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In 2019, Moritz Müller and I resolved a longstanding open question on the computational
complexity of proof search. The preliminary version of the article “Automating Resolution is
NP-Hard” was the co-winner of the Best Paper Award at the 60th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2019). In its final version, the paper was invited
for submission to the Journal of the ACM, and published in 2020 [1]. Why does the proof
that yet another problem is NP-hard deserve such an important award? In this note I try to
explain why. Let me begin with the historical background.

This year is the 50th anniversary of Steve Cook’s article “The Complexity of Theorem
Proving Procedures” [5]. Cook’s seminal work established that the satisfiability problem for
propositional logic is NP-complete. For the first time, the generic task of searching a solution
within an exponentially big space of candidate solutions was reduced to that of a concrete,
well-defined, and combinatorially simple-to-state problem. The importance of Cook’s The-
orem was quickly recognized. Only one year later, Richard Karp wrote another landmark
paper where he established that “a large number of classic unsolved [computational] prob-
lems of covering, matching, packing, routing, assignment and sequencing are equivalent”. All
of them, Karp showed, are equivalent to the problem of recognizing the satisfiable formulas
of propositional logic [7].

The fact that hundreds, if not thousands, of NP-complete problems were discovered since
then raises an intriguing question. Might any of these equivalent problems admit sufficient
structure to allow for efficient search algorithms? Might the beautiful theory of matchings
on graphs be useful to find Hamilton cycles? Might the powerful tools of field theory help in
solving systems of polynomial equations? In a sense, what the theory of NP-completeness
says is that any attempt to give computationally useful structure to the search spaces of
such problems is bound to fail. Or at least fail as much as it has failed for the problem of
determining truth in the algebra of propositions since its conception by George Boole more
than one and a half centuries ago [3].

Proof theory is the branch of mathematical logic that links the syntactic concept of proof
with the semantic notion of truth. A formula is unsatisfiable if and only if its negation is a
tautology, and tautologies have proofs in any one of the many complete proof systems for
propositional logic. Thought this way, the proof theory of propositional logic can be seen
as giving structure to the satisfiability problem. Just like an assignment that satisfies a
formula is a certificate that a solution exists, a proof of its negation is a certificate that a
solution does not exist. The trouble is that while truth assignments are always short, proofs
could be exponentially longer. But what if we focus on short proofs? Can reasonably-sized
proofs be found in reasonable time? This is the question of automatability of a proof system.
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In his 1971 article, Cook asked to study “the complexity of theorem proving procedures”,
including Resolution, which is the object of our 2019 article, and the rest of this note.

A formula in conjunctive normal form, a CNF, is a conjunction of a set of clauses, where
a clause is a disjunction of variables or negations of variables. If each clause has at most k
literals, then we call it a k-CNF. For example, (p∨q∨r)∧ (¬p∨¬q)∧ (¬p∨¬r)∧ (¬q∨¬r) is
a 3-CNF with three variables and four clauses. Resolution is a proof system to establish the
unsatisfiability of CNFs by deriving new clauses from old. The goal is to end up proving the
empty, trivially unsatisfiable clause. Such proofs are called refutations. The single inference
rule of Resolution cannot be simpler: from two clauses of the form A ∨ x and B ∨ ¬x,
derive the clause A ∨ B. It is obvious that if an assignment satisfies the two premises in
the inference, then it must also satisfy the conclusion. In particular, if the empty clause can
be proved, then the initial formula must be unsatisfiable. It is an entertaining exercise to
show that the converse is also true in quantitative terms: if a CNF is unsatisfiable, then
the empty clause can be proved in no more than 2n inference steps, where n is the number
of variables. Needless to say, if shorter proofs exist, then those would be preferable since a
proof of length 2n, even for n = 500, would not fit in the observable universe.

Unlike the space of satisfying assignments of a formula, which appears unstructured, it
is a remarkable fact that the space of short Resolution proofs appears to have non-trivial
structure. An important result due to Ben-Sasson and Wigderson [2] states that if a 3-CNF
formula with n variables has a Resolution refutation of length s, then it also has one in which
all its clauses have O(

√
n log s) many literals. For polynomially small s, the number of such

clauses is weakly exponential, i.e., of the form exp(O(n1/2(log n)3/2)), which means that an
algorithm of this run-time exists that finds a proof. In summary: when polynomially short
proofs exist, weakly exponentially long ones can be found.

Valid as it is, this result begs the question whether polynomial-size Resolution proofs are
common at all. If they were a very rare exception, then the statement that short proofs can be
found would be essentially void. With this perspective in mind, it is at least worrying that the
early results on the proof complexity of Resolution seemed to indicate that polynomial-size
Resolution proofs were indeed an exception. An influential result of Chvátal and Szemerédi,
titled “Many Hard Examples for Resolution” [4] shows that, in a well-defined average-case
sense, most unsatisfiable 3-CNF formulas are indeed exponentially hard for Resolution. Are
we then flirting with the void?

One first answer to this is that just like the worst-case model for computational com-
plexity has its weaknesses, any average-case model has its own problems. The formulas that
appear in applications are not only not worst-case; even less are they drawn from the prob-
ability distribution for which they were shown exponentially hard. The spectacular success
of so-called SAT-solvers, software packages that are able to find satisfying assignments or
Resolution refutations of many formulas with many variables, illustrates the point. Consider
the so-called Boolean Pythagorean Triples Problem: Can every initial segment 1, . . . , n of the
natural numbers be partitioned in two in such a way that all triples of the form a2 + b2 = c2

are avoided in each part? In a major breakthrough, in 2016 a SAT-solver was able to show
that the CNF formula that encodes the problem with n variables is satisfiable if, and only
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if, n ≤ 7824 [6]. This solved a Ramsey theory open problem posed by Graham in the
1980s. Despite being referred to as “Two-hundred-terabyte maths proof is largest ever” [8],
it should be noted that, for n = 7825, the proof must be able to rule out 27825 many partitions
of 1, . . . , 7825. A 2× 1014 bytes long proof is, in comparison, microscopically tiny.

A second answer to the question whether short Resolution proofs are common or rare
exceptions, can be found in our 2019 result. I claim that this is, indeed, what makes it sur-
prising. Formally, we say that Resolution is automatable if there is an algorithm that, given
an unsatisfiable formula, finds a Resolution refutation in time polynomial in the length of
the shortest refutation. After a long series of works on the theme going back two decades, we
finally proved that the problem is NP-hard: Resolution is not automatable unless P = NP.
Perhaps more importantly, concerning our question on the abundance of short proofs, here
is what the result has to offer. As it goes, the NP-hardness proof establishes that every for-
mula F can be efficiently converted into a new one, G, whose polynomially short Resolution
refutations correspond to the satisfying assignments of F . More precisely, if F is satisfiable,
then G is unsatisfiable and has a polynomially short Resolution refutation that can be easily
constructed from a satisfying assignment of F . In contrast, when F is unsatisfiable, the
technically hardest part of the NP-hardness proof shows that G does not even have weakly
exponentially longer Resolution refutations. Among other consequences, this means that
short Resolution proofs not only abound; despite exhibiting a certain amount of non-trivial
structure, they are able to mirror the search space of solutions of any problem in NP.

Only a handful of other problems in NP without polynomial-time algorithms are known
whose natural solution spaces are sufficiently structured to allow better-than-exponential
algorithms. Perhaps the two most famous examples are the problem of factoring integers
into primes, and the graph isomorphism problem. None of those, however, is even expected
to be NP-hard. The problem of finding polynomially short Resolution proofs stands out,
then, as a notable exception.
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