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Abstract

We study the power of the bounded-width consistency algorithm in the context of
the fixed-template Promise Constraint Satisfaction Problem (PCSP). Our main tech-
nical finding is that the template of every PCSP that is solvable in bounded width
satisfies a certain structural condition implying that its algebraic closure-properties
include weak near unanimity polymorphisms of all large arities. While this paral-
lels the standard (non-promise) CSP theory, the method of proof is quite different
and applies even to the regime of sublinear width. We also show that, in contrast
with the CSP world, the presence of weak near unanimity polymorphisms of all large
arities does not guarantee solvability in bounded width. The separating example is
even solvable in the second level of the Sherali-Adams (SA) hierarchy of linear pro-
gramming relaxations. This shows that, unlike for CSPs, linear programming can
be stronger than bounded width. A direct application of these methods also show
that the problem of q-coloring p-colorable graphs is not solvable in bounded or even
sublinear width, for any two constants p and q such that 3 ≤ p ≤ q. Turning to al-
gorithms, we note that Wigderson’s algorithm for O(

√
n)-coloring 3-colorable graphs

with n vertices is implementable in width 4. Indeed, by generalizing the method we
see that, for any ε > 0 smaller than 1/2, the optimal width for solving the problem
of O(nε)-coloring 3-colorable graphs with n vertices lies between n1−3ε and n1−2ε. The
upper bound gives a simple 2Θ(n1−2ε log(n))-time algorithm that, asymptotically, beats
the straightforward 2Θ(n1−ε) bound that follows from partitioning the graph into O(nε)
many independent parts each of size O(n1−ε).

∗Work partially supported by Ministerio de Ciencia e Innovación (MICIN) through project PID2019-
109137GB-C22 (PROOFS).



1 Introduction

The input to the constraint satisfaction problem (CSP) is a set of variables, each ranging
over a specified domain of values, as well as a set of constraints, each binding a finite set
of variables to take values in a relation from a specified set of relations. The problem asks
to find an assignment of values to the variables in such a way that all the constraints are
satisfied. It was first pointed out by Feder and Vardi [28] that the CSP can be modelled
as the homomorphism problem for relational structures. In this view, the input to the CSP
is a pair of relational structures, the instance I and the constraint language S, and we are
asked to find a homomorphism from I to S; i.e., a map from the domain of I to the domain
of S in such a way that all the relations are preserved. In the fixed-template variant of the
problem, the constraint language is fixed and part of the definition of the problem, and the
instance is the only input. The fixed-template CSP with template S is denoted by CSP(S).

As confirmed in retrospect, one of the most important problems raised by the seminal
work of Feder and Vardi was that of characterizing the class of fixed-template CSPs of
bounded width. In short, these are the fixed-template CSPs whose instances are always
correctly solved by the so-called consistency algorithm with a fixed bound on its width. This
class of CSPs was later studied in depth in the work of Kolaitis and Vardi [37, 36], where
it was shown to constitute a robust fragment of the class of polynomial-time solvable CSPs
that admits several equivalent reformulations.

After two decades of work in the area, the question of fully characterizing the CSPs of
bounded-width was eventually answered in the work of Barto and Kozik [9]. Besides resolving
one of the key problems in [28], the Barto-Kozik Theorem produced many important new
insights for the theory of CSPs itself. This line of work eventually led to the proof of
the celebrated Feder-Vardi Dichotomy Conjecture, due to Zhuk [51] and, independently,
Bulatov [18]. This completed the program started by Feder and Vardi [28], Jeavons, Cohen,
and Gyssens [33], and Bulatov, Jeavons and Krokhin [19], that aimed to characterize the
class of all polynomial-time solvable fixed-template CSPs by the algebraic closure properties
of their templates. By today, it is fair to say that almost all important questions raised by
the early work of Feder and Vardi for the fixed-template CSP seem to have been resolved.

Recently, Brakensiek and Guruswami [12] have put forward a generalization of the fixed-
template CSP as a natural next step in the development of the theory. In the Fixed Template
Promise Constraint Satisfaction Problem (PCSP) the template is a fixed pair (S,T) of
relational structures such that there is a homomorphism from S to T. The problem has two
variants:

Search variant of PCSP(S,T): The instance is a relational structure I with the
promise that there is a homomorphism from I to S and we are asked to find a
homomorphism from I to T.

Decision variant of PCSP(S,T): The instance is a relational structure I and we
are asked to distinguish the case in which there is a homomorphism from I to S
from the case in which there is not even a homomorphism from I to T. For this
variant the promise is that I fullfils one of these two conditions.
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To motivate the generalization, it is useful to look at some special cases. First, it is ob-
vious that PCSP(S,S) is just the same problem as CSP(S), hence any fixed-template CSP
is a fixed-template PCSP. Second, consider the following graph-coloring problem. We are
given a graph G with the promise that it has an unknown proper p-coloring for a certain
number of colors p, and we are asked to find a proper q-coloring for a fixed put potentially
larger target number of colors q. By viewing the proper q-colorings of G as the homomor-
phisms into the complete graph Kq with q vertices, PCSP(Kp,Kq) models the problem of
approximating the chromatic number of a graph. We refer to this as the Approximate Graph
Coloring Problem with parameters p and q. The special case with p = q is exactly the same
as CSP(Kq), the standard Graph q-Coloring Problem for undirected graphs, which, for q ≥ 3,
is one of the twenty-one NP-complete problems of Karp [34]. The problem of 4-coloring 3-
colorable graphs, PCSP(K3,K4), was shown NP-hard in the early 1990’s, using the theory
of probabilistically checkable proofs (PCP) [35]. Not until two decades later has it been
shown that the problem of 5-coloring 3-colorable graphs is NP-hard, and, more generally,
that PCSP(Kp,K2p−1) is NP-hard for any p ≥ 3 [8]. The problem of exactly identifying
the pairs (p, q) with p ≤ q for which PCSP(Kp,Kq) is NP-hard is one of the leading open
problems in the area, with deep connections with the theories of PCPs and hardness of
approximation [43], and the notorious Unique Games Conjecture [27].

The theory of Promise PCSP has been further developped (see [6, 7, 8, 13, 14, 15, 16,
17, 29, 39, 48] for example) and applied to other problems beyond graph coloring. The
goal of this paper is to initiate a study of the power of the consistency algorithm for the
fixed-template PCSP. Following [8], in this new context, the consistency algorithm can be
thought of in the following terms. Fix a PCSP template (S,T) and an integer k ≥ 1.
We say that PCSP(S,T) is solvable in width k if, for every instance I, it holds that if I
is k-consistent with respect to the left-template S, then there is a homomorphism from I
to the right-template T. Here, as in the standard consistency algorithm for the standard
CSP, an instance I is said to be k-consistent with respect to S if the algorithm that checks
if the set of all subinstances of I with at most k elements admits a system of compatible
homomorphisms into S does not find a blatant contradiction. For each fixed integer k, this
algorithm runs in polynomial time. When PCSP(S,T) is solvable in width k we also say
that the template (S,T) has width k.

A key insight from the theory of CSPs is that the computational complexity of a fixed-
template CSP is governed by the algebraic structure of the polymorphisms of its tem-
plate [33]. This phenomenon led to the so-called algebraic approach to CSPs, of which
the aforementioned Barto-Kozik, Zhuk, and Bulatov Theorems are prime examples. Indeed,
the governing power of polymorphisms is so general that the phenomenon has been observed
to hold for other ways of measuring the complexity of the problem. In particular, it applies
to the analysis of bounded width [42], to the more general settings of descriptive complex-
ity [1] and propositional proof complexity [3], and even to different variants of the CSP itself.
For PCSPs, a suitable definition of polymorphisms has been put forward to show that the
computational and width complexity of a PCSP is, again, governed by the polymorphisms
of its template [8].
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A natural question at this point is whether the analogue of the Barto-Kozik Theorem
holds for PCSPs. In the language of polymorphisms, the Barto-Kozik Theorem for CSPs
can be stated as the equivalence of the following two statements:

(a) CSP(S) is solvable in some bounded width,

(b) CSP(S) admits weak near unanimity (WNU) polymorphisms of all large arities.

In definition, this last condition means that, for any large enough integer m, there exists
a homomorphism f : Sm → S from the m-power Sm into S that satisfies the weak near
unanimity (WNU) identities:

f(y, x, x, . . . , x) = f(x, y, x, . . . , x) = · · · = f(x, . . . , x, x, y), (1)

for all choices of x and y in the domain of S.
Turning to PCSP, for a fixed template (S,T), consider the following statements:

(a’) PCSP(S,T) is solvable in some bounded width,

(b’) PCSP(S,T) admits WNU polymorphisms of all large arities.

Following [8], a WNU polymorphism of PCSP(S,T) is a homomorphism f : Sm → T from
the m-power Sm of the left-template S into the right-template T that satisfies Equation (1)
for all x and y in the domain of S.

The first technically novel result of this paper is that (b’) is a necessary but not sufficient
condition for (a’):

Main Result: (a’)=⇒ (b’) 6=⇒ (a’).

To prove that (a’) =⇒ (b’) we first establish a structural result about the template that
may be of independent interest. We show that any template (S,T) whose PCSP is solvable
in some bounded width satisfies the following property: either a proper subset of S × S
can be obtained by composing two binary projections of the relations in S, where S is the
domain of S, or else the problem is trivial because T contains a reflexive tuple and then
any instance admits a homomorphism to T. In its proof we need to resort to a probabilistic
construction of a large instance I that is sparse enough to be k-consistent with respect to S,
for any fixed k, but dense enough to not admit a homomomorphisms into T.

The reasoning that goes into the analysis of the probabilistic construction of this instance
is reminiscent of the methods for proving lower bounds for Resolution in propositional proof
complexity, going back to the influential work of Chvátal and Szeméredi [23] and posterior
follow-ups (particularly, [10] and [44]). Indeed, as in these related works, our analysis shows
that the random instance I is k-consistent with respect to S for k as large as εn, where n is
the number of elements in I, and ε is a fixed positive constant that depends only on S and T.
This means that the necessary condition (b’) applies also to all PCSPs that are solvable in
sublinear width; i.e., in width k = k(n) = o(n), where n is the number of elements in the
instance. It should be pointed out that, for standard CSPs, it was already known that the
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Barto-Kozik Theorem can also be strengthened to show that a fixed-template CSP is solvable
in bounded width if and only if it is solvable in sublinear width (see, e.g., [3]).

To prove that (b’) 6=⇒ (a’), we analyze the polymorphisms of a specific Boolean PCSP
template, i.e., one with a two-element domain {0, 1}, namely (2-IN-4-SAT, 4-NAE-SAT).
We first show that this template admits WNU polymorphisms of all large arities, and then
apply the structural result of the previous paragraph to conclude that it is not solvable in
bounded width. This analysis also led us to conclude that, for any two integers s and r such
that 0 < s < r and r > 2, the Boolean PCSP(s-IN-r-SAT, r-NAE-SAT) is not solvable in
bounded width, but is solvable in the second level of the Sherali-Adams hierarchy applied
to its basic linear programming relaxation. This is in sharp constrast with the status for
standard CSPs for which, as is known, the fixed-template CSPs that are solvable in bounded-
width and those that are solvable in some fixed-level of the Sherali-Adams hierarchy coincide
(this follows, e.g., from the Barto-Kozik Theorem combined with the results in [1] and [2]). To
show that PCSP(s-IN-r-SAT, r-NAE-SAT) can be solved in the second level of the Sherali-
Adams hierarchy we build on the recent results on Boolean PCSPs from [12].

As a corollary to the aforementioned structural result we obtain a complete classification
of the Approximate Graph Coloring Problems that are solvable in bounded width. We show
that PCSP(Kp,Kq) is not solvable in bounded width for any two constants p and q, such
that p ≤ q, unless p = 1 or p = 2.

Corollary 1. For any two integers p and q such that 1 ≤ p ≤ q, the following statements
are equivalent:

(a) PCSP(Kp,Kq) is solvable by the consistency algorithm in width 3,

(b) PCSP(Kp,Kq) is solvable by the consistency algorithm in bounded width,

(c) PCSP(Kp,Kq) is solvable by the consistency algorithm in sublinear width,

(d) p = 1 or p = 2.

We note that this classification agrees with the one predicted by the NP-hardness results
that would follow from certain variants of the Unique Games Conjecture [27], but ours is
unconditional.

Turning to upper bounds for the Approximate Graph Coloring Problem, we observe that
the well-known algorithm due to Wigderson [47] that properly colors any 3-colorable graph
with n vertices with O(

√
n) colors is implementable in width 4. We generalize Wigderson’s

algorithm to show that, for any fixed real ε in the interval (0, 1/2), the problem of distinguish-
ing 3-colorable from non-O(nε)-colorable graphs with n vertices can be solved in width n1−2ε.
This leads to a simple algorithm that properly colors any 3-colorable graph with O(nε)
colors in time 2Θ(n1−2ε log(n)). Asymptotically, this beats the straightforward 2Θ(n1−ε) time-
bound that follows from partitioning the graph into O(nε) many independent parts each of
size O(n1−ε). As a nearly matching lower bound, we show that the same problem cannot be
solved in width less than n1−3ε. The problem of closing the gap between the 1 − 3ε in the
lower bound and the 1− 2ε in the upper bound is left as an intriguing open problem.
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2 Preliminaries

For an integer n, we shall use [n] to denote the set {1, 2, . . . , n}.

Tuples and relations Let A be a set and let k be a positive integer. A k-tuple over A
is as a sequence t = (t(1), . . . , t(k)), where t(1), . . . , t(k) are elements of A; equivalently,
a k-tuple over A can be seen as a map t : [k] → A with domain [k] and range in A. The
set of k-tuples over A is denoted by Ak. If j = (j(1), . . . , j(m)) is an m-tuple over [k]
and a is a k-tuple, then the projection prj a of a on j is the m-tuple (a(j(1)), . . . , a(j(m))).
If J = {j1, . . . , jm} is a subset of [k] with j1 < · · · < jm, then the projection prJ a of a on J
is the m-tuple (a(j1), . . . , a(jm)).

A relation R of arity k over A is a subset R ⊆ Ak of k-tuples over A. For every
non-negative integer r, every relation R ⊆ Ar of arity r over A, and every k-tuple or k-
subset J over [r], the projection prJ R of R on J is the k-ary relation {prJ a | a ∈ R}.
For any two binary relations R ⊆ A2 and S ⊆ A2 over A, their composition R ◦ S is the
binary relation {(a, b) | there exists c ∈ A such that (a, c) ∈ R and (c, b) ∈ S}. For any
two relations R ⊆ Ar and S ⊆ As over A of arities r and s, their product R × S is the
relation {t ∈ Ar+s | pr[r] t ∈ R and pr[r+s]\[r] t ∈ S}. The iterated product of more than two
relations R1, . . . , Rm is denoted by

∏m
i=1Ri. If all Ri are the same relation R, then we call

it the m-power of R and denote it by Rm.
Let f : A → B be a map. We shall use dom(f) to denote its domain A and img(f)

to denote its image f(A). It will be convenient to allow functions with empty domain (but
note that there is a unique function with empty domain). If X ⊆ dom(f) then we shall
use f |X to denote the restriction of f to X, i.e., the unique map g with dom(g) = X that
agrees with f on X. If g = f |X for some X we shall say that f is an extension of g.
We write g ⊆ f to denote the fact that f is an extension of g. For any k-tuple a ∈ Ak

we shall use f(a) to denote the k-ary tuple obtained by applying f to a component-wise,
i.e., f(a) = (f(a(1)), . . . , f(a(k))). For two finite sets A and B and a non-negative integer k,
we write Mk(A,B) to denote the set of maps from a subset of A into a subset of B with a
domain of cardinality at most k. For each f ∈ Mk(A,B), let vf = (vf,a,b | (a, b) ∈ A × B)
denote the characteristic vector of f , i.e., vf,a,b = 1 if a ∈ dom(f) and f(a) = b, and vf,a,b = 0
otherwise, for all a ∈ A and b ∈ B.

Relational structures A signature is a finite collection of relation symbols R, each of
them with an associated non-negative integer called the arity of R. If σ is a signature, then
a σ-structure A consists of a set A, called the domain of A, and a relation RA ⊆ Ar for
each R in σ, where r is the arity of R, called the interpretation of R in A. We shall use
the same capital letter to denote the universe of a σ-structure, e.g., A is the universe of A.
All signatures and structures in this paper are assumed to be finite, i.e., they have a finite
number of relations over a finite domain.

Let σ be a signature. For any two σ-structures A and B with domains A and B, their
union A∪B is the σ-structure with domain A∪B and interpretations RA∪B = RA∪RB for
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all R ∈ σ. We say that A is a substructure of B if A ⊆ B and RA ⊆ RB hold for all R ∈ σ.
If, furthermore, RA = RB ∩ Ar for all R ∈ σ, where r is the arity of R, then we say that A
is an induced substructure of B. We say that the set A induces A in B and write B |A to
denote the substructure of B induced by A.

For every integer n ≥ 1 and every σ-structure A, the n-power of A is the σ-structure An

with domain An and interpretations RAn
= {(t1, . . . , tr) ∈ (An)r | (t1(i), . . . , tr(i)) ∈

RA for all i ∈ [n]} for all R ∈ σ, where r is the arity of R. Note that RAn
is not liter-

ally the same relation as the n-power (RA)n of the relation RA, but the two relations are
the same up to flattening the tuples as elements of Arn and permuting the coordinates.

Homomorphisms, CSPs and PCSPs Let σ be a signature and let A and B be σ-
structures with domains A and B. A map f : A → B is a homomorphism from A to B if,
for all R ∈ σ and a ∈ Ar, where r is the arity of R, it holds a ∈ RA implies f(a) ∈ RB. We
shall use A→ B to denote the statement that there exists an homomorphism from A to B.

We write CSP(A) to denote the following computational problem: given an input σ-
structure I, decide whether I → A or I 6→ A. The structure A is the CSP template of
the problem CSP(A). If A → B, we write PCSP(A,B) to denote the following computa-
tional promise problem: given an input σ-structure I, distinguish the case I → A from the
case I 6→ B, provided one of these cases holds (if not, any answer is valid). The pair of
structures (A,B) is the PCSP template of the problem PCSP(A,B). Since it is assumed
that A→ B, note that either A is the empty structure, or B cannot be trivial in the sense
that not all the relations of B can be empty. Note also that the definition of the prob-
lem PCSP(A,B) assumes that the input structure I satisfies I → A or I 6→ B, and that
these cases are disjoint since A → B. Finally, observe that PCSP(A,A) is precisely the
same problem as CSP(A). To simplify matters we shall take the liberty to use A to denote
the PCSP template (A,A).

Minors and minions Most of the terminology that follows comes from [8]. Let m and n
be positive integers and let A and B be finite sets. An n-ary function f : An → B is called
the minor of an m-ary function g : Am → B given by the map π : [m]→ [n] if the following
identity holds

f(x1, . . . , xn) ≈ g(xπ(1), . . . , xπ(m)), (2)

i.e., if the equality f(x1, . . . , xn) = g(xπ(1), . . . , xπ(m)) holds for all x1, . . . , xn ∈ A. Informally,
one can say that f is a minor of g if it can be obtained from g by permuting variables,
identifying variables, and introducing dummy variables. We shall use gπ to denote the minor
of g given by the map π. A minion on (A,B) is any non-empty subset of {f : An → B | n ≥
1} that is closed under minors. Let M and N be minions (not necessarily on the same pair
of sets). A minion homomorphism from M to N is any mapping ξ : M → N satisfying
the following conditions:

1. it preserves arities, i.e., for every g in M , its image ξ(g) has the same arity as g,
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2. it preserves taking minors, i.e., for all integers m and n, all maps π : [m] → [n] and
all m-ary functions g in M , we have ξ(g)π = ξ(gπ).

Let σ be a signature, let A be a σ-structure, and let M be a minion (not necessarily
related to A). The free structure of A generated by M is the σ-structure F(A; M ) defined
as follows. Let n = |A|, regard the domain A = {x1, . . . , xn} of A as a collection of variables,
and define the universe of F(A; M ) to be the set of n-ary functions in M . Let R ∈ σ be any
relation symbol, let r be its arity, and let t1, . . . , tm be an arbitrary ordering of the tuples
in RA. For each i ∈ [r], let πi : [m] → [n] be the map defined by πi(j) = tj(i), for j ∈ [m].
Then, RF(A;M ) is defined to contain, for every m-ary function g ∈M , the tuple (f1, . . . , fr),
where fi(x1, . . . , xn) is the n-ary minor of g given by the map πi : [m] → [n]; i.e., the
function fi is the unique n-ary map that satisfies the identity

fi(x1, . . . , xn) ≈ g(t1(i), . . . , tm(i)) (3)

over the base domain of g. We note here that since every minion M is closed under permuting
the variables of a function, the structure F(A; M ) is well defined in the sense that it does
not depend on the choice of ordering of the elements in the domain A of A, or on the choice
for the ordering of the tuples of its relations.

Example 1. Let m ≥ 3 be an integer and let A be the structure with domain {x, y} with a
single m-ary relation RA = {(y, x, . . . , x), (x, y, . . . , x), . . . , (x, x, . . . , y)}; the set of all tuples
with exactly one occurrence of y. By construction, for every minion M and every m-ary
function g ∈M , the relation RF(A;M ) contains the tuple (f1, . . . , fm) where fi is the binary
operation defined by the identity

fi(x, y) ≈ g(x, . . . , x, y, x, . . . , x), (4)

where y appears in position i in the tuple (x, . . . , x, y, x, . . . , x) on the right-hand side of (4).
Now, if g satisfies the identities

g(y, x, x, . . . , x) ≈ g(x, y, x, . . . , x) ≈ · · · ≈ g(x, . . . , x, x, y), (5)

then f1 = · · · = fm and RF(A;M ) contains the reflexive tuple (f, f, . . . , f) where f := f1 =
· · · = fm. Conversely, if RF(A;M ) contains a reflexive tuple, then there exists some r-ary
function g ∈ M satisfying (5). Any function of arity m satisfying (5) is called an m-ary
weak near unanimity (WNU).

Observation 1. Let A be a σ-structure and M be a minion. Then A→ F(A; M )

Proof. Assume that the universe of A is {x1, . . . , xn} as usual. Since minions are nonempty
and closed under identification of variables it follows that M contains a unary operation g.
Hence, it must contain also, for every i ∈ [n], the n-ary operation fi defined by the iden-
tity fi(x1, . . . , xn) ≈ g(xi). Define the mapping ϕ : A→ F (A; M ) as ϕ(xi) = fi, for i ∈ [n].
We shall show that ϕ defines an homomorphism from A to F(A; M ). Let R ∈ σ and
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let t1, . . . , tm be the ordering of the tuples in RA used in the definition of RF(A;M ). It re-
mains to be shown that ϕ(ti) ∈ RF(A;M ) for every i ∈ [m]. Indeed, for every i ∈ [m], let gmi
be the m-ary function defined by the identity

gmi (y1, . . . , ym) ≈ g(yi).

Note that gmi is in M as it is a minor of g. To complete the proof it suffices to observe that
the tuple included in RF(A;M ) due to gmi is precisely ϕ(ti).

Polymorphisms Let σ be a signature, let (A,B) be a PCSP template of signature σ, and
let n be a positive integer. An n-ary polymorphism of (A,B) is a homomorphism from An

to B; that is, unfolding the definitions, a mapping f : An → B such that, for all R ∈ σ
and t1, . . . , tn ∈ RA, it holds that f(t1, . . . , tn) ∈ RB, where

f(t1, . . . , tn) = (f(t1(1), . . . , tn(1)), . . . , f(t1(r), . . . , tn(r))) (6)

and r is the arity of R. We denote the set of all polymorphisms of (A,B) by Pol(A,B). As
usual we shall use Pol(A) as a shorthand for Pol(A,A). It follows from the definitions that
the collection Pol(A,B) of all polymorphisms of (A,B) is a minion.

The following result, pointed out in [8], will be useful.

Observation 2. [8] For every minion M and every structure A there exists a minor homo-
morphism ξ from M to Pol(A,F(A; M )).

Proof. To simplify notation assume again that A = {x1, . . . , xn}. Then ξ maps every
operation g ∈ M with arity, say, m, to the operation ξ(g) ∈ Pol(A,F(A; M )) defined
by ξ(g)(xπ(1), . . . , xπ(m)) = gπ for every π : [m]→ [n], where gπ is the n-ary minor of g given
by map π, i.e., gπ satisfies the identity

gπ(x1, . . . , xn) ≈ g(xπ(1), . . . , xπ(m))

over the base domain of g. It can be readily verified that ξ thus defined defines a minor
homomorphism from M to Pol(A,F(A; M )).

3 Relaxations for (P)CSP

A common heuristic method to solve an instance I of PCSP(S,T) consists in solving a
polynomial-time solvable relaxation of I→ S. If the relaxation turns out to be not feasible,
then we can infer for sure that I 6→ S. Although the converse is not necessarily true, for some
templates (S,T) it can be guaranteed that, if the relaxation is feasible, then I → T. For
such templates, the heurisitic method is a valid polynomial-time algorithm for PCSP(S,T).
In the present paper we will focus mostly on relaxations based on local consistency.
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3.1 Local consistency algorithm

Fix a signature σ. Let I be an instance with domain I, let S be a constraint language with
domain S, and let k be a positive integer. A mapping f : X → S with X ⊆ I is a partial
homomorphism from I to S if it is an homomorphism from I |X to S. A k-strategy on I
and S [38] is any nonempty collection H of partial homomorphisms from I to S such that:

1. the family H it is closed under restrictions, i.e., for every h in H and every X ⊆
dom(h), the restriction h|X of h to X is in H ,

2. the family H has the extension property up to k, i.e., for every h in H with | dom(h)| <
k and every x ∈ I \ dom(h), there exists f in H such that h ⊆ f and dom(f) =
dom(h) ∪ {x}.

We write I ≤k S to denote the statement that there exists a k-strategy on I and S. It follows
directly from the definitions that, if I → S, then I ≤k S. Indeed, if h is a homomorphism
from I to S, then the collection H = {h|X | X ⊆ I, |X| ≤ k} is a k-strategy on I and S.

There is an algorithm that, given (I,S, k) as input, decides whether there exists a k-
strategy and does so in time polynomial in (|I| + |S|)k. This algorithm, usually called
the (k− 1)-consistency algorithm, starts by placing in H all partial homomorphisms from I
to S with domain size at most k and repeatedly removes from H those h that falsify any
one of the two conditions in the definition of k-strategy. The algorithm stops when it reaches
a fixed-point. If the fixed-point obtained is non-empty, then it necessarily is a k-strategy.
Otherwise, it can be safely concluded that no k-strategy exists. Since, as seen above, I→ S
implies I ≤k S, one could use the consistency algorithm as a partial-check to decide whether I
is homomorphic to S. This is the basis of the width heuristic for CSP which, following [8],
we now extend to PCSPs.

Let (S,T) be a PCSP template of signature σ; i.e., S and T are σ-structures such
that S → T. Let k = k(n) be an integer function. We say that PCSP(S,T) is solvable in
width k(n), or that the template (S,T) has width k(n), if for every σ-structure instance I
with n elements it holds that I ≤k(n) S implies I → T. Note that this generalizes the
definition of width for CSPs since, whenever PCSP(S,S) = CSP(S) is solvable in width k(n),
the condition I ≤k(n) S is necessary and sufficient for I→ S. We note that every PCSP(S,T)
is solvable in width at most k(n) for k(n) = n. Whenever it is solvable in width k(n) for
some k(n) = O(1), we say that PCSP(S,T) is solvable in bounded width, or that (S,T)
has bounded width. Whenever it is solvable in width k(n) for some k(n) = o(n), we say
that PCSP(S,T) is solvable in sublinear width, or that (S,T) has sublinear width.

In the particular case of CSPs, the strength of bounded width is well understood. The
breakthrough of Barto and Kozik [9], in combination with [5], yields the following charac-
terization of CSP templates of bounded width:

Theorem 1. [9, 5] For every structure T the following are equivalent:

1. T has bounded width,

2. T has width max(r, 3) where r is the maximum arity in T,
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3. Pol(T) contains an m-ary WNU for every integer m ≥ 3.

We illustrate Theorem 1 with an example that will become useful in Section 6.

Example 2. Consider the problem of deciding whether a graph G is 2-colorable, i.e, CSP(K2).
If G contains a cycle a0, a1, . . . , an = a0 of odd length n, then there is no k-strategy on G
and K2: an easy inductive argument shows that every such strategy would need to contain
for every j ≥ 1 a partial homomorphism f with domain {a0, aj} satisfying f(a0) = f(aj) if j
is even and f(a0) 6= f(aj) if j is odd, which is not possible because n is odd and an = a0.
Consequently, K2 has width 3.

One can alternatively look at this algebraically and note that, for every integer m ≥ 3,
the set Pol(K2) of polymorphisms of K2 contains the function ϕ : [2]m → [2] that returns
the majority of its arguments. These are WNUs and, therefore, by virtue of Theorem 1, it
follows also that K2 has width 3. Indeed, it was already observed in [28] that a structure T
has bounded width whenever Pol(T) contains a majority operation f , i.e, an operation f :
S3 → S satisfying

f(y, x, x) ≈ f(x, y, x) ≈ f(x, x, y) ≈ x (7)

Note that the first two identities in (7) alone are the WNU identities in (5) for arity 3.

Let us now include sublinear width into the picture. It has been known that Theorem 1
can be strengthened to also include sublinear width in the characterization. Concretely,
items 1 –3 are also equivalent to item 0 below:

0. T has sublinear width.

On one hand, clearly 1 implies 0. On the other hand, it is known that, if 3 fails, then T is
able to simulate the constraint language corresponding to systems of equations over a non-
trivial finite Abelian group, for which linear width lower bounds are known (see, e.g., [3]).
Thus, 0 implies 3. As it turns out, this implication will also follow from our main result in
Section 4.

As in the CSP world, whether a fixed-template PCSP is solvable in bounded width is
controlled by the polymorphisms of the template [8].

Theorem 2. [8] Let (S1,T1) and (S2,T2) be two PCSP templates such that there exists a
minor homomorphism from Pol(S1,T1) to Pol(S2,T2). Then, the following statements hold:

1. If (S1,T1) has bounded width, then so does (S2,T2).

2. If (S1,T1) has sublinear width, then so does (S2,T2).

We note here that, although not explicitly addressed in [8], the proof for the bounded width
statement in Theorem 2 works also for sublinear width; i.e., the proof of Item 1 in Theorem 2
also proves Item 2.
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3.2 Linear programming and Sherali-Adams hierarchy

In this subsection we shall introduce a more general family of relaxations based on linear
programming. Despite the fact that, in general, these relaxations are seemingly more pow-
erful, in the realm of fixed-template CSPs they turn out to be not more powerful than local
consistency. However, it will follow from our results that for fixed-template PCSPs they are,
indeed, strictly more powerful.

Fix a signature σ. Let I be an instance with domain I = [n], and let S be a constraint
language with domain S = [p], where n and p are positive integers. For each R ∈ σ of
arity r, let ZR ⊆ {0, 1}rp denote the set of characteristic vectors vt as t ranges over the set
of r-tuples in RS, seen as maps from [r] to [p]; formally,

vt = (vt,1,1, . . . , vt,1,p, . . . , vt,r,1, . . . , vt,r,p), (8)

where vt,i,j = 1 if t(i) = j and vt,i,j = 0 if t(i) 6= j, for all i ∈ [r] and j ∈ [p]. Let PR ⊆ Rrp

denote the convex hull of ZR ⊆ {0, 1}rp. The polytope PR can be described by a linear
program of the form ARx ≤ bR, where x is a vector of rp many variables, AR is an integer
matrix with at most 2rp many rows, and bR is an integer vector of dimension at most 2rp.
Let IP(I,S) denote the 0-1 linear program that has one variable xu7→a for each u ∈ I and a ∈ S
and the following defining equalities and inequalities:

xu7→1 + · · ·+ xu7→p = 1 for u ∈ I, (I1)
ARxu ≤ bR for R ∈ σ and u ∈ RI, (I2)
xu7→a ∈ {0, 1} for u ∈ I and a ∈ S, (I3)

where, for u = (u1, . . . , ur), we define

xu := (xu1 7→1, . . . , xu1 7→p, . . . , xur 7→1, . . . , xur 7→p). (9)

The direct LP relaxation of IP(I,S), denoted by LP(I,S), is the linear program that is
obtained by replacing the 0-1 constraints (I3) by their relaxation 0 ≤ xu7→a ≤ 1. We
note that LP(I,S) is equivalent to the LP obtained by taking the so-called basic linear
programming relaxation introduced in the optimization variants MAX-CSP of CSP (see,
e.g., [15, 21, 25, 26, 31, 40, 41]), and turning the objective function into a family of inequal-
ities. This is a weak relaxation. In order to obtain stronger LP relaxations we apply the
method of Sherali and Adams [45] to IP(I,S).

Fix an integer k ≥ 1. Recall that Mk(I, S) is used to denote the set of maps from a
subset of I of cardinality at most k into S. Let SAk(I,S) denote the linear program that has
one variable xf for each f ∈Mk(I, S) and the following defining equalities and inequalities:

x∅ = 1 (T1)
xf∪{u7→1} + · · ·+ xf∪{u7→p} = xf for f ∈Mk−1(I, S) and u ∈ I \ dom(f), (T2)
ARxf,u ≤ bRxf for f ∈Mk−1(I, S), R ∈ σ and u ∈ RI, (T3)
0 ≤ xf ≤ 1 for f ∈Mk(I, S), (T4)
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where, for f ∈Mk−1(I, S) and u = (u1, . . . , ur), we define

xf,u := (xf∪{u1 7→1}, . . . , xf∪{u1 7→p}, . . . , xf∪{ur 7→1}, . . . , xf∪{ur 7→p}). (10)

It is obvious that SA1(I,S) is basically the same linear program as LP(I,S): in case k = 1,
the set Mk−1(I, S) contains only the empty map f = ∅, and x∅ = 1 by (T1) in SA1.
Furthermore, since Mk(I, S) ⊆ Mk+1(I, S), it is clear that each SAk+1(I,S) is at least as
strong as SAk(I,S). To understand the relaxation, think of each new inequality of SAk+1(I,S)
as obtained from multiplying an inequality in SAk(I,S) by a variable xu7→a, simplifying the
results by the rules x2

u7→a = xu7→a and xu7→axu7→b = 0 whenever a 6= b (these relations are true
in all solutions of IP(I,S)), and finally linearizing all the quadratic terms by introducing new
variables for the products.

It is worth noting that, according to the Sherali-Adams method as defined in [45], it
would seem that our definition of SAk+1(I,S) is missing the inequalities that can be obtained
from those in SAk(I,S) from multiplication by 1 − xu7→a. However, we note that these
multiplications are redundant: the equalities of type (T1) and (T2) imply that 1− xu7→a =∑

b∈[p]\{a} xu7→b, which means that a multiplication by 1−xu7→a can be obtained as a positive
linear combination of multiplications by xu7→b for b 6= a.

We write I ≤SAk S if the linear program SAk(I,S) is feasible. It follows directly from the
definitions that if I→ S, then I ≤SAk S. Indeed, if h is a homomorphism from I to S, then
the assignment that sets xf = 1 if f ⊆ h, and xf = 0 if f 6⊆ h, is a feasible solution to the
linear program. Furthermore, it also follows directly from the definitions that if I ≤SAk S,
then I ≤k S; indeed, if (xf | f ∈ Mk(I, S)) is a feasible solution for SAk(I,S), then the
collection H = {f ∈ Mk(I, S) | xf 6= 0} is a k-strategy for I and S; the non-emptiness
condition follows from (T1), the closure under restrictions and the extension property up
to k follow from (T2), and the condition that every map in H is a partial homomorphism
follows from (T3) and the choice of the polytope PR.

Since the feasibility problem for linear programs is solvable in polynomial time, there is
an algorithm that, given (I,S, k) as input, decides whether I ≤SAk S and does so in time
polynomial in (|I| + |S|)k. This algorithm is the width-k Sherali-Adams heuristic for CSPs
which, as was the case for the width-k consistency algorithm, can also be used as a heuristic
for PCSPs. If (S,T) is a PCSP template and k(n) is an integer function, then we say
that PCSP(S,T) is solvable in SA-width k(n), or that the template (S,T) has SA-width k(n),
if for every σ-structure instance I with n elements it holds that I ≤SAk(n) S implies I → T.
It follows from the fact that it is always the case that I ≤n S, where n is the number of
elements of I, that every PCSP(S,T) is solvable in SA-width at most k(n) for k(n) = n.
Whenever it is solvable in SA-width k(n) for some k(n) = O(1), we say that PCSP(S,T) is
solvable in bounded SA-width, or that (S,T) has bounded SA-width.

The SA relaxations have been intensively used in optimization versions of CSP [22, 30,
46, 50]. Our setup is, again, slightly different because the constraints of the instance must
be encoded in the polytope-defining inequalities, rather than in the objective function, as
is done in the optimization variants. Still, the family of SA relaxations commonly used for
optimization can be readily adapted to our setting by turning the objective function into a
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set of inequalities (see [20]). The LP family obtained in this way, although not equivalent to
ours, has the same power up to constants. Indeed, the notion of bounded SA-width remains
unaltered.

The strength of SA-width k for k = 1 is well understood. Indeed, it is shown in [8]
(Theorem 7.9) that (S,T) has SA-width 1 if and only if Pol(S,T) has symmetric functions
of all arities, where an operation is symmetric if its output is independent of the order of its
input elements. The picture is also clear if S = T (i.e., in the case of CSPs). In particular, it
follows from combining the results in [1] and [2] with those in [9] that if CSP(T) is solvable in
bounded SA-width, then it is solvable in bounded width as well. Furthermore, combining the
results in [9] and [5] it can be concluded that, additionally, CSP(T) is solvable in relational
width 2, which, in turn, can be shown to imply that it is solvable in SA-width 2.

4 Main result and applications

In this section we state the main structural result about PCSP templates of bounded width,
derive from it the algebraic consequence about the presence of WNUs of arities three and
more, and apply it to compare the relative power of bounded width and bounded SA-width.

4.1 Structure of PCSP templates of bounded width

If R ⊆ Ar is a relation of arity r over the set A, then we write G (R) to denote the set of all
binary projections of R; i.e., G (R) = {pri,j R | i, j ∈ [r], i 6= j}. If σ is a signature and A is
a σ-structure, then we define G (A) = G (

∏
σ∈RR

A). The main technical result of this paper
is the following.

Theorem 3. Let (S,T) be a PCSP template that has sublinear width. If for all U, V ∈ G (S)
we have U ◦ V = S2, then T is reflexive; i.e., there exists a ∈ T such that each relation
in T contains the reflexive tuple (a, a, . . . , a). In particular, this holds if (S,T) has bounded
width.

An example of a PCSP template that satisfies the condition of Theorem 3 is (K2,H) for any
graph H having at least one edge. Indeed, the composition of the edge relation of K2 with
itself is the equality relation on [2], which is not the full binary relation [2] × [2]. This is
consistent with the fact that K2, and hence (K2,H), has width three (see Example 2). An
example of a PCSP template that does not satisfy the condition of Theorem 3 is (Kp,H) for
any integer p ≥ 3 and any self-loop free graph H such that Kp → H. Indeed, as it is easy to
check, if p ≥ 3 then the composition of the edge relation of Kp with itself is the full binary
relation [p]× [p], but H is not reflexive (since it is self-loop free). We revisit these examples
in Section 6.

The proof of Theorem 3 will be given in Section 5. We devote the rest of this section to
derive some applications.
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4.2 Algebraic implications

We first derive some algebraic implications. Recall the definition of WNU polymorphism
from Example 1 in Section 2. Recall also that, by Theorem 1, if CSP(T) is solvable in
bounded width, then Pol(T) must contain a WNU of every arity m ≥ 3. It follows from
Theorem 3 that this also holds for Promise CSPs.

Corollary 2. Let (S,T) be a PCSP template of sublinear or bounded width. Then, Pol(S,T)
contains a WNU of arity m for every m ≥ 3.

Proof. Let m ≥ 3, let M = Pol(S,T), and let S′ = ({x, y}, RS′) be the structure with
a 2-element domain {x, y} where RS′ is the m-ary relation that contains precisely all tuples
in {x, y}m in which y appears exactly once (as in Example 1). As pointed out in Obser-
vation 1, there is a homomorphism from S′ to F(S′; M ), and, hence, (S′,F(S′; M )) is a
legit PCSP template. Also, by Observation 2 there is a minor homomorphism from M
to Pol(S′,F(S′; M )). Therefore, by Theorem 2, the PCSP template (S′,F(S′; M )) has sub-
linear width. Then, it follows from Theorem 3 that RF(A′;M ) contains a reflexive tuple, which
implies, by Example 1, that M contains an m-ary WNU.

Next we argue that the converse to Corollary 2 does not hold. For positive integers s
and r, let s-IN-r-SAT be the structure with domain {0, 1} and a single relation Rs-IN-r-SAT

of arity r containing all tuples with exactly s many 1’s. Let r-NAE-SAT be the structure
with domain {0, 1} and a single relation Rr-NAE-SAT of arity r containing all tuples in {0, 1}r
except the two reflexive tuples (0, 0, . . . , 0) and (1, 1, . . . , 1). Clearly, if 0 < s < r, then
there is a homomorphism from s-IN-r-SAT to r-NAE-SAT, so (s-IN-r-SAT, r-NAE-SAT) is
a PCSP template.

Lemma 1. There is a PCSP template (S,T) that does not have sublinear or bounded width
such that Pol(S,T) contains a WNU of arity m for every m ≥ 3. Concretely, setting S =
2-IN-4-SAT and T = 4-NAE-SAT gives such an example.

Proof. Let S and T be set as in the second part of the lemma. It follows directly from
Theorem 3 that (S,T) does not have sublinear width. However, Pol(S,T) contains, for
every m ≥ 3, the WNU h or arity m, that returns the majority element in the input if exists
and else (that is, in case of ties) it returns the first element. That is, h is the following
function:

h(x1, . . . , xm) =

{
a if |{xi | xi = a}| > m/2
x1 otherwise

To see that this is a WNU, use the assumption that m ≥ 3. To see that this a polymorphism
of (S,T), we argue by double counting. Any m ×m matrix that has all its rows in T has
the same number of 0’s and 1’s. Therefore, either all columns also have the same number
of 0’s and 1’s, in which case h returns the first row of the matrix, which is not reflexive, or
some column has more 0’s than 1’s and some column has more 1’s than 0’s, in which case h
returns also a non-reflexive tuple.
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4.3 Separation of width from SA-width

Another application of Theorem 3 is the separation of bounded width and bounded SA-width
for PCSPs. This separation is another evidence that the family of PCSPs is a more rich
family of problems than classical CSPs from an algorithmic point of view. This separation
is obtained combining our result with the following lemma, which in turn, builds upon [12].

Lemma 2. Let S = s-IN-r-SAT and T = r-NAE-SAT where s and r are integers such
that 0 < s < r. Then (S,T) has SA-width 2.

Proof. We start by noticing that a simple double counting argument shows that Pol(S,T)
contains, for every odd m ≥ 3, the alternating threshold operation f(x1, . . . , xm) defined to
be 1 if

∑
i∈[m](−1)i−1xi > 0 and 0 otherwise. Indeed, let t1, . . . , tm be any sequence of tuples

in RS and let O and E be, respectively, the odd and even numbers in [m]. It we use | t |1 to
denote the total number of 1’s occurring in tuple t, we observe that∑

i∈O

| ti |1 = s+
∑
i∈E

| ti |1 (11)

It follows that there exist j0, j1 ∈ [r] satisfying∑
i∈O

ti(j0) ≥
∑
i∈E

ti(j0) and
∑
i∈O

ti(j1) ≤
∑
i∈E

ti(j1). (12)

We note that for the existence of j1 we use s < r. Consequently, f(t1, . . . , tm) contains at
least a 0 and a 1 (in coordinates j0 and j1 respectively). Then f(t1, . . . , tm) ∈ RT as desired.

It then follows from ([12], Section 3.2) that any instance I of PCSP(S,T) is homomorphic
to T whenever the following augmented SA1 feasibility condition holds: for each variable v ∈ I
there exists a bv ∈ {0, 1} such that there is a feasible solution of SA1(I,S) that sets xv 7→bv
to 1. We are left to show that if SA2(I,S) has a feasible solution, then the augmented SA1

feasibility condition holds.
To avoid confusion we use x′f to refer to the variables in SA2(I,S) and xf to refer to

the variables in SA1(I,S). Fix v ∈ I. It follows from the first three types of constraint
in the definition of SA2 that there exists some b ∈ {0, 1} that x′v 7→b > 0; let d := x′v 7→b.
Now construct a solution of SA1(I,S) as follows: for every u ∈ I and a ∈ B, set xu7→a
to x′u7→a,v 7→b/d. By choice of d we have xv 7→b = 1 as desired. It is easy to verify that the

assignment thus defined is a feasible solution of SA1(I,S).

Hence, from Theorem 3 and Lemma 2 we have:

Corollary 3. There is a PCSP template (S,T) that has SA-width 2, and hence bounded SA-
width, but does not have sublinear or bounded width. Concretely, setting S = s-IN-r-SAT
and T = r-NAE-SAT where s and r are integers such that 0 < s < r and r > 2 gives such
an example.
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It should be pointed out that the condition that r > 2 in Corollary 3 is necessary. In-
deed, the template 1-IN-2-SAT is isomorphic to K2, and we already know that K2, and
hence (1-IN-2-SAT, 2-NAE-SAT), has width three (see Example 2). It is also easy to see
that, consistently with this, (1-IN-2-SAT, 2-NAE-SAT) satisfies the condition of Theorem 3:
the composition of the binary relation of 1-IN-2-SAT with itself is the equality relation
on {0, 1}, which is not the full binary relation {0, 1}2.

5 Proof of Theorem 3

The proof is structured in five parts. The first part sets the stage. In the second part we
define a probability distribution on instances and prove that a random instance I sampled
from this distribution has, with high probability, two key properties: (a) it is dense enough
to guarantee that I 6→ T, and (b) it is also sparse enough, in a sense compatible with (a),
to guarantee that I ≤k S, as will be proved in the next part. In the third part we show
that any instance I that satisfies the sparsity condition indeed satisfies I ≤k S. In the fourth
part we discuss the setting of parameters that satisfies all the required conditions to prove
the theorem. Finally, the fifth part of the proof focuses on the special case of the theorem
that applies to digraphs (structures with a single binary relation). For this special case we
are able to slightly improve the parameters; this special case for (di)graphs will be used in
Section 6.

5.1 Setting the stage

Let σ be a fixed signature and let (S,T) be a PCSP template of signature σ that has
sublinear width. Let S′ := (S,

∏
R∈σ R

S) and T′ := (T,
∏

R∈σ R
T) and note that S → T

implies S′ → T′. Since the signature σ is finite and fixed, the template (S,T) has sublinear
width if and only if the template (S′,T′) has sublinear width. Also, it holds that G (S) =
G (S′), and that T is reflexive if and only if T′ is reflexive. Therefore, it suffices to prove the
theorem when the signature σ consists of a single relation symbol R. Furthermore, since any
unary relation is either reflexive or empty, we may assume that the arity r of R is at least 2;
i.e., r ≥ 2.

Let (S,T) satisfy the following assumptions:

A1: for all U, V ∈ G (S) we have U ◦ V = S2,
A2: for all a ∈ T , the reflexive tuple (a, a, . . . , a) is not in RT.

Let p = |S| and q = |T | be the cardinalities of the domains of S and T, respectively, and
let k = k(n) be an integer function such that k(n) = o(n). Our goal is to show that there
exist arbitrarily large instances I that witness that the PCSP template (S,T) does not have
width k; i.e., the instance I is such that I ≤k S and I 6→ T. We show that such an instance I
exists by the probabilistic method.
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In anticipation for the proof, in addition to the data r, k, p, q, we fix some real parame-
ters δ, β, α, c, d, as well as an integer parameter n. These parameters are required to satisfy
the following conditions:

C1: 0 < δ ≤ 1/((r + 1)(3r + 1)),
C2: 0 < β ≤ (1 + δ)/(r − 1),
C3: 0 < α ≤ (β/d)1/(r−1)(r/e)r/(r−1),
C4: c ≥ kp/δ,
C5: n ≥ max{c/(αβ), q},
C6: 1 ≤ d ≤ nr−1,

C7: p1(r, d, n, q) + p2(r, d, n, α, β) < 1,

where

p1(r, d, n, q) := qn exp
(
−dn/(rrqr−1

)
, (13)

p2(r, d, n, α, β) :=
∑bαnc

v=1

(
(n/v)1−(r−1)βdβe1+(r+1)βr−rββ−β

)v
. (14)

We have separated the first six conditions C1–C6 from the last one C7 because the first six
are easily feasible by themselves; fulfilling Condition C7 simultaneously is more delicate. At
the end of the proof we discuss a settings of the parameters δ, β, α, c, d and n that satisfy
Conditions C1–C7. For now, we assume that the conditions are feasible.

5.2 Probabilistic construction

Let H denote a random Erdős-Rényi r-uniform hypergraph with n vertices and edge prob-
ability d/nr−1; i.e., V (H) = [n], and each r-element subset C ⊆ [n] is or is not an edge
in E(H), independently, with probability d/nr−1. Note that d/nr−1 is a proper probability
by Condition C6. Let I = I(H) be the (random) instance with domain [n] that has one r-
tuple vC in RI for each C ∈ E(H), where vC is obtained by ordering the elements in C is
some arbitrary way.

Lemma 3. The probability that I is homomorphic to T is at most p1(r, d, n, q).

Proof. Let h be any mapping from the domain I of I to the domain T of T. Let S1, . . . , Sq
be the partition induced by h; i.e., Si = h−1(i) for i = 1, . . . , q. Let ni := |Si|. By Assump-
tion A2, the relation RT does not contain a reflexive tuple. Therefore, for all i ∈ [q] and C ⊆
Si we have h(vC) 6∈ RT. By independence, the probability that h(vC) belongs to RT for
every vC ∈ RI is at most (1−d/nr−1)N , where N =

∑q
i=1

(
ni
r

)
. Now note that

(
ni
r

)
≥ (ni/r)

r,
and that, subject to the constraints x1, . . . , xq ≥ 0 and

∑q
i=1 xi = n, the sum

∑q
i=1(xi/r)

r

is minimized at x1 = · · · = xq = n/q. It follows that N ≥ q(n/(rq))r = nr/(rrqr−1). There-
fore, (1 − d/nr−1)N ≤ exp(−dnr/(nr−1rrqr−1)) ≤ exp(−dn/(rrqr−1)). By the union bound
the probability that there is a homomorphism from I to T is at most qn exp(−dn/(rrqr−1),
which equals p1(r, d, n, q).
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We say that I is (α, β)-sparse if every substructure J of I with v elements satisfying 1 ≤
v ≤ αn has less than βv many tuples. Equivalently, I is (α, β)-sparse if every substructure J
of I with at most αn elements and at least βv many tuples has more than v elements. The
argument for the lemma below is almost the same as the one for Lemma 1 in [23] except
that we need to apply it to our probability model. Also as in [23], we use the following
Chernoff-like bound

m∑
i=dtme

(
m

i

)
γi(1− γ)m−i ≤ (eγ/t)tm , (15)

which holds for every integer m ≥ 1, every real γ ∈ [0, 1], and every real t ∈ (γ, 1].

Lemma 4. The probability that I is not (α, β)-sparse is at most p2(r, d, n, α, β).

Proof. For each integer v such that 1 ≤ v ≤ αn, set mv =
(
v
r

)
. Setting p0 = d/nr−1, the

probability that I is not (α, β)-sparse is bounded by

bαnc∑
v=r

(
n

v

) mv∑
i=dβve

(
mv

i

)
pi0(1− p0)mv−i. (16)

Now set tv = βv/mv. Using
(
v
r

)
< (ve/r)r note that tv > βrr/(ervr−1) ≥ d/nr−1 = p0

for v ≤ αn since α satisfies Condition C3. If tv > 1, then the inner sum in (16) is zero, while
if tv ≤ 1, then we have tv ∈ (p0, 1], so (15) applies to bound (16) by

bαnc∑
v=r

(
n

v

)
(ep0/tv)

tvmv . (17)

Using
(
n
v

)
≤ (ne/v)v and

(
v
r

)
≤ (ve/r)r, we bound this further by

bαnc∑
v=r

(
(n/v)1−(r−1)βdβe1+(r+1)βr−rββ−β

)v
, (18)

which is bounded by p2(r, d, n, α, β).

Lemma 5. There exists a structure I with n elements that is not homomorphic to T and
is (α, β)-sparse. In particular, I is such that for every substructure J of I and every inte-
ger m ≥ 0, if J has m many tuples and m ≤ c, then J has more than (r − 1)m/(1 + δ)
elements.

Proof. The existence of I follows directly from the assumption that Condition C7 holds and
Lemmas 3 and 4. For the second part of the statement, assume that J is a substructure
of I that has v many elements and m many tuples, with m ≤ c and v ≤ (r − 1)m/(1 +
δ). In particular v ≤ m/β ≤ c/β ≤ αn since β satisfies Condition C2 and n satisfies
Condition C5. But I is (α, β)-sparse and it follows that J has less than βv ≤ m many tuples;
a contradiction.
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5.3 Proof of consistency

Still assuming that the setting of parameters satisfies the conditions C1–C7, let I be a
structure as in the second part of Lemma 5. We shall now prove that I ≤k S.

The proof adapts the notion of boundary from [44]; this was used to prove size lower
bounds for the Resolution proof complexity of random CSPs. Let J be any substructure of I.
A set D ⊆ J is said to be a boundary set of J if it is non-empty and every homomorphism
from J |J\D to S extends to a homomorphism from J to S. We introduce two types of
subsets D ⊆ J of J and show that any set of any of these types is a boundary set of J.

We define the degree of an element in J to be the number of tuples of RJ in which it
appears. We say that D ⊆ J is of type (1) if D = {x1, . . . , xr−1}, where x1, . . . , xr−1 are
all distinct and have degree one in J, and there exists vC ∈ RJ with D ⊆ C. In this
case we say that the set C witnesses that D is of type (1). We say that D ⊆ J is of
type (2) if D = {x1, y1, . . . , xr−2, yr−2, z}, where x1, y1, . . . , xr−2, yr−2 are all distinct and
have degree one in J, also z is distinct from the rest of elements in D and has degree two
in J, and there exist two different tuples vC1 ,vC2 ∈ RJ such that {x1, . . . , xr−2, z} ⊆ C1

and {y1, . . . , yr−2, z} ⊆ C2. In this case we say that the sets C1, C2 witness that D is of
type (2). We check below that, since G (RS) satisfies Assumption A1, every set of these two
types is a boundary set.

Lemma 6. For every substructure J of I and every D ⊆ J , if D is of type (1) or (2) in J,
then D is a boundary set of J.

Proof. Fix J and D as in the hypothesis and let h be a homomomorphism from J |J\D to S.
Firstly, assume that D = {x1, . . . , xr−1} is of type (1), and let C witness so; i.e., vC ∈ RJ

and D ⊆ C. Let i0 ∈ [r] be such that vC(i0) ∈ J \D. By Assumption A1 on G (RS) we have
that

pri0 R
S = S. (19)

Consequently, there is a tuple a ∈ RS such that a(i0) = h(vC(i0)). We extend h to map
every element of J by setting h(vC(i)) = a(i) for every i ∈ [r] \ {i0}. Since each x ∈ D
appears in vC but in no other tuple of J, the result is a homomorphism from J to S.

Secondly, assume that D = {x1, y1, . . . , xr−2, yr−2, z} is of type (2), and let C1, C2 witness
so; i.e., vC1 ,vC2 ∈ RJ are distinct, and {x1, . . . , xr−2, z} ⊆ C1 and {y1, . . . , yr−2, z} ⊆ C2.
For j = 1, 2, let ij ∈ [r] be such that vCj(ij) ∈ J \ D and let kj ∈ [r] \ {ij} be such
that vCj(kj) = z. Again, by Assumption A1 on G (RS), we have that

pri1,k1 R
S ◦ prk2,i2 R

S = S2. (20)

Consequently, there exist tuples a1, a2 ∈ RS such that aj(ij) = h(vCj(ij)) for j = 1, 2
and a1(k1) = a2(k2). We extend h to map every element of J by setting h(vCj(i)) = aj(i)
for j = 1, 2 and every i ∈ [r] \ ij. Since each x ∈ D appears in vC1 or in vC2 (or in both, in
case of z) but in no other tuple of J, the result is a homomorphism from J to S.

Lemma 7. For every substructure J of I and every integer m ≥ 0, if J has m many tuples
and m ≤ c, then J has at least δm many pairwise disjoint boundary sets.
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Proof. We can assume that J does not contain elements of degree zero since every boundary
set of any substructure obtained by removing elements of degree 0 from J is also a boundary
set of J. We shall show that the total number of boundary sets in J that are of type (1)
or (2) is at least δm. Since any two distinct boundary sets of these types must be disjoint,
the claim will follow.

Let C = {C | vC ∈ RJ}. For C = {x1, . . . , xr} ∈ C , define

sdr(C) :=
∑r

i=1 1/di (21)

where di is the degree of xi in J (sdr stands for sum of degree reciprocals). Since J does not
have elements of degree zero, it is easy to see that

∑
C∈C sdr(C) is equal to the number v

of elements in J. The idea of the proof is the following. Since, by Lemma 5 we have
that v ≥ (r−1)m/(1+δ), there is a large number of sets C ∈ C with sdr(C) ≥ (r−1)/(1+δ).
Since δ is small enough each one of these sets must have at least r− 2 vertices of degree one,
and one vertex of degree at most two. From this large pool of sets it is not difficult to find
a large number of witnesses for boundary sets of type (1) or (2). We formalize this below.

Let D be a collection of boundary sets of types (1) and (2) with the largest possible
cardinality and assume towards a contradiction that |D | < δm. We partition C in three
sets C1, C2, C3. The set C1 contains the witness C ∈ C of every boundary set of type (1)
in D , and exactly one among the two sets C1, C2 ∈ C that witness some boundary set of
type (2) in D . Note that |C1| = |D | < δm. The set C2 contains all C ∈ C \ C1 such
that sdr(C) > r − 4/3. The set C3 contains the rest, i.e., all C ∈ C \ (C1 ∪ C2). Note that
every C ∈ C \ C1 must contain at least two elements of degree larger than one: otherwise
it would be the witness of a boundary set of type (1), against the maximality of D . In
particular, for any C ∈ C \ C1, we have sdr(C) ≤ r − 1. Note also that sdr(C) ≤ r for
every C ∈ C , and sdr(C) ≤ r − 4/3 for every C ∈ C3.

Let α0 and β0 be reals in [0, 1] such that |C1| = α0m, |C2| = (1− α0 − β0)m, and |C3| =
β0m. Since each boundary set in D contributes exactly one set to C1 and |D | < δm, we
have α0 < δ. We shall prove that β0 ≤ 3rδ. Assume otherwise; i.e., β0 > 3rδ. Recall
that v =

∑
C∈C sdr(C) and, hence,

v ≤ |C1|r + |C2|(r − 1) + |C3|(r − 4/3) (22)

= α0mr + (1− α0 − β0)m(r − 1) + β0m(r − 4/3) (23)

= m(r − 1 + α0 − β0/3) (24)

< m(r − 1)(1− δ), (25)

where the first inequality follows from the fact that C1,C2,C3 is a partition of C and the
already noted bounds on sdr(C) for the C in these sets, the first equality follows from
the choices of α0 and β0, the second equality follows from plain arithmetic, and the strict
inequality follows from α0 < δ and the assumption that β0 > 3rδ. On the other hand,
by Lemma 5 we have that v ≥ (r − 1)m/(1 + δ). Combined with (22)-(25), this means
that 1− δ ≥ 1/(1 + δ), which is impossible since δ > 0 by Condition C1.

It follows that |C2| ≥ (1− (1 + 3r)δ)m. Let C ∈ C2. Since r − 3/2 < r − 4/3 < sdr(C),
the set C must contain at least r − 2 elements of degree one. We also know that the
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remaining two elements in C must have degree at least two since, otherwise, C would witness
a boundary set of type (1), against the maximality of D . Again from r − 4/3 < sdr(C) it
follows that at least one of the two remaining elements must have degree exactly two. Two
sets in C2 cannot share an element of degree two since otherwise they would witness a
boundary set of type (2), against the maximality of D again. Consequently, each one of
the (1− (1 + 3r)δ)m sets in C2 contains an element of degree two which must also appear in
some set of C1∪C3. Since |C1∪C3| = (α0 +β0)m ≤ (1+3r)δm, the total number of elements
that can appear in C1 ∪ C3 is at most r(1 + 3r)δm, which yields 1− (1 + 3r)δ < r(1 + 3r)δ,
against Condition C1.

Lemma 8. For every substructure J of I, if J has at most c many tuples, then J is homo-
morphic to S.

Proof. Assume, towards a contradiction, that there is a substructure J of I with m ≤ c many
tuples that is not homomorphic to S. We can further assume that m ≥ 1, and that J is
minimal in the sense that any of its proper substructures is homomorphic to S. By Lemma 7,
the substructure J has at least δm > 0 boundary sets. Let D ⊆ J be any boundary set
of J, which is non-empty by definition. By the minimality of J, there is an homomorphism f
from J |J\D to S. By the definition of boundary set, f can be extended to a homomorphism
from J to S; a contradiction.

Let J be a substructure of I. A mapping h : X → S with X ⊆ I is said to be con-
sistent with J if there is an homomorphism g from J to S such that h and g agree on the
intersection dom(h) ∩ dom(g). For the next lemma, recall that p = |S|.

Lemma 9. For every partial homomorphism h from I to S with dom(h) ≤ k, if h is consistent
with every substructure of I with a most c/p many tuples, then h is also consistent with every
substructure of I with at most c many tuples.

Proof. Fix h as in the hypothesis and assume, towards a contradiction, that h is not con-
sistent with some substructure J of I with m ≤ c many tuples. We can further assume
that J is minimal in the sense that h is consistent with any proper substructure of J. By
assumption we have c/p < m ≤ c, where p = |S|. It follows from Lemma 7 that J has a
collection D of at least δm > δc/p many pairwise disjoint boundary sets. By the minimality
of J, for each boundary set D ∈ D of J, which is non-empty, we have that h is consistent
with the substructure J |J\D. Therefore, there exists a homomorphism gD from J |J\D to S
that agrees with h. Since D is a boundary set of J, the homomorphism gD extends to
a homomorphism hD from J to S. But h is not consistent with J which means that hD
and h disagree somewhere in D; in particular, D ∩ dom(h) 6= ∅. Since the boundary sets
in D are pairwise disjoint, we get | dom(h)| > δc/p, which is at least k by Condition C4; a
contradiction.

Lemma 10. There is a k-strategy on I and S; i.e., I ≤k S.
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Proof. Define H to be set of all partial mappings from I to S with domain size at most k
that are consistent with every substructure J of I with at most c many tuples. We show
that H is a k-strategy.

First, note that every h ∈ H is a partial homomorphism from I to S. To see this, take
any tuple vC in I |dom(h) and we show that h(vC) is in RS. Let J be the substructure of I that
contains only vC . Since J has only one tuple and c ≥ 1, by the definition of H and the fact
that h is in H we have that h is consistent with J; that is, there is a homomorphism g from J
to S that agrees with h on the intersection C = dom(h)∩dom(g); i.e., h(vC) = g(vC) ∈ RS.
Also it follows directly from Lemma 8 that H is non-empty as it contains the partial
mapping h with dom(h) = ∅.

It remains to be shown that H is closed under restrictions and satisfies the extension
property up to k. The closure under restrictions follows directly from the definitions. Let us
then verify that H satisfies the extension property up to k. Fix h ∈H with | dom(h)| < k,
and fix x ∈ I\dom(h). For every a ∈ S, let ha be the extension of h with domain dom(h)∪{x}
that maps x to a. We claim that there exists some a ∈ S such that ha is consistent with all
substructures of I with at most c/p many tuples. Once the claim is proved we can conclude
from Lemma 9 that ha belongs to H and the proof will be complete. To prove the claim,
assume that for each a ∈ S there is some substructure Ja of I that falsifies it. Then, h is
not consistent with

⋃
a∈S Ja, which is a substructure of I that has at most c many tuples,

since |Ja| ≤ c/p and p = |S|; a contradiction.

5.4 Settings of parameters

The data r, p, q are fixed and independent of n, but k is set to εn for a small enough positive
constant ε > 0 to be determined next (in Equations (26) and (28) below). We set δ and β
to their upper bounds in Conditions C1 and C2. In particular, δ and β are constants
independent of n and δ = (r − 1)β − 1. Set d = rrqr−1 ln(2q), so d is also a constant
independent of n. Set α = εp/(δβ). If ε is small enough, namely, if

0 < ε < (δβ/p)(β/d)1/(r−1)(r/e)r/(r−1), (26)

then Condition C3 is satisfied. Set c = kp/δ, so that Condition C4 is satisfied. Now choose n
is large enough so that n ≥ q; observe that the choices of α and c are made so that c/(αβ) = n,
so Condition C5 is satisfied. Since d is a constant independent of n, Condition C6 is also
satisfied, if n is large enough. We still need to check that Condition C7 holds. By the choice
of d we have that p1(r, d, n, q) = 1/2n, which approaches 0 as n grows to infinity. Set

ρ1(n) := (1/
√
n)δdβe1+(r+1)βr−rββ−β,

ρ2(n) := (εp/(δβ))δdβe1+(r+1)βr−rββ−β.

Splitting the sum that defines p2(r, d, n, α, β) into v ≤ b
√
nc and v ≥ b

√
nc+ 1 we get

p2(r, d, n, α, β) ≤
∑b√nc

v=1 ρ1(n)v +
∑bαnc

v=b
√
nc+1

ρ2(n)v. (27)
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Now note that ρ1(n) < 1/3 for large enough n because δ, d, r, β, p are constants independent
of n. Also, if ε is positive but small enough, namely, if

0 < ε < (δβ/(3p))d−β/δe−1/δ−(r+1)β/δrrβ/δββ/δ, (28)

then also ρ2(n) < 1/3 again because δ, d, r, β, p are constants independent of n and of ε. Thus,
the sum in (27) is strictly less than

∑∞
v=1(1/3)v = 1/2. Therefore, p1 + p2 < 1/2n + 1/2 < 1

for large enough n, which proves that Condition C7 is satisfied, as was to be shown.

5.5 Special case of digraphs

In this section we assume that r = 2 and use it to improve the parameters. The improvement
is that we can replace the 1/21 that would result from plugging r = 2 into the right-hand side
of Condition C1 by 1/2. The price to pay for this is that the right-hand side of Condition C4
becomes slightly bigger.

We indicate the required changes in the previous proof. Conditions C1 and C4 are
replaced by the following:

C1’: 0 < δ < 1/2,
C4’: c ≥ kp/δ′.

where
δ′ := (1− 2δ)/(6(1 + δ)) (29)

Lemma 7 becomes the following:

Lemma 11. For every substructure J of I and every integer m ≥ 0, if r = 2 and J has m
many tuples and m ≤ c, then J has at least δ′m many pairwise disjoint boundary sets.

Proof. We can assume that J does not contain elements of degree zero since every boundary
set of any substructure obtained by removing elements of degree 0 from J is also a boundary
set of J. In the special case r = 2, the boundary sets of types (1) and (2) are in one-to-one
correspondence with the vertices of degree one and the vertices of degree two, respectively.
Thus, since J does not contain elements of degree zero, and since each boundary set involves
two vertices, it suffices to show that J contains at least 2δ′m many vertices of degree at most
two; this will give at least δ′m many pairwise disjoint boundary sets.

Let v = |J | and let X denote the random variable that equals the degree, in J, of a
uniformly chosen random element of J . The sum of the degrees of the elements in J is 2m.
Therefore, E[X] = 2m/v. Now recall that, by Lemma 5, we have v ≥ (r − 1)m/(1 + δ) =
m/(1 + δ), since m ≤ c and r = 2. By Markov’s inequality, the probability that X ≥ 3
is bounded by E[X]/3 ≤ (2m/v)/3 ≤ 2(1 + δ)/3. Therefore, at least a 1 − 2(1 + δ)/3
fraction of the elements of J have degree strictly less than 3 in J, which means that J has
at least (1 − 2(1 + δ)/3)v ≥ (1 − 2(1 + δ)/3)m/(1 + δ) = 2δ′m elements of degree at most
two. The lemma is proved.
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In the proof of Lemma 8, we need to replace the occurrence of δ by δ′, so we can call
Lemma 11 (instead of calling Lemma 7), and use Condition C1’ (instead of using Condi-
tion C1) to ensure that δ′m > 0, as is required in the proof. In the proof of Lemma 9, we
need to replace the three occurrences of δ by δ′, so we can call Lemma 11 (instead of calling
Lemma 7), and use Condition C4’ (instead of using Condition C4) to ensure that δ′c/p ≥ k,
as is required in the proof. Except for these changes, the structure of the proof is exactly
the same: Lemma 5 states that there is an instance I that is (α, β)-sparse such that I 6→ S,
and Lemmas 8 and 9 give Lemma 10; i.e., I ≤k S.

6 Approximate Chromatic Number

For a graph G with n vertices, there is always an integer q satisfying 1 ≤ q ≤ n such
that G → Kq; the smallest such q is the chromatic number of G. Any homomorphism
from G to Kq is called a proper q-coloring of G. The problem of properly coloring a graph
with as few as possible number of colors has a long history. Finding the exact chromatic
number is of course one of the classical NP-hard problems, straight from Karp’s 21 list [34].
The exact computational complexity of the problem of approximating the chromatic number
is much less understood, despite the important progress on the problem since the discovery
of the PCP Theorem. In this section we study the width complexity of the problem.

6.1 Constant chromatic numbers

In the regime of constant chromatic numbers, it is conjectured that the problem of q-
coloring p-colorable graphs is NP-hard for any two constants p and q such that 3 ≤ p ≤ q.
The larger the gap between q and p, the stronger the NP-hardness result. For p = 3, the
current best result of this type, due to Barto, Buĺın, Krokhin, and Opršal [8], is that it
is NP-hard to 5-color 3-colorable graphs. For constant p ≥ 4, the current best such re-
sult, due to Wrochna and Živný [49], is that it is NP-hard to q(p)-color p-colorable graphs,
where q(p) :=

(
p
bp/2c

)
− 1. This improved over the previously known point of NP-hardness

for the weaker q(p) = exp(Ω(p1/3)), which holds for sufficiently large p [32], and for the
even weaker q(p) = 2p − 1, which holds for all p ≥ 3 [8]. The full conjecture stating that
the problem of q-coloring p-colorable graphs is NP-hard for any two constants p and q such
that 3 ≤ p ≤ q is known to follow from certain variants of the Unique Games Conjec-
ture (UGC) [27].

These results predict that the promise problems PCSP(K3,K5) and PCSP(Kp,Kq(p))
for p ≥ 4 are not solvable in bounded width, unless P = NP. The UGC-based results predict
that PCSP(Kp,Kq) is not solvable in bounded width for any two constants p and q such
that 3 ≤ p ≤ q, unless either the suitable variants of the UGC fail or P = NP. We show
that our Main Theorem 3 confirms all these predictions, unconditionally, and in the stronger
sense of ruling out, not only solvability in constant width, but solvability in sublinear width:

Theorem 4. For any two integers p and q such that 1 ≤ p ≤ q, the following statements
are equivalent:
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(a) PCSP(Kp,Kq) is solvable by the consistency algorithm in width 3,

(b) PCSP(Kp,Kq) is solvable by the consistency algorithm in bounded width,

(c) PCSP(Kp,Kq) is solvable by the consistency algorithm in sublinear width,

(d) p = 1 or p = 2.

Proof. If p = 1, then the problem is trivial and solvable in width 2, and hence in width 3.
If p = 2, then the problem is solvable in width 3 since, in this case, the problem amounts to
detecting whether G is 2-colorable, which is solvable in width 3 (see Example 2). For p and q
such that 3 ≤ p ≤ q, we have G (Kp) = EKp = {(i, j) ∈ [p]2 | i 6= j}, and EKp ◦ EKp = [p]2,
while EKq is clearly irreflexive. Therefore, Theorem 3 implies that PCSP(Kp,Kq) is not
solvable in sublinear width, which completes the proof.

6.2 Algorithms with sublinear guarantees

Turning to upper bounds, a well-known algorithm of Wigderson [47] shows that the problem
of O(

√
n)-coloring 3-colorable graphs is solvable in polynomial time. We observe that, in its

decision variant, Wigderson’s algorithm can be thought of as a width four algorithm:

Theorem 5. For every graph G, if G ≤4 K3, then G→ K3d
√
ne, where n is the number of

vertices of G.

Proof. Fix a graph G with vertex-set V = [n]. Let t = d
√
ne. Assume that G ≤4 K3. We

prove, by induction on m, that for every Y ⊆ V with |Y | ≤ mt, we have G |Y → Kt+2m.
Since t+ 2dn/te ≤ 3t, the claim will follow by setting m = dn/te and Y = V .

Fix m and Y ⊆ V with |Y | ≤ mt. If m = 1 or G |Y has all vertices of degree less than t,
then G |Y is t-colorable, so G |Y → Kt → Kt+2m and the claim is proved. Assume then
that m > 1 and G |Y has some vertex v ∈ Y of degree at least t. Let N ⊆ Y \ {v} be the
neighborhood of v in G |Y . Since G ≤4 K3, also G |N∪{v} ≤4 K3, implying G |N ≤3 K2.
But then (see Example 2) G |N is 2-colorable and hence G |N∪{v} is 3-colorable. Let hv be
a 3-coloring G |N∪{v} using the colors {a, a + 1, a + 2}, where a := t + 2m − 2 and hv(v) =
a. Let X = Y \ (N ∪ {v}). Then |X| < |Y | − t ≤ (m − 1)t and hence, by induction
hypothesis, G |X → Kt+2(m−1). Let g be a homomorphism from G |X to Kt+2m−2 and note
that g∪hv is a homomorphism from G |Y to Kt+2m; to see this, observe that the only possible
color in img(g) ∩ img(hv) is a = hv(v), but v is not adjacent in G |Y to any vertex in G |X ,
since N ∩X = ∅ by choice of X. The proof is complete.

In the rest of section we study the optimal width k = k(n) that guarantees that, for any
graph G with n vertices it holds that G ≤k(n) K3 implies G → KO(nε) for arbitrary but
fixed ε ∈ (0, 1/2).

As a first observation, it is straightforward to show that k(n) ≤ dn1−εe suffices; i.e., for
every graph G with n vertices, if G ≤dn1−εe K3, then G→ K3dnεe. Indeed, if V denotes the
set of vertices of G, then one just selects a subset X ⊆ V of dn1−εe many vertices, properly
colors G |X with three colors using the assumption that G ≤dn1−εe K3, and proceeds to
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the rest of the graph G |V \X with new colors. Overall this uses at most 3dnεe colors. We
show that, by generalizing Wigderson’s method, this width upper bound of O(n1−ε) can be
improved to O(n1−2ε). This builds on some of the ideas of Blum [11], who showed that
Wigderson’s algorithm can be improved to n3/8-color 3-colorable graphs in polynomial time.
Note that we do not achieve polynomial time, only sublinear width, but we also show that
this is necessary: for any γ < 1 − 3ε, width O(nγ) does not suffice. Note the slight gap
between the 1− 2ε in the upper bound and the 1− 3ε in the lower bound.

Theorem 6. Fix a real ε ∈ (0, 1/2) and an integer function q(n) such that q(n) ≥ 3 holds
for all integers n ≥ 1, and q(n) = Θ(nε). The following statements hold:

1. There is an integer function k(n) = O(n1−2ε) such that, for every graph G, if G ≤k(n)

K3 then G→ Kq(n), where n is the number of vertices of G.

2. For every real γ < 1−3ε and every integer function k(n) = O(nγ) there exist arbitrarily
large graphs G such that G ≤k(n) K3 and G 6→ Kq(n), where n is the number of vertices
of G.

Proof of 1. Choose k(n) := max{3 + dC2n1−2εe, n0} for sufficiently large integers C and n0

to be determined later; their choice will depend on the constants that are implicit in the
assumption that q(n) = Θ(nε). Note that k(n) is indeed O(n1−2ε). Fix any integer n and
let G be a graph with vertex-set V and edge-set E with |V | = n. Assume that G ≤k(n) K3

and let H be a k(n)-strategy on G and K3. We shall prove that for every Y ⊆ V there
exists a set X ⊆ Y such that G |X is 3-colorable and |X| ≥ min{m,Cm1−ε} where m = |Y |.

Let Y ⊆ V . For every S ⊆ Y we use N(S) to denote the neighbourgood of S in the
subgraph G |Y induced by Y in G, i.e., the set of vertices in Y that are adjacent in G |Y to
some vertex in S. If |Y | ≤ k(n), then, by the extension property up to k(n), the strategy H
contains a mapping h with domain Y . By definition, h is a partial homomorphism from G
to K3, and hence a proper 3-coloring of G |Y . Thus, we can just set X = Y and the claim
is proved since |X| = |Y | = m ≥ min{m,Cm1−ε}. Assume then that |Y | > k(n). Now,
consider two cases: (a) there exists a subset S ⊆ Y with |S| = k(n)−3 such that |S∪N(S)| >
Cm1−ε, and (b) such a set does not exist.

Case (a). We shall prove that in this case G |X is 3-colorable for X = S ∪N(S), which
proves the claim since |X| > Cm1−ε. First note that, by the extension property up to k(n),
the strategy H contains a mapping h : S → [3] with domain S; this follows from the
fact that |S| = k(n) − 3 ≤ k(n). Furthermore, h is a partial homomorphism, so it is a
proper 3-coloring of G |S. We shall prove that h can be extended to a proper 3-coloring
of G |X . For every node v ∈ N(S), let Lv ⊆ [3] be the set of remaining colors for v,
i.e., the set [3] \ {h(u) | u ∈ S ∩ N({v})}. Note that |Lv| ≤ 2 for each v ∈ N(S). We
want to show that there exists a list coloring of G |N(s), i.e., a coloring g of G |N(s) such
that g(v) ∈ Lv for every v ∈ N(S). Consider the CSP instance (A,B) where A = N(S)
and B = [3], whose signature σ contains a relation Ru,v for every pair u, v of different
elements in N(S). In particular, for every u, v ∈ N(S) with u 6= v we have RA

u,v = {(u, v)}
and RB

u,v = [3]2 ∩ (Lu × Lv). It follows immediately from the definition of A and B that
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for every mapping g : A → B, it holds that g is a homomomorphism from A to B if and
only if g is a list-coloring of G |N(S). Since |Lv| ≤ 2 for all v ∈ A then Pol(B) contains the
function ϕ : B3 → B defined as

ϕ(x, y, z) =

{
x if x = y
z otherwise

This is a majority operation (see Example 2) and, therefore, it follows that B has width 3.
Consider the set H ′ of partial maps from A to B that contains f |X\S for every f ∈H with
domain S and every set X ⊆ V such that S ⊆ X and |X| ≤ k(n). It is easy to see that H′
is a 3-strategy on A and B, hence A ≤3 B. Since B has width 3 it follows that A→ B and
we are done.

Case (b). Let S be any maximal collection of subsets of Y of cardinality k(n) − 3
such that (S ∪ N(S)) ∩ (S ′ ∪ N(S ′)) = ∅ for any two distinct S, S ′ ∈ S . Note that, as
in Case (a), we have that G |S has a proper 3-coloring for every S ∈ S . Then, if we
let X =

⋃
S∈S S, then G |X also has a proper 3-coloring. Since |S ∪ N(S)| ≤ Cm1−ε for

every S ∈ S and |Y | = m, we have |S | ≥ mε/C. It then follows that X has cardinality
at least (mε/C) · (k(n)− 3) ≥ Cm1−ε, by the choice of k(n) and the fact that n ≥ m. This
finishes the proof of the claim.

The rest of the proof is fairly standard. The following recursive algorithm produces a
valid coloring for G |Y for any Y ⊆ V . Let m := |Y |. If m ≤ Cm1−ε, then color G |Y
with three colors, which is possible since in this case min{m,Cm1−ε} = m = |Y |. Else,
select an X ⊆ Y with |X| ≥ Cm1−ε such that G|X has a proper 3-coloring g, which is again
possible since in this case min{m,Cm1−ε} = Cm1−ε. Recursively, obtain a proper coloring h
of G |Y \X . Renaming colors if necessary we can assume that g and h do not use any color
in common. Return g ∪ h. Note that g ∪ h uses at most Q(m) different colors where Q(m)
is the solution to the following recurrence:

Q(m) = 3 +Q(m− dCm1−εe) if m > Cm1−ε

Q(m) = 3 otherwise

We shall show that the bound Q(n) ≤ q(n) holds for every n ≥ n0 for sufficiently large n0.
The statement will follow since the choice of k(n) guarantees k(n) ≥ n0 and, therefore, any
graph G with n < n0 many vertices that satisfies G ≤k(n) K3 is even 3-colorable. Recall
that q(n) ≥ 3 holds by assumption.

To prove our claim, we first note that, whenever m ≥ n/2, we have dCm1−εe ≥ C(n/2)1−ε,
and therefore it takes at most d(n/2)/(C(n/2)1−ε)e = d(n/2)ε/Ce many iterations of the
recurrence to get from Q(n) down to Q(bn/2c). It follows that

Q(n) ≤ 3d(n/2)ε/Ce+Q(bn/2c) ≤ 3(n/2)ε/C + 3 +Q(bn/2c). (30)

Iterating this recurrence we get

Q(n) ≤ (3/C)nε
∑

i≥1(1/2ε)i + 3 log2(n) ≤ (9/C)nε + 3 log2(n) ≤ q(n), (31)
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where the second inequality follows from the identity
∑

i≥1 r
i = r/(1 − r) and the fact

that 1/2ε ≤ 1/
√

2 holds since ε ≤ 1/2. The third inequality follows from the assumption
that q(n) = Θ(nε) and n ≥ n0, provided the constants C and n0 are chosen large enough.

Proof of 2. Fix γ < 1− 3ε and k(n) = O(nγ). We analyze the probabilistic construction in
the proof of Theorem 3 when S = Kp and T = Kq for p = 3 and q = q(n) = Θ(nε). Note
that q is now also a function of n and that the argument presented in Section 5 allows this
generality. Since r = 2, we use the version of the proof in Section 5.5. Furthermore, as in
the proof of Theorem 4, the left template S = Kp satisfies Assumption A1, and it is obvious
that the right template T = Kq satisfies Assumption A2. Thus, we just need to set the
parameters in the proof.

The given data is r, p, q, k, where q = q(n) and k = k(n) are functions of n, and we need to
produce, for every large enough integer n, a choice of the real parameters δ, β, α, c, d, that may
or may not be functions of n, in such a way that Conditions C1’,C2,C3,C4’,C5,C6,C7 hold,
where Conditions C1’ and C4’ are stated in Section 5.5, and Conditions C2,C3,C5,C6,C7 are
stated in Section 5.1. Once we achieve this, Lemma 5 will provide a graph G with n vertices
that is (α, β)-sparse such that G 6→ Kq, holds. By Lemma 10 (derived as in Section 5.5),
this G will also satisfy G ≤k Kp, and since this will succeed for any large enough n, the
statement will be proved.

Set δ0 := ε/(1 − ε − γ) and note that the assumption γ < 1 − 3ε implies δ0 < 1/2.
Set δ to be any positive real in the interval (δ0, 1/2). The upper bound δ < 1/2 means that
Condition C1’ holds. For later use, we note that the lower bound δ0 < δ implies

γ < 1− (1 + δ)ε/δ. (32)

Set β := 1 + δ, so Condition C2 is satisfied. Set d = d(n) := 5q(n) ln(q(n)), so Condition C6
is satisfied for all large enough n. Set α = α(n) := (C/d(n))(1+δ)/δ where C := (1 +
δ)4δ/(1+δ)e(−4−3δ)/(1+δ). Observe that d(n) is an increasing function of n, while C, β, r are
constants independent of n. In particular the rate at which α(n) approaches 0 is that
of (1/d(n))(1+δ)/δ, and the rate at which the right-hand side in Condition C3 approaches 0 is
that of (1/d(n))1/(r−1). Since 1/(r− 1) = 1 < (1 + δ)/δ, this means that Condition C3 holds
for all large enough n. Finally, set c = c(n) := (p/δ′)k(n) for δ′ := (1 − 2δ)/(6(1 + δ)), so
Condition C4’ is satisfied for all n. We need to argue that Conditions C5 and C7 hold for
all large enough n

To argue that Condition C5 holds we need to show that n ≥ max{c(n)/(α(n)β), q(n)} for
all large enough n. Clearly n ≥ q(n) for all large enough n since q(n) = Θ(nε) and ε < 1/2.
Thus, it suffices to show that n ≥ c(n)/(α(n)β) or, equivalently, that k(n) ≤ f(n) :=
(βδ′/p)α(n)n, for all large enough n. First, recall that the parameters ε, p, β, C, δ′ are con-
stants independent of n. Therefore, recalling that d(n) = 5q(n) ln(q(n)) = Θ(εnε ln(n)), the
growth rate of f(n) is that of n1−(1+δ)ε/δ ln(n)−(1+δ)/δ. On the other hand, the growth rate
of k(n) is bounded above by that of nγ. Now, the choice of δ guarantees (32) and, therefore,
we have k(n) = o(f(n)). It follows that, for all large enough n, it holds that k(n) ≤ f(n),
which means that Condition C5 holds.
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To argue that Condition C7 holds, observe that the choice of d(n) ensures that p1(n)→ 0
as n → ∞, and the choice of α(n) (and the constant C) ensures that p2(n) is bounded
by
∑

v≥1(1/4)v = 1/3 for all n. Both facts together imply that p1(n) + p2(n) < 1 and
Condition C7 holds for all large enough n.

Recall from Section 3.1 that there is an algorithm that, given a graph G and an integer k,
decides whether G ≤k K3 in time polynomial in nk, where n is the number of vertices of G
and, if so, returns a strategy H . The proof of the width upper bound in Theorem 6 gives
the following:

Theorem 7. Fix a real ε ∈ (0, 1/2) and an integer function q(n) such that q(n) ≥ 3 holds for
all integers n ≥ 1, and q(n) = Θ(nε). Then, there is an algorithm that finds a proper q(n)-
coloring of any given 3-colorable graph with n vertices in 2Θ(n1−2ε log(n))-time.

Proof. We analyse the recursive algorithm given in the proof of the first part of Theorem 6.
The algorithm starts by computing a strategy H that witnesses G ≤k(n) K3; such a strat-
egy exists because, indeed, the assumption is that G → K3. The runtime of this step is
polynomial in nk(n). Once H is computed, the algorithm proceeds recursively as described
in the proof of Theorem 6 starting at Y = V , where V is the set of all vertices of G. To find
the required set X ⊆ Y with |X| ≥ min{m,Cm1−ε} for the Y of cardinality m in the current
recursive call, we first need to tell whether Y falls in Case (a) or in Case (b). For this, it
suffices to loop through all subsets S ⊆ Y with |S| = k(n) − 3, and compute |S ∪ N(S)|.
The number of such sets is bounded by nk(n)−3 and hence can be looped in time polynomial
in nk(n). In Case (a), we color G |X for X = S ∪ N(S) with 3 colors as follows: first find
an h ∈ H with dom(h) = S, and then extend h to a proper 3-coloring of G |X by solving
the CSP instance (A,B). We are using here the well-known fact (see [24]) that for CSPs
an polynomial-time algorithm for the decision variant yields immediately and polynomial-
time algorithm for the search version. In Case (b), we greedily find a maximally disjoint
family S of sets of the form S ∪ N(S) with S ⊆ Y , and color G |X for X =

⋃
S∈S with

three colors as h =
⋃
S∈S hS, where hS ∈ H with dom(hS) = S is a suitably found proper

3-coloring of G |S for each S ∈ S . Each recursive call shrinks the size of the calling set Y
from m to m − dCm1−εe, which means that the algorithm ends after a linear in n number
of recursive calls, each of which takes time polynomial in nk(n). For k(n) = Θ(n1−2ε), this is
time complexity 2Θ(n1−2ε log(n)) overall, and the proof is complete.

6.3 Discussion and an open problem

Some discussion on the runtime of the algorithm in Theorem 7 is in order. On one hand,
the simple observation we made just before the statement of Theorem 7 that width dn1−εe
suffices already gives a very simple algorithm that properly Θ(nε)-colors 3-colorable graphs
with n vertices in subexponential 2Θ(n1−ε)-time. The algorithm of Theorem 7 is only slightly
more complicated and asymptotically beats this. On the other hand, using more sophisti-
cated techniques, it was shown in [4] that, for any desired approximation factor f , there is

a 2Θ̃(n/(f log(f)+f log(f)2))-time randomized algorithm that approximates the chromatic number
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of a graph with n vertices within a factor of f . For f = Θ(nε), this gives a 2Θ(n1−ε−o(1))-time
randomized algorithm for the problem of Θ(nε)-coloring 3-colorable graphs with n vertices.
Interestingly, the simple width-based algorithm from Theorem 7 also beats this, and is de-
terministic (but of course it applies only to our problem and not to the more general problem
of approximating the chromatic number).

Whether the runtime 2Θ(n1−2ε log(n)) of Theorem 7 can be beaten is an interesting question
left open by our work. Our width lower bound of n1−3ε has as a consequence that 2Ω(n1−3ε)

appears to be a lower limit on the runtime of any width-based algorithm. The obstacle
to improving the width lower bound from n1−3ε to n1−2ε is Condition C1’, which is an
improvement for the special case of graphs over Condition C1 of the general case. Ideally,
Condition C1’ should be improved further to Condition C1” defined as 0 < δ < 1. We do
not know if this is possible; we leave it as an open problem.
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José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, 12th International Workshop, APPROX 2009,
and 13th International Workshop, RANDOM 2009, Berkeley, CA, USA, August 21-23,
2009. Proceedings, volume 5687 of Lecture Notes in Computer Science, pages 125–139.
Springer, 2009.

[31] Mrinalkanti Ghosh and Madhur Tulsiani. From Weak to Strong Linear Programming
Gaps for All Constraint Satisfaction Problems. Theory Comput., 14(1):1–33, 2018.

[32] Sangxia Huang. Improved Hardness of Approximating Chromatic Number. CoRR,
abs/1301.5216, 2013. Preliminary version in APPROX/RANDOM 2013.

[33] Peter Jeavons, David A. Cohen, and Marc Gyssens. Closure properties of constraints.
J. ACM, 44(4):527–548, 1997.

[34] Richard M. Karp. Reducibility Among Combinatorial Problems. In Raymond E. Miller
and James W. Thatcher, editors, Proceedings of a symposium on the Complexity of
Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Re-
search Center, Yorktown Heights, New York, USA, The IBM Research Symposia Series,
pages 85–103. Plenum Press, New York, 1972.

[35] Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the Hardness of Approximating
the Chromatic Number. Comb., 20(3):393–415, 2000.

[36] Phokion G. Kolaitis and Moshe Y. Vardi. A Game-Theoretic Approach to Constraint
Satisfaction. In Henry A. Kautz and Bruce W. Porter, editors, Proceedings of the
Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on
on Innovative Applications of Artificial Intelligence, July 30 - August 3, 2000, Austin,
Texas, USA, pages 175–181. AAAI Press / The MIT Press, 2000.

[37] Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-Query Containment and Con-
straint Satisfaction. J. Comput. Syst. Sci., 61(2):302–332, 2000.

[38] Phokion G. Kolaitis and Moshe Y. Vardi. A Logical Approach to Constraint Satisfaction.
In Complexity of Constraints - An Overview of Current Research Themes [Result of a
Dagstuhl Seminar], pages 125–155, 2008.

[39] Andrei A. Krokhin and Jakub Oprsal. The Complexity of 3-Colouring H-Colourable
Graphs. In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019,
pages 1227–1239. IEEE Computer Society, 2019.

[40] Amit Kumar, Rajsekar Manokaran, Madhur Tulsiani, and Nisheeth K. Vishnoi. On
LP-Based Approximability for Strict CSPs. In Dana Randall, editor, Proceedings of the

33



Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011,
San Francisco, California, USA, January 23-25, 2011, pages 1560–1573. SIAM, 2011.

[41] Gabor Kun, Ryan O’Donnell, Suguru Tamaki, Yuichi Yoshida, and Yuan Zhou. Linear
Programming, Width-1 CSPs, and Robust Satisfaction. In Proceedings of the 3rd In-
novations in Theoretical Computer Science Conference, ITCS ’12, page 484–495, New
York, NY, USA, 2012. Association for Computing Machinery.
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