assume 𝑠 is even. (Note that, without loss of generality 𝑠 can be even, since if 𝜋 is
a correct refutation of Ref𝑠 (𝜑) and 𝑠 is odd, then 𝜋 can be turned into a refutation of essentially Ref𝑠−1(𝜑)
by hitting 𝜋 with the restriction that disables and fully restricts one block).

Assume the root block corresponds to block 𝐵⊥, which is not counted towards block-width, and consider
the following random restriction: pair all 𝑠 blocks into 𝑠/2 pairs, and for each pair, with probability 1/2,
decide which block in the pair is going to be disabled. Now, if a block is disabled, all of its remaining
variables are assigned uniformly at random. We denote by 𝜌 the restriction obtained in this way, which the
algorithm outputs.

We claim that with probability at least 𝑝 , the restriction succeeds in lowering the block-width of any
Resolution derivation 𝜋 to 𝑂 (log |𝜋 | − log(1 − 𝑝)). Indeed, if ℓ is a literal corresponding to the variable
𝑒𝑖 determining whether a certain block is disabled, then Pr𝜌 [ℓ↾𝜌 = 1] = 1/2. For every other literal ℓ in a
block 𝐵𝑖 ,

Pr
𝜌
[𝐵𝑖 is disabled and ℓ↾𝜌 = 1 ] = Pr

𝜌
[𝐵𝑖 is disabled] · Pr

𝜌
[ℓ↾𝜌 = 1 | 𝐵𝑖 is disabled] (4.1)

=
1
2
· 1
2
=
1
4
. (4.2)

Hence, for every literal ℓ not from 𝐵⊥, Pr𝜌 [ℓ↾𝜌 = 1] ≥ 1/4.
Now, if 𝐶 is a clause of block-width at least𝑤 , we have that

Pr
𝜌
[𝐶↾𝜌 ≠ 1] ≤ (3/4)𝑤/2 , (4.3)
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where the 1/2 in the exponent comes from the fact that if two consecutive blocks are present, meaning that
they were paired together and only one of them was enabled, their values depend on each other.

Then, if 𝜋 was indeed a Resolution derivation of Ref𝑠 (𝜑), by a union bound,

Pr
𝜌
[𝜋↾𝜌 has a clause of block-width ≥ 𝑤] ≤ length(𝜋) · (3/4)𝑤/2 ≤ |𝜋 | · (3/4)𝑤/2 , (4.4)

which is the failure probability for property (ii) in the statement. For success probability at least 𝑝 , we want to
choose𝑤 such that |𝜋 | · (3/4)𝑤/2 ≤ 1−𝑝 . This bound is met by choosing𝑤 ≥ 2(log( |𝜋 |/(1 − 𝑝))/(log 4/3)),
meaning that with probability 𝑝 , the restriction 𝜌 will satisfy all clauses of at least this width.

It suffices to argue that properties (i) and (iii) are also satisfied. Indeed, by the way we designed the
restriction, after applying 𝜌 there are no disabling variables left and all variables in the disabled blocks have
been restricted, to this is exactly 𝑠/2-disabling.

As for the running time, the algorithm is simply sampling the restriction, which takes time 𝑂 (𝑁 ). □

We now move on to a fully deterministic algorithm that takes as input an actual refutation 𝜋 and
outputs a restriction that always manages to reduces the block-width.

Lemma 4.3 (Deterministic block-width reduction). There exists a constant 𝑐 > 0 and a deterministic
algorithm taking as input a Resolution refutation 𝜋 of the formula Ref𝑠 (𝜑) over 𝑁 variables and outputting a
𝑑-disabling restriction 𝜌 ∈ {0, 1, ∗}𝑁 with 𝑑 ≤ 𝑐/2 ·

(√︁
𝑠 log |𝜋 |

)
such that

(i) the restriction 𝜌 does not falsify Ref𝑠 (𝜑);

(ii) the block-width of 𝜋↾𝜌 is at most 𝑐 ·
(√︁
𝑠 log |𝜋 |

)
;

(iii) the algorithm runs in time poly( |𝜋 |, 𝑠).

Proof. We employ a greedy strategy to construct the restriction, meaning that we look at all the clauses
of high block-width and we iteratively choose to restrict a literal that kills a significant fraction of these
clauses.

More formally, let 𝑤 be a parameter to be optimized later, and given 𝜋 , let𝑊 denote the set of all
clauses in 𝜋 with block-width at least𝑤 . Through the following iterative process we will enable and disable
some blocks. Whenever we enable a block, we will also mark it as not active by keeping track of a set
ActiveBlocks ⊆ [𝑠], meaning that when choosing greedily the next literal to restrict, inactive blocks are not
a valid choice; and whenever we disable a block, we add it to a set 𝐷 ⊆ [𝑠] to keep track of it.

Algorithm 4.1: Deterministic block-width reduction

Repeat the following procedure iteratively, starting with 𝜌 ≔ ∅, ActiveBlocks ≔ [𝑠], and 𝐷 ≔ ∅,
and stop whenever𝑊 is empty:

1. Find the most frequent block 𝑖 ∈ ActiveBlocks among the ones mentioned in the clauses in𝑊 .

2. Look at the literal 𝑒𝑖 of the variable used to disable block 𝑖 .

(a) If 𝑒𝑖 appears positively in at least 1/3 of all the clauses in𝑊 that mention block 𝑖 , then
set 𝜌 ≔ 𝜌 ∪ {𝑒𝑖 ↦→ 1}, ActiveBlocks ≔ ActiveBlocks \ {𝑖},𝑊 ≔𝑊↾𝜌 , and go back to step
(1).

(b) If 𝑒𝑖 does not appear positively in at least 1/3 of the clauses in𝑊 mentioning block 𝑖 ,
then set 𝜌 ≔ 𝜌 ∪ {𝑒𝑖 ↦→ 0},𝑊 ≔𝑊↾𝜌 , 𝐷 ≔ 𝐷 ∪ {𝑖}, and for every other variable 𝑥 of
block 𝑖 ,
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i. if 𝑥 appears in𝑊 positively more often than negatively, then set 𝜌 ≔ 𝜌 ∪ {𝑥 ↦→ 1},
and𝑊 ≔𝑊↾𝜌 ;

ii. if 𝑥 appears in𝑊 negatively more often than positively, then set 𝜌 ≔ 𝜌 ∪ {𝑥 ↦→ 0},
and𝑊 ≔𝑊↾𝜌 ;

iii. repeat for every variable of block 𝑖 .

(c) Once all the variables of block 𝑖 have been taken care of, go back to step (1).

The procedure terminates once𝑊 is either empty or all clauses in𝑊 mention only blocks that are no
longer in ActiveBlocks. At this point, |𝐷 | blocks have been disabled. For the remaining blocks that were
not mentioned by any clause in𝑊 , enable all of them by setting the corresponding variables 𝑒𝑖 ↦→ 1. This
completes the construction of the restriction 𝜌 , and the algorithm outputs 𝜌 .

The procedure runs for at most 𝑠 iterations, since each iteration takes care of one of the blocks mentioned
by the clauses in the initial𝑊 and we never deal with a block twice. Therefore, the algorithm runs in time
poly( |𝜋 |, 𝑠).

As for the correctness of the algorithm, the restriction 𝜌 is 𝑑-disabling by construction for 𝑑 = |𝐷 |. It is
left to argue that for a suitable choice of𝑤 , there exists a constant 𝑐 > 0 such that 𝑑 ≤ 𝑐/2(

√︁
𝑠 log |𝜋 |) and

the block-width of 𝜋↾𝜌 is at most 𝑐 · (
√︁
𝑠 log |𝜋 |).

We want to choose 𝑤 so that after ℓ ≤ 𝑠 iterations, the set𝑊 becomes empty. At the first iteration,
by an averaging argument, we know that the most frequent block is mentioned in at least a𝑤/𝑠 fraction
of |𝑊 |. More generally, at iteration ℓ , block-width might have decreased up to𝑤 − (ℓ − 1) and up to ℓ − 1
blocks may have become inactive, so the same averaging argument tells us that the most frequent active
block is mentioned in at least a (𝑤 − (ℓ − 1))/(𝑠 − (ℓ − 1)) fraction of the clauses. Furthermore, observe
that if at a given iteration block 𝑖 is the most frequent active block, we are not promised to kill all the
clauses mentioning 𝑖 , but we are guaranteed to kill at least 1/3 of them. Indeed, if we enable block 𝑖 that is
because it appeared in at least 1/3 of all the active clauses mentioning 𝑖; and otherwise we are guaranteed
to restrict at least 1/2 of the remaining 2/3 fraction of the active clauses mentioning 𝑖 , which amounts to a
1/3 fraction.

Therefore, if 𝜌ℓ is the restriction built after ℓ iterations,

|𝑊↾𝜌ℓ | ≤ |𝑊 | ·
(
1 − 𝑤

3𝑠

)
·
(
1 − 𝑤 − 1

3(𝑠 − 1)

)
· · · · ·

(
1 − 𝑤 − (ℓ − 1)

3(𝑠 − (ℓ − 1))

)
(4.5)

≤ |𝑊 | ·
(
1 − 𝑤 − ℓ

3𝑠

) ℓ
(4.6)

≤ |𝑊 | · 𝑒−ℓ · 𝑤−ℓ
3𝑠 . (4.7)

We want to ensure that for some ℓ ≤ 𝑠 we achieve |𝑊↾𝜌ℓ | < 1. It suffices to have |𝑊 | · 𝑒−ℓ · 𝑤−ℓ
3𝑠 < 1.

Taking logarithms on both sides we have

ln |𝑊 | < ℓ · 𝑤 − ℓ
3𝑠

, (4.8)

which holds already for ℓ = 𝑤/2, assuming𝑤 >
√︁
12𝑠 ln |𝜋 | ≥

√︁
12𝑠 ln |𝑊 |.

Now it suffices to choose a constant 𝑐 such that𝑤 ≔ 𝑐 ·
√︁
𝑠 log |𝜋 | >

√︁
12𝑠 ln |𝜋 |. In this way we get that

after at most ℓ ≔ 𝑤/2 iterations,𝑊↾𝜌ℓ = ∅ and thus the block-width of 𝜋↾𝜌ℓ is also at most 𝑐 ·
√︁
𝑠 log |𝜋 |.

Furthermore, note that |𝐷 | ≤ ℓ , since the algorithm only runs for at most ℓ iterations, meaning that 𝜌ℓ is
𝑑-disabling for 𝑑 ≤ ℓ = 𝑤/2 = 𝑐/2

√︁
𝑠 log |𝜋 |, as desired. □
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4.2 The block-width analysis algorithm

Using one of the two algorithms above, we can take a refutation 𝜋 of Ref𝑠 (𝜑) and obtain a new refutation
𝜋 ′ of the restricted formula Ref𝑠 (𝜑)↾𝜌 in low block-width. We can now show how to analyze this refutation,
inspired by the block-width lower bound, and succeed in finding a satisfying assignment whenever one
exists.

We first state the following simple but crucial technical fact used in the proof.

Fact 4.4. Let 𝜑 be a Boolean formula in CNF over 𝑛 variables. If 𝐶 is a width-𝑛 clause over the variables of 𝜑
that is not the weakening of any clause of 𝜑 , then ¬𝐶 encodes a satisfying assignment for 𝜑 .

Now we can present the algorithm and prove its correctness.

Lemma 4.5 (Assignment extraction). There exists a deterministic algorithm 𝐸 such that for every 𝑠 ∈ N,
𝜋 a purported Resolution refutation of Ref𝑠 (𝜑) for a CNF formula 𝜑 (𝑥1, . . . , 𝑥𝑛) with 𝑚 clauses, and 𝜌 ∈
{0, 1, ∗}𝑁 a 𝑑-disabling restriction to the 𝑁 variables in Ref𝑠 (𝜑), it holds that 𝐸 (𝜑, 𝜌, 𝑠, 𝜋) terminates in time
poly( |𝜋 |, 𝑠, 𝑛,𝑚) and provides exactly one of the following outputs:

(a) an incorrect derivation step in 𝜋 ;

(b) a clause 𝐶 ∈ 𝜋↾𝜌 of block-width at least 1/3⌊(𝑠 − 𝑑 − 𝑛)/𝑛⌋;

(c) a satisfying assignment for 𝜑 .

Proof. We traverse the refutation 𝜋 inspired by the Delayer’s strategy in the Prover-Delayer game that
yields a block-width lower bound for the restricted Ref formulas—and the correctness of the algorithm is
essentially the proof of this block-width lower bound.

Before the traversal of 𝜋 starts, we arrange the 𝑠 − 𝑑 blocks enabled by 𝜌 in a layered manner, so that
there are 𝑛 layers, each containing ⌊(𝑠 − 𝑑)/𝑛⌋ blocks (with the remainder blocks left from the flooring
operations collected all in the last layer), plus one additional layer on top with a single block corresponding
to the root. We see the root as laying at layer 0, and intuitively blocks in layer 𝑖 will be obtained by resolving
over variable 𝑥𝑖+1. Throughout the traversal, we keep a record 𝛼 ∈ {0, 1, ∗}𝑁 which we call the reservation,
in which we “reserve” information needed to continue the traversal. (Intuitively, this record keeps the
information that the Delayer has in mind when playing against the Prover.)

The algorithm proceeds as follows. First, let 𝜋 ≔ 𝜋↾𝜌 , initialize 𝛼 ≔ 𝜌 , and collect in a set 𝐷 ⊆ [𝑠] the 𝑑
blocks that are disabled by the restriction 𝜌 . Note that 𝜌 is a 𝑑-disabling restriction, meaning that it only
enables and disables blocks, and sets the value of all the variables in disabled blocks, meaning that the
restriction cannot possibly falsify any axiom of Ref𝑠 (𝜑). Note as well that in 𝜋 , after hitting it with 𝜌 , there
are no longer resolution steps over enabling variables nor over variables belonging to a disabled block.

(In what follows, capitals letters in roman font, like 𝐴, refer to clauses in the refutation 𝜋 , while capital
letters in calligraphic font, like A, refer to clauses encoded in the blocks of Ref𝑠 (𝜑) which are determined
by assignments to the variables of Ref𝑠 (𝜑).)

Algorithm 4.2: Block-width analysis and assignment extraction

Let 𝐶 be the root of 𝜋 and traverse the proof dag following these instructions.

1. If 𝐶 is obtained by an illegal derivation step, halt and output 𝐶; if 𝐶 is a leaf of 𝜋 , halt and
output failure. Otherwise, continue to Step (2).

2. If 𝐶 was obtained from weakening a clause 𝐶′ ⊆ 𝐶 , then set 𝐶 ≔ 𝐶′ and move to Step 4.

3. If 𝐶 was derived from clauses 𝐴 ∨ 𝑣 and 𝐵 ∨ ¬𝑣 by resolving over 𝑣 , attempt the following
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reservations according to these rules (with the condition that blocks mentioned in the set 𝐷
can never be reserved).

(a) If 𝑣 belongs in the root block and 𝛼 contains no information about the root block, update
𝛼 so that it encodes that the root block corresponds to ⊥ and take two free blocks in
layer 1 encoding the clauses 𝑥1 and ¬𝑥1 used to derive ⊥.

(b) If 𝑣 belongs to a block on layer 1 ≤ 𝑖 < 𝑛, we have two cases:

i. if 𝛼 has no information about this block, update 𝛼 by reserving two unreserved
blocks on layer 𝑖 + 1 so that the block of 𝑣 encodes the clause

∨𝑖
𝑗=1 𝑥 𝑗 and it was

obtained by resolving the clauses 𝑥𝑖+1 ∨
∨𝑖

𝑗=1 𝑥 𝑗 and ¬𝑥𝑖+1 ∨
∨𝑖

𝑗=1 𝑥 𝑗 , to be encoded
in the two reserved blocks on layer 𝑖 + 1;

ii. if the block was reserved in 𝛼 but it had no children attached, then 𝛼 already
determined the clause C that is to be encoded in this block. Then, update 𝛼 by
reserving two unreserved blocks on layer 𝑖 +1 and so that that the block of 𝑣 encodes
the clause C and it was obtained by resolving the clauses 𝑥𝑖+1 ∨ C and ¬𝑥𝑖+1 ∨ C, to
be encoded in the two reserved blocks on layer 𝑖 + 1.

iii. Otherwise, do nothing.

If this reservation fails because there are not enough free blocks available, halt and
output the clause 𝐶 .

(c) If 𝑣 belongs to a block on layer 𝑛, we distinguish two cases:

i. if the block is not mentioned in 𝛼 , then try to find the first axiom in 𝜑 such that∨𝑛
𝑗=1 𝑥 𝑗 is a weakening of it, and reserve it so it encodes

∨𝑛
𝑗=1 𝑥 𝑗 and its pointers

point to this axiom;
ii. if the block was reserved in 𝛼 but it was not pointing to any axiom, then there is a

clause A associated to it by the reservation; try to find the first clause in 𝜑 such
that A is a weakening of it and point to it in 𝛼 .

iii. Otherwise, do nothing.

If this reservation fails because no axiom could be found, then halt and output the
assignment to the variables 𝑥1, . . . , 𝑥𝑛 given by ¬A, the negation of the clause encoded
by A.

If the reservations succeeded, look at 𝛼 (𝑣), which is now guaranteed to be defined. If 𝛼 (𝑣) = 1,
then move to 𝐶 ≔ 𝐵 ∨ ¬𝑣 , and otherwise move to 𝐶 ≔ 𝐴 ∨ 𝑣 .

4. Clean-up the reservations in 𝛼 as follows: 𝛼 should only contain information about (i) blocks
disabled by 𝜌 and (ii) blocks mentioned in 𝐶 or possibly the children of these according to 𝛼 .
Erase all other information from 𝛼 .

5. Go to Step 1.

Since the algorithm is only traversing a path inside the proof dag of 𝜋 , the running time of this procedure
is never longer than a polynomial in the size of 𝜋 . As for the correctness of the algorithm, we now show that
this behaves exactly as claimed. The central claim is that, at the beginning of each iteration, when looking
at clause 𝐶 , the following invariant is satisfied. Here, bw(𝛼) stands for the number of blocks mentioned by
the variables assigned by 𝛼 , and bw(𝐶) is the block-width of a clause 𝐶 .
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Claim (Invariant). The following hold at the beginning of each iteration of the algorithm, when dealing
with the clause 𝐶 in the traversal of 𝜋 :

(i) the reservation 𝛼 falsifies 𝐶;

(ii) a block 𝐵 ∉ 𝐷 is only reserved in 𝛼 if it is either mentioned in 𝐶 or its parent according to 𝛼 is
mentioned in 𝐶 , and, in particular, bw(𝛼) − 𝑑 ≤ 3 bw(𝐶);

(iii) if 𝛼 encodes any information about a block 𝐵 form layer 𝑖 , and 𝐵 ∉ 𝐷 , then 𝛼 also determines that 𝐵
contains exactly 𝑖 literals over the variables 𝑥1, . . . , 𝑥𝑖 and no two literals for the same variable;

(iv) the reservation 𝛼 does not falsify any axiom of Ref𝑠 (𝜑).

Proof sketch. The invariant is readily verified at the initial iteration, when𝐶 = ⊥ and 𝛼 = 𝜌 , the 𝑑-disabling
restriction given as input.

Now, by straightforward structural induction, it is easy to see that assuming that the invariant holds at
the beginning of an iteration and the algorithm correctly proceeds to the next iteration without halting, the
invariant holds again at the beginning of the new iteration. □

Note that, if the algorithm reached a clause 𝐶 that happened to be a leaf of 𝜋 , then by point (i) of the
invariant 𝛼 would be falsifying 𝐶 , which would mean falsifying an axiom of Ref𝑠 (𝜑), contradicting point
(iv) of the very same invariant.

Thus, if 𝜋 is a correct Resolution refutation, that means that the algorithm always halts before reaching
a leaf, and always for one of the following two reasons.

(a) The algorithm attempted the reservation of a block at level 1 ≤ 𝑖 < 𝑛, but there were no free
blocks left. This means that 𝛼 already reserved at least ⌊(𝑠 − 𝑑)/𝑛⌋ − 1 blocks on that layer, and so
bw(𝛼) ≥ ⌊(𝑠 − 𝑑)/𝑛⌋ − 1 + 𝑑 , since each layer 𝑖 < 𝑛 contains exactly ⌊(𝑠 − 𝑑)/𝑛⌋ blocks. By point (ii)
of the invariant we have that that bw(𝛼) − 𝑑 ≤ 3 bw(𝐶), so putting this together we have that when
outputting 𝐶 we are outputting a clause of block-width at least 1/3⌊(𝑠 − 𝑑 − 𝑛)/𝑛⌋, as desired.

(b) The reservation 𝛼 had a clause A encoded in a block at layer 𝑛, but it failed to find an axiom of 𝜑
that A was a weakening of. By point (iii) of the invariant, since the block is at layer 𝑛, it encodes a
width-𝑛 clause, and by Fact 4.4, ¬A encodes a satisfying assignment of 𝜑 . In this case the algorithm
outputs this assignment, which satisfies the desired behavior.

This completes the proof of correctness of the algorithm. □

4.3 Putting it together

The following is a formal restatement of Theorem 1.1.

Theorem 4.6. It holds that FPAPRes [𝑛3] ∈ FP. That is, there exists a deterministic polynomial-time algorithm
solving the search version of the Proof Analysis problem for Resolution whenever the lower bound parameter
satisfies 𝑠 ≥ 𝑛3.

Proof. Let (𝜑 (𝑥1, . . . , 𝑥𝑛), 𝜋, 1𝑠) be an instance of the Proof Analysis Problem with 𝑠 ≥ 𝑛3. First, check
whether 𝜋 is indeed a correct Resolution refutation of Ref𝑠 (𝜑). If not, reject. Otherwise, run the algorithm
from Lemma 4.3 on 𝜋 , which outputs a 𝑑-disabling restriction 𝜌 , with 𝑑 ≤ (𝑐/2)

√︁
𝑠 log |𝜋 |, such that 𝜋↾𝜌 is

a Resolution refutation of Ref𝑠 (𝜑)↾𝜌 of block-width at most 𝑐 ·
√︁
𝑠 log |𝜋 |, for some fixed constant 𝑐 . Then

run the extraction algorithm from Lemma 4.5 on 𝜋 and 𝜌 . Since 𝜋 is a correct refutation, it must be the
case that the extraction algorithm from Lemma 4.5 outputs either a clause of 𝜋↾𝜌 of block-width at least
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(𝑠 − 𝑑 − 𝑛)/3𝑛 or a satisfying assignment of 𝜑 . In the latter case, we are done. In the former case, it holds
that 1/3⌊(𝑠 − 𝑑 − 𝑛)/𝑛⌋ ≤ 𝑐 ·

√︁
𝑠 log |𝜋 |, which implies |𝜋 | > 2𝜀𝑠/𝑛2 ≥ 2𝜀 ·𝑛 for some small enough 𝜀 and

sufficiently large 𝑛. Since 𝜋 is so large we can, in time polynomial in the size of the input, go over all
2𝑛 assignments to the variables of 𝜑 and output a satisfying assignment of 𝜑 if one exists, and otherwise
reject. □

If we are interested in inputs where the lower bound is quadratic instead of cubic, then we can still
achieve polynomial time at the cost of randomness.

Theorem 4.7. There exists a zero-error randomized polynomial-time algorithm solving the search version
of the Proof Analysis problem for Resolution whenever the lower bound parameter satisfies 𝑠 ≥ 𝑛2. That is,
FPAPRes [𝑛2] ∈ FZPP.

Proof. We carry out the proof for a fixed constant success probability 𝑝 , but the argument works for any
𝑝 < 1. The algorithm is essentially the same as before, except we now use the randomized width-reduction
procedure in Lemma 4.2 at the beginning, instead of the greedy deterministic one.

Observe that the randomized algorithm in Lemma 4.2 can be used with zero-error, because once a
restriction 𝜌 is sampled, we can check if it successfully reduces the block-width to the desired bound, and
run it again as many times as needed, which puts us in FZPP.

As for why 𝑠 can now be allowed to be 𝑛2, observe that the randomized procedure achieves better
width reduction, of 𝑂 (log |𝜋 |) whenever 𝑝 is a constant. Combining this with the (𝑠 − 𝑑 − 𝑛)/3𝑛 bound of
block-width given by Lemma 4.5, which in this case becomes 𝑠/6𝑛 − 1/3 because 𝑑 = 𝑠/2, we now have
|𝜋 | > 2Ω (𝑠/𝑛) , meaning that 𝑠 ≥ 𝑛2 suffices to obtain an exponential lower bound. □

As discussed in introduction, the deterministic algorithm in Theorem 4.6 gives us a Levin reduction
between 3SAT and the Proof Size Problem for Resolution (PSPRes, see Section 2.2.3). Here the search version
of 3SAT if the one that finds satisfying assignments of satisfiable formulas, while the search version of
PSPRes consists in finding a Resolution refutation of the right size.

Corollary 4.8. There is a polynomial-time Levin reduction from the search problem for 3SAT to the Proof
Size Problem for Resolution.

Proof. In [AM20], a 3-CNF formula 𝜑 is mapped to the formula Ref𝑛2 (𝜑). If, instead, we map it to Ref𝑛3 (𝜑),
then this is still a many-one reduction from 3SAT and hardness of automatability still follows, but this is
now a Levin reduction: given a satisfying assignment for 𝜑 , we can always come up with a short Resolution
refutation of Ref𝑛3 (𝜑) using the standard upper bound (see Section 7); and given a Resolution refutation 𝜋
of Ref𝑛3 (𝜑) of polynomial-size, we can extract a satisfying assignment for 𝜑 using Theorem 4.6. □

4.4 Assignment extraction as information efficiency

The statement that Resolution refutations of Ref𝑠 (𝜑) must “leak” satisfying assignments has an eminently
information-theoretic flavor. This is no coincidence, as Theorem 4.6 can be interpreted in terms of the
information efficiency of Resolution refutations, a variant of Kolmogorov complexity in the context of proof
complexity.

Krajíček [Kra22] introduced the notion of information efficiency to measure the complexity of describing
propositional proofs based on the well-established concept of time-bounded Kolmogorov complexity. Fix
a universal Turing machine 𝑈 such that 𝑈 (𝑒, 𝑥, 1𝑡 ) simulates the machine with code 𝑒 on input 𝑥 for 𝑡
steps. For every string 𝑥 ∈ {0, 1}∗, the conditional time-bounded Kolmogorov complexity (or conditional Levin
complexity) of 𝑥 given a string 𝑦 ∈ {0, 1}∗ is defined as

Kt(𝑥 | 𝑦) ≔ min{|𝑒 | + ⌈log 𝑡⌉ | 𝑈 (𝑒,𝑦, 1𝑡 ) = 𝑥} . (4.9)
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Then, for a propositional proof system 𝑆 , the information efficiency of a formula 𝜑 ∈ Taut is defined as

info𝑆 (𝜑) ≔ min{Kt(𝜋 | 𝜑) | 𝜋 : 𝑆 ⊢ 𝜑} . (4.10)

That is, info𝑆 (𝜑) is the is the smallest Levin-complexity of a proof 𝜋 of 𝜑 , given the formula 𝜑 . It is easy
to see that for every 𝜑 ∈ Taut, the bounds log size𝑆 (𝜑) ≤ info𝑆 (𝜑) ≤ 𝑂 (size𝑆 (𝜑)) hold. The lower the
information efficiency of a formula, the easier its proofs are to describe.

Because of the assignment extraction algorithm, if 𝜋 is a correct Resolution refutation of Ref𝑠 (𝜑), then
the description of 𝜋 must at least include the description of a satisfying assignment for 𝜑 . This means that
the information efficiency of Ref𝑠 (𝜑) should be (up to constant factors) precisely the same as the Levin
complexity of the easiest satisfying assignment for 𝜑 . The following statement makes this precise and can
be seen as an information-theoretic analogue of Theorem 4.6.

Theorem 4.9 (Assignment extraction as information efficiency). For every CNF formula 𝜑 over 𝑛 variables
and poly(𝑛) clauses and every 𝑠 ≥ 𝑛3, if 𝜑 is satisfiable, then

infoRes(¬Ref𝑠 (𝜑)) = Θ (min{Kt(𝛼 | 𝜑) | 𝜑 (𝛼) = 1}) .

On the other hand, if 𝜑 is unsatisfiable, then infoRes(¬Ref𝑠 (𝜑)) = Ω(𝑛).

Proof. We prove first that infoRes(¬Ref𝑠 (𝜑)) = 𝑂 (min{Kt(𝛼 | 𝜑) | 𝜑 (𝛼) = 1}). Let 𝛼★ be a satisfying
assignment that minimizes Kt(𝛼 | 𝜑) with a description 𝑒𝛼★ and time 𝑡𝛼★ , and let 𝑃 (𝜑, 𝛼, 𝑠) denote the
Turing machine that constructs Pudlák’s upper bound. Then,

infoRes(¬Ref𝑠 (𝜑)) ≤ Kt(𝑃 (𝜑, 𝛼★, 𝑠) | ¬Ref𝑠 (𝜑)) (4.11)
≤ |𝑒𝛼∗ | + ⌈log 𝑡𝛼∗⌉ +𝑂 (1) +𝑂 (log𝑛) (4.12)
= 𝑂 (Kt(𝛼★ | 𝜑)) (4.13)
= 𝑂 (min{Kt(𝛼 | 𝜑) | 𝜑 (𝛼) = 1}) , (4.14)

where in eq. (4.12) the constant term 𝑂 (1) corresponds to the code of Pudlák’s algorithm 𝑃 , and since 𝜑
is a CNF with poly(𝑛) clauses and 𝑃 runs in polynomial time, the log-term accounting for running 𝑃 is
⌈log𝑛𝑂 (1)⌉ = 𝑂 (log𝑛).

For the other direction, let 𝜋★ be a Resolution refutation that minimizes infoRes(¬Ref𝑠 (𝜑)), with
description 𝑒𝜋★ and time 𝑡𝜋★ . Let 𝐴 denote the assignment extraction algorithm from Theorem 4.6. Then,

min{Kt(𝛼 | 𝜑) | 𝜑 (𝛼) = 1} ≤ Kt(𝐴(𝜋★, 𝜑) | 𝜑) (4.15)
≤ |𝑒𝜋★ | + ⌈log 𝑡𝜋★⌉ +𝑂 (1) +𝑂 (log𝑛) (4.16)
= 𝑂 (Kt(𝜋★ | 𝜑)) (4.17)
= 𝑂 (Kt(𝜋★ | ¬Ref𝑠 (𝜑))) (4.18)
= 𝑂 (infoRes (¬Ref𝑠 (𝜑)) . (4.19)

We have that eq. (4.15) follows because 𝑠 ≥ 𝑛3 so Theorem 4.6 guarantees the extraction algorithm 𝐴

succeeds in finding a satisfying assignment, while the 𝑂 (log𝑛) term in eq. (4.16) follows again because the
algorithm 𝐴 runs in time 𝑛𝑂 (1) .

The case when 𝜑 is unsatisfiable is an immediate corollary of the lower bound on Ref formulas (Theo-
rem 1.5): since Ref𝑠 (𝜑) requires Resolution size 2Ω (𝑛) , then writing such a proof also requires exponential
time and hence Kt(𝜋 | ¬Ref𝑠 (𝜑)) ≥ log 2Ω (𝑛) = Ω(𝑛) for every refutation 𝜋 , giving infoRes(¬Ref𝑠 (𝜑)) =
Ω(𝑛). (Note that if 𝜑 does have a refutation of size 𝑠 , then the information efficiency of ¬Ref𝑠 (𝜑) is not
defined, so we cannot claim a matching upper bound of 𝑂 (𝑛).) □
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5 PAPEF is NP-complete

In light of the extraction algorithm in Theorem 4.6, it is natural to ask whether stronger proof systems are
also analyzable. As shown in Proposition 3.6, the existence of a polynomial-time proof analysis algorithm
for a proof system 𝑆 implies that automating 𝑆 is NP-hard. Could this be the route towards proving that
automating systems like Extended Frege is NP-hard?

This turns out to be unlikely. While for Resolution PAPRes [𝑛2] ∈ AC0 and FPAPRes [𝑛3] ∈ FP, already
the decision problem for Extended Frege PAPEF turns out to be NP-complete. This extends to every proof
system 𝑆 that p-simulates Extended Frege: it is NP-complete to decide whether a formula 𝜑 is satisfiable
given an 𝑆-proof of a Resolution lower bound on 𝜑 . We dedicate Section 5.1 to prove this. Section 5.2 builds
on this NP-hardness result to investigate whether finding polynomial-time analysis algorithms (for weaker
systems where they exist) requires proving proof complexity lower bounds first.

5.1 Hardness proof

The idea of the hardness proof is to show that Extended Frege can prove Resolution lower bounds for
certain formulas encoding instances of the Vertex Cover problem. The lower bound will be “agnostic” in
the sense that it will not depend on whether the underlying Vertex Cover instance is satisfiable or not.
This means that an algorithm that distinguishes between “true Resolution lower bounds” (those where the
underlying formula is unsatisfiable) from “trivial ones” (those proven for satisfiable formulas) will be able
to decide Vertex Cover and hence all of NP.

The formulas in question come from a convenient encoding of Vertex Cover in a way that embeds a
pigeonhole principle. We define these next.

Definition 5.1 (The Vertex Cover formulas). Let𝐺 = (𝑉 , 𝐸) be a graph on 𝑛 nodes and let 𝑘 be a positive
integer such that 𝑘 ≤ 𝑛. The CNF formula VC(𝐺,𝑘) has variables

{𝑣1, . . . , 𝑣𝑛} ∪ {𝑝𝑖, 𝑗 | 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑘]},

and clauses

¬𝑣𝑖 ∨
𝑘∨
𝑗=1
𝑝𝑖, 𝑗 for all 𝑖 ∈ [𝑛], (VC-1)

𝑣𝑖 ∨ 𝑣𝑖′ for all (𝑖, 𝑖′) ∈ 𝐸, (VC-2)
¬𝑝𝑖, 𝑗 ∨ ¬𝑝𝑖, 𝑗 ′ for all 𝑖 ∈ [𝑛] and 𝑗, 𝑗 ′ ∈ [𝑘], 𝑗 ≠ 𝑗 ′, (VC-3)
¬𝑣𝑖 ∨ ¬𝑣𝑖′ ∨ ¬𝑝𝑖, 𝑗 ∨ ¬𝑝𝑖′, 𝑗 for all 𝑗 ∈ [𝑘] and 𝑖, 𝑖′ ∈ [𝑛], 𝑖 ≠ 𝑖′. (VC-4)

The formula VC(𝐺,𝑘) is satisfiable if and only if 𝐺 has a vertex cover of size at most 𝑘 . The vertices
in the cover are given by an assignment to the variables 𝑣1, . . . , 𝑣𝑛 and, to force that there are at most 𝑘
vertices in the cover, the clauses on the variables 𝑝𝑖, 𝑗 enforce an instance of the pigeonhole principle with
one pigeon for each vertex in the cover, and 𝑘 holes.

Due to the embedded pigeonhole principle these formulas will be hard for Resolution. We show that
such a Resolution lower bound is provable already in S12. We need two main ingredients for this. First, the
graphs on which we will show hardness will be the graphs obtained from the standard textbook reduction
from 3SAT to Vertex Cover. Second, the proof of the Resolution lower bound in Extended Frege will come
from a reduction to Haken’s lower bound for the pigeonhole principle. The latter was already formalized
by Cook and Pitassi in PV1.
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Theorem 5.2 (Cook and Pitassi, 1990 [CP90]). There exist a positive 𝜀0 ∈ Q and 𝑛0 ∈ N such that

PV1 ⊢ ∀𝑛∀𝜋 (RefRes(PHP𝑛𝑛−1, 𝜋) ∧ 𝑛 ≥ 𝑛0 → ||𝜋 | | > 𝜀0𝑛) .

Regarding the construction of the graphs, we need to make sure that S12 can prove the correctness of
the standard reduction from 3SAT to Vertex Cover. The proof is the standard textbook construction from
3SAT to Cliqe and then to Vertex Cover (as in, for example, [GJ79, §3.1.3]). We state it below but defer
the proof to Appendix B.

Lemma 5.3 (3SAT ≤p Vertex Cover in S12). There exists a PV function 𝑓 such that S12 proves the statement
that for every 3-CNF formula 𝜑 with 𝑛 variables and𝑚 clauses, 𝑓 (𝜑) outputs a graph 𝐺𝜑 = (𝑉 , 𝐸) with𝑚 · 𝑛
nodes such that the formula 𝜑 is satisfiable if and only if 𝐺𝜑 has a vertex cover of size𝑚 · (𝑛 − 1).

Now, under a suitably crafted restriction, the formula VC(𝐺,𝑘) for the particular graph𝐺 = 𝐺𝜑 from
Lemma 5.3 will become PHP𝑛+1𝑛 , and S12 proves Haken’s lower bound, as shown by Cook and Pitassi
(Theorem 5.2).

Theorem 5.4. For every positive constant 𝑐 ∈ N, there exist 𝑛0 ∈ N such that, if for every 3-CNF formula 𝜑 we
write𝐺𝜑 for the graph obtained in polynomial-time from 𝜑 by the reduction 𝑓 in Lemma 5.3, then it holds that

S12 ⊢ ∀𝜑∀𝜋∀𝑛 ≤ 𝜑∀𝑚 ≤ 𝜑
(
𝑛 ≥ 𝑛0 ∧ 3-CNF(𝜑, 𝑛,𝑚) ∧ |𝜋 | ≤ 𝑛𝑐 → ¬RefRes(VC(𝐺𝜑 ,𝑚(𝑛 − 1)), 𝜋)

)
.

Proof. Suppose for contradiction that 𝜋 is indeed a Resolution refutation of VC(𝐺,𝑚(𝑛 − 1)). Consider the
restriction 𝜌 mapping 𝑣𝑖 ↦→ 1 for all 𝑖 ∈ [𝑚𝑛]. By inspecting axioms (VC-1) to (VC-4) we get that 𝜋↾𝜌 is
now a Resolution refutation of PHP𝑚𝑛

𝑚 (𝑛−1) .
Next, restrict further as follows. Consider the variable substitution 𝜌 ′ extending 𝜌 as follows: For

every 𝑖 ∈ [𝑚𝑛] and 𝑗 ∈ [𝑚(𝑛 − 1)], let 𝑘, 𝑘 ′, 𝑟 , 𝑟 ′ be integers such that 𝑖 = 𝑘𝑛 + 𝑟 + 1 and 𝑗 = 𝑘 ′(𝑛 − 1) + 𝑟 ′ + 1
with 0 ≤ 𝑟 < 𝑛 and 0 ≤ 𝑟 ′ < 𝑛 − 1, and set 𝜌 ′ : 𝑝𝑖, 𝑗 ↦→ 0 if 𝑘 ≠ 𝑘 ′, and 𝜌 ′ : 𝑝𝑖, 𝑗 ↦→ 𝑝𝑟+1,𝑟 ′+1 if 𝑘 = 𝑘 ′.
Let 𝜋 ′ ≔ 𝜋↾𝜌′ . It is now immediate to see that 𝜋 ′ is a Resolution refutation of PHP𝑛𝑛−1. However, by
Theorem 5.2, | |𝜋 ′ | | > 𝜀0𝑛, implying | |𝜋 | | > 𝜀0𝑛. This contradicts the assumption |𝜋 | ≤ 𝑛𝑐 , when 𝑛 ≥ 𝑛0 and
𝑛0 is chosen large enough. □

Corollary 5.5. For every positive constant 𝑐 ∈ N, there exists a polynomial-time computable function 𝑡 such
that for every 3-CNF formula 𝜑 over a large enough number 𝑛 of variables and𝑚 clauses, 𝑡 (𝜑) outputs an
Extended Frege proof 𝜋 such that

𝜋 : EF ⊢ ¬Ref𝑛𝑐
(
VC(𝐺𝜑 ,𝑚(𝑛 − 1))

)
.

Proof. The formula in Theorem 5.4 is ∀Π𝑏
1 , so we can apply Cook’s translation (Theorem 2.3) to get

polynomial-size EF proofs of J¬RefRes(VC(𝐺𝜑 ,𝑚(𝑛 − 1)), 𝜋)K. Extended Frege can then uniformly prove
that the Ref-like formula obtained from the translation is equisatisfiable to the Ref formulas as we have
defined them in Definition 2.4. We then have that EF proves ¬Ref𝑛𝑐

(
VC(𝐺𝜑 ,𝑚(𝑛 − 1)),

)
in polynomial

size and the proofs can be produced uniformly in polynomial time. □

The previous upper bound in Extended Frege works for every 𝜑 , regardless of its satisfiability. This is
the key idea behind the final reduction.

Theorem 5.6. For every positive constant 𝑐 ∈ N, the language 3SAT reduces to PAPEF [𝑛𝑐] under polynomial-
time many-one reductions.
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Proof. The reduction maps a 3-CNF formula 𝜑 over 𝑛 variables and𝑚 clauses to the instance (𝜓, 𝜋, 1𝑠),
where𝜓 is the Vertex Cover formula𝜓 ≔ VC(𝐺𝜑 ,𝑚(𝑛 − 1)), together with the Extended Frege proof 𝜋
given by the map 𝑡 (𝜑) in Corollary 5.5, and the size parameter 1𝑠 is 1𝑛𝑐 .

By Corollary 5.5, the proof 𝜋 is always a correct EF-proof, regardless of the satisfiability of 𝜑 . Now, if
𝜑 ∈ 3SAT, then𝐺𝜑 has a vertex cover of size𝑚(𝑛 − 1) and hence𝜓 is satisfiable, so (𝜓, 𝜋, 1𝑛𝑐 ) ∈ PAPEF. On
the other hand, if 𝜑 ∉ 3SAT, then 𝐺𝜑 does not have a vertex cover of size𝑚(𝑛 − 1), so 𝜓 is unsatisfiable.
Since 𝜋 is still a valid EF-proof, we get (𝜓, 𝜋, 1𝑛𝑐 ) ∉ PAPEF. This proves that the reduction is correct. □

This yields the following formal restatement of Theorem 1.3.

Corollary 5.7. For every propositional proof system 𝑄 that p-simulates Extended Frege and every polynomial
𝑠 (𝑛), the problem PAP𝑄 [𝑠 (𝑛)] is NP-complete under polynomial-time many-one Levin reductions.

Proof. Membership in NP is trivial, since PAP𝑄 ∈ NP for every Cook-Reckhow system 𝑄 . Hardness for
PAPEF [𝑠 (𝑛)] is given by Theorem 5.6, and since 𝑄 p-simulates EF, this means that an instance (𝜓, 𝜋, 1𝑡 )
of PAPEF with 𝑡 ≥ 𝑠 (𝑛) can be turned into an instance (𝜓, 𝜋 ′, 1𝑡 ), where 𝜋 ′ is the 𝑄-proof obtained by
simulating 𝜋 . □

5.2 Does analyzability require lower bounds?

Despite the NP-completeness results above, it remains open whether proof systems below Extended Frege
are analyzable. For those proof systems that are in fact analyzable, it is natural to ask whether their analysis
algorithms do inevitably rely on proof complexity lower bounds for the systems in question. After all, the
only example of an analysis algorithm we have is the one for Resolution, and it heavily relies on the lower
bound proof of [AM20]. It then seems reasonable to conjecture the following.

Conjecture 5.8 (Analyzability requires lower bounds). For every propositional proof system 𝑄 , if 𝑄 is
analyzable, then 𝑄 is not optimal.

The requirement that 𝑄 is not optimal is a natural formalization of lower bounds in this context: if 𝑄
is not optimal, then there exists an explicit family of tautologies that are hard for 𝑄 , but easy for some
other system. Since the lower bounds for Ref-like formulas arising in the context of PAPRes are precisely
Resolution lower bounds not provable in Resolution but easy for other systems, non-optimality captures
the kind of lower bounds we expect are necessary.

We could also relax the conclusion of 𝑄 not being optimal by simply 𝑄 not being p-optimal, which
means that there exists an explicit family of tautologies whose 𝑄-proofs are either long, or short but hard
to find. Note, in particular, that 𝑄 could fail to be p-optimal and still be polynomially bounded.

Conjecture 5.9 (Analyzability requires lower bounds or proofs that are hard to find). For every propositional
proof system 𝑄 , if 𝑄 is analyzable, then 𝑄 is not p-optimal.

Clearly, Conjecture 5.8 implies Conjecture 5.9. Building on the proof of NP-hardness of PAPEF we can
prove that both conjectures are likely true —but very hard to prove.

Proposition 5.10. The following hold:

(i) Conjecture 5.8 is true if, and only if, NP ≠ coNP;

(ii) Conjecture 5.9 is true if, and only if, P ≠ NP.

Proof. We start by proving (i). For the forward direction, we assume NP = coNP and show that the
conjecture fails. In this case there exists a polynomially bounded and hence optimal proof system 𝑄 . We
define the following proof system 𝑄★ based on 𝑄 . A proof 𝜋 in this system is of one of the following forms:
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(a) if 𝜋 = ⟨𝜑, 𝜏1,¬Ref𝑠 (𝜑), 𝜏2⟩, where 𝜑 is a CNF formula, 𝜏1 is a correct 𝑄-proof of ¬𝜑 , and 𝜏2 is a
correct 𝑄-proof of ¬Ref𝑠 (𝜑) for some 𝑠 ∈ N, then 𝑄★ outputs ¬Ref𝑠 (𝜑);

(b) if 𝜋 = ⟨𝜑, 𝛼,¬Ref𝑠 (𝜑), 𝜏⟩, where 𝜑 is a CNF formula, 𝜑 (𝛼) = 1, and 𝜏 is a correct𝑄-proof of ¬Ref𝑠 (𝜑)
for some 𝑠 ∈ N, then 𝑄★ outputs ¬Ref𝑠 (𝜑);

(c) if 𝜋 = ⟨𝜑, 𝜏⟩ and 𝜑 is not of the form ¬Ref𝑠 (𝜓 ) for any 𝑠 and 𝜓 , and 𝜏 is a correct 𝑄-proof of 𝜑 ,
then 𝑄★ outputs 𝜑 ;

(d) in any other case, 𝑄★ outputs a trivial tautology 𝑝 ∨ ¬𝑝 .

We claim that𝑄★ is a Cook-Reckhow system that is both analyzable and optimal. First, it is sound, because𝑄
is and every 𝑄★-proof relies on correct 𝑄-proofs; second, it is complete, because if 𝜑 is not a ¬Ref formula,
then one can always prove 𝜑 via case (c) above using the completeness of 𝑄 , and if 𝜑 = ¬Ref𝑠 (𝜓 ) for
some𝜓 , then since 𝑄 is complete, there is always a proof of ¬Ref𝑠 (𝜓 ) together with either a 𝑄-proof of ¬𝜓
or a satisfying assignment for𝜓 . Finally, 𝑄★ is clearly polynomial-time computable because 𝑄 is.

It remains to argue that 𝑄★ is both analyzable and optimal. Indeed, PAP𝑄★ ∈ P: by definition, if 𝜋 is a
𝑄★-proof of ¬Ref𝑠 (𝜑) for some 𝑠 , then 𝜋 is of the form (a) or (b) above. If 𝜋 is of the form (a), then 𝜋 includes
a proof of the unsatisfiability of 𝜑 , so the analyzer immediately rejects after checking the correctness of this
proof. If 𝜋 is of the form (b), then the analyzer can simply check that 𝛼 is a correct satisfying assignment for
𝜑 and conclude that 𝜑 is satisfiable. At the same time, it is easy to see that𝑄★ is polynomially bounded, and
hence optimal. Indeed, all non-¬Ref formulas have polynomial-size proofs by case (c) as 𝑄 is polynomially
bounded. Similarly, in cases (a) and (b), there are always polynomial-size 𝜏1 and 𝜏2 to choose as 𝑄 is
polynomially bounded, so the entire 𝑄★ is polynomially bounded. This means that the conjecture fails for
𝑄★.

Now, for the backwards direction, if the conjecture fails, we show that NP = coNP. For the conjecture
to fail there must exist a proof system 𝑆★ that is analyzable yet optimal. Suppose 𝑆★ is analyzable by virtue
of PAP𝑆★ [𝑛𝑐] ∈ P for some 𝑐 > 0. We then construct a non-deterministic polynomial-time procedure
for the coNP-complete set 3Unsat. On an input 3-CNF formula 𝜑 with 𝑛 variables and𝑚 clauses, non-
deterministically guess an 𝑆★-proof of the formula ¬Ref𝑛𝑐 (VC(𝐺𝜑 ,𝑚(𝑛−1))). By Corollary 5.5 polynomial-
size such proofs exist in Extended Frege. Since 𝑆★ is optimal we have 𝑆★ ≥ EF and some polynomial-size
proof is available in 𝑆★ too. Now, since 𝑆★ is analyzable, we can decide deterministically in polynomial-time
whether 𝜑 is satisfiable or not by analyzing this proof.

We now prove (ii). If P = NP, then there exists a polynomially bounded and p-optimal proof system 𝑄★.
Since P = NP the system 𝑄★ is trivially analyzable, but it is p-optimal, so the conjecture fails for 𝑄★.

For the other direction, suppose P ≠ NP but Conjecture 5.9 fails. That means there exists a system that
is analyzable yet p-optimal. Since 𝑆 is p-optimal, it follows that 𝑆 p-simulates EF, and by Corollary 5.7 we
have that PAP𝑆 [𝑛𝑐] is NP-complete for every 𝑐 ∈ N. Since P ≠ NP we get that PAP𝑆 [𝑛𝑐] ∉ P for any 𝑐 > 0,
a contradiction with the fact that 𝑆 is analyzable. □

6 The Atserias–Müller lower bound in PV1

In this section we undertake the task of formalizing the Atserias–Müller lower bound in bounded arithmetic
to prove Theorem 1.4. There are at least two possible approaches here, at least at a conceptual level. The
first one is to formalize in PV1 the correctness of the extraction algorithm from Section 4, and use this to
derive the lower bound along the lines of the argument in Theorem 4.6, carefully verifying that we never
exceed the reasoning power of the theory.

The alternative approach, which we choose to take, is to forget about the extraction algorithm at first
glance and attempt a direct formalization of the theorem seeing it purely as a proof complexity lower bound.
Then, from the form of the statement, witnessing theorems will recover the algorithm together with its
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proof of correctness. We opt for this second route, since it is in fact the original hint for why the algorithm
should exist in the first place, and because restating the proof in this format can be insightful in itself.

Of course, the proof we choose to formalize deviates from the original one in a few crucial points,
although the overall structure is preserved. The main difference is the deterministic restriction replacing the
random restriction argument in [AM20]. This deterministic procedure corresponds exactly to the greedy
algorithm behind the width-reduction technique in Lemma 4.3.

We start by stating the lower bound in the language of PV1, which posits that a correct Resolution
refutation 𝜋 of Ref𝑠 (𝜑) must have size at least 2𝜀𝑠/𝑛2 whenever 𝜑 ∉ SAT, for some fixed positive 𝜀. Since
we do not have exponentiation in PV1, we scale down the bound and state is as | |𝜋 | | > 𝜀𝑠/𝑛2, and the
first-order formula becomes

AM𝜀,𝑛0 ≔ ∀𝜑∀𝜋∀𝑛∀𝑠
((
𝑛 ≥ 𝑛0 ∧ CNF(𝜑, 𝑛) ∧ RefRes(Ref𝑠 (𝜑), 𝜋)

∧ ∀𝛼 ≤ 𝜑
(
¬ Sat(𝜑, 𝛼)

) )
→ ||𝜋 | | > 𝜀𝑠/𝑛2

)
.

(AM𝜀,𝑛0 )

Here the different predicates and function symbols all have the obvious intended meaning and it is
readily verified that they are all computable in polynomial time and there exist function symbols for them
in the language of PV.

The formula itself is ∀Σ𝑏1 . This becomes clear when rewriting it in prenex form, which gives us the
statement

∀𝜑∀𝑛∀𝑠∀𝜋∃𝛼 ≤ 𝜑
(
𝑛 < 𝑛0 ∨ ¬CNF(𝜑, 𝑛) ∨ ¬RefRes(Ref𝑠 (𝜑), 𝜋) ∨ Sat(𝜑, 𝛼) ∨ ||𝜋 | | > 𝜀𝑠/𝑛2

)
. (6.1)

If we were to apply Buss’s witnessing theorem here, wewould get a polynomial-time function witnessing
the existential quantifier on 𝛼 , which corresponds precisely to the extraction algorithm.

We carry out the formalization in three subsections. Section 6.1 proves the restriction argument,
Section 6.2 carries out the block-width lower bound and Section 6.3 puts these together. We also recall that
S12(PV), which we denote simply as S12, is ∀Σ𝑏1-conservative over PV1, so we will often carry out arguments
in S12 instead of PV1 and use the induction principles available there without further comment.

6.1 The restriction argument

We want to prove the following ∀Σ𝑏1 formula, stating the restriction argument:

AM-Restriction𝑐 ≔ ∀𝜑∀𝑛∀𝑠∀𝜋
(
CNF(𝜑, 𝑛) ∧ RefRes(Ref𝑠 (𝜑), 𝜋) (AM-Restriction𝑐 )

→ ∃𝜌 ≤ 𝜋

(
bw(𝜋↾𝜌 ) ≤ 𝑐 ·

⌈√︁
𝑠 log |𝜋 |

⌉
∧ Ref𝑠 (𝜑)↾𝜌 ≠ ⊥

∧ Disabling(𝜌, 𝜑, 𝑛, 𝑠) ≤ 𝑐/2 ·
⌈√︁
𝑠 log |𝜋 |

)⌉ )
.

The formula AM-Restriction𝑐 states that for every CNF formula 𝜑 over 𝑛 variables and every correct
Resolution refutation 𝜋 of the Ref𝑠 (𝜑) formula, there exists a 𝑑-disabling restriction 𝜌 ∈ {0, 1, ∗}𝑁 to the 𝑁
variables of Ref𝑠 (𝜑) such that bw(𝜋↾𝜌 ) ≤ 𝑐 ·

⌈√︁
𝑠 log |𝜋 |

⌉
and 𝑑 ≤ 𝑐/2 ·

⌈√︁
𝑠 log |𝜋 |

⌉
.

Throughout this section we freely use rationals and reals and notation like
√·, always assuming that

some suitable rational approximation is used under the hood. This is standard for formalizations in these
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theories (see, for example, the standard style of the formalizations by Jeřábek [Jeř05]).
It is easy to see that there exists a PV function𝑊 that given 𝜋 outputs the set of clauses in 𝜋 of

block-width strictly larger than 𝑐 ·
⌈√︁
𝑠 log |𝜋 |

⌉
. Similarly, there is a PV function𝑊↾𝜌 that given 𝜋 and 𝜌

defines the set of clauses in 𝜋↾𝜌 of block-width strictly larger than 𝑐 ·
⌈√︁
𝑠 log |𝜋 |

⌉
, and the basic properties

of these functions can be proven in S12.
For a given restriction 𝜌 that sets values of variables in ℓ different blocks, we will denote by 𝜏 ≔

((𝑏1, 𝑋1), . . . , (𝑏ℓ , 𝑋ℓ )) an ordering 𝑏1, . . . , 𝑏ℓ ∈ [𝑠] of the blocks that are mentioned by 𝜌 , and, for each of
them, an ordering 𝑋𝑖 of all the variables in block 𝑏𝑖 . We call 𝜏 a trace for 𝜌 and for every 𝑘 ∈ [ℓ] and 𝑆 a set
of variables of Ref𝑠 (𝜑), we denote by 𝜌𝑘,𝑆 the subrestriction of 𝜌 defined as

𝜌𝑘,𝑆 (𝑥) ≔
{
𝜌 (𝑥) if 𝑥 belongs in one of the blocks 𝑏1, . . . , 𝑏𝑘 ∈ 𝜏 or if 𝑥 ∈ 𝑆
∗ otherwise

(6.2)

and 𝜌0,𝑆 ≔ ∗𝑁 . We will denote by 𝜌𝑘 the subrestriction 𝜌𝑘,∅ .

Definition 6.1 (Most-killing property). Wewill say that a restriction 𝜌 enjoys themost-killing property with
respect to a trace 𝜏 = ((𝑏1, 𝑋1), . . . , (𝑏ℓ , 𝑋ℓ )) if it holds that for every 𝑘 ∈ [ℓ], the block 𝑖 ∈ [𝑠] \{𝑏1, . . . , 𝑏𝑘−1}
that is the most frequent block mentioned in𝑊↾𝜌𝑘−1 happens to be precisely 𝑏𝑘 and 𝜌𝑘 satisfies the following
conditions.

1. If 𝑒𝑖 appears positively in at least 1/3 of all the clauses in𝑊↾𝜌𝑘−1 that mention block 𝑖 , then 𝜌𝑘 (𝑒𝑖) = 1
and 𝜌𝑘 (𝑥) = ∗ for every other variable 𝑥 ≠ 𝑒𝑖 in block 𝑖 .

2. If 𝑒𝑖 does not appear positively in at least 1/3 of all the clauses in𝑊↾𝜌𝑘−1 that mention block 𝑖 , then
𝜌𝑘 (𝑒𝑖) = 0 and for every other variable in block 𝑖 , 𝜌𝑘 assigns values to them respecting the ordering
in 𝑋𝑖 = (𝑒𝑖 , 𝑥𝑖,1, 𝑥𝑖,2, . . . ) and with the following priority. For 𝑗 = 1, . . . , |𝑋𝑖 | − 1,

(a) if 𝑥𝑖, 𝑗 appears positively more often than negatively in𝑊↾𝜌𝑘−1,{𝑒𝑖 ,𝑥𝑖,1,...,𝑥𝑖,𝑗−1} , then 𝜌𝑘 (𝑥𝑖, 𝑗 ) = 1;

(b) if 𝑥𝑖, 𝑗 appears negatively more often than positively in𝑊↾𝜌𝑘−1,{𝑒𝑖 ,𝑥𝑖,1,...,𝑥𝑖,𝑗−1} , then 𝜌𝑘 (𝑥𝑖, 𝑗 ) = 0.

Note that verifying that 𝜌 enjoys the most-killing property with respect to 𝜏 is possible in polynomial-
time and hence there is a PV function that performs the check and S12 can prove this.

We now prove the following claim by induction.

Lemma 6.2. Let 𝑐 ∈ N. The following is provable in S12. For every CNF formula 𝜑 over 𝑛 variables and 𝜋 a

correct Resolution refutation of Ref𝑠 (𝜑), let 𝑤 ≔ 𝑐 ·
⌈√︁
𝑠 log |𝜋 |

⌉
and let𝑊 denote the set of clauses in 𝜋 of

block-width larger than 𝑤 . Then, for every ℓ , the formula Ψ(𝜑, 𝜋, 𝑠, ℓ) defined as follows holds: if ℓ ≤ 𝑤/2,
then there exists a restriction 𝜌 ∈ {0, 1, ∗}𝑁 , where 𝑁 is the number of variables of the Ref𝑠 (𝜑) formula, a
trace 𝜏 = ((𝑏1, 𝑋1), . . . , (𝑏ℓ , 𝑋ℓ )) and 𝑑 ≤ ℓ such that:

(i) 𝜌 is 𝑑-disabling;

(ii) 𝜌 has the most-killing property according to 𝜏 ;

(iii) (3𝑠)ℓ · |𝑊↾𝜌 | ≤ |𝑊 | · (3𝑠 −𝑤 + ℓ)ℓ .

Proof. Observe that the formula Ψ is Σ𝑏1 . First, the existential quantifiers on 𝜌 , 𝜏 and 𝑑 are bounded by 𝜋
and 𝜑 . The properties (i) and (ii) are checkable in polynomial time and hence there are PV relations for
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them and S12 can prove their basic properties. To show that item (iii) can be properly expressed by a PV
formula, note that because 𝜋 is a correct Resolution refutation of Ref𝑠 (𝜑), it must hold that 𝑠 ≤ |𝜋 | and

𝑤 = 𝑐

⌈√︁
𝑠 log |𝜋 |

⌉
≤ 𝑐

⌈√︁
𝑠 | |𝜋 | |

⌉
≤ 𝑐

⌈√︁
|𝜋 | | |𝜋 | |

⌉
≤ 𝑐 |𝜋 | , (6.3)

where the last equality holds because | |𝜋 | | ≤ |𝜋 |. As a consequence,𝑤 ∈ Log, which means that for every
ℓ ≤ 𝑤/2, ℓ ∈ Log and thus 𝑠ℓ exists because 𝑠ℓ = 2 |𝑠 |ℓ = 𝑠#2ℓ .

We show that S12 ⊢ ∀ℓΨ(𝜑, 𝜋, 𝑠, ℓ). We proceed by induction on the parameter ℓ , the length of the trace 𝜏 .
Note that this corresponds to Length Induction over Σ𝑏1 formulas and is hence available in S12.

If ℓ = 0, then we can take the empty restriction 𝜌 ≔ ∗𝑁 , which disables 𝑑 = 0 variables and the trace 𝜏
to be the empty sequence, which trivially satisfy the conditions.

We assume now that Ψ(𝜑, 𝜋, 𝑠, ℓ) holds and we prove Ψ(𝜑, 𝜋, 𝑠, ℓ + 1). If ℓ + 1 > 𝑤/2, then we are done,
so assume ℓ + 1 ≤ 𝑤/2. By induction hypothesis, there exist 𝜌 , 𝑑 and 𝜏 satisfying the desired properties for ℓ .
We extend 𝜌 into 𝜌 ′ by following the conditions of the most-killing property. This amounts to applying one
iteration of Algorithm 4.1. There is a PV function for this, as well as for extracting the most frequent block
in the refutation and S12 can prove the basic properties of these functions. The trace is then extended by the
most frequent block 𝑏ℓ+1 mentioned in𝑊↾𝜌 and the ordering of the variables can be any fixed ordering of
the variables used in the construction of 𝜌 ′ by Algorithm 4.1.

If 𝜌 was 𝑑-disabling for 𝑑 ≤ ℓ , then we have that 𝜌 ′ is at most (𝑑 + 1)-disabling, since one iteration of
Algorithm 4.1 disables at most one additional block, and we have 𝑑 + 1 ≤ ℓ + 1. By construction, it is easy to
see that 𝜌 ′ has the most-killing property with respect to 𝜏 ′. It is only left to verify that

(3𝑠)ℓ+1 · |𝑊↾𝜌 ′ | ≤ |𝑊 | · (3𝑠 −𝑤 + ℓ + 1)ℓ+1 . (6.4)

The set𝑊 contains all the clauses in 𝜋 of block-width at least𝑤 . The restriction 𝜌 ′ sets the variables of
ℓ + 1 blocks, meaning that every clause in𝑊 not trivialized by 𝜌 ′ has block-width at least𝑤 − (ℓ + 1), and
these clauses are precisely the ones in𝑊↾𝜌 ′ by definition.

Furthermore, the restriction 𝜌 ′ disables at most ℓ + 1 blocks, so an averaging argument implies that
there is a non-restricted block mentioned in at least |𝑊↾𝜌 | (𝑤 − (ℓ + 1))/(𝑠 − (ℓ + 1)) clauses. In particular,
the most frequent non-restricted block must be mentioned at least that often. Since |𝑊 | ≤ |𝜋 | and 𝑠 ≤ |𝜋 |,
we have that |𝑊 | and 𝑠 are in Log and therefore we can use exact counting in S12 to carry out this averaging
argument (see Section 2.3.2 for details).

By the way we constructed 𝜌 ′ following Algorithm 4.1 we are guaranteed to kill at least 1/3 of all the
clauses mentioning the most frequent unrestricted block 𝑏ℓ+1. Indeed, by inspecting the conditions of the
most-killing property (Definition 6.1) if we enable block 𝑏ℓ+1 that is because it appeared in at least 1/3 of all
the clauses mentioning 𝑏ℓ+1; and otherwise we are guaranteed to restrict at least 1/2 of the remaining 2/3
fraction of the clauses mentioning 𝑏ℓ+1, which amounts to a 1/3 fraction.

Together, this means that

|𝑊↾𝜌 ′ | ≤ |𝑊↾𝜌 | ·
(
1 − 𝑤 − (ℓ + 1)

3𝑠

)
, (6.5)

which is the same as
3𝑠 · |𝑊↾𝜌 ′ | ≤ |𝑊↾𝜌 | · (3𝑠 −𝑤 + ℓ + 1) . (6.6)

As 𝜌 ′ extends the restriction 𝜌 , it is clear that |𝑊↾𝜌 ′ | ≤ |𝑊↾𝜌 |, and by induction hypothesis we know
that

(3𝑠)ℓ · |𝑊↾𝜌 | ≤ |𝑊 | · (3𝑠 −𝑤 + ℓ)ℓ , (6.7)
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meaning that

3𝑠 · |𝑊↾𝜌 ′ | ≤ |𝑊↾𝜌 | · (3𝑠 −𝑤 + ℓ + 1) (6.8)

≤ 1
(3𝑠)ℓ |𝑊 | · (3𝑠 −𝑤 + ℓ)ℓ · (3𝑠 −𝑤 + ℓ + 1) (6.9)

≤ 1
(3𝑠)ℓ |𝑊 | · (3𝑠 −𝑤 + ℓ + 1)ℓ+1 , (6.10)

from which the desired (3𝑠)ℓ+1 · |𝑊↾𝜌 ′ | ≤ |𝑊 | · (3𝑠 −𝑤 + ℓ + 1)ℓ+1 follows. □

With our claim in hand, we are ready to show that PV1 proves the desired restriction argument.

Lemma 6.3 (Formalized deterministic width-reduction in PV1). It holds that PV1 ⊢ AM-Restriction4.

Proof. Let 𝜑 be a CNF formula over 𝑛 variables and 𝜋 a correct Resolution refutation of Ref𝑠 (𝜑) for some 𝑠 .
Apply Lemma 6.2 in S12 for ℓ ≔ 𝑤/2, where 𝑤 ≔ 4 ·

⌈√︁
𝑠 log |𝜋 |

⌉
. This gives us a restriction 𝜌 that is

𝑑-disabling for 𝑑 ≤ ℓ and (3𝑠)ℓ · |𝑊↾𝜌 | ≤ |𝑊 | · (3𝑠 − 𝑤 + ℓ)ℓ . We want to show that bw(𝜋↾𝜌 ) ≤ 𝑤 , that
Ref𝑠 (𝜑)↾𝜌 ≠ ⊥ and that 𝜌 is 𝑑-disabling, for 𝑑 ≤ 𝑤/2.

That 𝜌 is 𝑑-disabling is guaranteed by the lemma, and because it is 𝑑-disabling, the restriction only sets
the values of enabling variables and, whenever a block is enabled, it does not restrict any other variables in
the block. As a consequence, no axiom of Ref𝑠 (𝜑) is ever falsified by 𝜌 .

It is only left to verify that the block-width of 𝜋↾𝜌 is at most𝑤 , as desired. Lemma 6.2 guarantees that
|𝑊↾𝜌 | ≤ |𝑊 | · (1 − (𝑤 − ℓ)/3𝑠)ℓ , and substituting our choice of ℓ we have that

|𝑊↾𝜌 | ≤ |𝑊 | ·
(
1 − 𝑤/2

3𝑠

)𝑤/2
≤ |𝑊 | · 2− 𝑤2

12𝑠 , (6.11)

where the last inequality is provable in S12, as shown in Lemma A.2 of Appendix A.
We want |𝑊 | · 2−𝑤2/12𝑠 < 1, so

|𝑊 | · 2− 𝑤2
12𝑠 < 1 ⇔ log |𝑊 | < 𝑤2

12𝑠
(6.12)

⇔
√︁
12𝑠 log |𝑊 | < 𝑤 , (6.13)

and this last inequality is verified for our choice of𝑤 .
It follows that𝑊↾𝜌 = ∅ and hence bw(𝜋↾𝜌 ) ≤ 𝑤 , as desired. Since S12 is ∀Σ𝑏1-conservative over PV1, we

have the sentence in PV1. □

6.2 The block-width lower bound

The crucial part of the formalization, and the place where we most clearly see how satisfying assignments
can be extracted from Resolution refutations, is in the width lower bound. The restriction argument we just
covered reduces the block-width of a refutation regardless of whether the underlying formula is satisfiable
or not; it is the width lower bound that only holds when the formula is unsatisfiable.

Let us first state the formula we want to prove, which we encode in the following ∀Σ𝑏1 statement:

AM-WLB ≔ ∀𝜑∀𝑛∀𝑠∀𝜋
(
CNF(𝜑, 𝑛)∧RefRes(Ref𝑠 (𝜑), 𝜋) ∧ ∀𝛼 ≤ 𝜑.¬SAT(𝜑, 𝛼)

→ ∃𝐶 ≤ 𝜋

(
𝐶 ∈ 𝜋 ∧ bw(𝐶) ≥ 1/3(⌊𝑠/𝑛⌋ − 1

))
.

(AM-WLB)
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When writing the formula in prenex form, pulling out the universal quantifier on 𝛼 and turning it into
an existential one, it becomes clear how the statement is ∀Σ𝑏1 and the extraction of a satisfying assignment
can be performed by witnessing the first existential quantifier:

AM-WLB ≡ ∀𝜑∀𝑛∀𝑠∀𝜋∃𝛼 ≤ 𝜑∃𝐶 ≤ 𝜋

(
CNF(𝜑, 𝑛) ∧ RefRes(Ref𝑠 (𝜑), 𝜋)

→ Sat(𝜑, 𝛼) ∨
(
𝐶 ∈ 𝜋 ∧ bw(𝐶) ≥ 1/3(⌊𝑠/𝑛⌋ − 1

))
.

(6.14)

The crucial fact that makes the block-width lower bound go through, and which fundamentally distin-
guishes the SAT and Unsat cases is that, if 𝜑 ∈ Unsat, then every width-𝑛 clause over the variables of 𝜑
can be weakened from some clause of 𝜑 , while a width-𝑛 clause that is not the weakening of any axiom
will necessarily encode a satisfying assignment. This was earlier stated as Fact 4.4. We now reprove the
statement in S12.

Lemma 6.4 (Fact 4.4 in S12). Let 𝜑 be a Boolean formula in CNF over 𝑛 variables. If 𝐶 is a width-𝑛 clause over
the variables of 𝜑 that is not the weakening of any clause of 𝜑 , then ¬𝐶 encodes a satisfying assignment for 𝜑 .

Proof. By Δ𝑏
1-induction on the number 𝑛 of variables 𝑥1, . . . , 𝑥𝑛 of 𝜑 , which is available in S12.

If 𝑛 = 1, then the only two width-1 clauses are 𝑥1 and ¬𝑥1. The three possible CNF formulas are 𝑥1, ¬𝑥1
and 𝑥1 ∧ ¬𝑥1, and it is easy to check that the statement holds.

Suppose the statement holds for formulas with up to 𝑛 variables, and let 𝜑 be a formula over 𝑛 + 1
variables and let 𝐶 be a clause of width 𝑛 + 1. Assume 𝑥𝑛+1 ∈ 𝐶 , and restrict 𝑥𝑛+1 ↦→ 0. We obtain a new
formula 𝜑0 and a clause 𝐶0. For every clause 𝐷 in 𝜑 we have the following cases:

(a) the variable 𝑥𝑛+1 appeared in 𝐷 negatively, and hence 𝐷 is satisfied by setting 𝑥𝑛+1 ↦→ 0;

(b) the variable 𝑥𝑛+1 appeared in 𝐷 positively, or the variable did not appear at all; in both cases we
have that this is a clause over variables 𝑥1, . . . , 𝑥𝑛 and, by assumption, 𝐶 and hence also 𝐶0 is not a
weakening of it. By induction hypothesis, ¬𝐶0 and then also ¬𝐶 encode a satisfying assignment to 𝐷 .

Hence, every clause in 𝜑 is satisfied by ¬𝐶 . If ¬𝑥𝑛+1 ∈ 𝐷 the the same argument goes through by
restricting 𝑥𝑛+1 ↦→ 1. This completes the proof. □

To prove the rest of the width lower bound, we show the following lemma first, which essentially
corresponds to the invariant proved within Lemma 4.5 to derive the correctness of the assignment extraction
algorithm. We restate the invariant here as a property of a path in the Resolution refutation.

Definition 6.5 (Reservation invariant). Let 𝜋 be a Resolution refutation of Ref𝑠 (𝜑) for some CNF formula
𝜑 (𝑥1, . . . , 𝑥𝑛), let 𝑁 be the number of variables of Ref𝑠 (𝜑), 𝑑 ≤ depth(𝜋), and let C = (𝐶1, . . . ,𝐶𝑑 ) be a
length-𝑑 path in 𝜋 starting from 𝐶1 = ⊥. Let the 𝑠 blocks of Ref𝑠 (𝜑) be arranged in a layered manner,
so that there are 𝑛 layers, each containing ⌊𝑠/𝑛⌋ blocks, with the remainder blocks left from the flooring
operations collected all in the last layer, plus one additional layer on top with a single block corresponding
to the root. We say that C satisfies the reservation invariant with respect to a sequence 𝐴 = (𝛼1, . . . , 𝛼𝑑 ) of
restrictions 𝛼𝑖 ∈ {0, 1, ∗}𝑁 if, for every 𝑖 ∈ [𝑑],

(i) the restriction 𝛼𝑖 falsifies 𝐶𝑖 ;

(ii) a block is only mentioned in 𝛼𝑖 if it is either mentioned in𝐶𝑖 or its parent according to 𝛼𝑖 is mentioned
in 𝐶𝑖 , and, in particular, bw(𝛼𝑖) ≤ 3 bw(𝐶𝑖);
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(iii) if 𝛼𝑖 restricts some variable in block 𝐵 from layer ℓ , then it does so in the following way: 𝐵 must
contain exactly ℓ literals over the variables 𝑥1, . . . , 𝑥ℓ and no two literals for the same variable;

(iv) the restriction 𝛼𝑖 does not falsify any clause of Ref𝑠 (𝜑);

(v) the path determined by C corresponds to 𝐴 in the following way: if 𝐶𝑖 was derived from 𝐶𝑖+1 by
resolving over variable 𝑣 , then 𝛼𝑖+1(𝑣) is defined and 𝑣 appears in 𝐶𝑖+1 with polarity 1 − 𝛼𝑖+1(𝑣).

The lemma now states that a path exists that satisfies the invariant or, alternatively, correctly leads to a
wide clause or a satisfying assignment.

Lemma6.6. The following is provable in S12. For every CNF formula𝜑 over𝑛 variables and 𝜋 a correct Resolution
refutation of Ref𝑠 (𝜑), for every 𝑑 , the formula Ψ(𝜑, 𝜋, 𝑠, 𝑑) defined as follows holds: if 1 ≤ 𝑑 ≤ depth(𝜋), then
there exists a sequence C = (𝐶1, . . . ,𝐶𝑑 ) of clauses of 𝜋 and a sequence 𝐴 = (𝛼1, . . . , 𝛼𝑑 ) of restrictions such
that at least one of the following conditions holds:

(a) there is 𝐶𝑖 ∈ C that satisfies bw(𝐶𝑖) ≥ 1/3(⌊𝑠/𝑛⌋ − 1);

(b) there is 𝐶𝑖 in and its corresponding restriction 𝛼𝑖 that contain a satisfying assignment to 𝜑 ;

(c) the sequence C is a path in 𝜋 starting at 𝐶1 = ⊥ and the reservation invariant holds for C with respect
to 𝐴.

Proof. The formula Ψ is Σ𝑏1 because the existential quantifiers on C and𝐴 are bounded by 𝜋 and items (a)-(c)
are all checkable by PV functions and S12 proves their basic properties. We can then proceed by induction
on the parameter 𝑑 , which corresponds to Length Induction over a Σ𝑏1 formula, available in S12.

For the base case, 𝑑 = 1 and we can pick 𝐶1 = ⊥ and 𝛼1 = ∗𝑁 . It is immediate to verify that the
reservation invariant is satisfied, so item (c) holds.

Now, suppose the statement holds for 𝑑 , and we prove it for 𝑑 + 1. If 𝑑 + 1 > depth(𝜋), then we are done.
Otherwise, by induction hypothesis there exists a sequence C = (𝐶1, . . . ,𝐶𝑑 ) and a series of restrictions
𝐴 = (𝛼1, . . . , 𝛼𝑑 ). If (a) or (b) hold for them, then we simply extend C with 𝐶𝑑+1 ≔ ⊥ and 𝛼𝑑+1 ≔ ∗𝑁 and
either (a) or (b) will still hold.

If we are in case (c) but (a) and (b) failed, then 𝛼𝑑 does not falsify any clause of Ref𝑠 (𝜑) (as per item
(iv) of the reservation invariant), and hence the clause was derived from some previous clause in 𝜋 , either
by weakening or by a resolution step. Here we simply move to one of the children in 𝜋 and extend 𝛼𝑑
into 𝛼𝑑+1 following the reservation strategy in Algorithm 4.2. More precisely, we run one iteration of
Algorithm 4.2 starting the traversal from𝐶𝑑 and taking 𝛼𝑑 as the restriction kept in memory by the algorithm
(this corresponds to Steps 2-4 of Algorithm 4.2). Crucially, there is a PV function that carries out this
computation.

Let us analyze the outcome of this procedure. If the iteration of Algorithm 4.2 succeeds in extending
the reservation from 𝛼𝑑 to 𝛼𝑑+1, then by the way 𝛼𝑑+1 is constructed from 𝛼𝑑 and by the fact that the
induction hypothesis guaranteed that 𝛼𝑑 satisfies the invariant, we have that 𝛼𝑑+1 will immediately satisfy
the reservation invariant too. In this case, item (c) holds and we are done.

We argue that the reservation process cannot fail. If it did, it must be that the process failed at Step 3b
or 3c of Algorithm 4.2.

• If the process failed in Step 3b, the algorithm attempted the reservation of a block at layer 1 ≤ 𝑖 < 𝑛,
but there were no free blocks left. This means that 𝛼𝑑 already reserved at least ⌊𝑠/𝑛⌋ − 1 blocks on
that layer, and so bw(𝛼𝑑 ) ≥ ⌊𝑠/𝑛⌋ − 1, since each layer 𝑖 < 𝑛 contains exactly ⌊𝑠/𝑛⌋ blocks. By point
(ii) of the reservation invariant we have that bw(𝛼𝑑 ) ≤ 3 bw(𝐶𝑑 ), so putting this together we have
that 𝐶𝑑 has block-width at least 1/3(⌊𝑠/𝑛⌋ − 1), contradicting that we were not in case (a).
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• If the process failed in Step 3c, this implies the reservation 𝛼𝑑 had a clause A encoded in a block at
layer 𝑛, but it failed to find a clause of 𝜑 that A was a weakening of. By point (iii) of the invariant,
since the block is at layer 𝑛, A is a width-𝑛 clause, and by Lemma 6.4 in S12, ¬A encodes a satisfying
assignment of 𝜑 , contradicting that we were not in case (b).

This completes the induction. □

We are now ready to prove AM-WLB.

Lemma 6.7 (Formalized block-width lower bound in PV1). It holds that PV1 ⊢ AM-WLB.

Proof. Working in S12, let 𝜋 be a correct Resolution refutation of Ref𝑠 (𝜑) for a CNF formula 𝜑 over 𝑛
variables. We can apply Lemma 6.6 for 𝑑 = depth(𝜋) to obtain a sequence of clauses C = (𝐶1, . . . ,𝐶𝑑 ) of 𝜋
and a sequence of restrictions 𝐴 = (𝛼1, . . . , 𝛼𝑑 ), satisfying one of conditions (a)-(c) in the statement. We
claim that condition (c) cannot occur. Suppose it did. If C was really a path in 𝜋 starting at the root 𝐶1 = ⊥,
since 𝜋 is a correct Resolution refutation this means the underlying graph of 𝜋 is a DAG and therefore
the clause 𝐶𝑑 at depth 𝑑 must be a leaf. It is not hard to see that S12 can prove this. This implies that 𝐶𝑑 is
a clause of Ref𝑠 (𝜑). Now, items (i) and (iv) of the reservation invariant in Definition 6.5 contradict each
other: the restriction 𝛼𝑑 must falsify 𝐶𝑑 , which is a clause of Ref𝑠 (𝜑); but item (iv) promised that 𝛼𝑑 would
not falsify any clause of the Ref𝑠 (𝜑).

The only viable option then is that we are in case (a) or (b). In case (a), some 𝐶𝑖 ∈ 𝜋 that appears in the
sequence (𝐶1, . . . ,𝐶𝑑 ) has block-width at least 1/3(⌊𝑠/𝑛⌋ − 1). In case (b), we immediately get a satisfying
assignment for 𝜑 .

Since AM-WLB is a ∀Σ𝑏1 sentence and S12 is ∀Σ𝑏1-conservative over PV1, we get that PV1 ⊢ AM-WLB. □

6.3 Formalization of the final lower bound statement

Theorem 6.8. There exist a positive 𝜀 ∈ Q and 𝑛0 ∈ N such that PV1 ⊢ AM𝜀,𝑛0 .

Proof. Let 𝜀 ∈ Q and 𝑛0 ∈ N be universal constants that can be computed from the rest of the argument.
Working in PV1, let 𝜋 be a Resolution refutation of Ref𝑠 (𝜑) for a CNF formula 𝜑 over 𝑛 variables, with
𝑛 ≥ 𝑛0. We apply Lemma 6.3 to conclude that PV1 ⊢ AM-Restriction4, from which we get in PV1 that there
is some restriction 𝜌 such that 𝜋↾𝜌 is a Resolution refutation of Ref𝑠 (𝜑)↾𝜌 and the block-width of 𝜋↾𝜌 is at
most 4 ·

√︁
𝑠 log |𝜋 |. Furthermore, 𝜌 is 𝑑-disabling for some 𝑑 ≤ 2⌈

√︁
𝑠 log |𝜋 |⌉.

Before proceeding, extend 𝜌 into a restriction 𝜌 ′ that further enables all blocks not touched by 𝜌 and
sets the values of pointers that are pointing at disabled blocks. In this way, Ref𝑠 (𝜑)↾𝜌 ′ becomes exactly
Ref𝑠−𝑑 (𝜑), as 𝜌 was 𝑑-disabling, and 𝜋↾𝜌 ′ is a refutation of Ref𝑠−𝑑 (𝜑).

Assume now that 𝜑 is unsatisfiable, or else we are already done. By Lemma 6.7 we have that PV1 ⊢
AM-WLB. Since we assume 𝜑 is unsatisfiable, applying this block-width lower bound to 𝜋↾𝜌 ′ we conclude
that there exists a clause in 𝜋↾𝜌 ′ of block-width at least 1/3(⌊(𝑠 − 𝑑)/𝑛⌋ − 1). It then holds that

1/3(⌊(𝑠 − 𝑑)/𝑛⌋ − 1) ≤ 4 ·
⌈√︁
𝑠 log |𝜋 |

⌉
, (6.15)

and it is not hard to see that PV1 can derive from this inequality that | |𝜋 | | > 𝜀𝑠/𝑛2 for some small enough 𝜀
and large enough 𝑛. □

7 Pudlák’s upper bound in Resolution

The fact that the Ref𝑠 (𝜑) formulas admit short Resolution refutations whenever 𝜑 is satisfiable is originally
due to Pudlák [Pud03, Theorem 4.1]. However, technically speaking, our definition of Ref is in the relativized
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form as used by Atserias and Müller, who crucially showed that the upper bound still works even in the
presence of the disabling variables [AM20, Lemma 11], and the proof goes through for the encoding with
pointer variables in binary too [dRGN+21, Lemma 2.1.i].

Our goal is to show that the upper bound construction can be proven correct in Resolution itself. The
main technicality to overcome is that we want to show that from a satisfying assignment 𝛼 to a CNF
formula 𝜑 , one can construct not only a Resolution refutation of Ref(𝜑), but that this refutation can itself
be encoded as a satisfying assignment to the formula Ref(Ref(𝜑)), and that the correctness of this can be
certified in Resolution.

Let 𝑃 (𝜑, 𝛼, 𝑠) denote the circuit that constructs a refutation of Ref𝑠 (𝜑) given the satisfying assignment 𝛼 .
Intuitively, we want to derive a propositional formula that states

(Sat(𝜑, 𝛼) ∧ 𝜋 = 𝑃 (𝜑, 𝛼, 𝑠)) → Ref(Ref𝑠 (𝜑), 𝜋) . (7.1)

Our goal is to refute the negation of this formula in Resolution, which presents two obstacles. First, when
negating the formula to obtain a contradiction to be refuted in Resolution, we have

Sat(𝜑, 𝛼) ∧ 𝜋 = 𝑃 (𝜑, 𝛼, 𝑠) ∧ ¬Ref(Ref𝑠 (𝜑), 𝜋) . (7.2)

Since Ref formulas are in CNF, its negation is a DNF, so this is still not in a format amenable to Resolution.
The second issue is that the circuit 𝑃 needs to be presented in a simple way that can also be handled by
Resolution.

In Section 7.1 we introduce pseudo-negations, a construction using extension variables to simulate the
negation of Ref formulas. In Section 7.2 we describe the construction in natural language, in a style that
streamlines the previous existing proofs. In Section 7.3 we describe the circuit 𝑃 , which turns out to be a
very low depth circuit that Resolution will be able to reason about. Finally, Section 7.4 puts these together
to derive the correctness of the construction in Resolution.

7.1 Pseudo-negations in Resolution

In general, we cannot negate a CNF formula and rewrite in CNF without blowing up the size of the formula,
but we can simulate the negation using extension variables.

Definition 7.1 (Pseudo-negations). Let 𝜑 = 𝐶1 ∧ · · · ∧𝐶𝑚 be a CNF formula over 𝑛 variables 𝑥1, . . . , 𝑥𝑛 and
𝑚 clauses, each of width at most 𝑘 , and let 𝐶𝑖 = ℓ𝑖,1 ∨ · · · ∨ ℓ𝑖,𝑘 denote the literals in each clause. We define
the pseudo-negation of 𝜑 , denoted ∼𝜑 , to be the following CNF formula over variables 𝑥1, . . . , 𝑥𝑛 and new
variables mistake1, . . . ,mistake𝑚

∼𝜑 B
(
𝑚∨
𝑖=1

mistake𝑖

)
∧

𝑚∧
𝑖=1

𝑘∧
𝑗=1

(
¬mistake𝑖 ∨ ¬ℓ𝑖, 𝑗

)
.

The pseudo-negation operator introduces extension variables simulating the negation of the CNF.
We remark that ∼𝜑 satisfies the basic properties of negation within Resolution. The following lemma is
straightforward and we omit the proof.

Lemma 7.2. For every CNF formula 𝜑 , the formulas ¬𝜑 and ∼𝜑 are equisatisfiable in the following way:
every satisfying assignment to ¬𝜑 can be extended into a assignment to ∼𝜑 , and every satisfying assignment to
∼𝜑 restricts into a satisfying assignment for ¬𝜑 . Furthermore, 𝜑 ∧ ∼𝜑 has linear-size refutations in Resolution.

Using pseudo-negations, we can encode the formula (7.2) as

Sat(𝜑, 𝛼) ∧ (𝜋 = 𝑃 (𝜑, 𝛼, 𝑠)) ∧ ∼Ref(Ref𝑠 (𝜑), 𝜋) . (7.3)
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An important application of pseudo-negations is the ability of carrying out inferences in the style of
modus ponens. In Frege systems, given a proof of 𝜑 → 𝜓 and a proof of 𝜑 , one can immediately obtain a
proof of𝜓 . In the case of Resolution, the implication can be written using pseudo-negations to simulate the
following behavior (which resembles more a contraposition argument than modus ponens proper). The
following lemma is due to Jeřábek [Jeř25] and will turn out to be crucial in Section 9. It allows us to perform
contraposition on pseudo-negations in Resolution.

Lemma 7.3 (Contraposition in Resolution [Jeř25]). Let 𝜑 (𝑥) and𝜓 (𝑥) be two CNF formulas over the same
set of variables. If 𝜓 (𝑥) has a Resolution refutation in 𝑙 steps and size 𝑠 , and 𝜑 (𝑥) ∧ ∼𝜓 (𝑥,mistake) has a
Resolution refutation of 𝑘 steps and size 𝑡 , then 𝜑 (𝑥) has a Resolution refutation in 𝑙 + 𝑘𝑚 steps and size
𝑠 + 𝑡𝑚 + 𝑘 |𝜓 |.

Proof. Let 𝜋 be a refutation of 𝜑 (𝑥) ∧ ∼𝜓 (𝑥,mistake) with 𝑘 steps and total size 𝑡 . Fix 𝑖 ∈ [𝑚], and restrict
the refutation 𝜋 with the substitution that maps mistake𝑖 ↦→ 1 and mistake𝑖′ ↦→ 0 for 𝑖′ ∈ [𝑚] \ {𝑖}. We
obtain a refutation of 𝜑 (𝑥) ∧ ∧

𝑗∈[𝑘 ] ¬ℓ𝑖, 𝑗 with (at most) the same number of steps and size. Remove the
axioms ¬ℓ𝑖, 𝑗 , and include 𝐶𝑖 in all lines in the refutation. Since ℓ𝑖, 𝑗 ∈ 𝐶𝑖 and we only made changes at the
axioms ¬ℓ𝑖, 𝑗 , the only steps affected can be initial derivations from axioms. Since in particular the axiom
¬ℓ𝑖, 𝑗 is a literal, this cut is just a Resolution step of the form

𝐷 ∨ ℓ𝑖, 𝑗 ¬ℓ𝑖, 𝑗
𝐷

which will turn into a trivial weakening step that derives 𝐷 ∨𝐶𝑖 from 𝐷 ∨𝐶𝑖 . This can be collapsed to a
single step, giving us a derivation of 𝐶𝑖 from 𝜑 (𝑥) with 𝑘 steps and size at most 𝑡 + 𝑘 |𝐶𝑖 |.

Doing this for all 𝑖 ∈ [𝑚] in parallel, we get derivations of all clauses of𝜓 (𝑥) from 𝜑 (𝑥). Combining
this with a refutation of𝜓 (𝑥) with 𝑙 steps and size 𝑠 , we will obtain a refutation of 𝜑 (𝑥) with 𝑙 + 𝑘𝑚 steps
and size 𝑠 + 𝑡𝑚 + 𝑘 |𝜓 |. □

7.2 Description of the construction

The next step in the construction of the upper bound is to describe the conjunct 𝜋 = 𝑃 (𝜑, 𝛼, 𝑠) in the for-
mula (7.2). The circuit 𝑃 relates 𝜑 and 𝛼 , which are variables of Sat(𝜑, 𝛼), to the variables 𝜋 of Ref(Ref𝑠 (𝜑)).
Before we describe the circuit 𝑃 , we give a natural language explanation of what the upper bound construc-
tion is doing.

We remark that in the following description, the formula 𝜑 and a satisfying assignment 𝛼 have been
fixed. This means that there are no longer any a-lit𝐴ℓ variables encoding the formula (see Definition 2.8). To
simplify notation, we sometimes view 𝛼 as a function over literals so that 𝛼 (𝑥𝑖) = 𝛼𝑖 and 𝛼 (¬𝑥𝑖) = ¬𝛼𝑖 .

General structure of the construction. The goal of the refutation is to derive, for every 𝐵 ∈ [𝑠], the
clause

True(𝐵, 𝛼) ≔ ¬enable𝐵 ∨
∨

ℓ∈Lit𝑛
𝛼 (ℓ )=1

lit𝐵ℓ , (True(𝐵, 𝛼))

encoding that if block 𝐵 is enabled then it contains a clause that is satisfied by 𝛼 . Each True(𝐵, 𝛼) is derived
from True(𝐶, 𝛼) for all 𝐶 ∈ [𝐵 − 1], and from True(𝑠, 𝛼) one can easily derive the empty clause.

We will derive the clause True(𝐵, 𝛼) by first deriving the clauses

derived𝐵 ∨ True(𝐵, 𝛼) and ¬derived𝐵 ∨ True(𝐵, 𝛼) (7.4)

and then applying one Resolution step.
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The derivation of derived𝐵 ∨ True(𝐵, 𝛼). For every 𝑖 ∈ [𝑚] pick an arbitrary literal ℓ ∈ 𝐴𝑖 made true
by 𝛼 . By weakening the axiom (Ref-3, 𝐵, 𝑖, ℓ), which is ¬enable𝐵 ∨ ¬weak𝐵𝑖 ∨ lit𝐵ℓ since the variables a-lit𝑖ℓ
are no longer present once a formula has been fixed, we obtain the clause

¬enable𝐵 ∨ ¬weak𝐵𝑖 ∨
∨

ℓ∈Lit𝑛
𝛼 (ℓ )=1

lit𝐵ℓ . (𝐿1(𝐵, 𝑖))

Now cut successively (Ref-7, 𝐵) with (𝐿1(𝐵, 𝑖)) for 𝑖 ∈ [𝑚] to get derived𝐵 ∨ True(𝐵, 𝛼). That is, there will
be𝑚 lines 𝐿2(𝐵, 1) to 𝐿2(𝐵,𝑚), each of the form

¬enable𝐵 ∨ derived𝐵 ∨
𝑚∨

𝑗=𝑖+1
weak𝐵𝑗 ∨

∨
ℓ∈Lit𝑛
𝛼 (ℓ )=1

lit𝐵ℓ , (𝐿2(𝐵, 𝑖))

such that 𝐿2(𝐵, 𝑖 + 1) is obtained by resolving 𝐿2(𝐵, 𝑖) with 𝐿1(𝐵, 𝑖 + 1) over variable weak𝐵𝑖+1. Note that
𝐿2(𝐵,𝑚) is precisely derived𝐵 ∨ True(𝐵, 𝛼).

It is not hard to see that, for each 𝐵 ∈ [𝑠], this derivation of derived𝐵 ∨ True(𝐵, 𝛼) consists of Θ(𝑚)
resolution steps.

The derivation of ¬derived𝐵 ∨ True(𝐵, 𝛼). We assume that for every 𝐶 ∈ [𝐵 − 1] we have derived
True(𝐶, 𝛼). We first carry out the following derivation for every𝐶 ∈ [𝐵−1] and 𝑖 ∈ [𝑛], leading to auxiliary
clauses (𝑅2(𝐵,𝐶, 𝑖)) defined below.

Let us suppose that 𝛼 (𝑥𝑖) = 0 (the dual case is analogous but following the right-hand side pointers).
For 𝑗 ∈ [𝑛], let ℓ𝑗 = 𝑥 𝑗 if 𝛼 (𝑥 𝑗 ) = 1 and ℓ𝑗 = ¬𝑥 𝑗 if 𝛼 (𝑥 𝑗 ) = 0. Note that for each 𝑗 ∈ [𝑛] we have the axiom
(Ref-1, 𝐵,𝐶, 𝑖, ℓ𝑗 ), which is

¬enable𝐵 ∨ res𝐵𝑥𝑖 ∨ ¬lpoint𝐵𝐶 ∨ ¬lit𝐶ℓ𝑗 ∨ lit𝐵ℓ𝑗 . (𝑅𝐴1 (𝐵,𝐶, 𝑖, 𝑗))

Successively resolving True(𝐶, 𝛼) with (𝑅𝐴1 (𝐵,𝐶, 𝑖, 𝑗)) over variable lit
𝐶
ℓ𝑗
for 𝑗 ∈ [𝑛] we get

¬enable𝐵 ∨ ¬enable𝐶 ∨ ¬res𝐵𝑥𝑖 ∨ ¬lpoint𝐵𝐶 ∨
∨

ℓ∈Lit𝑛
𝛼 (ℓ )=1

lit𝐵ℓ . (𝑅1(𝐵,𝐶, 𝑖))

This consists of 𝑛 lines, which we refer to as 𝑅1(𝐵,𝐶, 𝑖, 𝑗) for 𝑗 ∈ [𝑛]. Note that 𝑅1(𝐵,𝐶, 𝑖, 𝑛) refers
to the same line (𝑅1(𝐵,𝐶, 𝑖)). We cut (𝑅1(𝐵,𝐶, 𝑖)) over variable enable𝐶 with the clause 𝑅𝐴2 (𝐵,𝐶, 𝑖) B
¬enable𝐵 ∨ ¬lpoint𝐵𝐶 ∨ enable𝐶 , which is (Ref-8, 𝐵,𝐶), to obtain

¬enable𝐵 ∨ ¬res𝐵𝑥𝑖 ∨ ¬lpoint𝐵𝐶 ∨
∨

ℓ∈Lit𝑛
𝛼 (ℓ )=1

lit𝐵ℓ . (𝑅2(𝐵,𝐶, 𝑖))

We now cut (Ref-4, 𝐵) with (𝑅2(𝐵,𝐶, 𝑖)) over variable res𝐵𝑥𝑖 for every 𝑖 ∈ [𝑛] to get

¬enable𝐵 ∨ ¬derived𝐵 ∨ ¬lpoint𝐵𝐶 ∨
∨

ℓ∈Lit𝑛
𝛼 (ℓ )=1

lit𝐵ℓ . (𝑅3(𝐵,𝐶, 𝑖))

Finally cutting over the variable lpoint𝐵𝐶 the clause 𝑅𝐴3 (𝐵, 𝑖) B ¬enable𝐵 ∨ ¬derived𝐵 ∨ ∨
𝐶∈[𝐵−1] lpoint

𝐵
𝐶 ,
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which is (Ref-5, 𝐵), with (𝑅3(𝐵,𝐶, 𝑖)) for each 𝐶 ∈ [𝐵 − 1], we get

¬enable𝐵 ∨ ¬derived𝐵 ∨
∨

ℓ∈Lit𝑛
𝛼 (ℓ )=1

lit𝐵ℓ , (𝑅4(𝐵))

which is exactly ¬derived𝐵 ∨ True(𝐵, 𝛼). This step consists of 𝐵 − 1 lines, which we denote by 𝑅4(𝐵,𝐶, 𝑖)
for 𝐶 ∈ [𝐵 − 1], where the last line 𝑅4(𝐵, 𝐵 − 1, 𝑖) is (𝑅4(𝐵)).

We note that, for each 𝐵 ∈ [𝑠], we derive ¬derived𝐵 ∨ True(𝐵, 𝛼) in Θ(𝑠𝑛2) resolution steps.

Contradiction from True(𝑠). Once we have derived True(𝑠), we resolve it with (Ref-11) to get∨
ℓ∈Lit𝑛
𝛼 (ℓ )=1

lit𝐵ℓ , (7.5)

which we then resolve with the axioms (Ref-10, ℓ) for the 𝑛 literals ℓ such that 𝛼 (ℓ) = 1 to get the empty
clause.

We observe that the total number of clauses in this resolution refutation of Ref𝑠 (𝜑), for a satisfiable
formula 𝜑 , is Θ(𝑠 (𝑚 + 𝑠𝑛2)).

7.3 The construction as a low-depth circuit

The expression 𝜋 = 𝑃 (𝜑, 𝛼, 𝑠) in the formula (7.3) is a short-hard for a conjunction of clauses describing
the upper bound construction as presented in Section 7.2. As noted above, the number of clauses in this
refutation is 𝜏 = Θ(𝑠 (𝑚 + 𝑠𝑛2)). We only define 𝜋 = 𝑃 (𝜑, 𝛼, 𝑠) for 𝜋 being a proof of length 𝑡 ≥ 𝜏 , as we will
only consider this short-hand in this parameter regime. This subsection is dedicated to the description of the
conjunction of clauses encoding 𝜋 = 𝑃 (𝜑, 𝛼, 𝑠). Each clause C that appears in the construction, including
the axioms of Ref that are used in cuts, is mapped to some B ∈ [𝜏] which corresponds to its position in the
proof. Since this a one-to-one mapping, we sometimes abuse notation and identify C with B.

The key observation is that each variable of 𝜋 is a function of at most two variables of 𝜑 and 𝛼 , and
thus the construction can be expressed as a depth-2 circuit. This is because if step 𝑖 of the construction is,
say, to derive a clause C (over variables of Ref𝑠 (𝜑)), then we will add the unit clauses

enable𝑖 ∧
∧
𝑧∈C

lit𝑖𝑧 ∧
∧
𝑧∉C

¬lit𝑖𝑧 , (7.6)

encoding that clause C is the clause at step 𝑖 in the proof. If the construction obtains this clause by a
Resolution step we add the conjunct derived𝑖 and if it is by a weakening of an axiom we add the conjunct
¬derived𝑖 . Similarly we include appropriate unit clauses of the variables of type lpoint, rpoint and weak.
For the most part, the construction is a ready-made template that only depends on 𝛼 and 𝜑 in a few crucial
points. In this case, we will include clauses that encode this dependence. For example, suppose that at step 𝑖
we derive the clause ∨

ℓ∈Lit𝑛
𝛼 (ℓ )=1

lit𝐵ℓ (7.7)

that does depend on 𝛼 . Here 𝐵 is a block of the inner Ref formula, while this clause itself will be instantiated
as a block B = 𝑖 of the outer Ref. We then add, for 𝑗 ∈ [𝑛], the clauses encoding

litB
lit𝐵𝑥𝑗

↔ 𝛼 𝑗 and litB
lit𝐵¬𝑥𝑗

↔ ¬𝛼 𝑗 . (7.8)
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We first describe in more detail how the variables related to the lines (𝐿1(𝐵, 𝑖)) and (𝐿2(𝐵, 𝑖)) are defined.
Line (𝐿1(𝐵, 𝑖)) is the only one that depends on both 𝛼 and 𝜑 ; the rest of the construction depends solely
on 𝛼 . For subsequent lines in the construction, we simply describe the parts that depend on 𝛼 as the others
are completely determined by the ready-made template, as explained above.

Fix 𝑖 ∈ [𝑚], and let L denote the block corresponding to (𝐿1(𝐵, 𝑖)). We include the unit clauses

enableL ∧ ¬derivedL (7.9)

that determine that this line is enabled and is not derived. We also include unit clauses ¬resL𝑧 , ¬lpointLB
and ¬rpointLB for all B ∈ [𝑡] (since L is not obtained by a Resolution step). We set the lit variables as
explained above, that is, we have clauses encoding

litL
lit𝐵𝑥𝑗

↔ 𝛼 𝑗 and litL
lit𝐵¬𝑥𝑗

↔ ¬𝛼 𝑗 , (7.10)

the unit clauses
litL

¬enable𝐵
∧ litL

¬weak𝐵𝑖
, (7.11)

and the unit clauses ¬litL
ℓ ′ encoding that no other literal ℓ ′ (not appearing above) is present in the clause. It

remains to define the weakL variables. Note that (𝐿1(𝐵, 𝑖)) can be obtained by weakening any of the axioms
(Ref-3, 𝐵, 𝑖, ℓ), for any ℓ ∈ 𝐴𝑖 made true by 𝛼 . We therefore set

weakL(Ref-3,𝐵,𝑖,𝑥 𝑗 ) ↔ a-lit𝑖𝑥 𝑗
∧ 𝛼 𝑗 and weakL(Ref-3,𝐵,𝑖,¬𝑥 𝑗 ) ↔ a-lit𝑖¬𝑥 𝑗

∧ ¬𝛼 𝑗 . (7.12)

Here the variables a-lit𝑖𝑥 𝑗
and a-lit𝑖¬𝑥 𝑗

are part of the Sat(𝜑, 𝛼) formula (as in Definition 2.8), and
determine which literals appear in what clauses of 𝜑 . Observe that we are technically establishing that the
clause (𝐿1(𝐵, 𝑖)) will have many weakening pointers. While this is somewhat unusual in real Resolution
refutations, the refutation is still sound and none of the axioms in Definition 2.4 are violated. The advantage
is that we do not have to establish which is the, say, first satisfied literal of every axiom. Even though
(potentially) having multiple weakening pointers is not strictly necessary, it simplifies the clauses needed
to express 𝜋 = 𝑃 (𝜑, 𝛼, 𝑠).

Now fix 𝑖 ∈ [𝑚] and let L be the block corresponding to the (𝐿2(𝐵, 𝑖)). We add the unit clauses

enableL ∧ derivedL ∧ resL
weak𝐵𝑖

∧
∧

𝑧≠weak𝐵𝑖

¬resL𝑧 (7.13)

that determine that this line is enabled, it is derived and obtained by resolving over variable weak𝐵𝑖 . We
also include unit clauses enforcing all weakL variables to be 0 (since L is not a weakening of any axiom).
The litL variables are encoded as explained above. As for the pointers, we include the unit clauses

rpointL
𝐿1 (𝐵,𝑖 ) ∧ lpointL

𝐿2 (𝐵,𝑖−1) ∧
∧

B≠𝐿1 (𝐵,𝑖 )
¬rpointLB ∧

∧
B≠𝐿2 (𝐵,𝑖−1)

¬lpointLB . (7.14)

For the second set of clauses, used in the derivation of ¬derived𝐵 ∨ True(𝐵, 𝛼), we describe the parts
that depend on 𝛼 . These can be split into two groups, the parts that depend only on whether we consider
lpoint or rpoint, that is, only on 𝛼𝑖 , and those that depend also on ℓ𝑗 . We start with the former. If in the
construction we described above a clause on a line corresponding to, say, block R contains the literal
¬lpoint𝐵𝐶 for the case when 𝛼𝑖 = 0, then we include the clauses encoding

litR¬rpoint𝐵
𝐶

↔ 𝛼𝑖 and litR¬lpoint𝐵
𝐶

↔ ¬𝛼𝑖 , (7.15)
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so that the literal ¬rpoint𝐵
𝐶
is present iff 𝛼 (𝑥𝑖) = 1 and ¬lpoint𝐵𝐶 is present if and only if 𝛼 (𝑥𝑖) = 0. Similarly

if it contains the literal lpoint𝐵𝐶 , we include litR
rpoint𝐵

𝐶

↔ 𝛼𝑖 and litR
lpoint𝐵

𝐶

↔ ¬𝛼𝑖 . For R = 𝑅4(𝐵,𝐶, 𝑖), we
include clauses

resR
rpoint𝐵

𝐶

↔ 𝛼𝑖 and resR
lpoint𝐵

𝐶

↔ ¬𝛼𝑖 , (7.16)

encoding that the resolved variable is either rpoint𝐵
𝐶
or lpoint𝐵𝐶 , depending on 𝛼𝑖 . For R = 𝑅𝐴2 (𝐵,𝐶, 𝑖) we

include
weakR(Ref-9,𝐵,𝐶 ) ↔ 𝛼𝑖 and weakR(Ref-8,𝐵,𝐶 ) ↔ ¬𝛼𝑖 , (7.17)

and for R = 𝑅𝐴3 (𝐵, 𝑖) we include

weakR(Ref-6,𝐵) ↔ 𝛼𝑖 and weakR(Ref-5,𝐵) ↔ ¬𝛼𝑖 . (7.18)

We now move to the parts that (also) depend on ℓ𝑗 . If the line corresponding to block R contains lit𝐵
′

ℓ𝑗

for some block 𝐵′ we include

litR
lit𝐵

′
𝑥𝑗

↔ 𝛼 𝑗 and litR
lit𝐵

′
¬𝑥𝑗

↔ ¬𝛼 𝑗 . (7.19)

Similarly, if it contains ¬lit𝐵′
ℓ𝑗

for some block 𝐵′ we include litR
¬lit𝐵′𝑥𝑗

↔ 𝛼 𝑗 and litR
¬lit𝐵′¬𝑥𝑗

↔ ¬𝛼 𝑗 . If R is a line

𝑅1(𝐵,𝐶, 𝑖, 𝑗) that is obtained by resolving over variable lit𝐶ℓ𝑗 , we include the clauses

resR
lit𝐶𝑥𝑗

↔ 𝛼 𝑗 and resR
lit𝐶¬𝑥𝑗

↔ ¬𝛼 𝑗 . (7.20)

Finally, for R being 𝑅𝐴1 (𝐵,𝐶, 𝑖, 𝑗), we include

weakR(Ref-2,𝐵,𝐶,𝑖,𝑥 𝑗 ) ↔ 𝛼𝑖 ∧ 𝛼 𝑗 , weakR(Ref-1,𝐵,𝐶,𝑖,𝑥 𝑗 ) ↔ ¬𝛼𝑖 ∧ 𝛼 𝑗 , (7.21)

weakR(Ref-2,𝐵,𝐶,𝑖,¬𝑥 𝑗 ) ↔ 𝛼𝑖 ∧ ¬𝛼 𝑗 , and weakR(Ref-1,𝐵,𝐶,𝑖,¬𝑥 𝑗 ) ↔ ¬𝛼𝑖 ∧ ¬𝛼 𝑗 . (7.22)

We have thus far described how we assign variable referring to blocks B of 𝜋 for B ≤ 𝜏 (where we
recall 𝜏 = Θ(𝑠 (𝑚 + 𝑠𝑛2)) is the number of clauses in the refutation of Ref𝑠 (𝜑) described in Section 7.2).
For B ∈ [𝑡] and B > 𝜏 we include unit clauses setting all variables to 0, in particular, we include clauses
¬enableB encoding that these blocks are not used in the refutations described by 𝑃 (𝜑, 𝛼).

We denote by 𝜋 = 𝑃 (𝜑, 𝛼) all the conjuncts describing the refutation of Ref𝑠 (𝜑) as an assignment to
the outer Ref formula.

7.4 Correctness of the construction in Resolution

We are ready to prove that the construction is provably correct in Resolution.

Theorem 7.4 (Pudlák’s upper bound in Resolution). For every 𝑛,𝑚, 𝑠 ∈ N, there is a 𝜏 = Θ(𝑠 (𝑚 + 𝑠𝑛2)) such
that for 𝑡 ≥ 𝜏 there exist uniform polynomial-size Resolution refutations of the formula

Sat(𝜑, 𝛼) ∧ ∼Ref𝑡 (Ref𝑠 (𝜑), 𝜋) ∧ 𝜋 = 𝑃 (𝜑, 𝛼, 𝑠) ,

where the Sat formula is for CNF formulas with 𝑛 variables and𝑚 clauses, and 𝜋 = 𝑃 (𝜑, 𝛼, 𝑠) stands for the
conjunction of clauses describing the upper bound construction, as per Section 7.3. Moreover, the refutations can
be generated uniformly in polynomial time.
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Proof. Let 𝜏 = Θ(𝑠 (𝑚 + 𝑠𝑛2)) be the number of clauses in the refutation of Ref𝑠 (𝜑) described in Section 7.2.
Letℭ denote the set of clauses in the formula Ref𝑡 (Ref𝑠 (𝜑), 𝜋). Observe that these clauses can be partitioned
according to which type of axiom (Ref-1 - Ref-11) they belong to, as well as to the block B ∈ [𝑡] they refer
to. By using the pseudo-negation operation ∼Ref𝑡 (·), we have introduced a clause

∨
𝑐∈ℭ mistake𝑐 .

Observe first that for every satisfiable 𝜑 and for every satisfying assignment 𝛼 of 𝜑 , the assignment
described by the conjuncts 𝜋 = 𝑃 (𝜑, 𝛼, 𝑠) is a sound Resolution refutation, meaning that no axiom of Ref𝑡 (·)
can be violated. The goal will be to derive ¬mistake𝑐 for every 𝑐 ∈ ℭ, and then derive contradiction by
cutting this with

∨
𝑐∈ℭ mistake𝑐 . We first argue that if the variables of 𝑐 only depend on 𝛼 , then Resolution

can derive ¬mistake𝑐 . We are then left to show that Resolution can also derive ¬mistake𝑐 for the axioms
that contain variables that depend on both 𝛼 of 𝜑 .

Now, let 𝑐 ∈ ℭ be a clause of Ref𝑡 (·). By inspection of the description of the refutation as a circuit in
Section 7.3, it is clear that the only variables that depend on both a-lit and 𝛼 variables are precisely the
weakL(Ref-3,𝐵,𝑖,ℓ ) variables in line (7.12). For the axioms of constant width that do not contain the variable
weakL(Ref-3,𝐵,𝑖,ℓ ) , that is, axioms (Ref-1 - Ref-2) and (Ref-8 - Ref-11), as well as some of the axioms (Ref-3),
their variables depend on a constant number of 𝛼 variables in the description 𝜋 = 𝑃 (𝜑, 𝛼, 𝑠). By brute
force, since the step is sound for every 𝛼 , Resolution can just derive for every one of them the unit clause
¬mistake𝑐 . For axioms (Ref-3) that contain weakL(Ref-3,𝐵,𝑖,𝑥 𝑗 ) the argument is similar, since for any value
of 𝜑 and 𝛼 , if weakL(Ref-3,𝐵,𝑖,ℓ ) = 1 (that is, a-lit𝑖ℓ = 1 and 𝛼 (ℓ) = 1) then indeed the clause at block L is a
weakening of (Ref-3, 𝐵, 𝑖, ℓ).

Now, for all of the axioms of types (Ref-5) and (Ref-6) note that all the variables appearing in them are
completely set, that is, do not depend on 𝛼 or 𝜑 , so Resolution can also derive the unit clause ¬mistake𝑐 .
The same holds for any other axiom whose variables are completely set. This leaves us with the axioms of
type (Ref-4) and (Ref-7) whose variables are not completely set. For the axioms of type (Ref-4) and (Ref-7)
that depend on variables defined in (7.16)-(7.18) and (7.20),

note that we set one of the variables in the wide disjunction (one of res or weak variables) to 𝛼𝑖 and
another to ¬𝛼𝑖 . This is sound (for any value of 𝛼𝑖 there will be at least one variable in the wide disjunction
that is set to 1) and only depends on one 𝛼𝑖 , so Resolution can derive ¬mistake𝑐 . The case of axioms Ref-7
that depend on (7.21) and (7.22) is similar: by a brute-force over the possible values of 𝛼𝑖 and 𝛼 𝑗 , Resolution
can derive that one of the weakR variables must be 1.

Finally, we argue that if 𝑐 is one of the axiom (Ref-7) that depend on (7.12), Resolution can also derive
¬mistake𝑐 . Note that 𝜋 = 𝑃 (𝜑, 𝛼, 𝑠) contains the clause

weakL(Ref-3,𝐵,𝐴,𝑥 𝑗 ) ∨ ¬a-lit𝐴𝑥 𝑗
∨ ¬𝛼 𝑗 (7.23)

and the clause
weakL(Ref-3,𝐵,𝐴,¬𝑥 𝑗 ) ∨ ¬a-lit𝐴¬𝑥 𝑗

∨ 𝛼 𝑗 , (7.24)

for 𝐴 ∈ [𝑚]. By resolving the clause (7.23) with (Sat-1, 𝐴, 𝑥 𝑗 ) and then with (Sat-2, 𝐴, 𝑗 ), we obtain the
clause

weakL(Ref-3,𝐵,𝐴,𝑥 𝑗 ) ∨ sat𝐴𝑥 𝑗
. (7.25)

Similarly, we can derive
weakL(Ref-3,𝐵,𝐴,𝑥 𝑗 ) ∨ sat𝐴¬𝑥 𝑗

(7.26)

by resolving (7.24) with (Sat-1, 𝐴,¬𝑥 𝑗 ) and then with (Sat-3, 𝐴, 𝑗 ). Resolving (7.25) and (7.26) with (Sat-4)
we obtain ∨

𝑖∈[𝑛]

(
weakL(Ref-3,𝐵,𝐴,𝑥 𝑗 ) ∨ weakL(Ref-3,𝐵,𝐴,¬𝑥 𝑗 )

)
. (7.27)
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Resolving this clause with the clauses ¬mistake𝑐 ∨ ¬weakLA from ∼Ref𝑡 (Ref𝑠 (𝜑), 𝜋), for all axioms A
in {(Ref-3, 𝐵, 𝐴, 𝑥𝑖), (Ref-3, 𝐵, 𝐴,¬𝑥𝑖)}𝑖∈[𝑛] , we derive ¬mistake𝑐 . This completes the proof as we have
derived ¬mistake𝑐 for all 𝑐 ∈ ℭ. □

8 NP-hardness of automating Resolution in EF

We now have the lower bound (Theorem 6.8) needed to show the NP-hardness of automatability formalized
in PV1. This is a ∀Σ𝑏1 sentence, meaning that the existential quantifiers can be witnessed by polynomial-time
functions and via Cook’s translation turned into propositional formulas with short Extended Frege proofs.

Theorem 8.1 (Extraction algorithm in EF). There exists a uniform family of polynomial-size circuits
{𝐸𝑛,𝑚,𝑠,𝑡 }𝑛,𝑚,𝑠,𝑡 ∈N such that for every CNF formula 𝜑 over 𝑛 variables and𝑚 clauses, if 𝜑 is satisfiable and 𝜋 is
a Resolution refutation of Ref𝑠 (𝜑) for 𝑠 ≥ 𝑛3, then the circuit 𝐸𝑛,𝑚,𝑠,𝑡 (𝜑, 𝜋) outputs a satisfying assignment for
𝜑 . Furthermore, this is provable in Extended Frege, that is, there exists a polynomial ℓ (𝑛,𝑚, 𝑠, 𝑡) such that

EF ⊢ℓ (𝑛,𝑚,𝑠,𝑡 ) Ref𝑡 (Ref𝑠 (𝜑), 𝜋) → Sat(𝜑, 𝐸𝑛,𝑚,𝑠,𝑡 (𝜑, 𝜋)) ,

and these proofs can be generated uniformly in polynomial time.

Proof. By Theorem 6.8, we know there exists a positive 𝜀 ∈ Q and 𝑛0 ∈ N such that PV1 ⊢ AM𝜀,𝑛0 , the
first-order statement encoding the lower bound on Ref formulas (AM𝜀,𝑛0 ). Since AM𝜀,𝑛0 is a ∀Σ𝑏1 formula,
by Buss’s witnessing theorem (Theorem 2.2), there exists a PV function 𝐸0 such that

PV1 ⊢ ∀𝜑∀𝑛∀𝑠∀𝜋
(
𝑛 < 𝑛0 ∨ ¬CNF(𝜑, 𝑛) ∨ ¬RefRes(Ref𝑠 (𝜑), 𝜋)

∨ Sat(𝜑, 𝐸0(𝜑, 𝑛, 𝑠, 𝜋)) ∨ ||𝜋 | | > 𝜀𝑠/𝑛2
)
.

(8.1)

This means that, when plugging a formula 𝜑 that is indeed a CNF formula over 𝑛 > 𝑛0 variables and
the length of 𝜋 is |𝜋 | ≤ 2𝜀𝑛 and 𝑠 ≥ 𝑛3, then the witnessing function 𝐸0 correctly succeeds in finding a
satisfying assignment of 𝜑 , and this is all provable in PV1. Building on this 𝐸0, we can further define a new
polynomial-time function 𝐸 that first checks whether |𝜋 | ≤ 2𝜀𝑛 , and then runs 𝐸0, and otherwise performs
a brute-force check for a satisfying assignment for 𝜑 . It is not hard to see, building on eq. (8.1), that PV1 can
now prove that this function 𝐸 is a polynomial-time algorithm that always succeeds in finding a satisfying
assignment if one exists, regardless of the size of 𝜋 .

By applying Cook’s translation (Theorem 2.3) to eq. (8.1) and restricting 𝑠 ≥ 𝑛3, we obtain a uniform
family of EF proofs showing the correctness of 𝐸 as an extraction algorithm. Note that RefRes(𝜑, 𝜋) is
the first-order analogue of the propositional formula Ref𝑠 (𝜑, 𝜋) that we have been studying until now.
Cook’s translation on RefRes(𝜑, 𝜋) gives a propositional formula with the same behavior as Ref𝑠 (𝜑).
While JRefResK𝑛,𝑠 may not be syntactically the same as Ref𝑠 (𝜑, 𝜋), it is not hard to see that PV1 ⊢
∀𝑛∀𝑠

(
Taut(JRefResK𝑛,𝑠) ↔ Taut (⌜Ref𝑠 (𝜑)⌝)

)
, making them effectively equivalent.

Since the proofs generated by Cook’s translation are all polynomial-size and uniform, we conclude that
there exists a polynomial ℓ (𝑛,𝑚, 𝑠, 𝑡) such that for every 𝑠 ≥ 𝑛3,

EF ⊢ℓ (𝑛,𝑚,𝑠,𝑡 ) Ref𝑡 (Ref𝑠 (𝜑, 𝜏), 𝜋) → Sat(𝜑, 𝐸𝑛,𝑚,𝑠,𝑡 (𝜑, 𝜋)) , (8.2)

where 𝐸𝑛,𝑚,𝑠,𝑡 is the polynomial-size circuit encoding the computation of the extraction algorithm 𝐸 on
CNF formulas with 𝑛 variables and𝑚 clauses, size parameter 𝑠 and the refutation being analyzed consist of
𝑡 clauses. □
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Similarly, the upper bound construction of Pudlák, which we formalized in Resolution, clearly goes
through in stronger systems too (Theorem 7.4).

Suppose now that 𝐴 = {𝐴𝑛,𝑚,𝑠 }𝑛∈N is a family of circuits that automate Resolution, meaning that there
is a constant 𝑐 ∈ N such that on input a CNF formula 𝜑 over 𝑛 variables and𝑚 clauses, the circuit 𝐴𝑛,𝑚,𝑠 (𝜑)
outputs a Resolution refutation of 𝜑 of size 𝑠𝑐 if a refutation of size 𝑠 exists. Consider the propositional
formulas stating the correctness of this algorithm,

Aut𝐴𝑛,𝑚,𝑠 ≔ Ref𝑠 (𝜑, 𝜋) → Ref𝑠𝑐 (𝜑,𝐴𝑛,𝑚,𝑠 (𝜑)) . (Aut𝐴)

We want to prove that if Extended Frege can efficiently derive the (Aut𝐴) formulas above for some
sequence of circuits {𝐴𝑛,𝑚,𝑠 }𝑛,𝑚,𝑠∈N, then it can also show that there is a family of small circuits {𝐶𝑛}𝑛∈N
solving SAT on 3-CNF formulas. We encode this as

Sat𝐶𝑛 ≔ Sat(𝜑, 𝛼) → Sat(𝜑,𝐶𝑛 (𝜑)). (Sat𝐶 )

We show that EF can derive (Sat𝐶 ) from (Aut𝐴).

Theorem 8.2 (Resolution is NP-hard to automate, in EF). Suppose Resolution is automatable by a sequence of
circuits𝐴 = {𝐴𝑛,𝑚,𝑠 }𝑛,𝑚,𝑠∈N, and suppose EF ⊢poly Aut𝐴𝑛,𝑚,𝑠 . Then, there exists a family of circuits𝐶 = {𝐶𝑛}𝑛∈N
of size 𝑛𝑂 (1) such that EF ⊢𝑛𝑂 (1) Sat𝐶𝑛 .

Proof. Let 𝐸 = {𝐸𝑛,𝑚,𝑠,𝑡 }𝑛,𝑚,𝑠,𝑡 ∈N be the sequence of polynomial-size circuits carrying out the computation of
the extraction algorithm, as in Theorem 8.1, and let {𝑃𝑛,𝑚,𝑠 }𝑛,𝑚,𝑠∈N be the sequence of circuits constructing
the canonical refutations of Pudlák. By Theorem 8.1, Theorem 7.4 and the assumptions in the statement,
we have that Extended Frege can efficiently prove

(i) the correctness of the upper bound on Ref formulas, EF ⊢poly Sat𝑛 (𝜑, 𝛼) → Ref𝑡 (Ref𝑠 (𝜑), 𝑃 (𝜑, 𝛼, 𝑠)),
for any 𝑡 ≥ 𝜏 , where 𝜏 = 𝜏 (𝑛,𝑚, 𝑠) = poly(𝑛,𝑚, 𝑠) is the parameter in Theorem 7.4;

(ii) the correctness of the automating circuits 𝐴, EF ⊢poly Ref𝑠 (𝜑, 𝜋) → Ref𝑠𝑐 (𝜑,𝐴𝑛,𝑚,𝑠 (𝜑));

(iii) the correctness of the extraction algorithm 𝐸, EF ⊢poly Ref𝑡 (Ref𝑠 (𝜑), 𝜋) → Sat𝑛 (𝜑, 𝐸𝑛,𝑚,𝑠,𝑡 (𝜑, 𝜋)), as
long as 𝑠 ≥ 𝑛3.

The circuit 𝐶𝑛 solving SAT will be 𝐶𝑛 (𝜑) ≔ 𝐸𝑛,8𝑛3,𝑛3,𝑡𝑐 (𝜑,𝐴𝑛,𝑚,𝑡 (Ref𝑛3 (𝜑))) for a large enough 𝑡 ≥
𝜏 = poly(𝑛), where 𝜏 is again the parameter in Theorem 7.4. Namely, we use the automating circuit 𝐴 to
produce a Resolution refutation from which we can extract a satisfying assignment using the extraction
algorithm 𝐸. In between, the upper bound statement guarantees that a small refutation exists, and thus
𝐴 will succeed in finding a not much larger one. The parameters are set up so that the three statements
above correctly fit with each other: given a 3-CNF formula 𝜑 with 𝑛 variables (and at most 8𝑛3 clauses), we
know that since 𝜑 is satisfiable, there is a size-𝜏 refutation of Ref𝑠 (𝜑), where 𝜏 = poly(𝑛, 𝑠) and 𝑠 = 𝑛3. The
extraction algorithm is guaranteed to work when 𝑠 ≥ 𝑛3, so we choose to run the automating algorithm
on Ref𝑛3 (𝜑). The automating algorithm is guaranteed to find a refutation of size 𝑡𝑐 , and the extraction
algorithm obtains a satisfying assignment from it. The fact that 𝐶 is provably correct in EF then follows
immediately by a chain of modus ponens on items (i)-(iii) above. □

9 Universality of Ref formulas

The formalizations in Theorem 6.8 and Theorem 7.4 have the interesting consequence of tightly relating the
provability of arbitrary formulas to the provability of associated Resolution lower bounds. In Section 9.1 we
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make this precise for Extended Frege and stronger systems. In Section 9.2 we exploit this characterization
to show that looking for proofs of tautologies in strong proof systems is equivalent to efficiently looking
for proofs of Resolution lower bounds. Finally, Section 9.3 exploits similar ideas to provide examples of true
exponential Resolution lower bounds that are unprovable in different propositional systems and first-order
theories.

Our results apply to a wide range of proof systems, assuming some mild conditions on their behaviour.

Definition 9.1. We say that a proof system 𝑆 is reasonably strong if it is polynomially equivalent to EF +𝐴
for some set 𝐴 of tautologies recognizable in polynomial time.

Recall that for every Cook-Reckhow system 𝑆 , we have EF + Refl𝑆 ≥p 𝑆 (see also Section 2.2.2 for the
definition of systems of the form EF +𝐴). Reasonably strong proof systems have some features that make
them nice to work with. We state them here for convenience.

Proposition 9.2 ([Kra25, Theorem 2.4.4]). The following hold for every reasonably strong proof system 𝑆 :

(i) the system 𝑆 is constructively closed under formula substitutions, i.e., given a proof of 𝜑 (𝑥1, . . . , 𝑥𝑛) in
size 𝑠 and formulas𝜓1, . . . ,𝜓𝑛 , we can obtain a proof of 𝜑 (𝜓1, . . . ,𝜓𝑛) in time poly(𝑠, 𝑛, |𝜓1 |, . . . , |𝜓𝑛 |);

(ii) the system 𝑆 is constructively closed under modus ponens, i.e., given an 𝑆-proof of 𝜑 in size 𝑠 and an
𝑆-proof of 𝜑 → 𝜓 in size 𝑡 , we can obtain an 𝑆-proof of𝜓 in time poly(𝑠, 𝑡).

When dealing with weaker systems, we often impose the following closure property on the ability of
simulating modus ponens via pseudo-negations.

Definition 9.3. Let 𝑆 be a propositional proof system. We say that the system 𝑆 is closed under contraposition
for pseudo-negations if the analogue of Lemma 7.3 holds for 𝑆 , i.e., given an 𝑆-refutation of 𝜑 ∧ ∼𝜓 in size 𝑠
and an 𝑆-refutation of𝜓 in size 𝑡 , there is an 𝑆-refutation of 𝜑 in size poly(𝑠, 𝑡).

We note that, as expected, the usual notion of modus ponens subsumes the more ad hoc contraposition
under pseudo-negations from Lemma 7.3.

Proposition 9.4. Every propositional proof system closed under restrictions and modus ponens is also closed
under contraposition for pseudo-negations.

Proof. Suppose 𝜑 (𝑥) and 𝜓 (𝑥) are unsatisfiable CNF formulas, and suppose that 𝑆 has a proof 𝜋 of the
tautology ¬(𝜑 (𝑥) ∧ ∼𝜓 (𝑥,mistake)) in size 𝑠 and a proof of ¬𝜓 (𝑥) in size 𝑡 . Since 𝑆 is closed under
restrictions, for every clause 𝐶 of𝜓 , we can restrict 𝜋 by setting the mistake variables corresponding to 𝐶
to 1 and the rest to 0, getting a proof of ¬(𝜑 (𝑥) ∧ ¬𝐶) ≡ 𝜑 (𝑥) → 𝐶 . Doing this in parallel for every clause
𝐶 , we can combine them in a proof of 𝜑 (𝑥) → ∧

𝐶∈𝜓 𝐶 , which is precisely 𝜑 (𝑥) → 𝜓 (𝑥). Now, by a modus
ponens (or, rather, contraposition) inference on this with ¬𝜓 (𝑥) we get an 𝑆-proof of ¬𝜑 (𝑥). □

We need one more definition before we proceed.

Definition 9.5. Let 𝜑 (𝑥1, . . . , 𝑥𝑛) be a CNF formula and let 1 ≤ 𝑘 ≤ 𝑛. We define 𝜑 [𝑘] to be the CNF
formula 𝜑 ∧ Ext𝑘𝑛 , where Ext𝑘𝑛 consists of all clauses encoding the extensions

𝑦{ℓ1,...,ℓ𝑘 } ↔ ℓ1 ∧ · · · ∧ ℓ𝑘

for every set of literals {ℓ1, . . . , ℓ𝑘 } over the variables 𝑥1, . . . , 𝑥𝑛 , where the 𝑦-variables are fresh variables.

It is well-known that if Res(𝑘) refutes 𝜑 in size 𝑠 , then Resolution refutes 𝜑 [𝑘] in size 𝑂 (𝑘𝑠), and if
Resolution refutes 𝜑 [𝑘] in size 𝑠 , then Res(𝑘) refutes 𝜑 in size 𝑂 (𝑘𝑠) [AB04, Lemmas 1-2].

The following lemma is an important consequence of the formalization of Pudlák’s upper bound.
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Lemma 9.6. Let 𝑆 ≥ Res be a propositional proof system closed under literal substitutions and contraposition for
pseudo-negations. Then, there exists 𝑝 (𝑛,𝑚, 𝑠) = poly(𝑛,𝑚, 𝑠) such that for every 𝑛-variate CNF formula𝜑 with
𝑚 clauses, and every 𝑡 ≥ 𝑝 (𝑛,𝑚, 𝑠) if 𝑆 ⊢ ¬Ref𝑡 (Ref𝑠 (𝜑)) in size ℓ , then 𝑆 ⊢ ¬𝜑 [2] in size poly(𝑛,𝑚, 𝑠, 𝑡, ℓ).

Proof. Wework in the refutational setting, meaning that the fact 𝑆 ⊢ ¬Ref𝑡 (Ref𝑠 (𝜑), 𝜋) in size ℓ is rephrased
as saying that 𝑆 has a size-ℓ refutation of Ref𝑡 (Ref𝑠 (𝜑), 𝜋). By Theorem 7.4, we have that Resolution has
polynomial-size refutations of

SAT↾𝜑 (𝛼) ∧ ∼Ref𝑡 (Ref𝑠 (𝜑), 𝜋) ∧ 𝜋 = 𝑃↾𝜑 (𝛼) , (9.1)

where 𝜑 is fixed but 𝛼 is encoded by free variables, and we define 𝑝 (𝑛,𝑚, 𝑠) = 𝜏 (𝑛,𝑚, 𝑠) = poly(𝑛,𝑚, 𝑠) to
be the parameter in Theorem 7.4. Since 𝑆 is closed under contraposition for pseudo-negations, Lemma 7.3
applies and we get that there are polynomial-size 𝑆-refutations of

SAT↾𝜑 (𝛼) ∧ 𝜋 = 𝑃↾𝜑 (𝛼) . (9.2)

Now, by Proposition 2.9.(i), we can use a substitution on the variables of Sat to get a refutation of 𝜑 (𝛼) ∧𝜋 =

𝑃↾𝜑 (𝛼). By the way we defined the clauses in 𝜋 = 𝑃↾𝜑 (𝛼) in Section 7.3, once 𝜑 has been fixed, there are no
variables of type a-lit left. By inspecting all the extension axiom from (7.9) to (7.22) we see that all extension
axioms relate variables of 𝜋 to literals over the 𝛼 variables. Crucially, the width of these extensions is at
most two, given by the extensions (7.21) and (7.22). Furthermore, all possible extensions over two 𝛼 literals
are available, meaning that this is in fact a refutation of 𝜑 [2]. □

9.1 Propositional fragments of the Atserias–Müller lower bound

As a consequence of Theorem 8.1 and Theorem 7.4, we can characterize the exact fragment of the Atserias–
Müller lower bound efficiently provable by every strong enough propositional proof system. Namely, if EF
can argue that 𝜑 is unsatisfiable, then it can also argue that Ref𝑛3 (𝜑) is hard for Resolution; and, conversely,
if Ref𝑛3 (𝜑) is provably hard for Resolution, then EF can argue that 𝜑 itself is unsatisfiable. The key insight
here is that the statement “Ref𝑛3 (𝜑) is hard for Resolution” is exactly a Ref formula itself, of the form
Ref(Ref(𝜑)).

The following is a formal restatement of Theorem 1.7.

Theorem 9.7. Let 𝑆 be a reasonably strong proof system. There is 𝑝 (𝑛,𝑚, 𝑠) = poly(𝑛,𝑚, 𝑠) such that for
every CNF formula 𝜑 (𝑥1, . . . , 𝑥𝑛) with𝑚 clauses, every 𝑡 ∈ N, and every 𝑠 ≥ 𝑛3,

(i) if 𝑆 ⊢ ¬𝜑 in size ℓ , then 𝑆 ⊢ ¬Ref𝑡 (Ref𝑠 (𝜑𝑛)) in size poly(𝑛,𝑚, 𝑠, 𝑡, ℓ);

(ii) if 𝑆 ⊢ ¬Ref𝑝 (𝑛,𝑚,𝑠 ) (Ref𝑠 (𝜑𝑛)) in size ℓ , then 𝑆 ⊢ ¬𝜑𝑛 in size poly(𝑛,𝑚, 𝑠, ℓ).

Furthermore, in both cases, given an 𝑆-proof of the left-hand side statement, one can obtain a proof of the
right-hand side statement in polynomial time.

Proof. In the following Ref formulas 𝜑 is a fixed formula, while the only free variables are the 𝜋 and 𝛼
variables.

(i) If 𝑆 ⊢ ¬𝜑 via some proof 𝜋 of size ℓ , then by Proposition 2.9, 𝑆 also proves¬SAT↾𝜑 (𝛼) andwe can easily
substitute the extraction circuit 𝐸↾𝜑 (𝜋) into 𝛼 , getting a proof 𝜋 ′ of ¬SAT↾𝜑 (𝐸↾𝜑 (𝜋)). By Theorem 8.1,
EF proves Ref𝑡 (Ref𝑠 (𝜑, 𝜏), 𝜋) → Sat(𝜑, 𝐸 (𝜑, 𝜋)) and by the p-simulation 𝑆 ≥p EF these proofs are
also available in 𝑆 . Hence, by contraposition and the restriction on 𝜑 , 𝑆 derives ¬Ref𝑡 (Ref𝑠 (𝜑, 𝜏), 𝜋),
and it is easy to see that the total blow-up incurred by these additional derivations is at most
poly(𝑛,𝑚, 𝑠, 𝑡, ℓ).
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(ii) This backwards direction follows from Lemma 9.6 above. Since 𝑆 is reasonably strong, it is closed
under restrictions and modus ponens, and by Proposition 9.4 𝑆 is also closed under contraposition
for pseudo-negations. Hence, Lemma 9.6 applies, giving us polynomial-size refutations of 𝜑 [2]. The
system 𝑆 is in particular closed under clause substitutions, so we can substitute the extension axioms
introduced by 𝜑 [2] to get a refutation of 𝜑 . □

9.2 Automatability in terms of Ref formulas

We will say that a proof system 𝑆 is (weakly) automatable on Ref formulas if there is an algorithm 𝐴 that
behaves like an automating algorithm whenever the input formula is a Ref𝑠 (𝜑) formula for some 𝜑 and 𝑠 ,
and is allowed to behave in any other way otherwise.

We remark that these are the Ref formulas for Resolution, meaning that proof search in arbitrarily
strong proof systems can be completely characterized by the proof search of Resolution lower bounds! The
following theorems are the formal restatements of Theorem 1.8.

Theorem 9.8. Let 𝑆 be a reasonably strong proof system. Then, the following are equivalent:

(i) 𝑆 is automatable;

(ii) 𝑆 is automatable on Ref formulas.

Proof. One direction is trivial. For the other implication, let 𝐴 be an automating algorithm that is only
guaranteed to work on tautologies of the form ¬Ref𝑠 (·), and let 𝜑 be an unsatisfiable CNF formula with 𝑛
variables and𝑚 clauses. We describe a new algorithm 𝐴′ that correctly automates 𝑆 on all inputs, meaning
that if ¬𝜑 has an 𝑆-refutation in size 𝑡 , then 𝐴′ outputs a refutation in time 𝑡𝑂 (1) .

By the formalization of the correctness of the extraction algorithm in Theorem 8.1, we obtained
Theorem 9.7 from where it follows that if 𝑆 has a refutation of 𝜑 in size 𝑡 , then there exists an 𝑆-refutation of
Ref𝑝 (𝑛,𝑚) (Ref𝑛3 (𝜑)) for a fixed polynomial 𝑝 (𝑛,𝑚), in size poly(𝑛,𝑚, 𝑡). This is precisely a Ref(·) formula,
so we can run𝐴(Ref𝑝 (𝑛,𝑚) (Ref𝑛3 (𝜑))) to obtain a refutation 𝜋 in 𝑆 with at most a fixed polynomial blow-up.
Now, by the backwards direction of Theorem 9.7, we known that 𝑆 has a refutation of 𝜑 in size poly(𝑛,𝑚, 𝑡)
and, we can obtain this efficiently from 𝜋 . Thus, we have an automating algorithm that given 𝜑 , which had
a refutation in 𝑆 in size 𝑡 , outputs a refutation in size 𝑡𝑂 (1) . □

Since nothing in the argument above prevents us from talking about proofs in stronger systems, the
result immediately carries over to weak automatability. For the following statement, we use the well-known
fact that a proof system 𝑆 is weakly automatable if, and only if, there exists an automatable proof system 𝑄

that simulates 𝑆 . If we restrict ourselves to Ref formulas, then it is easy to see that 𝑆 is weakly automatable
on Ref formulas if, and only if, there is a proof system 𝑄 automatable on Ref formulas and simulating 𝑆
over Ref formulas.

Theorem 9.9. Let 𝑆 be a reasonably strong proof system. Then, the following are equivalent:

(i) 𝑆 is weakly automatable;

(ii) 𝑆 is weakly automatable on Ref formulas.

Proof. The argument is identical. The only difference is that instead of an automating algorithm for 𝑆 we
have a proof system𝑄 that simulates 𝑆 on Ref formulas and is automatable on Ref formulas. Then, if ¬𝜑 can
be refuted in size 𝑡 in 𝑆 , we can still guarantee (by Theorem 9.7) that there is a proof of Ref𝑝 (𝑛,𝑚) (Ref𝑛3 (𝜑)),
for a fixed polynomial 𝑝 (𝑛,𝑚), in size poly(𝑛,𝑚, 𝑡). We look for these proofs with the automating algorithm
for 𝑄 . Since 𝑄 itself may not be reasonably strong itself, we turn this 𝑄-proof into a proof in the system
EF + Refl𝑄 , which p-simulates 𝑄 , and for which Theorem 9.7 does apply. □
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The argument above crucially requires that 𝑆 is at least as strong as Extended Frege. The reason is that
we require the correctness statement of the extraction algorithm to be provable in 𝑆 . If 𝜑 has a refutation of
size 𝑡 , then Theorem 9.7.(i) guarantees that there is a size-𝑡𝑂 (1) refutation of Ref(Ref(𝜑)), so the algorithm
can focus on looking for these latter refutations instead. For an arbitrary proof system 𝑆 ≥ Res that does
not simulate EF, if 𝑆 proves ¬𝜑 in size 𝑡 , then we cannot guarantee that it also proves ¬Ref(Ref(𝜑)) in
size 𝑡𝑂 (1) .

This problem can be solved if 𝑆 is Resolution itself; then, the semantics of the Ref formula compensate
for the weakness of the system, since now the Ref formulas are about the proof system itself.

Theorem 9.10. The following hold for Resolution:

(i) Resolution is automatable if, and only if, it is automatable on Ref formulas;

(ii) Resolution is weakly automatable if, and only if, it is weakly automatable on Ref formulas.

Proof.

(i) This first item is a somewhat trivial byproduct of the hardness of automating Resolution [AM20]: if
Resolution is automatable on Ref formulas, this can be used to decide SAT and hence P = NP; but
then every proof system, including Resolution, is automatable.

(ii) Suppose Resolution is weakly automatable on Ref formulas. This means there exists a proof system𝑄

that simulates Resolution on Ref formulas and is automatable on Ref formulas. Now, suppose a
CNF formula 𝜑 with 𝑛 variables and 𝑚 clauses has a Resolution refutation in size 𝑡 . Then, run
the automating algorithm for 𝑄 on formulas of the form Ref𝑝 (𝑛,𝑚,𝑠 ) (Ref𝑠 (𝜑)) for 𝑝 (𝑛,𝑚, 𝑠) the
polynomial from Theorem 9.7 for 𝑠 = 1, 𝑠 = 2, and so on, via dovetailing, until a refutation is found in
𝑄 . Note that, since there exists a refutation of 𝜑 in size 𝑡 , that means that Ref𝑡 (𝜑) is satisfiable and
hence Ref𝑝 (𝑛,𝑚,𝑡 ) (Ref𝑡 (𝜑)) is unsatisfiable but easy to refute in Resolution. Hence, the algorithm
automating 𝑄 on Ref formulas must find a refutation 𝜋 in size poly(𝑛,𝑚, 𝑡).
At this point we would like to turn this refutation 𝜋 into a refutation of 𝜑 . We can turn 𝜋 into a
refutation in EF + Refl𝑄 , which p-simulates EF and is closed under modus ponens. Since Theorem 9.7
applies to these stronger systems, we just described an algorithm that finds a refutation of 𝜑 in time
poly(𝑛,𝑚, 𝑡) in the system EF+Refl𝑄 ≥p Res, where 𝑡 is the size of the shortest Resolution refutation.
We can conclude that Resolution is weakly automatable. □

By the classical result showing that Resolution is weakly automatable if and only if Res(𝑘) is weakly
automatable for every constant 𝑘 ≥ 1 [AB04, Theorem 8], we have the following corollary.

Corollary 9.11. For every 𝑘 ≥ 1, Res(𝑘) is weakly automatable if, and only if, Res(𝑘) is weakly automatable
on Ref formulas.

9.3 Unprovability of Resolution lower bounds

The power of Theorem 9.7 can be applied to study the provability of Resolution lower bounds. In what
follows, we will say that a formula ¬Ref𝑠 (𝜑) constitutes a true Resolution lower bound if 𝜑 is unsatisfiable
and does not have Resolution refutations of size 𝑠 . Could there be a proof system that is polynomially
bounded on all such formulas? And, in the first-order setting, is there perhaps a theory of arithmetic capable
of proving all true Resolution lower bounds?
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9.3.1 Propositional unprovability

We show that this is not the case: assuming 𝑆 is strong enough and not polynomially bounded, there will
be true Resolution lower bounds that 𝑆 cannot derive in polynomial size.

We first exemplify this by giving explicit exponential lower bounds on Ref formulas for bounded-depth
Frege. The following is a formal restatement of Corollary 1.10.

Theorem 9.12 (Hard Ref formulas for bounded-depth Frege). For every 𝑑 ≤ 𝑂 (log𝑛/log log𝑛), there are
polynomials 𝑝 (𝑛) and 𝑞(𝑛) such that the formulas in the sequence {¬Ref𝑝 (𝑛) (Ref𝑞 (𝑛) (PHP𝑛))}𝑛∈N are all
tautological but require size exp

(
Ω(𝑛1/(2𝑑+1) )

)
to be proven in depth-𝑑 Frege systems.

Proof. The formula PHP𝑛 has 𝑁 = Θ(𝑛2) variables and Θ(𝑛3) clauses. Consider first the formulas
Ref𝑞 (𝑛) (PHP𝑛). Here, to apply the original bound on Ref formulas (Theorem 1.5), 𝑞(𝑛) has to be at
least a square in the number of variables of PHP𝑛 , so we define 𝑞(𝑛) ≔ 𝑁 2 = Θ(𝑛4). Let the size parameter
𝑝 (𝑛) of the outer Ref formula be the polynomial 𝑝 from Lemma 9.6 applied to 𝑁 and 𝑞(𝑛). That the
formulas Ref𝑝 (𝑛) (Ref𝑞 (𝑛) (PHP𝑛)) are tautologies follows form the fact that PHP𝑛 is unsatisfiable, meaning
that the lower bound on Ref formulas guarantees that Ref𝑞 (𝑛) (PHP𝑛) is exponentially hard for Resolution
and hence the second nesting of Ref remains unsatisfiable. The statement then follows from Lemma 9.6:
if depth-𝑑 Frege refutes Ref𝑝 (𝑛) (Ref𝑞 (𝑛) (PHP𝑛)) in size ℓ , then depth-𝑑 Frege refutes PHP𝑛 [2] in size
poly(𝑛, ℓ). Substituting these 2-extension axioms increases the depth of every line in the proof by at most
one, giving a depth-(𝑑 + 1) Frege refutation of PHP𝑛 in size poly(𝑛, ℓ), but, by Theorem 2.1, depth-(𝑑 + 1)
Frege requires size exp

(
Ω(𝑛1/(2𝑑+1) )

)
to refute PHP𝑛 . □

There is nothing special about the pigeonhole principle in the argument above, and we can generalize
this to any reasonably strong system where some lower bound is known. The following is a formal
restatement of Theorem 1.9.

Theorem 9.13 (Propositional unprovability of Resolution lower bounds). For every propositional proof
system 𝑆 ≥ Res closed under modus ponens and clause substitutions, if 𝑆 is not polynomially bounded, there
exists a family of unsatisfiable CNF formulas {𝜓𝑛}𝑛∈N on 𝑁 = poly(𝑛) variables and of size |𝜓𝑛 | = poly(𝑛)
such that

(i) they require size at least 2𝑁 Ω (1)
to be refuted in Resolution;

(ii) there is a polynomial 𝑝 (𝑛) such that the formulas {¬Ref𝑝 (𝑛) (𝜓𝑛)}𝑛∈N are tautological but do not have
polynomial-size proofs in 𝑆 .

Proof. Since 𝑆 is not polynomially bounded, there exists a sequence of unsatisfiable 3-CNF formulas {𝜑𝑛}𝑛∈N,
each over 𝑛 variables, that cannot be refuted by 𝑆 in polynomial size. This means that the formulas of the
form Ref𝑛2 (𝜑𝑛) are unsatisfiable, or else the satisfying assignment would be a correct Resolution refutation
which could be turned into a correct refutation in 𝑆 . By the lower bound on Ref formulas (Theorem 1.5),
Ref𝑛2 (𝜑𝑛) requires size 2Ω (𝑛) to be refuted in Resolution, meaning that Ref𝑝 (𝑛) (Ref𝑛2 (𝜑𝑛)) is unsatisfiable
for every polynomial 𝑝 (𝑛). If we choose 𝑝 to be the polynomial in Lemma 9.6, it now follows from this same
lemma that 𝑆 cannot possibly have polynomial-size proofs of the family {¬Ref𝑝 (𝑛) (Ref𝑛2 (𝜑𝑛))}𝑛∈N, or else
there would be polynomial-size 𝑆-proofs of {¬𝜑𝑛 [2]}𝑛∈N. Since 𝑆 is closed under clause substitutions, we
could substitute the 2-extensions of ¬𝜑𝑛 [2] and get polynomial-size proofs of {¬𝜑𝑛}𝑛∈N, a contradiction.

The formula family {𝜓𝑛}𝑛∈N in the statement is then precisely given by𝜓𝑛 ≔ Ref𝑛2 (𝜑𝑛). By Remark 2.6
the formula𝜓𝑛 has 𝑁 ≔ poly(𝑛) variables and polynomial size, which yields the rest of the parameters in
the statement. □

The informal statement in Theorem 1.9 is obtained in particular by taking 𝑝 (𝑛) to be 𝑁 2.
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Remark 9.14. Since every proof system 𝑆 can be p-simulated by EF + Refl𝑆 , and the latter is closed under
modus ponens and clause substituions, that means that the previous statement applies to every proof system
𝑆 . This implies that, unless NP = coNP, no proof systems can efficiently derive all true Resolution lower
bounds. We note, however, that this follows already from the classical work of Iwama [Iwa97], who showed
that the Proof Size Problem for Resolution (PSPRes) is NP-complete. His many-one reduction mapped a
3-CNF formula 𝜑 over 𝑛 variables to a new formula Φ over 𝑂 (𝑛 log𝑛) variables, such that 𝜑 is satisfiable
if and only if Φ has a Resolution refutation of size 𝑆 (𝑛) = 𝑂 (𝑛3 log𝑛). In the case when 𝜑 is unsatisfiable,
however, Iwama only proves a lower bound of 𝑆 (𝑛) + 𝑔(𝑛), for some function 𝑔(𝑛) = 𝑂 (𝑆 (𝑛)/𝑛). This
suffices for his purposes, but it is certainly not enough to get the superpolynomial gap needed for hardness
of automatability obtained in [AM20]. In our statement the parameters achieve almost optimal range: the
formulas are exponentially hard, but a slightly subquadratic lower bound is not efficiently provable. ◀

9.3.2 First-order unprovability of Resolution lower bounds

Our main result here is that a first-order version of the propositional unprovability results above hold
unconditionally in the context of strong enough theories of arithmetic. The formal statement and proof
follow.

Theorem 9.15. Let 𝑇 be a consistent first-order extending S12 with a set of axioms recognizable in polynomial
time and admittingN as a model. Then, there exits a sequence of unsatisfiable propositional formulas {𝜓𝑘,𝑠 }𝑘,𝑠∈N
described uniformly by a polynomial-time algorithm given 𝑘 and 𝑠 in unary, where𝜓𝑘,𝑠 has 𝑁 = poly(𝑘, 𝑠)
variables, and such that

(i) Resolution refutations of the formula𝜓𝑘,𝑠 require size 2𝑁
Ω (1)

;

(ii) there are constants 𝑐 > 0 and 𝑁0 ∈ N such that the lower bound expressed by the first-order sentence
∀𝑘∀𝑠∀𝜋

(
𝑁 > 𝑁0 ∧ RefRes(𝜓𝑘,𝑠 , 𝜋) → |𝜋 | > 𝑁 𝑐

)
is independent of 𝑇 .

Proof. Given the theory 𝑇 , consider the strong proof system of 𝑇 , denoted 𝑃𝑇 , as defined in Section 2.3.5.
Since 𝑇 is polynomial-time axiomatizable, the system 𝑃𝑇 is a well-defined Cook-Reckhow proof system.
For convenience, we see 𝑃𝑇 as a refutation system, and we consider the propositional formulas encoding its
reflection principle Refl𝑃𝑇

𝑘,𝑠
≔ Ref𝑃𝑇𝑠 (𝜑, 𝜏) ∧ Sat𝑘 (𝜑, 𝛼), as defined in Section 2.4.1, where 𝑘 denotes the

number of variables of 𝜑 and 𝑠 is the size of the proofs considered. We assume for convenience that 𝜑 is
always a 3-CNF formula and has hence 𝑂 (𝑘3) clauses. Let us also assume that the formula Refl𝑃𝑇

𝑘,𝑠
itself

is written as a 3-CNF formula and consists of 𝑛 ≔ poly(𝑘, 𝑠) variables. Consider now the propositional
formula𝜓𝑘,𝑠 ≔ Ref𝑛2 (Refl𝑃𝑇

𝑘,𝑠
) stating that there is a size-𝑛2 Resolution refutation of Refl𝑃𝑇

𝑘,𝑠
. It is easy to

verify following Remark 2.6 that𝜓𝑘,𝑠 has 𝑁 ≔ poly(𝑛) variables and size poly(𝑛).
Observe, first, that the sequence {𝜓𝑘,𝑠 }𝑘,𝑠∈N can be generated uniformly in polynomial time given 𝑘

and 𝑠 in unary. Next, note that all the formulas 𝜓𝑘,𝑠 are unsatisfiable: otherwise, there would be size-𝑛2
Resolution refutations of the reflection principle of 𝑃𝑇 , and this would amount to Resolution polynomially
simulating 𝑃𝑇 . In more detail, suppose 𝐹 is a 3-CNF formula over 𝑘 variables with a size-𝑠 refutation in 𝑃𝑇 . If
Resolution can refute Refl𝑃𝑇

𝑘,𝑠
(𝜑, 𝜏, 𝛼) in size 𝑛2, then by restricting 𝜑 by 𝐹 and 𝜏 by the size-𝑠 𝑃𝑇 -refutation

in question, we get a size-𝑛2 refutation of Sat(𝐹, 𝛼). Resolution can then refute 𝐹 in its usual “native”
encoding via Proposition 2.9, so we get a Resolution refutation of 𝐹 in size 𝑛𝑂 (1) = poly(𝑘, 𝑠), concluding
Res ≥ 𝑃𝑇 . This is a contradiction, because since 𝑇 ⊇ S12 we know that 𝑃𝑇 simulates Extended Frege [Pud20,
Section 4.2, Fact 2], and it is well-known that Resolution is strictly weaker than EF.

Finally, because all of the formulas Refl𝑃𝑇
𝑘,𝑠

are unsatisfiable, the lower bound on Ref formulas (Theo-
rem 1.5) guarantees that for large enough 𝑛 = poly(𝑘, 𝑠), the formula 𝜓𝑘,𝑠 = Ref𝑛2 (Refl𝑃𝑇

𝑘,𝑠
) requires size

2Ω (𝑛2/𝑛) = 2Ω (𝑛) to be refuted in Resolution. Since 𝜓𝑘,𝑠 has 𝑁 = poly(𝑛) variables, the size lower bound
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in terms of 𝑁 is 2𝑁 Ω (1) . In particular, that means that for every 𝑐 > 0, there is some 𝑁0 ∈ N such that
the much weaker lower bound statement ∀𝑘∀𝑠∀𝜋

(
𝑁 > 𝑁0 ∧ |𝜋 | ≤ 𝑁 𝑐 → ¬RefRes(𝜓𝑘,𝑠 , 𝜋)

)
holds in the

standard model N, which is a model of 𝑇 . Thus the lower bound is consistent with 𝑇 .
We now provide a model where the sentence fails. By Gödel’s second incompleteness theorem, 𝑇

cannot prove the soundness of 𝑃𝑇 [Pud20, Section 4.2, Fact 3]. Thus, there is a model 𝑀 of 𝑇 where the
reflection principle of 𝑃𝑇 fails. We claim that there is 𝑐 > 0 and a suitable 𝑁0 ∈ N such that the sentence
∀𝑘∀𝑠∀𝜋

(
𝑁 > 𝑁0 ∧ |𝜋 | ≤ 𝑁 𝑐 → ¬RefRes(𝜓𝑘,𝑠 , 𝜋)

)
fails in this model as well. Indeed, since the reflection of

𝑃𝑇 fails in 𝑀 , there exist some nonstandard 3-CNF formula 𝜑0 ∈ 𝑀 \ N, a 𝑃𝑇 -refutation 𝜏0 ∈ 𝑀 \ N and
𝛼0 ∈ 𝑀 \ N such that𝑀 |= Ref𝑃𝑇 (𝜑0, 𝜏0) ∧ Sat(𝜑0, 𝛼0). This formula 𝜑0 has some nonstandard number of
variables 𝑘0 ∈ 𝑀 \ N, and similarly 𝜏0 has some length 𝑠0 ≔ |𝜏0 | ∈ 𝑀 \ N. We then have that in the model
𝑀 , the formula Refl𝑃𝑇

𝑘0,𝑠0
(𝜑, 𝜏, 𝛼) is satisfiable.

Now, since𝑀 is a model of 𝑇 and 𝑇 extends S12, by Theorem 7.4 we have that the upper bound on Ref
formulas holds in𝑀 . That is,

𝑀 |= ∀𝜑∀𝑛∀𝑚∀𝛼∀𝑡
(
CNF(𝜑, 𝑛,𝑚) ∧ Sat(𝜑, 𝛼)

→ ∃𝜋
(
|𝜋 | ≤ 𝑐𝑃 · 𝑡 (𝑚 + 𝑡𝑛2) ∧ RefRes(Ref𝑡 (𝜑), 𝜋)

) )
,

(9.3)

where 𝑐𝑃 is the constant in the Big-Theta term Θ(𝑡 (𝑚+ 𝑡𝑛2)) bounding the size of upper bound construction
in Theorem 7.4. (Technically speaking Theorem 7.4 proved the previous sentence in Resolution, but a
simple inspection of the proof reveals that the construction is perfectly uniform and can be immediately
formalized in S12 —and, for that matter, even in much weaker theories.)

Hence, substituting 𝜑 for the 3-CNF formula Refl𝑃𝑇
𝑘0,𝑠0

on 𝑛 variables and𝑚 ≤ 8𝑛3 clauses, and 𝑡 for 𝑛2,
we get

𝑀 |= ∃𝜋
(
|𝜋 | ≤ 𝑐𝑃 · (8𝑛5 + 𝑛6) ∧ RefRes(𝜓𝑘0,𝑠0, 𝜋)

)
. (9.4)

Since the number 𝑁 of variables of 𝜓𝑘0,𝑠0 is 𝑁 = 𝑛Θ(1) , the bound on |𝜋 | is 𝑐𝑃 · (8𝑛5 + 𝑛6) ≤ 𝑁𝑂 (1)

for large enough 𝑁 , it follows that there is 𝑐 > 0 and 𝑁0 ∈ N such that the first-order sentence
∀𝑘∀𝑠∀𝜋

(
𝑁 > 𝑁0 ∧ |𝜋 | ≤ 𝑁 𝑐 → ¬RefRes(𝜓𝑘,𝑠 , 𝜋)

)
fails in𝑀 . □

With a couple of extra tricks, we can extend the result to any theory 𝑇 containing just Robinson
Arithmetic rather than all of S12. We remark as well that there is nothing essential about𝑇 being polynomial-
time axiomatizable, and one could generalize this to any recursively enumerable extension of Q via a
padding trick [Cra53]. The following is a formal version of Theorem 1.11.

Corollary 9.16. Let 𝑇 be a consistent first-order extending Q with a set of axioms recognizable in polynomial
time. Then, there exits a sequence of unsatisfiable propositional formulas {𝜓𝑘,𝑠 }𝑘,𝑠∈N described uniformly by a
polynomial-time algorithm given 𝑘 and 𝑠 in unary, where𝜓𝑘,𝑠 has 𝑁 = poly(𝑘, 𝑠) variables, and such that

(i) Resolution refutations of the formula𝜓𝑘,𝑠 require size 2𝑁
Ω (1)

;

(ii) there is a constant 𝑐 > 0 and 𝑁0 ∈ N such that the lower bound expressed by the first-order sentence
∀𝑘∀𝑠∀𝜋

(
𝑁 > 𝑁0 ∧ RefRes(𝜓𝑘,𝑠 , 𝜋) → |𝜋 | > 𝑁 𝑐

)
is unprovable in 𝑇 , but true in N.

Proof. Define 𝑇 ′ ≔ S12 + Π1-Refl𝑇 . Observe that 𝑇 ′ satisfies all the conditions of Theorem 9.15. First, the
theory is consistent because N |= 𝑇 ′. This is because N |= S12 and, as 𝑇 is consistent and extends Q , which
refutes every false Π1-sentence, Π1-Refl𝑇 is a true sentence. Second, 𝑇 ′ is clearly recursively axiomatizable
because S12 is, and in particular the axioms can be recognized in polynomial time. Hence, Theorem 9.15
guarantees a sequence of unsatisfiable propositional formulas {𝜓𝑘,𝑠 }𝑘,𝑠∈N with the desired properties. In
particular, the statement ∀𝑘∀𝑠∀𝜋

(
𝑁 > 𝑁0 ∧ |𝜋 | ≤ 𝑁 𝑐 → ¬RefRes(𝜓𝑘,𝑠 , 𝜋)

)
is unprovable in 𝑇 ′, where 𝑐
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and 𝑁0 are again given by Theorem 9.15. On the one hand, this means the sentence is not provable in 𝑇 ′.
Thus it cannot be proven in 𝑇 either, since, by construction, 𝑇 ′ = S12 + Π1-Refl𝑇 is Π1-conservative over 𝑇
and the sentence is a Π1-sentence. On the other hand, as argued in the proof of Theorem 9.15, the lower
bound statement is true in N by the lower bound on Ref formulas (Theorem 1.5). □
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A Exponential approximation in PV1

Müller and Pich [MP20] formalized in PV1 the following useful bound.

Proposition A.1 ([MP20, Proposition 2.5]). Provably in PV1, for all 𝑛,𝑚 ∈ Log such that 𝑛 < 𝑚, it holds
that 1 − 𝑛/𝑚 ≤ 2−𝑛/𝑚 .

For our application in Lemma 6.3 we need to be able to take powers of this on both sides.

Lemma A.2. In PV1, for all 𝑛,𝑚, 𝑝 ∈ Log, if 𝑛 < 𝑚 and 𝑝 ≥ 1, it holds that(
1 − 𝑛

𝑚

)𝑝
≤ 2−

𝑛
𝑚
𝑝 .

Proof. Since 𝑝 ∈ Log, we take 𝑛 and𝑚 to be fixed and proceed by Length Induction on 𝑝 . The base case
𝑝 = 1 if covered by Proposition A.1. If the bound holds for 𝑝 , then for 𝑝 + 1 we have(

1 − 𝑛

𝑚

)𝑝+1
=

(
1 − 𝑛

𝑚

)𝑝
·
(
1 − 𝑛

𝑚

)
≤ 2−

𝑛
𝑚
𝑝 · 2− 𝑛

𝑚 = 2−
𝑛
𝑚

(𝑝+1) . (A.1)

The first equality holds because (1 − 𝑛/𝑚) ∈ Log and PV1 can prove the basic properties of powers for
Log-sized objects; the next inequality holds by induction hypothesis and Proposition A.1. This completes
the proof. □

B Proof of Lemma 5.3

Lemma 5.3. There exists a PV function 𝑓 such that S12 proves the statement that for every 3-CNF formula 𝜑
with 𝑛 variables and𝑚 clauses, 𝑓 (𝜑) outputs a graph𝐺𝜑 = (𝑉 , 𝐸) with𝑚 ·𝑛 nodes and such that 𝜑 is satisfiable
if and only if 𝐺𝜑 has a vertex cover of size𝑚 · (𝑛 − 1).

Proof. Without loss of generality, let us assume every clause 𝐶𝑖 in 𝜑 has three different literals and is of the
form ℓ𝑖,1 ∨ ℓ𝑖,2 ∨ ℓ𝑖,3. Build the formula

𝜑 ′ ≔
𝑚∧
𝑖=1

(
ℓ𝑖,2 ∨ ℓ𝑖,3 ∨

𝑛−2∨
𝑗=1

ℓ𝑖,1

)
. (B.1)

The formula 𝜑 ′ is just 𝜑 except every clause has been weakened with 𝑛 − 2 copies of ℓ𝑖,1 so that every clause
has width 𝑛. It is clear that 𝜑 and 𝜑 ′ have the same satisfying assignments.
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We construct first the usual reduction from SAT to Cliqe. We craft a graph 𝐾 consisting of one node
per literal in the formula. This means there are𝑚𝑛 nodes, and two nodes are connected if and only if the
literals come from different clauses and one is not the negation of the other.

See, first, that the graph can be partitioned into𝑚 sets 𝑆1, . . . , 𝑆𝑚 , each with 𝑛 nodes corresponding to
the 𝑛 literals of each clause. Within each set the nodes are disconnected, so each of these sets constitutes an
independent set, and 𝜑 is satisfiable if and only if 𝐾 has a clique of size𝑚. If 𝜑 is satisfiable by assignment 𝛼 ,
then so is 𝜑 ′ and we can find a clique in𝐾 as follows. From every clause𝐶𝑖 in 𝜑 ′, take the first literal satisfied
by the assignment 𝛼 . By construction, the nodes corresponding to these literals are all adjacent to each other,
so they form a clique of size𝑚. On the other hand, if 𝐾 has a clique of size𝑚, then each node in the clique
belongs to one and only of the sets 𝑆𝑖 . Furthermore, the literals underlying these nodes are compatible:
none is the negation of any other. Consider the partial assignment defined by the underlying literals, and
fill the rest of the assignment arbitrarily. Again, by construction, this forms a satisfying assignment to 𝜑 ′

and hence to 𝜑 .
Now, to go from Cliqe to Vertex Cover, we reprove in S12 the standard fact that a graph 𝐺 = (𝑉 , 𝐸)

on 𝑛 nodes has a clique of size 𝑘 if and only if𝐺 = (𝑉 , 𝐸) has a vertex cover of size 𝑛 − 𝑘 , where 𝐸 is the set
of pairs of vertices that are not in 𝐸. If 𝐶 is a clique of size 𝑘 in 𝐺 , then, by definition, 𝐶 is an independent
set in𝐺 . Then,𝑉 \𝐶 is a vertex cover for𝐺 ; if not, then there is (𝑢, 𝑣) ∈ 𝐸 such that 𝑢 ∉ 𝑉 \𝐶 and 𝑣 ∉ 𝑉 \𝐶 .
Again, by definition of set difference, 𝑢 ∈ 𝐶 and 𝑣 ∈ 𝐶 , which contradicts 𝐶 being an independent set. For
the backwards direction, if 𝑉 \𝐶 is a vertex cover in 𝐺 , then 𝐶 is an independent set in 𝐺 , or else there
would be an edge in 𝐸 not covered by any vertex in 𝑉 \𝐶 . Then, 𝐶 is a clique in 𝐺 . This entire argument is
a manipulation of basic set-theoretic definitions and does not require induction in S12.

For our specific graph 𝐾 obtained from the reduction to Cliqe, we have𝑚𝑛 nodes and thus 𝜑 ∈ 3SAT
if, and only if,𝐺 has a vertex cover of size𝑚𝑛 −𝑚 =𝑚(𝑛 − 1). The function 𝑓 in the statement outputs the
graph 𝐺𝜑 ≔ 𝐾 , which can be constructed in time poly( |𝜑 |). This completes the proof. □
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