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Abstract

A classof relationalstructuress saidto have the extensionpreserationpropertyif everyfirst-order
sentencehatis presered underextensionson the classis equivalentto an existential sentence.The
classof all finite structuresdoesnot have the extensionpreseration property We studythe propertyon
classe®f finite structureghatarebetterbehared. We show thatthe propertyholdsof classe®f agyclic
structuresstructureof boundeddegreeandmoregenerallystructureghatarewidein a senseve make
precise We alsoshow thatthe preserationpropertyholdsfor theclassof structureof treewidth atmost
k, for ary k. In contrastwe shav thatthe propertyfails for the classof planargraphs.
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1 Intr oduction

The subjectof modeltheoryis concernedvith the relationshipbetweensyntacticand semantigroperties
of logic. Amongclassicaresultsin the subjectarepreserationtheoremswvhich relatesyntacticrestrictions
onfirst-orderlogic with structuralpropertiesof the classe®f structuresiefined.A key exampleis thet.0s-
Tarski Theoremwhich assertghat a first-orderformulais presered underextensionson all structuresf,
andonly if, it is logically equivalentto anexistentialformula(see[13]). Onedirectionof thisresultis easy
namelythatary formulathatis purely existentialis presered underextensionsandthis holdson ary class
of structuresTheotherdirection,goingfrom the semantiaestrictionto the syntacticrestrictionmakeskey
useof thecompactnessf first-orderlogic andhenceof infinite structures.

In the early developmentof finite-modeltheory whenit wasrealizedthatfinite structuresarethe ones
that are interestingfrom the point of view of studyingcomputation,it was obsened that most classical
preserationtheoremdrom modeltheoryfail whenonly finite structuresareallowed. In particular thet.os-
Tarskitheoremfails on finite structured16, 12]. Theseresultssuggesthatthe classof finite structureds
notwell-behaed from the point of view of modeltheory However, whenoneconsiderghe computational
structureghatarisein practiceandareusedasinterpretationgor logical languagegfor instance program
modelsinterpretingspecificationor databasemterpretingqueries)in mary caseghey arenot only finite
but satisfy other structuralrestrictionsas well. This motivatesthe study not just of the classof finite
structureshut of well-behaed subclassesf this class.Notethatclassicaimodeltheory in mostof its more
adwancedparts,alsoconsidergestrictedclasse®f structuresuchasstable simple,o-minimalstructuresor
specificstructureghatareof interestin otherareasof mathematics.

Thereare certainrestrictionson finite structuresthat have proved especiallyusefulin moderngraph
structuretheoryandalsofrom an algorithmicpoint of view. For instancemary intractablecomputational
problemsbecometractablewhenrestrictedto planargraphsor structuresof boundedtreawvidth [4]. This
is alsothe casein relationto evaluationof logical formulas[9]. A commongeneralizatiorof classeof
boundedreeavidth andplanargraphsare classe®f structureghat exclude a minor which have alsobeen
extensvely studied.

A study of preseration propertiesfor suchrestrictedclassesof finite structureswasinitiated in [1].
There,the focuswason the homomorphisnpreseration theoremwhosestatuson the classof finite struc-
tureswasopen. It wasshavn that this preseration propertyholdson ary classof structuresof bounded
degree,boundedtreavidth or that excludessomeminor (and hascertainotherclosureproperties).in the
presenpaper we investigatehet 05-Tarskiextensionpreseration propertyon theseclasseof finite struc-
tures. Note thatthe failure of the propertyon the classof all finite structuresdoesnot imply its failure on
subclasseslf oneconsiderghe non-trivial directionof the preseration theoremon a classc, it saysthat
ary sentencep thatis presered underextensionson C is equivalenton C to anexistentialsentenceThus,
restrictingto asubclas€’ of C wealensboththe hypothesisandthe consequenof the statement.

We shaw that the extensionpreseration theoremholds on ary classof finite structuresclosedunder
substructureanddisjointunionsthatis alsowidein thesenseahatary suficiently large structuren theclass
containsalarge numberof elementghatarefar apart. Thisincludes for instanceary classof structuresof
boundediggree.While classe®f structure®f boundedreevidth arenotwide, they arenearlysoin thatthey
canbemadewide by remaving a smallnumberof elements We usethis propertyandshav thatit implies
the extensionpreseration theoremfor the class7,—the classof structuresf treewidth & or less(notethis
is notasgenerahssayingthatthe propertyholdsfor all classe®f boundedreeawvidth). Finally, althoughall
classeslefinedby excludedminorsareknown to bealmostwidein the samesenseasTy, is, we shav thatthe
constructiordoesnot extendto them. We provide a countergampleto the extensionpreseration property
for the classof planargraphsandindeedevenfor the classof planargraphsof treevidth at mostfour. This
contrastswith the resultsobtainedfor the homomorphisnpreseration propertyin [1] asthis propertywas



shavn to hold on all classe®xcludinga graphminor andclosedundersubstructureanddisjoint unions.

Themainmethodologyin establishinghepreseration propertyfor a classof structureg is to shav an
upperboundonthesizeof aminimal modelof afirst-ordersentence thatis presered underextensionson
C. Thewaywe dothisis to shawv thatfor ary suficiently large model A of ¢, thereis a propersubstructure
of A andan extensionof A that cannotbe distinguishedby . In Section3 we establishthis for the
relatively simple caseof agyclic structuresby meansof a Hanf locality agument. Section4 containsthe
main combinatorialargumentfor wide structuresvhich usesGaifmanlocality andaniteratedconstruction
of the substructuref A. In Section5, the combinatorialargumentis adaptedo the classesJ,. Finally, in
Section6 we discusghe existenceof a countergamplein the caseof planargraphs.We begin in Section2
with somebackgroundanddefinitions.

2 Preliminaries

We usestandardhotationandterminologyfrom finite modeltheory(see[5]). Someparticulardefinitions
andnotationareexplainedin this section.

2.1 Relational structures

A relationalvocalulary o is afinite setof relation symbols eachwith a specifiedarity. A o-structue A
consistsof auniverse A, or domain andaninterpretationwhich associatefo eachrelationsymbolR € o
of somearity r, arelationR* C A". A graphis astructureG = (V, E), whereE is abinaryrelationthat
is symmetricandanti-reflive. Thus,our graphsareundirectedJooplessandwithout paralleledges.

A o-structureB is calleda substructue of A if B C A andRB C RA for every R € o. It is called
aninducedsubstructue if RB = RA N B” for every R € ¢ of arity . Noticethe analogywith the graph-
theoreticalkconceptof subgaphandinducedsubgaph A substructurd of A is properif A #B. If Ais
aninducedsubstructuref B, we saythatB is anextensiorof A. If A isaproperinducedsubstructurethen
B is aproperextension.If B is thedisjointunionof A with anothers-structure we saythatB is a disjoint
extensionof A. If S C A is asubsebf the universeof A, then A N S denoteghe inducedsubstructug
genemtedby S; in otherwords,the universeof A N S is S, andtheinterpretationn A N S of the r-ary
relationsymbolR is RA N S".

The Gaifmangraphof ao-structureA, denotedby G(A), is the (undirected)graphwhosesetof nodes
is theuniverseof A, andwhosesetof edgesonsistof all pairs(a, a’) of distinctelementof A suchthata
anda’ appeatogetheiin sometupleof arelationin A. Thedegreeof astructures thedegreeof its Gaifman
graph thatis, the maximumnumberof neighborsof nodesof the Gaifmangraph.

2.2 Neighborhoodsand tr eewidth

LetG = (V, E) beagraph.Moreover, letu € V beanodeandletd > 0 beaninteger Thed-neighborhood
of u in G, denotedby Nf (u), is definedinductively asfollows:

1. NE(u) = {u};

2. N& . (u) =N&(u)U{v €V : (v,w) € E for somew € N§(u)}.
If A is ao-structure,a is apointin A, andG is the Gaifmangraphof A, we let N (a) denotethe d-
neighborhoodf a in G. Whereit causesno confusion,we alsowrite N4 (a) for the substructureof A
generatedby this set.

A treeis anagyclic connectedyraph.A tree-decompositioaf G = (V, E) isapair (T, L) whereT is a
treeandL : T — p(V) is alabellingof thenodesof T' by setsof verticesof G suchthat:
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1. for everyedge{u,v} € E, thereis anodet of T suchthat{u,v} C L(t);
2. foreveryu € V, theset{t € T : u € L(t)} formsaconnectecubtreeof 7.

The width of a tree-decompositiofT’, L) is maxer |L(t)| — 1. Thetreavidth of G is the smallestk for
which G hasatree-decompositioof width k. Thetreewidth of ao-structureis thetreewidth of its Gaifman
graph.Notethattreeshave treavidth one.

2.3 First-order logic, monadic second-orderlogic, and types

Let o be arelationalvocalulary. The atomicformulasof ¢ arethoseof the form R(z1,... ,z,), where
R € o is arelationsymbol of arity r, and z1, ... , z, arefirst-ordervariablesthat are not necessarily
distinct. Formulasof theform z = y arealsoatomic.

The collectionof first-oder formulasis obtainedby closingthe atomicformulasundernegation,con-
junction, disjunction,universalandexistentialfirst-orderquantification. The collection of existentialfirst-
orderformulasis obtainedby closingthe atomicformulasandthe negatedatomicformulasunderconjunc-
tion, disjunction,andexistentialquantification.The semantic®f first-orderlogic is standard.

The collection of monadicsecond-aider formulasis obtainedby closing the atomic formulasunder
negation,conjunction disjunction,universalandexistentialfirst-orderquantificationanduniversalandex-
istentialsecond-ordequantificatiorover sets. Thesemantic®f monadicsecond-orddogic is alsostandard.

The quantifierrank of a formula, be it first-orderor monadicsecond-ordeiis the depthof nestingof
guantifiersn theformula.

Let A bea o-structure,andlet ay,... ,a, bepointsin A. If ¢(z1,...,z,) is aformulawith free
variableszy, ... , z,, we usethenotationA = ¢(ai,... ,a,) to denotethefactthaty is truein A when
z; is interpretedby a;. If m is aninteger, the first-orderm-type of a4, ... ,a, in A is the collection of
all first-orderformulase(zx1, ... ,z,) of quantifierrank at mostm, up to logical equivalence,for which
A = ¢(ay,...,a,). Themonadicsecond-ordem-typeof ai, ... ,a, in A is thecollectionof all monadic
second-ordeformulasy(z1,. .. ,z,) of quantifierrank at mostm, up to logical equivalence,for which
A = y(a1,... ,ay). In thisdefinition, by quantifierrank of a monadicsecond-ordeformulawe meanthe
total quantifierrank,which meanghatwe includebothfirst-orderandsecond-ordequantifiersn the count.
We notethatsomedefinitionsof monadicsecond-ordetypein theliteraturedistinguishbetweerfirst-order
andsecond-ordeguantifierrank[14], but we do not needthis refinement.

2.4 Presewation under extensionsand minimal models

Let C be a classof finite o-structuresthat is closedunderinducedsubstructures.Let ¢ be a first-order
sentenceWe saythat ¢ is preservedunderextensionon C if wheneer A andB arestructuresn C such
thatB is anextensionof A, thenA |= ¢ impliesB = ¢. We saythat A is aminimalmodelof ¢ if A |= ¢
andevery properinducedsubstructured’ of A is suchthatA’ = ¢. Thefollowing Lemmastateshatthe
existentialsentencearepreciselythosethathave finitely mary minimal models.lts proofis partof folklore:

Lemma 2.1 LetC bea classof finite o-structuesthat is closedunderinducedsubstructues. Let ¢ bea
first-order sentencehatis preservedunderextensiononC. Then,thefollowing are equivalent:
1. pis equivaleninC to an existentialsentence
2. ¢ hasfinitely manyminimalmodelsn C.
In therestof the paper we useseveraltimestheimplicationfrom 2. to 1. Justfor completenesshisis

proved by taking the disjunctionof the existentialclosureof the atomictypesof eachof thefinitely mary
minimal models.



3 Acyclic Structures

We begin with the simplecaseof agyclic structurespy which we meanstructuresvhoseGaifmangraphis
agyclic. We shav thatary classof suchstructuresatisfyingcertainclosurepropertiesadmitsthe extension
preseration property Note, for structuresvhoseGaifmangraphsareagyclic, thereis no lossof generality
in assuminghatthevocahulary o consistf unaryandbinaryrelationsonly.

The proof makesheary useof atechniqueknovn asHanflocality, for which we provide the necessary
backgroundirst.

Let A andB bestructures.If a € A™ b € B™ arem-tuples,we write (A,a) =™ (B, b) to denote
thatthefirst-orderm-typeof a in A is the sameasthefirst-orderm-typeof b in B. In particularA =™ B
denoteghatthe structuresA andB arenot distinguishedoy ary first-ordersentencef quantifierrank m
or less.Theeguivalencerelation="" is characterizedby Ehrenfeucht-Frias gameqsee for instance[5]).
Thesecanbeusedto shav thattherelationis acongruenceavith respecto disjointunionwith a multiplicity
thresholdof m. A precisestatemenof this usefulpropertyis givenin thefollowing lemma.We write A & B
to denotethedisjointunionof thestructuresA andB andn A to denotethedisjointunionof n copiesof A
(se€[5, Prop.2.3.10]).

Lemma3.1 LetA, Ay, B1, andB; bestructues,andlet m, n andn’ beintegers.

1. If A; =" B; and Ay =™ By thenA; © Ay =™ B @ Bs.
2. If n,n' > mandA =™ B thennA =" n/B.

A usefulsuficientconditionfor the="" equivalenceof structuress providedby Hanflocality. The Hanf
typeof radiusr of astructureA is the multisetof isomorphisntypesof r-neighborhoodsf elementsn A.
We saythattwo structuresA andB areHanf equivalentwith radiusr andthresholdg, written A ~, , B,
if, for every a € A, eitherthe numberof occurrencesf theisomorphismtype of N (a) in the Hanftype
of A is thesameasthatin the Hanftype of B, or it is atleastq, andconverselyfor every element € B.
This allows usto statethefollowing (for a proof seefor instancq14, Theo.4.24]):

Theorem 3.2 (Hanf Locality) For everyvocalulary o andeverym there arer andq sud thatfor anypair
of o-structues A andB if A ~, , B thenA =" B.

As afirst steptowardsthemainresultof this sectionwe establista usefulpropertyof connectedagyclic
structureswith degreeat most2. ThesearestructuresvhoseGaifmangraphconsistof a simplepath. This
is a a very restrictedclassof structures.In particular ary classof suchstructureds wide, in the senseof
Theorem4.3 belon. Thus, on ary classof suchstructuresthe extensionpreseration propertyholds by
virtue of Theorem4.3. However, the propertyin Lemma3.3 providesa useful steppingstonein our proof
for all agyclic structuresandalsosenesasa usefulwarm-upfor the proofin Section4.

Lemma 3.3 For everyvocalulary ¢ andeverym > 0 ther is a p sud thatif A is a o-structue whose
Gaifmangraphis connectedacyclicand of degreeat most2 and | A| > p, thenthereis a disjoint extension
B of A anda propersubstructue A’ of A sudthat A’ =™ B.

Proof: Givenm, let » and g be obtainedfrom Theorem3.2. We first considerthe 2r-neighborhood®f
elementsof A, returninglater to considerr-neighborhoodsvhenwe wish to establishthe Hanf typesof
thestructuresve construct.Clearly, the 2r-neighborhoodype of anelementdeterminesdts r-neighborhood
type. Also note that amongo-structureswhosedegreeis bounded(by 2) thereare only finitely mary
isomorphismtypesof 2r-neighborhoodsLet n be the numberof suchtypes,let! = 2r(n + 1) + 1 andlet

p=nl(g+1).



For ¢ the isomorphismtype of a 2r-neighborhoodn A, we saythatt is frequentif thereare at least
q + 1 elementsn A whosetypeist. Sincethereareatmostn types,thenumberof occurrencesf elements
whosetype is not frequentis lessthann(q + [). Thus,in a pathof lengthp theremustbe a sequencef
[ consecutie elementsf frequenttype. Let aq, ... ,a; be sucha sequence Amongthe 2rn + 1 central
elementsof the sequence, 1, ... , a2, 1)1 theremustbe a pair a;, a; which have the sametype and
suchthatj — ¢ > 2r. Let C bethesubstructur®f A generatedby theelementsy; 1, ... ,a;. WedefineB
tobe A @ C andA’ to bethesubstructur@f A generatedby A \ C.

Ouraimisto prove A’ =™ B by shawing thatA’ ~, , B. We dothis by consideringhow theHanftype
changesn goingfrom A to A’ andalsohow it changesn goingfrom A to B. So,for ¢ theisomorphism
typeof anr-neighborhoodn A, we saythatt is rareif therearefewerthang elementsn A whosetypeist.
Write D for thesetof elementa;_,11,-.. ,ai,aj41,--- ,a;4, }. Thatis, D consistf ther elementshat
occurimmediatelybeforeC andther elementghatoccurimmediatelyafter C' in thesequence,, ... , q;.
Forary element € A thatisnotin CUD, NA(a) = NA'(a). Forary element of CU D, themultiplicity
of thetypet of N (a) maydecreasén goingfrom A to A’. However, ¢ occursat leastq + [ timesin A
andthis multiplicity cannotdecreaséy morethan! as|C U D| < [. Thus,t is notrarein A’. Clearlythe
elementof D mayhave typesin A’ thataredifferentto theirtypesin A andthereforethe multiplicities of
thesetypesmayincrease.

Similarly, for ary elementa € A, N*(a) = NB(a), thusary typet thatoccursin A hasat leastthe
samemultiplicity in B. Let C' = {a;,,,... ,a}} denotethe elementsn the new disjoint copy of C. If
aj, € C'issuchthati + r < k < j — r thenthe r-neighborhoodf a), is isomorphicto N/*(ay). Since
thetype of a, is frequent,addingto its multiplicity is not significant. Thus,we only needto considerthe
typesof theelementdn D' = {a{,,... ,a; ,,1,0;_, 1, ,a;}. Fortheseelementsthetypesof their
r-neighborhoodsn B may be new andresultin anincreaseof the multiplicities of thesetypesover their
occurrencedn A. Thus,to establishour resultthat A’ ~, , B it sufficesto shawv thatthereis a bijection
f: D — D'suchthatfor alla € D, N2 (a) = NB(f(a)). By constructionthereis anisomorphism
h : Njr(a;) — Nix(a;) andthereforein particular for —r < k < r, NA(a; k) = N2A(aj1x). We cannow
definethedesiredbijection f asfollows: for 1 <k <r, f(ai—k+1) = aj_,, andf(aj4i) = a4 O

We now usetheabove lemmato obtaina similar resultfor connectedgyclic structuresithoutabound
onthedegree.Thisis doneby reducingthe caseof generaldegreeto thosewith degreeat most2 by means
of anappropriateranslation. For the vocalulary o, thereareonly finitely mary first-orderm-typesof o-
structuresLetry,... , 7, beanenumeratiorf thepossibletypesof a in A, whereA isaconnectedagyclic
structureanda € A. Wereferto a asthedistinguishecelemendf (A, a). We definea nev vocahulary o
which hasthe samebinaryrelationsaso anda unaryrelationT; for eachr;.

Let A beao’-structurethatis connectedagyclic andof degreeat most2 with the propertythatfor each
a € A thereis auniquei suchthatT;(a). We constructfrom A ao-structureA asfollows: eachelement
a € A with T;(a) is replacecby astructureT, of typer;. Moreover, for ary binaryrelationR, (b,c) € RA
if, andonly if, eitherb andc arein thesamestructureT, and(b,c) € RTe or b is thedistinguishecelement
of T,, c is thedistinguishecelementof T, and(a,a’) € RA. ThestructureA is notuniquelydetermined
by A asthereare,in generalmary structuref typer;. However, thefollowing lemmais easilyestablished
alongthelinesof Lemma3.1.

Lemma 3.4 Let A andB bestructuesconnectedacyclic structues of degree at most2 with the property
that for eah elementthere is a unique: sut that 7; holds,andlet m be aninteger. If A =™ B then
A =" B.

We will call astructureof theform A ac-companiorof A.



Lemma 3.5 For every vocalulary ¢ andeverym > 0 ther is a p sud thatif A is a structue whose
Gaifmangraphis connectedndacyclicandwhich containsa pathwith more thanp elementsthenthere is
a disjointextensiorB of A anda propersubstructue A’ of A sud that A’ =™ B.

Proof: Let o' bethe vocahulary, asabove, with a unaryrelationfor eachm-type of o-structuresandlet p
beasin Lemma3.3for thevocalilary o’. Letay, ... ,a, bethepathof lengthp in A. For eachi, let S; be
thesetof elementshatarereachablégin the Gaifmangraphof A) from a; withoutgoingthrougha; for ary
j # 1 andlet S; bethesubstructurgeneratedy S;. We definetheo’-structures A asfollows. Theuniverse
of sAis {ai,... ,a,}; Tx(a;) holdsif, andonly if, a; hastyper in S;; and(a;, a;) € R** if, andonly if,
(ai,a;) € RA. Then,it is easilyseerthat A is a c-companiorof sA (which is defined sincethe Gaifman
graphof A is agyclic).

Let sA’ andsB bethe structuresobtainedfrom sA by Lemma3.3. We obtain A’ asa o-companion
of sA’ by replacingeachelementa; by the structure(S;, a;). This ensureghat A’ is a substructureof
A. Similarly, we obtainB asa o-companionof sB, ensuringthatB is a disjoint extensionof A. Since
sA' =™ sB by Lemma3.3,wealsohave A’ =™ B by Lemma3.4. |

Notethatin bothLemmas3.3and3.5B is not only a disjoint extensionof A, it is in factthe disjoint
unionof A with asubstructuref A.

In orderto prove the maintheoremof this section we needonefurthercompositionpropertyof agyclic
structuresalongthe lines of the propertiesn Lemma3.1. In orderto defineit, we introducesomefurther
notation. Given an agyclic structureA andan elementa € A, for every neighborb of a let S, be the
setof elementdn A which arereachabldrom b (in the Gaifmangraph)without going througha andlet
tp,(b) denotethefirst-orderm-typeof b in S;. We definethe child-typeof b with respecto a to bethe pair
(at(a,b), tp, (b)) Whereat(a,b) is the atomictype of the pair (a,b). Finally, we definethe child-type of
anelementa, written ct® (), to be the multisetof the child-typesof its neighborswith respecto a. Write
(A,a) ~, (B,b) to denotethatevery type either occursthe samenumberof timesin ct (a) asit does
in ctB(b) or occursat leastm timesin both. The following lemmais now a straightforvard applicationof
games.

Lemma3.6 If (A, a) ~, (B,b) then(A,a) =, (B, b).
We arenow readyfor the maintheorenof this section.

Theorem 3.7 LetC bea classof acyclicfinite structues, closedunder substructues and disjoint unions.
Then,on C, every first-order sentencehat is preservedunder extensionsis equivalentto an existential
sentence

Proof: Let ¢ bea sucha sentencef quantifierrankm. We aimto showv thatthereis an N suchthatif A
in C is amodelof ¢ with morethan N elementghenA is notminimal. Let p beasin Lemma3.5,n bethe
numberof distinctfirst-orderm-typesof connectedtructuresn C andg bethe numberof distincttypesof
theform (at(a, b), tp, (b)) Wherea andb areneighborsn astructurein C. Let N = mn(gm)P.

Now, supposeA is aminimalmodelof ¢ in C with morethan N elementsWe considerthreecases.

Casel: A hasmorethanmn distinctconnecteccomponentsThentheremustbe somecollectionof
morethanm suchcomponentshathave the samefirst-orderm-type. Considerthe structureA’ obtainedby
removing oneof thesecomponentsBy Lemma3.1 A’ =™ A, contradictingthe minimality of A.

If A hasmn or fewer connecteccomponentspne of thesecomponentsnusthave at least(¢gm)? ele-
ments.Call this componenC thelarge component.

Case2: Thelarge componenbf A hasa nodeof degreegreaterthangm. Call this nodea. Thetype
ct® (a) mustcontaina typewith morethanm occurrenceslet b bea neighborof a thathasthis child-type
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with respecto a. Let A’ bethesubstructur®f A obtainedby removing all elementsn S,. By Lemmag3.6,
we hare A’ =™ A againcontradictinghe minimality of A.

Case3: If C doesnotcontainanodeof degreegreatetthangm, it mustcontaina pathof lengthp. Thus,
by Lemmag3.5, thereis a propersubstructureC’ of C andadisjoint extensionD of C suchthatC’ =" D.
Let A’ bethe structureobtainedfrom A by replacingC by C’ andB bethe structureobtainedfrom A by
replacingC by D. Then,by Lemma3.1, A’ =™ B. NotealsothatA’ andB arein C sinceit is closedunder
substructureanddisjoint unions. Sincey is presered underextensionsonC, B |= ¢ andhenceA’ |- ¢
againcontradictingthe minimality of A. |

4 Wide Structures

This sectionwill focuson classe®f structureghatarewide, meaningthatlarge enoughstructurescontain
mary pointsthatarepairwisefar apartfrom eachother It wasshavn in [1] thatthehomomorphisnpreser
vationtheoremholdson ary wide classof structuresHerewe aim to establisithe analogousesultfor the
extensionpreseration property

Definition 4.1 A setof elementsB in a o-structue A is d-scatteredf for everypair of distincta, b € B we
haveN# (a) N N2 (b) = 0.

We saythata classof finite o-structuescC is wideif for everyd andm there existsan N sud thatevery
structue in C of sizeat least N containsa d-scatteed setof sizem.

Thecanonicalkexampleof awide classof structuress thethe collectionof all structuresof degreebounded
by a constant.More generally ary classof structuresvhosemaximumdegreeis boundedby n°(!), where
n is thenumberof elementof the structurejs wide.

Unfortunately thetechniquesindagumentsof Section3 basedon Hanflocality will notbe enoughfor
ourcurrentpurposelnsteadwe will have to resortto Gaifmanlocality, for which we provide thenecessary
backgroundirst.

For every integerr > 0, let 6(z,y) < r denotethe first-orderformula expressingthat the distance
betweenz andy in the Gaifmangraphis at mostr. Let é(z,y) > r denotethe negationof this formula.
Notethatthe quanfierrankof §(z,y) < r isboundeddy r. A basiclocal sentencés a sentencef theform

(3z1) -+ (Fzp) /\ §(zi,zj) > 2r A /\¢N’(I")($i) , (4.1)
i#j i

whereq) is afirst-orderformulawith onefreevariable.Here, (%) (z;) standsfor therelatiization of 1)
to N, (z;); thatis, the subformulasf ¢ of the form (3z)(6) arereplacedby (3z)(6(z, z;) < r AH), and
the subformulasof the form (Vz)(6) arereplacedby (Vz)(é(z,z;) < r — 6). Thelocality radiusof a
basiclocal sentences r. Its widthis n. Its local quantifierrankis the quantifierrankof 1. We will usethe
factthatbasiclocal sentencearepresered underdisjoint extensions.Note, however, thatthey maynot be
presered underplain extensionssincein thatcasethe neighborhoodsangrow.

Themainresultaboutbasiclocal sentencess thatthey form a building block for first-orderlogic. This
is known asGaifmans Theorem(for a proof, see for example,[5, Theo.2.5.1)):

Theorem 4.2 (Gaifman Locality) Every first-order sentencds equivalentto a Booleancombinationof
basiclocal sentences.

Thefollowing theoremcontainsthe maintechnicalconstructiorof the paper



Theorem 4.3 LetC be a classof finite o-structues that is wide and closedunder substructues and dis-
joint unions. Then,on C, everyfirst-order sentencehat is preservediunderextensionss equivalentto an
existentialsentence

Proof: Let ¢ beafirst-ordersentencehatis presered underextensionson C. By Gaifmans Theoremwe
mayassumehaty = \/,.; 7, with

=N\ N\ -6i, (4.2)
JEJ; kEK;

whereeachd! is a basiclocal sentenceNow we definea list of parametershatwe needin the proof (the
reademay skip this list now anduseit to look up the valueswhenthey areneeded):

e r is themaximumof thelocality radii of all §?
s is the sumof all widthsof all 8¢,

m is themaximumof thelocal quantifierranksof all 6?

¢ is thenumberof disjunctsin ¢, sof = |I|.

n=(£+2)s,

M =m+3r+3,

d=2(r+1)({+1)s+6r+2,

g is thenumberof monadicsecond-ordeM -typeswith onefreevariable,

N is suchthatevery structurein C of sizeatleastN containsa (4dg + 2r + 1)-scatteredsetof size
(n—1)g+s+42€s+1.

Ourgoalis to shawv thatthe minimal modelsof ¢ have sizelessthan N. Suppos@nthecontrarythatA isa
minimal modelof ¢ of sizeatleastN. We definethetypeof apointa € A to beits monadicsecond-order
M-typein AN N;ﬁ(a). In otherwords,thetype of a is the collectionof all monadicsecond-ordeformulas
() of quantifierrank at most M, upto logical equivalencefor which A N N2 (a) = 4(a). We saythat
a realizesits type. Thereasonwe considermonadicsecond-ordetypes,insteadof first-ordertypes,will
becomeclearlaterin theproof. Let,, ... ,t, beall possibletypes.We needa coupleof definitions.Let C
beasubsebf A andt atype. We saythatt is coveredby C if for all realizations; of t we have N(j\(a) cC.
We saythatt is freeover C if thereareatleastn realizationszy, ... ,a, of t suchthat N (a;) and N2 (a;)
arepairwisedisjointanddo notintersectC.

Claim 4.4 Thee existsaradiuse < 2dg anda setD of at most(n — 1)g pointsin A sud thatead typeis
eithercoveredby NA (D) or freeover NA (D).

Proof: We defineD ande inductively. Let Dy = () andey = 0. Supposenow that D; ande; arealready
defined.Let C = Ne‘j(Di). If all typesareeithercoveredby C or freeover C, thenlet D = D; ande = e;.
Otherwise let j be minimal suchthattypet; is neithercoveredby C norfreeover C. We defineasetE
inductiely asfollows. Let Ey = (). Supposenow that E; is alreadydefined. If thereis no realizationof
t; outsideN£y(C U E;), thenlet E = E; andwe aredonewith the constructiorof E. Otherwise/et a;1
be a realizationof ¢; outsideN45(C U E,) andlet Ey;; = E; U {a;+1}. Notethatthis iteration cannot
continuebeyondn — 1 stepssinceotherwiset; would befree over C'. This meanghattheiterationstops,
andwhenit does|E| < n — 1 andt; is coveredby ary setthatcontainsNé’}i(C U E), andin particularby

N£+2d(Di UE). LetD;11 = D; U E ande;+1 = e; + 2d. The constructionstopsafter at mostq steps



becauseat eachstepone new type is coveredandremainscoveredfor the restof the construction. This
shavsthat|D| < (n — 1)g ande < 2dg, which provestheclaim. O

In thefollowing, we fix e and D accordingo Claim 4.4. We saythatatypet is frequentf it is notcovered
by NA (D). Otherwisewe saythatt is rare.

We shallbuild afinite sequencef setsS, C S; C ... C S, C A, with p </, sothatthelastsetS), in
thesequencevill besuchthatthesubstructuref A inducedoby S, is apropersubstructuref A thatsatisfies
. Thiswill contradictthe minimality of A andwill prove the theorem. The sequences; is constructed
inductiely togethemwith a secondsequencef setsCy C C; C --- C C, C A calledthe centes, anda
sequencef setsof indicesly C I} C --- C I, C I (recallthat¢ is the disjunctionof the formulas;
from (4.2) for ¢ € I). Moreover, the following conditionswill be presered by theinductive construction
for everyi < p.

(@) Si C NA(Cy).

(b) |C;| < is.

(c) Nodisjointextensionof A N S; satisfies\/jeli Tj.

(d) NA(D) andN2(C;) aredisjoint.

(€) L] =1.

Obsenre thatit is adirectconsequencef property(d) thatthetypeof eacha € C; is frequent.

LetSy = Cy = Iy = (), andletusassumehatS;, C; and; have alreadybeendefinedwith theproperties
abore. We constructS; 1, Ci+1, andl;1 1. Let B bethedisjointunionof A with acopy of A N S;.

SinceB is anextensionof A, it satisfiesp. 4.3)

Thereforethereexistsani’ € I suchthatB satisfiesr;;. By property(c), sincethe extensionis disjoint, we
know thats’ ¢ I;. Let I, = I; U {i'}. For therestof the proof, theindex ' will befixedsowe dropary
referenceo it. For example,we will write 7 insteadof 7;; andé,, insteadof 9};. Recallthat

SinceB satisfiesr, in particularit satisfiesthe positve requirementsB = A, ;0;. Let W; bea
minimal setof witnessesn B for the outermostexistentialquantifiersin 6;, andlet W = (J,., W;. We
have [W| < s. Someof thesewitnessesnaybein A andsomemay bein the nev copy of A N S; in B.
LetW, UWpg = W besuchapartition,with W4 beingthewitnessesn A. Thefollowing claim shavs that
W 4 canbechoserfarfrom C;. Thiswill beneededater.

Claim 4.5 Theris asetW of witnessesuct that N2, (C;) N NA(Wa) = 0.

Proof: Fix asetW of witnessesothatthe numberof pointsb in W, for which NA , (C;) and NA (b) are
notdisjointis minimal. Supposehatthis numberis notzero,andletb € W4 with N | (C;) N N2 (b) # 0.
Leta € C; besuchthat NA | (a) N NA(b) # 0. ThenNA(b) C N4, (a) C N4 (a). By property(d), the
typet of a is frequent.Solet a’ be arealizationof ¢ suchthat N , (W U C;) and N4, (a') aredisjoint.
Suchand’ existsbecauseé is frequentandthus,by Claim 4.4,is freeover N2 (D) andthushas

n>L+1)s > |WUC;|
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realizationsvhosed-neighborhoodarepairwisedisjoint anddisjoint from NA (D).

Thegoalnow is to find ab’ suchthat NA(¥') C Nir_,(a') C N2*(a') andsuchthatb andb’ have the
saméfirst-orderm-typeon A N NA(b) andA N NA(b’) respectiely. If we achieve this,thend’ canreplace
b asawitnessin Wy, andsinceNA | (W U C;) andN# , (a') aredisjoint, soare N2 | (C;) and NA (V).
Thiswill contradictthe minimality of .

In orderto find b’ asabaove, let T' be the first-orderm-type of b on A N NA(b), andlet £(z) bethe
following first-orderformula:

(Fy) | (V2)(0(y,2) <r — d(z,2) <3r+1 /\ xN @)
X€T

Note that the conjunctionis finite becausehe first-orderm-type T’ containsfinitely mary formulasup to
logical equivalence,andthat the quantifierrank of this formulais boundedby 3r + 3 + m < M. Also
N#(a) | &(a) because cansene asawitnessfor y. Therefore sincea anda’ have the samemonadic
second-orde) -typeandhencethe samefirst-orderM -typein N (a) and N2 (a'), alsoN2 (a') |= &(a').
Noteherethatwe arenotyetusingthefull powerof monadicsecond-ordetype,only thefactthatit contains
thefirst-ordertypeasasubsetLet b’ bethewitnessto y in N2 (a') |= £(a'), completingthe proof. O

In the following, we fix a setiW of witnessessuchthat N2 | (C;) N NA(W,4) = 0. We let C bethe
substructuref A inducedoy NA (D) U NA(W4) U S;. We claimthatC satisfieghe positive requirements
of 7:

Claim 4.6 C is a substructue of A sudh thatC = A, 0;.

Proof: It is obviousthatC is a substructuref A. Thepoint, howvever, is thatC is in factthe disjointunion
of the substructurénducedby NA (D) U NA(W4) andthe substructurénducedby S;. This is because
S; C NA(C;) andNA | (C;) is disjoint from N2 (D) by property(d) andalsodisjoint from N (W 4) by
Claim4.5. It follows thatthewitnessesrom B in Wz canalsobefoundin C. Obviously, alsothewitnesses
from B in W4 canbefoundin C. This provesthat C satisfieghe positive requirement®f 7. O

Considerp onC. If Cisamodelof ¢, letS, = NA(D)UNA (W 4)US; andwearedone.NoticethatC
isapropersubstructuref A because containgn—1)g+s+£s+1 pointsthatare(4dq+2r+1)-scattered,
but S, C Ny, (D UW,UC;) and

IDUWA4UC;| < (n—1)g+s+4s.

If C is notamodelof ¢ it cannotsatisfyr. However, by Claim 4.6, C satisfieshe positve requirements
;e 0;- Therefore C doesnotsatisfy A, —0k. Letk € K suchthatC = 6. In thenext claimwe find
asubstructuref A thatextendsA N S; andforcesall its disjoint extensiongo satisfy6y,.

Claim 4.7 Thee existC;;1 O C; and S;+1 O S; asrequired by conditions(a)—(d).

Proof: Supposdhat

O = (Fz1) ... (3zy) (/\(5 T, zj) > 2r' /\/\¢N () ( ))

Gal]

for somer’ < r, s’ < s, andsomeformulat of quantifierrankm’ < m. Withoutlossof generalitywe may
assumehatm’ = m, andin orderto simplify the notation,we will assumehatr’ = r ands’ = s. It will
sufiice to replacer by 7’ ands by s’ in theappropriatelaces.
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Wehave C |= 6. LetV = {a4,... ,as} beasetof witnessedor the outermosexistentialquantifiers
in 0. ThenNC(a;) N NC(a;) = 0 for all i # j andC N NE(a;) = ™ (#i)(a;) for all i. Necessarily
thetypet of somea € V is frequent.OtherwiseNA (V) C NA(D) C A, sSOA = 6, andthusB |= 6,
becausd is adisjoint extensionof A. However, thisis impossiblebecaus® = 7.

Soleta € V have frequenttypet. Let Z beasetof s realizationof ¢ suchthat

(i) N&(b) NN (Y) = 0 for every pair of distinctd, b’ € Z,
(i) NA(D)NNXMZ) =0,
(i) NA,(Ci))NNA(Z)=0.

SuchasetZ existsbecause is frequent,n = (£ + 2)s, and|C;| < £s by property(b).

Now, let F = NC(a). RemembethatC N F = () (a). As F C NA(a), it followsthatA N F =
YN*(@)(g). Let X beasetvariable,andlet "V~ (*)"X (X z) denotethe simultaneouselatiization of 1(x)
to N.(z) and X, thatis, the formula obtainedfrom ¢ by replacingeachsubformulaof the form (3z)¢
by (3z)(é(z,2) < r A X(z) A &), andsimilarly for universally quantifiedsubformulas.Obsere thatthe
quantifierrank of 4N~ ()X (X z) is atmostm 4+ r < M — 1, wherewe take r hasan upperboundfor
the quantifierrank of the formula expressingd(z,z) < r. Moreover, A = ¢ @)X (F q) andhence
A = IXypN@NX (g),

Next comesthe placewherewe usethe full power of monadicsecond-ordetypes. Sinceevery b € Z
hasthe samemonadicsecond-ordeM -type asa, we have A |= 3X 4N (#)NX (). Thusthereis a set
F, C NA(b) suchthatA = o™ (@)X (F, b). It follows that

ANF =M@ o).

DefineC;y; = C; U Z and
Siy1 =5 U U F.
beZ
Let us prove that C;;, and S;;; satisfy the properties(a), (b), (c), and (d). Property(a) is clearsince
Fy C NA(b). For property(b) we have |Ci4 1| = |C;| + s < (i + 1)s. Property(d) is satisfiedoy (ii) in our
choiceof Z.

Finally, for property(c) we agueasfollows. Firstnotethat A N S, is adisjointextensionof A N S;
becauseVA | (C;) N NA(Z) = 0 by (i) andS; C N2(C;) by a. Therefore,no disjoint extensionof
A N S;4, satisfiesr; for ary j € I;. It remainsto shav that no disjoint extensionof A N S;, satisfies
7. However, this is clear from the constructionbecausesvery disjoint extensionof A N S;,; contains
witnessedor the outermostexistential quantifiersin 6;; namely the elementsf the setZ. Supposehat
Z = {by,... ,bs}. Notethatb; have pairwisedistance> 2r by (i), andwe have A N S;;1 = V(@) (),
becauseVAN%i+1(b;) = Fy, andA N Fy, | o™ (@) (b;). O

Notethat; ; is constructedo satisfyproperty(e) aswell. Thiscompleteshedefinitionof theinductive
construction. All it remainsto seeis that the constructionstopsin at most£ steps. Becausesupposeor
contradictionthatwe have constructeds,, Cy, and I, satisfying(a)—(e).ThenI, = I by (e),andby (c), no
disjointextensionof A N S, satisfiesp = \/,.; 7;. However,

thedisjointunionB of A N S, with A is anextensionof A and (4.4)
hencedoessatisfyp.
Thisis a contradiction. O

As adirectapplicationof Theorem4.3, let us considerthe classD,. of all finite o-structuresof degree
boundedby r. This classis both wide and closedunder substructuresnd disjoint unions. To seethe
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widenessnotethatwhenthe degreeof every nodeis atmostr, for ary element, N,4(a) containsat mostr¢
elementsThus,if astructurehassizegreateithanm(r¢), it mustcontaina d-scatteregetof m elements.

Theorem 4.8 Letr beaninteger. Then,onD,., everyfirst-order sentencehatis preservedinderextensions
is equivalento an existentialsentence

In thefollowing sectionwe shav how the agumentof Theoremé4.3 canbe extendedjn somecasesto
classe®f structureghatarealmostwide

5 BoundedTreewidth Structures

Theclassof structureof boundeddegreeprovide a canonicalexampleof awide class.On the otherhand,
agyclic structuregwhich we consideredn Section3) arenotwide. Indeed,in an arbitrarily large tree of
heightl all pairsof nodesareatdistanceatmost2 from eachotherandthereis thereforenolarge d-scattered
setfor arny d > 2, yetthetreemaybearbitrarily large. However, in sucha structuretheremoval of justone
elementtheroot, createsalarge scatteredet. This motivatesthe definition below.

Definition 5.1 A classof finite o-structuesC is almostwideif theris a k sud thatfor everyd andm there
existsan N sud thateverystructue A of sizeatleastN in C containsa setB with at mostk elementsud
that A — B containsa d-scatteed setof sizem.

It wasshavn in [1] thatthehomomorphisnpreseration propertyholdsfor almostwide classe®f structures
which are closedundersubstructuresind disjoint unions. It wasalsoestablishedhatary classof graphs
thatexcludesa minoris almostwide.

It is not the casethat the extensionpreseration property holds for all almostwide classes. This is
shawn in the next section,wherewe shaw, in particular thatit fails for the classof planargraphs.lIt turns
out thatthe requirementhatan almostwide classbe closedundersubstructureanddisjoint unionsis not
sufiicient to guarantedhe extensionpreseration property Neverthelessclosureunderunionsover a set
of bottleneks sufiices, a notion we make more preciselater In this sectionwe shav that this yields the
preseration underextensiongpropertyfor someparticularlyinterestingalmostwide classesTo be precise,
we shav shav thatthe propertyholdsfor the class7;, of all finite o-structuresof treawidth lessthank. In
otherwords,we aimto prove thefollowing result:

Theorem5.2 Letk beaninteger. Then,on 7y, everyfirst-order sentencéhatis preservedinderextensions
is equivalento an existentialsentence

The proof of this resultrequiresthreeingredients.Thefirst ingredientis a generalizatiorof the disjoint
union operationon structuredy allowing somenon-emptyintersection.Let A andB be o-structuresand
letC C AN B besuchthatA N C = BN C. Theunionof A andB throughC, denotecby A &¢ B isa
new o-structuredefinedasfollows. Theuniverseof D = A @¢ B is A’ U B’ U C, whereA’ is adisjoint
copy of A — C and B’ is adisjointcopy of B — C. Therelationsof D aredefinedin the obviousway: If
ai,... ,a, arepointsin A anda’, ... , a\. arethecorrespondingointsin A’'UC, then(a/, ... ,a.) € RP if
andonlyif (ai,... ,a,) € R™. Similarly, if by, ... , b, arepointsin B andb}, ... ,b. arethecorresponding
pointsin B’ U C, then(b}, ... ,b.) € RP if andonlyif (b1,...,b,) € RB. Obsere thatthis construction
is preciselythedisjointunionof A andB whenC = §.

The next lemmais a straightforvard generalizatiorof the obvious fact that 7, is closedunderdis-
joint unions. The Lemmastates roughly that 7; is closedunderunionsthroughsubsetof bags of tree-
decompositions
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Lemma5.3 Letk beaninteger. Let A andB betwo o-structues,let C C AN B besudhthatANC =
BN C, andlet (T, L) and (T", L") be tree-decompositionsf width £ of A and B, respectively Then,if
there existsnodesu € T andu’ € T' sud thatC C L(u) N L' (u'), thentheunionof A andB throughC
hastreavidth at mostk.

Proof: The tree-decompositioof the unionis (7", L U L"), whereT” = T U T" with a new treeedge
joining u andv’. O

The secondngredientis the factthatthe classof structuresof treewvidth lessthank is almostwide, in
the sensef Definition 5.1 thatthereexistsa small setof verticeswhoseremoval produces large scattered
set. Sucha setis henceforticalleda bottlene&. Thiswasprovedin [1] but herewe statethe strongerclaim
thatthebottleneckcanbefoundin a singlebagof atree-decompositionilhe proofis thesameasin [1] and
is sketchedherefor completeness.

Lemma 5.4 For everyk, andfor everyd andm, there existsan N sud thatif A is a o-structue of sizeat
leastN and (T, L) is atree-decompositioaf A of width &, thenthere existu € T"and K C L(u) sud that
A — K containsa d-scatteed setof sizem.

Proof sketd: Letp = (m — 1)(2d +1) + 1, M = k!(p — 1)*¥, andN = k(m — 1) andsupposghat
A is a structurewith morethan N elements.Let (7, L) be a treedecompositiorof A suchthat L(u) has
sizeatmostk for all w € T. NotethatT hassizeatleastN/k + 1. Furthermoresupposél” hasa nodeu
of degreeat leastm. But thenit is easyto seethattaking K = L(u) givesagraphwith atleastm distinct
connecteccomponent@&ndthereforea scatteredsetof sizem. On the otherhand,if every nodeof T' has
degreelessthanm, thenT musthave apathwith lengthgreatetthan M. By the Sunflover Lemmaof Erdos
andRado[7], it follows thatwe canfind p distinctnodesus, ... ,u, € T andasetK C A suchthatfor
i # j, L(u;) N L(u;) = K. It canthenbeshovn that A — K mustcontaina d-scatteredetof sizem. O

Thethird ingredientin the proof is a first-orderbi-interpretatiorbetweenan almostwide structureand
a wide structure. From now on we focus on graphs;the constructionextendseasily to the generalcase.
Let Pi,..., P, Q1,...,Q beunaryrelationsymbolsande = {E, Py,... , P, Q1,... ,Qx}. Forevery

graphG = (V, E%) andeverytuplea = (ai,...,a;) € V* we definea o-structureA = A(G,a) as
follows:

1. A=V,

2. EA = EC — {(a,b) € A% : {a,b} N {ay,-.. ,a} # 0},

3. P = {ai},

4. QA ={be A: (a;,b) € EC}.

Let us call a o-structureA derivedif E4 is a symmetricandanti-reflive binary relation, andthereare
elementsiy,... ,a, € A suchthatlDiA = {a;} for 1 <13 < k andag; is isolatedin the graphunderlyingA;
thatis, for 1 < i < k thereis nob suchthat(a;,b) € E“. Notethatfor every derived structureA thereis a
uniquegraphG(A) andauniquek-tuplea(A) of verticesof G(A) suchthat

A = A(G(A),a(A)).

The point behindthe constructiorof A = A(G, a) isthatif K = {ay,... ,ax} isabottleneckof G in the
sensghatG — K containsa large scatteredet,then A itself hasa large scatteregetandmaintainsall the
informationneededo reconstructG. Indeed,G(A) is first-orderinterpretablen A, andthuswe getthe
following lemma:

14



Lemma 5.5 For everyfirst-order sentencep of vocalulary { E'} there is a sentencep of vocahlulary o such
thatfor all o-structues A wehave:

1. If A |= ¢ thenA isderived.
2. If AlisderivedthenA = ¢ if andonlyif G(A) = ¢.

This follows at once from a standardresult on syntacticalinterpretations(cf., for example, Theo-
remVIII.2.2 of [6]).
Equippedwith thesethreeingredientswve arereadyfor the mainargument.

Proof: [of Theoremb.2] Let ¢ be afirst-ordersentencehatis presered underextensionsn 7. It sufiices
to shaw that ¢ hasfinitely mary minimal models. Let G = (V, E®) be a graphin 7y, thatis a minimal
modelof ¢. Supposdor contradictionthat G is very large. Let (T, L) be a tree-decompositionf width
k of G, andlet K = {b1,... ,bx} C V beabottleneck;thatis, a setsuchthat G — K containsa large
scatteredset. By Lemma5s.4 we mayassumehat K C L(u) for someu € T. Let A = A(G,b), where
b = (b,...,b). Theideais to work with A and ¢ insteadof G and ¢ and proceedasin the proof
of Theoremd.3. The differenceis that ¢ is not presered underextensions.However, preseration under
extensionsis usedonly twice in the proof of Section4 (in (4.3) and (4.4)), both timesto prove that the
disjointunionB of thestructureA with A N S; isamodelof ¢. Claim 5.6 shavsthatin bothcasesB is a
modelof @.

Claim 5.6 Let C C A sud thatthetypeof each a € C is frequent.Let S C N,(C) andlet B be the
disjointunionof A with a disjointcopyof A N S. ThenB is derived,G is aninducedsubgaph of G(B),
and G(B) belongsto 7.

Proof: The bottleneckpointsarenotin C astheir type is not frequentand thereforenot in N,.(C) as
they areisolatedin A. Thus, Note that B is derived becausehe bottleneckpointsare notin S. Let
H = G(B). Clearly G is aninducedsubgraphof H. Thusall we have to prove is that H belongsto
Tr. Let A’ = AN (SUK), whereK is thebottleneckof G. Again, A’ is derved. Let G' = G(A’).
Clearly G’ is aninducedsubgraphof G. In particular G’ is in 7, soit hasatree-decompositionf width
k. More importantly sinceK C L(u), we canassumeswell that K is a subsetf somebagof thetree-
decompositiorof G'. Thesetwo factstogetherimply that the union of G and G’ through K, which is
preciselyH, is in T, by Lemma5.3. O

This shavs thenthatthe B in (4.3) and (4.4) is a modelof ¢. The proof proceedsuntil we construct
a structureC that satisfiesp andis a propersubstructureof A. We claim that C is derived. This is
becausall bottleneckpointshave raretype, sothey belongto D. Let H = G(C). Notenow thatH is the
union of two subgraph$a; and G, of G throughthe bottleneckK . Again K is a subsetof a bagof the
tree-decompositionsf G; and G,, soH belongsto 7; by Lemmab.3. Moreover H is a properinduced
subgraphof G andH = ¢ by Lemmab.5. This contradictsthe minimality of G, which concludeshe
proof. O

This completeghe proof of Theoremb.2. Notethatthis doesnotimply thatthe existentialpreseration

theoremholds on all classesof boundedtreavidth. Indeed,we shav in the next sectionthat it fails, in
particular for the classof planargraphsof treavidth 4.
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6 Counterexamplefor Planar Graphs

Theaim of this sectionis to shaw thatthe preseration underextensiongropertyfails onthe classof planar
graphs. Let us focusfirst on the classof planargraphswhoseverticesare coloredeitherblack or white.
Laterwe shav how to remove the colors. The vocalulary containsa binaryrelationsymbol E for the edge
relation,anda unaryrelationsymbol P for the color. Let ¢ bethefollowing first-ordersentence:

@ = (32)3y) (v £ y A P@) APW) A (e1(,9) = pa(,1))).
v1(z,y) = (V2) (z £xNz#y— P(z) NE(z,2) A E(y,z))
wo(z,y) = (VYu) (u #rAu#y— (Fv)(Jw) (’U #w A —=P(w) A =P(w) A E(u,v) A E(u,w)))

We claimthaty is preseredunderextensionnthe classof black/white-coloreglanargraphs Before
we prove thiswe needatechnicalgadget.For everyn > 3, let G,, betheblack/white-coloreglanargraph
displayedn Figurel, wherethe numberof blackverticesis exactly n.

Figurel: Gy

It is not hardto seethat G,, doesnot have ary planarproperextensionin which all otherverticesare
adjacento bothwhite vertices.Let us statethis:

Lemma6.1 Letn > 3, andlet H bea bladk/white-coloed planar graphthatis a proper extensionof G,,.
Then,novertexin H — G,, is adjacentto bothwhiteverticesin G,,.

Proof: Letu beavertex in H — G,. Supposethat « is adjacentto both white verticesin G,,. Then
H containsa K5 minor by contractingone of the edgesconnectingu to a white vertex in G,,, and by
contractingall but two of theedgesn G,, thatdo not have a white endpoint.This contradictghe planarity
of H. O

Now we are readyto shaw that ¢ is presered underextensionson the classof black/white-colored
planargraphs:

Lemma 6.2 Let G andH beblad/white-coloed planar graphssud that H is a proper extensionof G.. If
G isamodelof ¢, sois H.
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Proof: SupposehatG is amodelof ¢, soleta andb betwo differentwhite verticesin G. If G = ¢1(a, b),
thenclearlyH [~ ¢4 (a,b) becausés is aninducedsubstructuredf H. In this case H is alsoa modelof
¢ andwe aredone. Otherwise sinceG = ¢ andG = ¢i(a,b), we have G = p2(a,b). This meanshat
every vertex in G — {a, b} is adjacento at leasttwo otherblackvertices.lt follows that G containssome
G,, asa (not necessarilynduced)subgraphwith o andb aswhite vertices.Heren > 3. It follows thenby
Lemma6.1thatsomevertex in H — G,, failsto beconnectedo botha andb. ButthenH [~ ¢4 (a,b) SOH
is amodelof ¢ again. O

To completeheamgumentwe needto shav thaty is notequivalentto anexistentialsentencentheclass
of black/white-coloredjyraphs.

Lemma 6.3 Theke is no existentialsentencequivalento ¢ onall bladk/white-coloed planar graphs.

Proof: By virtue of Lemmaz2.1, we only needto shawv that o hasinfinitely mary minimal modelsamong
planargraphs.It is easilyseerthatfor all n, G,, isaminimalmodelof ¢. Indeed ,f we remove atleastone
of thewhite verticesfrom G,,, we would not have witnessedor the two outermosexistentialquantifiersin
¢, andif we remove atleastoneof theblackverticestheny; remainstruewhile ¢, fails. O

This shavs that the preseration-unde-extersions propertyfails for the classof black/white-colored
planargraphs. Remaing the colorsis easy It sufficesto replaceeachoccurrenceof P(z) by a formula
ps3(z) statingthatz is attachedo a4 x 4-grid thatis otherwisedisconnectedrom the restof the graph.
Onepointto noteis thata nodewithout sucha grid attachedn a graphG may have a grid in an extension
of G. However, this would meanthat; would fail in the extensionandthusy would necessarilypetrue.
Thus,theformulais still preseredunderextensions.This shavsthenthatthe preseration-underextensions
propertyfails for the classof planargraphs.

Notefurtherthatfor ary n, thetreewidth of G,, isatmost4. Thisimpliesthattheexistentialpreseration
theoremfails, even for the classP of planargraphsof treevidth at most4. Indeed,the sentencep is
presered underextensionson P sinceit is presered underextensionson all planargraphs. However, ¢
still hasinfinitely mary minimal modelsin this classaseachG,, isin P.

7 Conclusions

We have establishedhe extensionpreseration theoremfor a numberof interestingclassef finite struc-
tures.Thesencludeall wide classes—suchsary classof structureof boundeddegree—andgomealmost
wide classessuchas 7, the classof all structuresof treawidth lessthank. The situationfor the exten-
sionpreserationtheoremis quite differentto thatestablishedor the homomorphisnpreserationtheorem
in [1]. In particular the formerfails on the classof planarwhile the latterholdson all classeghatexclude
agraphminor. Indeed the methodsof proof usedhereto establishthe extensionpreseration propertyare
ratherdifferentto thoseusedin [1]. It shouldalsobe notedthatRossmarn15] hasrecentlyestablishedhat
the homomorphisnpreserationtheoremholdson the classof all finite structureswhich contrastswith the
known failure of the extensionpreserationtheorem.

A numberof recentresultsin finite modeltheory[1, 2, 3, 8, 10, 11] indicatethat classe®f structure
suchastreesor structuresof boundedreewidth, planargraphsandgraphsof boundedgenus graphswith
excluded minors, and graphsof boundeddegree are well behaed in variousways relatedto their first-
ordermodeltheory(in abroadsense) Sofar, no seriousattempthasbeenmadeto identify generalkriteria
connectingthe differentresults. The locality of first-orderlogic alwaysappeargo play a crucial role, and
thenotionof widenesgormally introducedhereseemsgo beagoodstructuralcounterpartBut thereis more
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to it thanthis simpleobseration; for example,theresultof this paperholdson graphsof boundeddegree,
but not on planargraphs,whereador the algorithmicresultsof [3] it is the otherway round. The order
invarianceresultof [2] hassofar eludedall efforts to extendit beyondacyclic structures.
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