
Definable Ellipsoid Method,
Sums-of-Squares Proofs, and

the Isomorphism Problem

Albert Atserias
Universitat Politècnica de Catalunya

Joanna Ochremiak
Université Paris Diderot

Abstract

The ellipsoid method is an algorithm that solves the (weak) feasibility and linear
optimization problems for convex sets by making oracle calls to their (weak) separation
problem. We observe that the previously known method for showing that this reduc-
tion can be done in fixed-point logic with counting (FPC) for linear and semidefinite
programs applies to any family of explicitly bounded convex sets. We use this observa-
tion to show that the exact feasibility problem for semidefinite programs is expressible
in the infinitary version of FPC. As a corollary we get that, for the isomorphism prob-
lem, the Lasserre/Sums-of-Squares semidefinite programming hierarchy of relaxations
collapses to the Sherali-Adams linear programming hierarchy, up to a small loss in the
degree.

1 Introduction

Besides the well-known fact of being the first algorithm to be discovered that could solve
linear programs (LPs) in polynomial time, the ellipsoid method has at least two other aspects
that make it an important tool for the computer science theoretician. The first is that
the algorithm is able to handle not only high-dimensional explicit LPs, but also certain
implicitly given LPs that are described by exponentially many, or even infinitely many, linear
inequalities. These include some of the most celebrated groundwork pieces of combinatorial
optimization, such as the weighted matching problem on general graphs, and the submodular
function minimization problem, among others. The second important feature of the ellipsoid
method is that its polynomial running time in the bit-model of computation, taking into
account potential issues of numeric instability, is since a long time ago well understood [9].

There is a third emerging and to some extent surprising feature of the ellipsoid method
that is of particular significance for the logician and the descriptive complexity theorist.
The starting point is the important breakthrough result of Anderson, Dawar and Holm [2]
who developed a method called folding for dealing with symmetries in an LP. They used this
method for showing that, for the special case of LPs, the ellipsoid method can be implemented

1

in fixed-point logic with counting (FPC), and hence in polynomial time, but choicelessly,
i.e., in a way that the symmetries from the input are respected all along the computation,
as well as in the output. As the main application of their result, they proved that the class
of graphs that have a perfect matching could be defined in FPC, thus solving one of the
well-known open problems raised by Blass, Gurevich and Shelah in their work on Choiceless
Polynomial Time [6]. The method of folding was extended further by Dawar and Wang for
dealing with explicitly bounded and full-dimensional semidefinite programs (SDPs) [8].

The first contribution of our work is the observation that the abovementioned method
of folding from [2] is general enough to capture the power of the ellipsoid method in its
full strength. We observe that the fully general polynomial-time reduction that solves the
weak feasibility problem given a weak separation oracle for an explicitly bounded convex
set can be implemented, choicelessly, in FPC. As in the earlier works that employed the
folding method, our implementation also uses the reduction algorithm as described in [9] as
a black-box. The black-box is made into a choiceless procedure through a sequence of runs
of the algorithm along a refining sequence of suitable quotients of the given convex set. It
should be pointed out that while all the main ideas for doing this were already implicit in
the earlier works by Anderson, Dawar and Holm, and by Dawar and Wang, working out the
details requires a certain degree of care. For one thing, when we started this work it was not
clear whether the earlier methods would be able to deal with separation oracles for families
of convex sets that are not closed under the folding-quotient operations. We observe that
such closure conditions, which happen to hold for LPs and SDPs, are indeed not required.

With this first observation in hand, we proceed to develop three applications.
Our first application concerns the semidefinite programming exact feasibility problem. A

semidefinite set, also known as a spectrahedron, is a subset of Euclidean space that is defined
as the intersection of the cone of positive semidefinite matrices with an affine subspace. Thus,
semidefinite sets are the feasible regions of SDPs, and the SDP exact feasibility problem asks,
for an SDP given as input, whether its feasible region is non-empty. While the approximate
and explicitly bounded version of this problem is solvable in polynomial-time by the ellipsoid
method, the computational complexity of exact feasibility is a well-known open problem
in mathematical programming; it is decidable in polynomial space, by reduction to the
existential theory of the reals, but its precise position in the complexity hierarchy is unknown.
It has been shown that the problem is at least as hard as PosSLP, the positivity problem
for integers represented as arithmetic circuits [16], and hence at least as hard as the famous
square-root sum problem, but the exact complexity of these two problems is also largely
unknown (see [1]). Our result on the SDP exact feasibility problem is that, when its input
is represented suitably as a finite structure, it is definable in the logic Cω

∞ω, i.e. bounded-
variable infinitary logic with counting. In more recent terminology, we say that the SDP
exact feasibility problem has bounded counting width: there is a fixed bound k so that the set
of YES (and NO) instances of the problem is closed under indistinguishability by formulas
of k-variable counting logic. This is perhaps an unexpected property for the SDP exact
feasibility problem to have.

Although this definability result does not seem to have any direct algorithmic conse-

2

quences for the SDP exact feasibility problem itself, we are able to use the gained knowledge
to produce new results in the area of relaxations of the graph isomorphism problem, that we
discuss next.

A variety of mathematical programming relaxations of the graph isomorphism prob-
lem have been proposed in the literature: from the fractional isomorphism relaxation of
Tinhofer [17], through its strengthening via the Sherali-Adams hierarchy of LP relaxations
[3, 12], to its further strengthening via the Lasserre hierarchy of SDP relaxations [13], its re-
laxation via Groebner basis computations [5], and a few others. While all these hierarchies of
LP, SDP or Groebner-based relaxations are now known to stay proper relaxations of isomor-
phism, their relative strength, besides the obvious relationships, was not fully understood.
Since SDP is a proper generalization of LP, one may be tempted to guess that the Lasserre
SDP hierarchy could perhaps distinguish more graphs than its LP sibling. Interestingly, we
prove this not to be the case: for the isomorphism problem, the strength of the Lasserre
hierarchy collapses to that of the Sherali-Adams hierarchy, up to a small loss in the level of
the hierarchy.

Concretely, we show that there exist a constant c ≥ 1 such that if two given graphs are
distinguishable in the k-th level of the Lasserre hierarchy, then they must also be distinguish-
able in the ck-th level of the Sherali-Adams hierarchy. The constant c loss comes from the
number of variables for expressing the SDP exact feasibility problem in the bounded-variable
counting logic. It should be noted that our proof is indirect as it relies on the correspondance
between indistinguishability in k-variable counting logic and the k-th level Sherali-Adams
relaxation of graph isomorphism [3]. The question whether the collapse can be shown to hold
directly, by lifting LP-feasible solutions into SDP-feasible ones, remains an interesting one.

This collapse result has some curious consequences. For one it says that, for distinguishing
graphs, the spectral methods that underlie the Lasserre hierarchy are already available in low
levels of the Sherali-Adams hierarchy. This may sound surprising, but aligns well with the
known fact that indistinguishability by 3-variable counting logic captures graph spectra [7],
together with the abovementioned correspondance between k-variable counting logic and the
k-th level of the Sherali-Adams hierarchy.

By moving to the duals, our results can be read in terms of Sums-of-Squares (SOS) and
Sherali-Adams (SA) proofs, and used to get consequences for Polynomial Calculus (PC)
proofs as a side bonus. In terms of proofs, we show that if there is a degree-k SOS proof
that two graphs are not isomorphic, then there is also a degree-ck SA proof. In turn, it was
already known from before, by combining the results in [3] and [5], that if there is a degree-ck
SA proof then there is also a degree-ck (monomial) PC proof (over the reals), which is known
to imply that there is a degree-2ck SOS proof by the recent result in [4]. Thus, our result
completes a full cycle of implications to show that, for the graph isomorphism problem, SA,
monomial PC, PC, and SOS are equally powerful, up to a factor loss of 2c in the degree. It
also confirms the belief expressed in [5] that the gap between PC and monomial PC is not
large. It is remarkable that we proved these statements purely about the relative strength of
proof systems through an excursion into the descriptive complexity of the ellipsoid method,
the SDP exact feasibility problem, and bounded-variable infinitary logics.

3

2 Preliminaries

We use [n] to denote the set {1, . . . , n}.

Vectors and matrices. If I is a non-empty index set, then an I-vector is an element of RI .
The components of u ∈ RI are writen u(i) or ui, for i ∈ I. We identify Rn with R[n]. For I-
vectors u and v, the inner product of u and v is 〈u, v〉 =

∑
i∈I uivi. We write ‖u‖1 =

∑
i∈I |ui|

for the L1-norm, ‖u‖2 =
√
〈u, u〉 for the L2-norm, and ‖u‖∞ = max{|ui| : i ∈ I} for the

L∞-norm. For K ⊆ RI and δ > 0, we define the δ-ball around K by S(K, δ) := {x ∈ RI :
‖x−y‖2 ≤ δ for some y ∈ K}. We define also S(K,−δ) := {x ∈ RI : S(x, δ) ⊆ K}. Holder’s
inequality states that if p, q ∈ N∪ {∞} satisfy 1/p+ 1/q = 1, then |〈u, v〉| ≤ ‖u‖p‖v‖q. The
special case p = q = 2 is the Cauchy-Schwartz inequality.

If I and J are two non-empty index sets, then an I ×J-matrix is simply an I ×J-vector;
i.e., an element of RI×J . Accordingly, the components of X ∈ RI×J are written X(i, j), or
Xi,j, or Xij. The L1-, L2- and L∞-norms of a matrix X ∈ RI×J are defined as the respective
norms of X seen as an I × J-vector, and the inner product of the matrices X, Y ∈ RI×J is
〈X, Y 〉 =

∑
i∈I
∑

j∈J XijYij. Matrix product is written by concatenation. The Hadamard

product of matrices X, Y ∈ RI×J is the matrix X ◦ Y defined by (X ◦ Y)ij = XijYij for all
i and j. A square matrix X ∈ RI×I is positive definite, denoted X � 0, if it is symmetric
and satisfies zTXz > 0, for every non-zero z ∈ RI . If it is symmetric but satisfies the weaker
condition that zTXz ≥ 0, for every z ∈ RI , then it is positive semidefinite, which we denote
by X � 0. Equivalently, X is positive semidefinite if and only if X = Y TY for some matrix
Y ∈ RJ×I if and only if all its eigenvalues are non-negative. By I we denote the square
identity matrix of appropriate dimensions, i.e., Iij = 1 if i = j and Iij = 0 if i 6= j. By J we
denote the square all-ones matrix of appropriate dimensions, i.e., Jij = 1 for all i and j. For
I and J we omit the reference to the index set in the notation (particularly so if the index
set is called I or J , for obvious reasons).

Let I and J be two non-empty index sets and let σ : I → J be a function. If v is a
J-vector, then we write [v]−σ for the I-vector defined by [v]−σ(i) = v(σ(i)) for every i ∈ I.
The notation extends to sets S of J-vectors in the natural way: [S]−σ = {[v]−σ : v ∈ S}. If
P is a set of I-vectors and Q is a set of J-vectors, then we say that P and Q are isomorphic,
denoted P ∼= Q, if there exists a bijection σ : I → J such that P = [Q]−σ.

Vocabularies, structures and logics. A many-sorted (relational) vocabulary L is a set
of sort symbols D1, . . . , Ds together with a set of relation symbols R1, . . . , Rm. Each relation
symbol R in the list has an associated type of the form Di1 × · · · × Dir , where r ≥ 0 is
the arity of the symbol, and i1, . . . , ir ∈ [s] are not necessarily distinct. A structure A of
vocabulary L, or an L-structure, is given by s disjoint sets D1, . . . , Ds called domains, one
for each sort symbol Di ∈ L, and one relation R ⊆ Di1 × · · · ×Dir for each relation symbol
R ∈ L of type Di1 × · · · ×Dir . We use D(A) or D to denote the domain associated to the
sort symbol D, and R(A) or R to denote the relation associated to the relation symbol R.
In practice, the overloading of the notation should never be an issue. The domain of a sort

4

symbol is also called a sort.
A logic for a many-sorted vocabulary L has an underlying set of individual variables for

each different sort in L. When interpreted on an L-structure, the variables are supposed
to range over the domain of its sort; i.e., the variables are typed. Besides the equalities
x = y between variables of the same type, the atomic L-formulas are the formulas of the
form R(x1, . . . , xr), where R is a relation symbol of arity r and x1, . . . , xr are variables of
types that match the type of R. The formulas of first-order logic over L are built from
the atomic formulas by negations, disjunctions, conjunctions, and existential and universal
quantification of individual variables.

The syntax of First-Order Logic with Counting FOC is defined by adjoining one more
sort N to the underlying vocabulary, adding one binary ternary relation symbol ≤ of type
N ×N and two ternary relation symbols + and × of types N ×N ×N , as well as extending
the syntax to allow quantification of the form ∃≥yx(ϕ), where y is a variable of type N .
In the semantics of FOC, each L-structure A is expanded to an L ∪ {N,≤,+,×}-structure
with N(A) = {0, . . . , n}, where n = max{|Di(A)| : i = 1, . . . , s}, and ≤, +, and × are
interpreted by the standard arithmetic relations on {0, . . . , n}. The meaning of ∃≥yx(ϕ), for
a concrete assignment y 7→ i ∈ {0, . . . , n}, is that there exist at least y many witnesses a for
the variable x within its sort such that assignment x 7→ a satisfies the formula ϕ.

The syntax of Fixed-Point Logic with Counting FPC extends the syntax of FOC by
allowing the formation of inflationary fixed-point formulas ifpx,Xϕ(x,X). On a structure A
of the appropriate vocabulary, such formulas are interpreted as defining the least fixed-
point of the monotone operator A 7→ A ∪ {a ∈ Di1 × · · · × Dir : A |= ϕ(a,A)}, where
Di1 × · · · × Dir is the type of the relation symbol X in ϕ(x,X). The syntax of Infinitary
Logic with Counting C∞ω extends the syntax of FOC by allowing infinite disjunctions and
conjunctions; i.e., formulas of the form

∨
i∈I φi and

∧
i∈I φi where I is a possibly infinite index

set, and {φi : i ∈ I} is an indexed set of formulas. The fragment of C∞ω with k variables
is the set of formulas that use at most k variables of any type. In the formulas of Ck

∞ω the
variables can be reused and hence there is no finite bound on the quantification depth of the
formulas. It is well-known that if we care only for finite structures, then Ck

∞ω could have
been defined equivalently by disallowing the numeric sort and replacing the quantification
∃≥yx(ϕ), where y is a numeric variable, by all quantifiers of the form ∃≥ix(ϕ), where i is
a (concrete) natural number; see [14]. We write Cω

∞ω for the union of the Ck
∞ω over all

natural numbers k. It is also known that for every natural number k, every many-sorted
vocabulary L, and every L-formula ϕ of FPC that uses k variables, there exists an L-formula
ψ of Ck

∞ω such that ϕ and ψ define the same relations over all finite L-structures. While all
the published proofs that we are aware of give the statement for single-sorted vocabularies
(e.g. [14]), it is clear that the same proof applies to many-sorted vocabularies.

Interpretations and reductions. Let L and K be two many-sorted vocabularies, and
let Θ be a class of K-formulas. A Θ-interpretation of L in K is given by: two Θ-formulas
δD(x) and εD(x, y) for each sort symbol D of L, and one Θ-formula ψR(x1, . . . , xr) for each
relation symbol R ∈ L of arity r. In all these formulas, the displayed x’s and y’s are tuples

5

of distinct variables of the same length m, called the arity of the interpretation. We say that
the interpretation takes a K-structure A as input and produces an L-structure B as output
if for each sort symbol D in L there exists a surjective partial map fD : Am → D(B), where
A is the domain of A, such that f−1

D (D(B)) = {a ∈ Am : A |= δD(a)}, f−1
D ({(b, b) : b ∈

D(B)}) = {(a, b) ∈ (Am)2 : A |= εD(a, b)}, and f−1
R (R(B)) = {(a1, . . . , ar) ∈ (Am)r : A |=

ψR(a1, . . . , ar)} where fR = fD1×. . .×fDr and D1×· · ·×Dr is the type of R. The composition
of two interpretations, one of L in K, and another one of K in J , is an interpretation of L
in J defined in the obvious way. Similarly, the composition of an interpretation of L in K
with an L-formula is a K-formula defined in the obvious way. In all these compositions, the
number of variables in the resulting formulas multiply. For example, the composition of a
Ck
∞ω-interpretation with a C`

∞ω-formula is a Ck`
∞ω-formula. A reduction from a problem to

another is an interpretation that takes (a representation of) an input x for the first problem
and produces (a representation of) an input y for the second problem, in such a way that (a
representation of) a solution for y is also (a representation of) a solution for x. The reduction
is called a Θ-reduction if it can be produced by a Θ-interpretation.

Numbers, vectors and matrices as structures. We represent natural numbers, inte-
gers and rational numbers as finite relational structures in the following way. A natural
number n ∈ N is represented by a finite structure, with a domain {0, . . . , N − 1} of bit
positions where N ≥ blog2(n+ 1)c, of a vocabulary LN that contains a binary relation sym-
bol ≤ for the natural linear order on the bit positions, and a unary relation symbol P for
the actual bits, i.e., the bit positions i that carry a 1-bit in the unique binary representation
of n of length N . Single bits b ∈ {0, 1} are represented as natural numbers with at least
one bit position. Thus LB is really the same as LN, but we still give it a separate name.
Integers z ∈ Z are represented by structures of the vocabulary LZ = LB ∪̇LN, with a domain
{0, . . . , N − 1} of bit positions, where N ≥ blog2(|z|+ 1)c. If z = (−1)bn, where b ∈ {0, 1}
and n ∈ N, then the P -relation from LB encodes the sign b, and the P -relation from LN
encodes the actual bits of the magnitude n. Both copies of ≤ are interpreted by the natural
linear order on the bit positions. Rationals q ∈ Q are represented by structures of the vo-
cabulary LQ = LB ∪̇ LN ∪̇ LN, with a domain {0, . . . , N − 1} that is large enough to encode
both the numerator and the denominator of q in binary. If q = (−1)bn/d, where b ∈ {0, 1}
and n, d ∈ N, then the P -relation from LB is used to encode the sign b, the P -relation from
the first copy of LN is used to encode the bits of the numerator n, and the P -relation from
the second copy of LN is used to encode the bits of the denominator d. As always each ≤ is
the natural linear order on the bit positions. We use zero denominator to represent ±∞.

An I-vector u ∈ QI is represented by a two-sorted structure, where the first sort Ī is the
index set I and the second sort B̄ is a domain {0, . . . , N − 1} of bit positions, where N is
large enough to encode all the numerators and denominators in the entries of u in binary.
The vocabulary Lvec of this structure has one unary relation symbol I for Ī, one binary
relation symbol ≤ for the natural linear order on B̄, and three binary relation symbols Ps,
Pn and Pd, each of type Ī × B̄, that are used to encode the entries of u in the expected way:
Ps(i, 0) if and only if u(i) is positive, Pn(i, j) if and only if the j-th bit of the numerator of

6

u(i) is 1, and Pd(i, j) if and only if the j-th bit of the denominator of u(i) is 1.
More generally, if I1, . . . , Id denote index sets that are not necessarily pairwise distinct,

then the corresponding tensors u ∈ QI1×···×Id are represented by many-sorted structures,
with one sort Ī for each index set I for as many different index sets as there are in the list
I1, . . . , Id, plus one sort B̄ for the bit positions. The vocabulary Lvec,d of these structures
has one unary relation symbol I for each index sort Ī, one binary relation symbol ≤ for the
natural linear order on the bit positions B̄, and three d+ 1-ary relation symbols Ps, Pn and
Pd, each of type Ī1 × · · · × Īd × B̄, for encoding the signs and the bits of the numerators
and the denominators of the entries of the tensor. Matrices A ∈ QI×J and square matrices
A ∈ QI×I are special cases of these, and so are indexed sets of vectors {ui : i ∈ K} ⊆ QI

and index sets of matrices {Ai : i ∈ K} ⊆ QI×J .

3 Definable Ellipsoid Method

In this section we show that the ellipsoid method can be implemented in FPC for any family
of explicitly bounded convex sets. We begin by defining the problems involved.

3.1 Geometric problems and the ellipsoid method

Let C be a class of convex sets, each of the form K ⊆ RI for some non-empty index set I.
The class C comes with an associated encoding scheme. We assume that the encoding of
a set K ⊆ RI carries within it enough information to determine the set I. If the encoding
also carries information about a rational R satisfying K ⊆ S(0I , R), then we say that K is
circumbscribed, and we write (K; I, R) to refer to it. We write (K;n,R) whenever I = [n].

The exact feasibility problem for C takes as input the encoding of a set K ⊆ RI in C and
asks for a bit b ∈ {0, 1} that is 1 if K is non-empty, and 0 if K is empty. The weak feasibility
problem for C takes as input the encoding of a set K ⊆ RI in C and a rational ε > 0 and
asks for a bit b ∈ {0, 1} and a vector x ∈ QI such that:

1. b = 1 and x ∈ S(K, ε), or

2. b = 0 and vol(K) ≤ ε.

The reason why the exact feasibility problem is formulated as a decision problem and does not
ask for a feasible point is that K could well be a single point with non-rational components.
In the weak feasibility problem this is not an issue because if K is non-empty, then the ball
S(K, ε) surely contains a rational point. The (not-so-)weak separation problem for C takes
as input the encoding of a set K ⊆ RI in C , a vector y ∈ QI , and a rational δ > 0 and asks
as output for a bit b ∈ {0, 1} and a vector s ∈ QI such that ||s||∞ = 1 and:

1. b = 1 and y ∈ S(K, δ), or

2. b = 0 and 〈s, y〉+ δ ≥ sup{〈s, x〉 : x ∈ K}.

7

The problems carry the adjective weak in their name to stress on the fact that in both cases
the more natural requirement of membership in K is replaced by the looser requirement of
membership in S(K, γ) for a given γ > 0. For the weak separation problem, the additional
qualification not-so-(weak) serves the purpose of distinguishing it from the weak(er) version
in which condition 2. is replaced by the looser requirement that 〈s, y〉+ δ ≥ sup{〈s, x〉 : x ∈
S(K,−δ)}. It turns out that the main procedure of the ellipsoid method, as stated in the
monograph [9] and in Theorem 1 below, requires the not-so-weak version. Recall that an
ellipsoid in RI is a set of form E(A, a) = {x ∈ RI : (x− a)TA(x− a) ≤ 1}, where a ∈ RI is
the center, and A is an I × I positive definite matrix.

Theorem 1 (Theorem 3.2.1 in [9]). There is an oracle polynomial-time algorithm, the
central-cut ellipsoid method (CC), that solves the following problem: Given a rational number
ε > 0 and a circumscribed closed convex set (K;n,R) given by an oracle that solves the not-
so-weak separation problem for K, outputs one of the following: either a vector x ∈ S(K, ε),
or a positive definite matrix A ∈ Qn×n and a vector a ∈ Qn such that K ⊆ E(A, a) and
vol(E(A, a)) ≤ ε.

We plan to use algorithm CC from Theorem 1 almost as a black-box, except for the three
aspects of it stated below. Although they are not stated in Theorem 3.2.1 in [9], inspection
of the proof and the definitions in the book shows that they hold:

1. input to the algorithm is the triple given by ε, n and R,

2. the rationals ε and R are represented in binary, the natural n is represented in unary,

3. the algorithm makes at least one oracle query, and the output is determined by the
answer to the last oracle call in the following way: if this last call was (y, δ) and the
answer was the pair (b, s), then δ ≤ ε and the output vector x of CC is y itself whenever
b = 1, and there exists a positive definite matrix A and a vector a so that K ⊆ E(A, a)
and vol(E(A, a)) ≤ ε whenever b = 0.

The last point implies, in particular, that CC solves the weak feasibility problem for the
given K. However, note also that the theorem states a notably stronger claim than the
existence of a polynomial-time oracle reduction from the weak feasibility problem for a
class C of sets to the not-so-weak separation problem for the same class C of sets: indeed,
CC solves the feasibility problem for K by making oracle calls to the separation problem for
the same K.

3.2 Definability of ellipsoid

In our case, since we want to refer to definability in a logic, the encoding scheme for C will
encode each set K through a finite relational structure, and we will require it to be invariant
under isomorphisms. Such encodings we call representations. Formally, a representation
of C is a surjective partial map r from the class of all finite L-structures onto C , where L
is a finite vocabulary that contains at least one unary relation symbol I, that satisfies the
following conditions:

8

1. for every two A,B ∈ Dom(r), if A ∼= B then r(A) ∼= r(B),

2. for every A ∈ Dom(r) it holds that r(A) ⊆ RI where I = I(A).

A circumscribed representation of C is a surjective partial map r from the class of all finite
L-structures onto C , where L is a finite vocabulary that contains at least one unary relation
symbol I as well as a copy of the vocabulary LQ, that satisfies the following conditions:

1. for every two A,B ∈ Dom(r), if A ∼= B then r(A) ∼= r(B),

2. for every A ∈ Dom(r) it holds that r(A) ⊆ RI where I = I(A),

3. for every A ∈ Dom(r) it holds that r(A) ⊆ S(0I , R) where R = LQ(A).

Note that a circumscribed representation of C exists only if every K in C is bounded. For
a given representation r of C , any of the existing preimages A ∈ r−1(K) of a set K ∈ C
is called a representation of K. If L is the vocabulary of the representation, then we say
that C is represented in vocabulary L. If C has a representation in some vocabulary L, then
we say that C is a represented class of sets, and if it has a circumscribed representation,
then we say that it is a represented class of circumscribed sets.

If C is a represented class of convex sets and Φ is a class of logical formulas, then we
say that the weak feasibility for C is Φ-definable if there exists a Φ-interpretation that,
given an input represented as a structure over the vocabulary of the input, produces a valid
output represented also as a structure over the vocabulary of the output. For example, if L
is the vocabulary in which C is represented, then an interpretation for the weak feasibility
problem for C would take as input a structure over L∪̇LQ and produce as output a structure
over LB ∪̇ Lvec. It is required in addition that the represented K ⊆ RI from the input and
the vector x ∈ QI from the output share the same sort Ī with the same relation symbol I
interpreted by the same set. For the not-so-weak separation problem, the input would be a
structure over L ∪̇LQ ∪̇Lvec and the output would be a structure over LB ∪̇Lvec. Again, the
represented K ⊆ RI and the vector y ∈ QI from the input, and the vector s ∈ QI from the
output, share the same sort Ī with the same relation symbol I interpreted by the same set.

The following is the main result of this section.

Theorem 2. Let C be a represented class of circumscribed closed convex sets. If the not-
so-weak separation problem for C is FPC-definable, then the weak feasibility problem for C
is also FPC-definable.

Although all the main ideas of the proof that we are going to present were already present
in the works [2] and [8], we present a detailed proof for completeness.

At an intuitive level, the main difficulty for simulating the ellipsoid method within a
logic is that one needs to make sure that the execution of the algorithm stays canonical ; i.e.,
invariant under the isomorphisms of the input structure. The principal device to achieve this
is the following clever idea from [2]: instead of running the ellipsoid method directly over the
given set K ⊆ RI , the algorithm is run over certain folded versions [K]σ ⊆ Rσ(I) of K, where
σ(I) is an ordered subset of I. If the execution of the ellipsoid does not detect the difference
between K and the folded [K]σ, then an appropriately defined unfolding of the solution for

9

[K]σ will give the right solution for K. If, on the contrary, the ellipsoid detects the difference
in the form of a vector u ∈ QI whose folding [u]σ does not unfold appropriately, then the
knowledge of u is exploited in order to refine the current folding into a strictly larger ordered
σ′(I) ⊆ I, and the execution is restarted with the new [K]σ

′ ⊆ Rσ′(I). After no more than |I|
many refinements the folding will be indistinguishable from K, and the execution will be
correct.

The crux of the argument that makes this procedure FPC-definable is that the ellipsoid
algorithm is always operating over an ordered set σ(I). In particular, the algorithm stays
canonical, and the polynomially many steps of its execution are expressible in fixed-point
logic FP by the Immerman-Vardi Theorem. Indeed, the counting ability of FPC is required
only during the folding/unfolding/refining steps.

Before we move to the actual proof, we discuss the required material for the method of
foldings.

3.3 Folding operations

Let I and J be non-empty index sets. Let σ : I → J be an onto map. The folding [u]σ of an
I-vector u and the unfolding [v]−σ of a J-vector v are the vectors defined by

[u]σ(j) :=
1

|σ−1(j)|
∑

i∈σ−1(j)

u(i) and [v]−σ(i) := v(σ(i)) (1)

for every j ∈ J and every i ∈ I, respectively. For sets K ⊆ RI and L ⊆ RJ , define
[K]σ := {[u]σ : u ∈ K} and [L]−σ := {[v]−σ : v ∈ L}. The map σ is said to respect a vector
u ∈ RI if ui = ui′ whenever σ(i) = σ(i′) for every i, i′ ∈ I. The following lemma collects a
few important properties of foldings. See Propositions 17 and 18 in [8] in which properties
(4) and (5) from the lemma are also proved for all sets but stated only for convex sets.

Lemma 1. Let σ : I → J be an onto map, let u and v be I-vectors, and let K be a set of
I-vectors. Then the following hold: (1) [au + bv]σ = a[u]σ + b[v]σ for every a, b ∈ R, (2)
‖[u]σ‖2 ≤ ‖u‖2, (3) K ⊆ S(0I , R) implies [K]σ ⊆ S(0J , R), (4) u ∈ S(K, δ) implies [u]σ ∈
S([K]σ, δ), (5) if σ respects u, then 〈u, v〉+ δ ≥ sup{〈u, x〉 : x ∈ K} implies 〈[u]σ, [v]σ〉+ δ ≥
sup{〈[u]σ, x〉 : x ∈ [K]σ}, and (6) if K is convex, then [K]σ is convex.

Proof. Property (1) is straightforward by definition. Property (2) follows from the in-
equality (x1 + · · · + xd)

2 ≤ (x2
1 + · · · + x2

d)d, which is the special case of the Cauchy-
Schwartz inequality 〈x, y〉 ≤ ‖x‖2‖y‖2 where y is the d-dimensional all-ones vector. Prop-
erty (3) is an immediate consequence of (2). Property (4) follows from (1) and (2): if
‖u − x‖2 ≤ δ, then ‖[u]σ − [x]σ‖2 = ‖[u − x]σ‖2 ≤ ‖u − x‖2 ≤ δ. Property (5) fol-
lows from the straightforward fact that 〈[u]σ, [y]σ〉 ≤ 〈u, y〉 whenever σ respects u: indeed
sup{〈[u]σ, x〉 : x ∈ [K]σ} = sup{〈[u]σ, [x]σ〉 : x ∈ K}, and for every x ∈ K we have
〈[u]σ, [x]σ〉 − 〈[u]σ, [v]σ〉 = 〈[u]σ, [x − v]σ〉 ≤ 〈u, x − v〉 = 〈u, x〉 − 〈u, v〉 ≤ δ. Property (6)
follows from the fact that the map u 7→ [u]σ is linear.

10

There is one further important property of foldings that we will need. Recall that the
ellipsoid given by a positive definite matrix A ∈ RJ×J and a vector a ∈ RJ is the set
E(A, a) = {x ∈ RJ : (x− a)TA(x− a) ≤ 1}. We extend the definition of the set E(A, a) to
arbitrary positive semidefinite matrices A. It should be noted that if A is positive semidefinite
but not positive definite, then at least one of the semi-axes of E(A, a) is infinite and hence
the set is unbounded. In this case we call E(A, a) an unbounded ellipsoid.

Lemma 2. Let K ⊆ RI be a set, let σ : I → J be an onto map, and let R ∈ RJ×I and
L ∈ RI×J be the matrices that define the linear maps u 7→ [u]σ and v 7→ [v]−σ, respectively. If
there is a positive definite matrix A ∈ RJ×J and a vector a ∈ RJ such that [K]σ ⊆ E(A, a),
then K ⊆ E(RTAR,La). Moreover, for every ε > 0 and r > 0, if vol(E(A, a)) ≤ ε, then
vol(E(RTAR,La) ∩ S(0I , r)) ≤ 2nrn−1nkε1/k, where n = |I| and k = |J | ≥ 1.

Proof. Assume that [K]σ ⊆ E(A, a), where A = BTB is positive definite. Take a point
x ∈ K. We want to show that x is in E((BR)T (BR), La). We have:

‖BR(x− La)‖2
2 = ‖B(Rx−RLa)‖2

2 = ‖B(Rx− a)‖2
2 ≤ 1, (2)

with the first equality following from the linearity of R, the second equality following from
the easily verified fact that [[a]−σ]σ = a, and the inequality following from the fact that
x ∈ K and hence Rx = [x]σ belongs to [K]σ ⊆ E(A, a) = E(BTB, a).

For the second part of the proof, observe that the matrix RTAR = (BR)T (BR) is positive
semidefinite. Let λ1 ≥ · · · ≥ λn ≥ 0 be the eigenvalues of RTAR, let V = {u1, . . . , un} be an
orthonormal basis of corresponding eigenvectors, and let (b1, . . . , bn) be the coordinates of
La with respect to the basis V . The axes of symmetry of the (possibly unbounded) ellipsoid
E(RTAR,La) correspond to the vectors in V . As we show below, λ1 > 0 and therefore the
shortest axis of E(RTAR,La) has a finite length 2(1/λ1)1/2. It follows that E(RTAR,La) is
contained in the set of points whose coordinates, with respect to the basis V , are given by
[b1−(1/λ1)1/2, b1+(1/λ1)1/2]×Rn−1. Since the r-ball S(0, r) is inscribed in the n-dimensional
hypercube [−r, r]n, where the coordinates are again given with respect to the basis V , this
implies that E(RTAR,La)∩S(0I , r) is contained in [b1−(1/λ1)1/2, b1+(1/λ1)1/2]×[−r, r]n−1.
Hence,

vol(E(RTAR,La) ∩ S(0I , r)) ≤ 2(1/λ1)1/2(2r)n−1 = 2nrn−1(1/λ1)1/2.

We will finish the proof by showing that vol(E(A, a)) ≤ ε implies (1/λ1)1/2 ≤ nkε1/k.
Let µ1 ≥ · · · ≥ µk > 0 be the eigenvalues of the matrix A. We have vol(E(A, a)) =

Vk(1/µ1)1/2 . . . (1/µk)
1/2 ≥ Vk(1/µ1)k/2, where Vk denotes the volume of a 1-ball in the k-

dimensional real vector space (for the volume of an ellipsoid see, e.g., [9]). Therefore, if
vol(E(A, a)) ≤ ε, then µ1 ≥ (Vk/ε)

2/k > k−2(1/ε)2/k, where the last inequality follows from
the fact that Vk > k−k. Now, let y ∈ RJ be an eigenvector of A corresponding to the
eigenvalue µ1, and let x = Ly. Note that xTx ≤ nyTy. Hence,

xTRTARx = yTAy = µ1y
Ty ≥ (µ1/n)xTx.

Since y 6= 0 also x 6= 0, and the Rayleigh quotient principle implies that λ1 ≥ µ1/n. Hence
λ1 ≥ k−2(1/ε)2/k/n, which gives (1/λ1)1/2 ≤ n1/2kε1/k ≤ nkε1/k.

11

From now on, all maps σ : I → J will be onto and have J = [k] for some positive
integer k. Such maps define a preorder ≤σ on I with exactly k equivalence classes and is
defined by i ≤σ i′ if and only if σ(i) ≤ σ(i′). A second map σ′ : I → [k′] is a refinement of σ
if σ′(i) ≤ σ′(i′) implies σ(i) ≤ σ(i′). The refinement is proper if there exist i, i′ ∈ I such that
σ′(i) < σ′(i′) and σ(i) = σ(i′). Recall that σ : I → [k] respects a vector v ∈ RI if v(i) = v(i′)
whenever σ(i) = σ(i′). Since any bijective map respects any vector, observe that if σ does
not respect v, then there exists a least one proper refinement of σ that does respect v. We
aim for a canonical such refinement, that we denote σv, and that is definable in FPC. We
define it as follows.

Fix an onto map σ : I → [k] and a vector v ∈ RI . Define:

n(j) := |{v(`) : σ(`) = j}| for j ∈ [k],
m(i) := |{v(`) : σ(`) = σ(i), v(`) ≤ v(i)}| for i ∈ I,
σ′(i) := n(1) + · · ·+ n(σ(i)− 1) +m(i) for i ∈ I,
k′ := n(1) + · · ·+ n(k).

In words, n(j) is the number of distinct v-values in the j-th equivalence class of ≤σ, and
m(i) is the number of distinct v-values in the equivalence class of i that are no bigger than
the v-value v(i) of i. The map σ′ : I → [k′] is our σv. Note that if σ respects v, then σv = σ.
On the other hand:

Fact 1. If σ does not respect v, then σv is onto and a proper refinement of σ that respects v.

Although not strictly needed, it is useful to note that σv is a coarsest refinement of σ that
respects v. The final lemma before we proceed to the proof of Theorem 2 collects a few
computation tasks about foldings that are FPC-definable:

Lemma 3. The following operations have FPC-interpretations:

1. given a set I, output the 0 vector 0I and the constant 1 map σ : I → [1],

2. given u ∈ QI and onto σ : I → [k], output [u]σ,

3. given u ∈ Qk and onto σ : I → [k], output [u]−σ,

4. given u ∈ QI and onto σ : I → [k], output 1 if σ respects u and output 0 otherwise,

5. given u ∈ QI and σ : I → [k], output σu : I → [k′].

Proof. All five cases are straightforward given the ability of FPC to perform the basic arith-
metic of rational numbers, compute sums of sets of rationals indexed by definable sets, and
compute cardinalities of definable sets.

3.4 Proof of Theorem 2

Let Ψ be an FPC-interpretation that witnesses that the not-so-weak separation problem for
C is FPC-definable. We start by showing that there is an FPC-interpretation Ψ′ that takes
as input a representation of a set K ⊆ RI in C , an onto mapping σ : I → [k] where k is
an integer that satisfies 1 ≤ k ≤ |I|, a vector y ∈ Qk, and a rational δ > 0 and outputs an
integer b ∈ {−1, 0, 1} and a vector s ∈ QI such that ‖s‖∞ = 1 and:

12

1. b = 1 and σ respects s and [y]−σ ∈ S(K, δ) and y ∈ S([K]σ, δ), or

2. b = 0 and σ respects s and 〈[s]σ, y〉+ δ ≥ sup{〈[s]σ, x〉 : x ∈ [K]σ}, or

3. b = −1 and σ does not respect s.

Concretely, let Ψ′ be the interpretation that does the following:

01. given a representation of K ⊆ RI in C , σ : I → [k], y ∈ Qk, and δ ∈ Q,
02. compute y− := [y]−σ and (b, s) := Ψ(K; y−, δ),
03. if σ respects s, output the same (b, s),
04. if σ does not respect s, output (−1, s).

The claim that Ψ′ is FPC-definable follows from points 3. and 4. in Lemma 3. The claim
that Ψ′ satisfies the required conditions follows from the correctness of Ψ, together with the
fact that [[y]−σ]σ = y, and properties (4) and (5) in Lemma 1. For later use, let us note that
if the given σ : I → [k] is a bijection, then the third type of output b = −1 cannot occur.

Next we show how to use Ψ′ in order to implement, in FPC, the algorithm CC from
Theorem 1. Consider the following variant CC’ of CC:

01. given a rational ε > 0 and a representation of a set K ⊆ RI in C ,
02. compute the rational R satisfying K ⊆ S(0, R) from the representation of K,
03. let n := |I| and k := 1, and let σ : I → [1] be the constant 1 map,
04. start a run of CC on input (γ, k, R) where γ := min{(ε/(2nRn−1nk))k, ε},
05. given an oracle query (y, δ), replace it by (b, s) := Ψ′(K;σ, y, δ),
06. if σ respects s, then
07. compute [s]σ and take the pair (b, [s]σ) as a valid output to the query (y, δ),
08. if the run of CC makes a new query (y, δ), go back to step 05,
09. if the run of CC makes no more queries, go to step 13,
10. else
11. compute σs : I → [k′], the canonical refinement of σ that respects s,
12. abort the run of CC and go back to step 04 with σ := σs and k := k′,
13. let (b, s) be the output of Ψ′ for the last oracle call (y, δ),
14. output (b, [y]−σ).

A key aspect of CC that makes this algorithm well-defined is that, for steps 04, 05, 08
and 09, the only knowledge that the algorithm needs about the targeted set [K]σ are its
dimension k, its bounding radius R, and correct answers to earlier queries (see point 1.
immediately following the statement of Theorem 1). In particular, the algorithm will be well-
defined even if the class C is not closed under foldings, as long as the gathered knowledge
about the alleged [K]σ remains consistent with the assumption that the convex set given by
the oracle is [K]σ. Note that properties (2), (4), and (5) in Lemma 1 guarantee so, as long as
all s-vectors are respected by σ. As soon as this is detected to not be the case, σ is refined,
and the run of CC is restarted with the new k and γ for the new σ (and the same R).

After no more than |I| many refinements of σ, the simulation of the run of CC will be
executed until the end. Indeed, this happens at latest once σ becomes the totally refined

13

map because at that point σ is a bijection that surely respects every s. Whenever the run
is executed until the end, the algorithm reaches step 13 with a pair (b, s) and a σ that
respects s. We use this to show that CC’ solves the weak feasibility problem for C , and that
it can be implemented in FPC.

The claim that CC’ solves the weak feasibility problem for C is proved as follows. Let
(b, s) be the output of Ψ′ for the last oracle call (y, δ) of the execution of CC. As noted above,
σ : I → [k] respects s and hence b ∈ {0, 1} by Property 3 in the description of Ψ′. If b = 1,
then [y]−σ ∈ S(K, δ) by Property 1 in the description of Ψ′, and S(K, δ) ⊆ S(K, ε) because
δ ≤ γ ≤ ε. This shows that (b, [y]−σ) is a correct output for the weak feasibility problem
for ε and K in case b = 1. In case b = 0 we have [K]σ ⊆ E(A, a) for a positive definite
matrix A and a vector a, with vol(E(A, a)) ≤ γ ≤ (ε/(2nRn−1nk))k, by point 3. immediately
following the statement of Theorem 1. Since K ⊆ S(0, R), by Lemma 2 this means that the
volume of K is at most ε and the answer b = 0 is a correct output.

For the implementation in FPC, we note that CC’ is a relational WHILE algorithm
that halts after at most |I| iterations all whose steps can be computed through FPC-
interpretations without quotients. Step 01 is the description of the input. Step 02 follows
from the fact that K has a circumsbribed representation: just take the LQ-reduct of the
representation of K, where LQ is the copy of the vocabulary that is used for representing
the rational radius R. Step 03 is point 1. in Lemma 3. Step 04 follows from the Immerman-
Vardi Theorem on the fact that the representation of [k] is an ordered structure and the
computation of CC in between oracle calls runs in polynomial time. Step 05 is just a control
statement. Step 06 follows from point 4. in Lemma 3. Step 07 follows from the fact σ respects
s and point 5. in Lemma 3. Step 08 follows, again, from the Immerman-Vardi Theorem on
the fact that the representation of [k] is an ordered structure and the computation of CC
in between oracle calls runs in polynomial time. Step 09 follows from the same reason as
Step 08. Step 10 is a control statement. Step 11 follows from point 5. in Lemma 3. Step 12
and 13 are just control statements. Step 14 follows from point 3. in Lemma 3.

This completes the proof of Theorem 2, and this section.

4 Feasibility of SDPs

In this section we use Theorem 2 to show that the exact feasibility of semidefinite programs
is definable in Cω

∞ω.

4.1 Semidefinite sets

A semidefinite set KA,b ⊆ RI is the set of matrices X ∈ RJ×J that satisfy

〈Ai, X〉 ≤ bi for i ∈M and X � 0, (3)

where A ∈ RM×(J×J) is an indexed set of J × J matrices, b ∈ RM is an indexed set of
reals, X is a J × J symmetric matrix of formal variables xij = xji = x{i,j} for i, j ∈ J , and
I = {{i, j} : i, j ∈ J} is the set of variable indices. A circumscribed semidefinite set is a pair

14

(KA,b ⊆ RI , R), where KA,b ⊆ RI is a semidefinite set as defined above and R is a rational
satisfying KA,b ⊆ S(0I , R).

When A and b have rational coefficients, the semidefinite set KA,b ⊆ RI is represented
by a four-sorted structure, with one sort Ī for the set I of indices of variables, two sorts J̄
and M̄ for the index sets J and M , and one sort B̄ for a domain {0, . . . , N − 1} of bit
positions that is large enough to encode all the numbers in binary. The vocabulary LSDP

includes the following relation symbols:

1. three unary symbols I, J and M , for Ī, J̄ and M̄ , respectively,

2. one ternary symbol P of type Ī× J̄ × J̄ that indicates the two indices of each variable,

3. one binary symbol ≤ for the natural linear order on B̄,

4. three 4-ary symbols PA,s, PA,n, PA,d for the set of matrices {Ai : i ∈M},
5. three binary symbols Pb,s, Pb,n, Pb,d for the set of rationals {bi : i ∈M}.

The representation of the circumscribed semidefinite set (KA,b ∈ RI , R) is a structure over
the vocabulary LSDP ∪̇LQ whose LSDP-reduct is the representation of KA,b ∈ RI , and whose
LQ-reduct is the representation of R.

The class of semidefinite sets together with the representation defined above form a
represented class of sets, which we denote by CSDP. Similarly, the class of circumscribed
semidefinite sets form a represented class of circumscribed sets denoted C C

SDP.
In [8] Dawar and Wang show the following:

Theorem 3 ([8]). The weak feasibility problem for circumscribed semidefinite sets is FPC-
definable.

In order to do so they prove Theorem 2 for the special case of semidefinite sets and propose
an FPC-interpretation for the not-so-weak separation oracle. For completeness, we work
out the details of a variant of their construction, indicating the precise place where our
procedures differ, and why.

4.2 Separation oracle

We show that the not-so-weak separation problem is FPC-definable for the class CSDP of all
semidefinite sets. This clearly implies the FPC-definability of the not-so-weak separation
problem for C C

SDP, which is what is needed for the proof of Theorem 3. We begin with a few
definitions and lemmas.

A polytope Ku,b ⊆ RI is defined by a system of linear inequalities:

〈ui, x〉 ≤ bi for i ∈M, (4)

where x is an I-vector of variables, u ∈ RM×I is an indexed set of I-vectors, and b ∈ RM

is an indexed set of reals. If the entries of the vectors {ui : i ∈ M} and b are rational
numbers, then the polytope Ku,b ⊆ RI is represented by a three-sorted structure, with two

15

sorts Ī and M̄ for the index sets I and M , and one sort B̄ for a domain {0, . . . , N − 1} of
bit positions that is large enough to encode all the numbers in binary. The vocabulary LLP

includes the following relation symbols:

1. two unary symbols I and M , for Ī and M̄ , respectively,

2. one binary symbol ≤ for the natural linear order on B̄,

3. three ternary symbols Pu,s, Pu,n, Pu,d for the set of vectors {ui : i ∈M},
4. three binary symbols Pb,s, Pb,n, Pb,d for the set of rationals {bi : i ∈M}.

Linear programs of the form:

(P) : inf x 〈c, x〉 s.t. 〈ui, x〉 ≤ bi for i ∈M, (5)

where x, u and b are as specified above and c is an I-vector, are represented similarly as
polytopes. The vocabulary LoptLP contains three additional binary symbols Pc,s, Pc,n, Pc,d
that encode the vector c.

Theorem 4 ([2]). There exists an FPC-interpretation that takes as input a linear program
P : inf x 〈c, x〉 s.t. 〈ui, x〉 ≤ bi for i ∈ M, and outputs an integer b ∈ {−1, 0, 1}, a vector
s ∈ QI and a rational r ∈ Q, such that:

1. b = 1 and P is feasible but unbounded below, or

2. b = 0 and P has as an optimal feasible solution of value r, and s is one, or

3. b = −1 and P is infeasible.

We also need the following lemma from [8] showing that the smallest eigenvalue of a given
symmetric matrix can be approximated in FPC:

Lemma 4 ([8]). There exists an FPC-interpretation that takes as input a symmetric matrix
A ∈ QI×I and a rational δ > 0 and outputs a rational λ, such that λ is the approximate
value of the smallest eigenvalue of A up to precision δ.

We are now ready to show the following:

Proposition 1. The not-so-weak separation problem for CSDP is FPC-definable.

Proof. If KA,b ⊆ RI is a non-empty semidefinite set and Y ∈ RJ×J is a symmetric matrix
outside KA,b, then either Y violates at least one of the linear inequalities that describe KA,b,
or fails to be positive semidefinite. In the former case, we get a separating hyperplane
by taking the normal of the violated inequality, and a canonical one by taking the sum of
all of them, as in [2]. In the latter case, the smallest eigenvalue λ of Y is negative, and
if v is an eigenvector of this eigenvalue, then vvT is a valid separating hyperplane (after
normalization). Such an eigenvector would be found if we were able to find an optimal
solution to the optimization problem

inf y ‖(Y − λI)y‖1 s.t. ‖y‖∞ = 1. (6)

16

Unfortunately, this optimization problem cannot be easily phrased into an LP because the
constraint ‖y‖∞ = 1 cannot be expressed by linear inequalities. Here is where we differ
from [8]: first we relax the constraint ‖y‖∞ = 1 to ‖y‖∞ ≤ 1, but then we add the condition
that some component yl is 1, and we do this for each l ∈ J separately. Thus, for each l ∈ J ,
let P (Y, λ, l) be the following optimization problem:

inf y ‖(Y − λI)y‖1 s.t. ‖y‖∞ ≤ 1, yl = 1. (7)

This we can formulate as an LP. The problem P (Y, λ, l) may be feasible for some l ∈ J
and infeasible for some other l ∈ J , but at least one is guaranteed to be feasible. We take
a solution for each feasible one and add them together to produce a canonical separating
hyperplane. All this would be an accurate description of what our separation oracle does
except for the fact that we cannot compute λ exactly, but only an approximation λ̂. Still, if
the approximation is good enough, using λ̂ in place of λ in the P (Y, λ, l)’s will do the job.
We provide the details.

Let Ψ be the interpretation that takes as input a symmetric matrix Y ∈ QJ×J , a rational
δ > 0, and a representation of KA,b ⊆ RI in CSDP, where A ∈ QM×(J×J) and b ∈ QM , does
the following:

01. given Y , δ, and KA,b ⊆ RI as specified,
02. compute L := {i ∈M : 〈Ai, Y 〉 > bi},
03. if |L| 6= 0, then
04. compute D := ‖

∑
i∈LAi‖∞,

05. if D 6= 0, compute S :=
∑

i∈LAi/D, and output (0, S),
06. if D = 0, output (0, I),
07. else
08. compute n := |J |,
09. compute λ̂, the smallest eigenvalue of Y up to precision δ/2n2,

10. if λ̂ > δ/2n2, output (1, I),
11. else

12. compute T := {l ∈ J : P (Y, λ̂, l) is feasible with optimum ≤ δ/2},
13. compute v := {vl ∈ QJ : l ∈ T and vl is optimal for P (Y, λ̂, l)},
14. compute D := ‖

∑
l∈T vlv

T
l ‖∞ and S := −

∑
l∈T vlv

T
l /D,

15. output (0, S).

Let us show that Ψ is FPC-definable and satisfies the required conditions.
Step 01 is the description of the input. Steps 07 and 11 are control steps. FPC-definability

of Steps 02, 03, 04, 05, 06, 08, 10, 14 and 15 follow from the ability of FPC to perform the
basic arithmetic of rational numbers, compare rational numbers, and compute cardinalities
of definable sets. Step 09 follows from Lemma 4. Below we argue that Steps 12 and 13 are
FPC-definable and that the output is always correct.

Suppose that L = {i ∈M : 〈Ai, Y 〉 > bi} 6= ∅ and let us prove that the output in Steps 05

17

an 06 is correct. If
∑

i∈LAi is the zero matrix then we have that∑
i∈L

bi <
∑
i∈L

〈Ai, Y 〉 = 〈
∑
i∈L

Ai, Y 〉 = 0.

Therefore, the feasibility region KA,b is empty. Indeed, every X ∈ KA,b satisfies

0 >
∑
i∈L

bi ≥
∑
i∈L

〈Ai, X〉 = 〈
∑
i∈L

Ai, X〉 = 0,

which is a contradiction. Hence, for any matrix whose L∞-norm is 1, in particular for the
identity matrix I, the output (0, I) is correct.

If
∑

i∈LAi is not the non-zero matrix, let D = ‖
∑

i∈LAi‖∞ and S =
∑

i∈LAi/D. Then
for every X ∈ KA,b we have that

〈S,X〉 = 〈
∑
i∈L

Ai
D
, Y 〉 =

1

D

∑
i∈L

〈Ai, X〉 ≤
1

D

∑
i∈L

bi <
1

D

∑
i∈L

〈Ai, Y 〉 = 〈S, Y 〉. (8)

Moreover, the matrix S has L∞-norm 1. So the output is correct.
Suppose that L = {i ∈ M : 〈Ai, Y 〉 > bi} = ∅, n = |J | and λ̂ > δ/2n2, and let us argue

that the output in Step 10 is correct. Observe that, for every i ∈ M , the matrix Y satisfies
〈Ai, Y 〉 ≤ bi, and its smallest eigenvalue λ is positive, which means that the matrix Y is
positive semidefinite. Hence, Y is in the feasibility region KA.b and the output is correct.

Finally, let us assume that λ̂ > δ/2n2. In this case, for every l ∈ J , the FPC inter-
pretation needs to compute the optimal value and an optimal solution of the optimisation
problem P (Y, λ̂, l). To show that this is possible, we define an essentially equivalent linear
program P ′(l) and use Theorem 4 to conclude.

To perform Steps 12 and 13 the FPC interpretation takes, for each l ∈ J , the linear
program P ′(l) with variables {xi : i ∈ J} ∪ {yi : i ∈ J}, defined by:

inf x,y
∑

i∈[n] xi

s.t. −xi ≤ (Y y − λ̂y)i ≤ xi, for every i ∈ J
−1 ≤ yi ≤ 1, for every i ∈ J
yl = 1.

In the following, since Y and λ̂ are fixed, let us write P (l) instead of P (Y, λ̂, l).

Claim 1. The program P (l) is feasible if and only if the program P ′(l) is feasible and the
optimal values of P (l) and P ′(l) are the same. Moreover, if a vector {xi : i ∈ J}∪{yi : i ∈ J}
is an optimal solution to P ′(l), then the vector {yi : i ∈ J} is an optimal solution to P (l).

Proof. Suppose that the feasibility region of P (l) is non-empty. For every vector y = {yi :
i ∈ J} in the feasibility region of P (l), the vector {xi : i ∈ J} ∪ {yi : i ∈ J}, where xi =
|(Y y − λ̂y)i|, belongs to the feasibility region of P ′(l) and its value

∑
i∈J xi = ‖(Y − λ̂I)y‖1

is the same as the value of {yi : i ∈ J} for P (l). Therefore, the feasibility region of P ′(l) is

18

non-empty and the optimal value opt′ of P ′(l) is smaller or equal to the optimal value opt
of P (l).

Suppose that the feasibility region of P ′(l) is non-empty, and take an optimal solution
{xi : i ∈ J} ∪ {yi : i ∈ J} for P ′(l). Let y = {yi : i ∈ J}. It holds that ‖y‖∞ = 1 and
yl = 1, so the vector y is in the feasibility region of P (l). Therefore, the feasibility region
of P (l) is non-empty, and opt ≤ ‖(Y − λ̂I)y‖1. Moreover, for every i ∈ J , we have that
|(Y y − λ̂y)i| ≤ xi so ‖(Y − λ̂I)y‖1 ≤

∑
i∈J xi = opt′. On the other hand we know that

opt′ ≤ opt. To summarise

opt ≤ ‖(Y − λ̂I)y‖1 ≤
∑
i∈J

xi = opt′ ≤ opt.

Hence, the vector y is an optimal solution for P (l) and the optimal values are the same.

To perform Steps 12 and 13 the FPC interpretation computes, for every l ∈ J , an optimal
solution and the optimal value of the optimisation problem P (l), by computing an optimal
solution and the optimal value of the linear program P ′(l) via Theorem 4, and projecting
the output to the variables {yi : i ∈ J}.

We will now show that T , as defined in Step 12, is nonempty, and that ‖
∑

l∈T vlv
T
l ‖∞ 6= 0.

It follows that the output matrix S in Step 14 is well defined.

Claim 2. T 6= ∅.

Proof. Let v be an eigenvector of Y with the smallest eigenvalue λ, and let ‖v‖∞ = 1. We
have the following

‖(Y − λ̂I)v‖1 ≤ ‖(Y − λI)v − (λ̂− λ)Iv‖1 ≤ ‖(Y − λI)v‖1 + ‖(λ̂− λ)Iv‖1 =

= ‖(λ̂− λ)Iv‖1 ≤
δ

2n2
n‖v‖∞ =

δ

2n
.

(9)

If there exists l ∈ J such that vl = 1, then v ∈ P (l) and T 6= ∅. Otherwise, there exists l ∈ J
such that vl = −1. Then −v ∈ P (l) and we are done as well.

Claim 3. 1 ≤ ‖
∑

l∈T vlv
T
l ‖∞ ≤ |T |.

Proof. Observe that for every l ∈ J , since ‖vl‖∞ = 1, we have that ‖vlvTl ‖∞ = 1. Therefore,

‖
∑
l∈T

vlv
T
l ‖∞ ≤

∑
l∈T

‖vlvTl ‖∞ = |T |.

On the other hand,

‖
∑
l∈T

vlv
T
l ‖∞ ≥ ‖

∑
l∈T

vl ◦ vl‖∞ ≥ max{‖vl ◦ vl‖∞ : l ∈ T} = 1,

where vl ◦ vl denotes the Hadamard product. The first inequality follows from the fact that
all coefficients of each of the vectors vl ◦ vl are squares and therefore non negative.

19

Finally, let us show that the output (0, S) in Step 15 is correct.

Claim 4. For every l ∈ T , let vl be the optimal solution of P (l). Then for every X ∈ KA,b,

〈−vlvTl , Y 〉+
δ

n
≥ 〈−vlvTl , X〉.

Proof. Take any X ∈ KA,b. Since the matrix X is positive semidefinite, 〈−vlvTl , X〉 =
−vTl Xvl ≤ 0. We will show that 〈−vlvTl , Y 〉+ δ/n > 0. It holds that

〈−vlvTl , Y 〉 = −vTl Y vl = −vTl (λ̂I + (Y − λ̂I))vl =

= −λ̂vTl vl − vTl (Y − λ̂I)vl ≥ −λ̂vTl vl − |vTl (Y − λ̂I)vl| ≥

≥ −λ̂vTl vl − ‖vl‖∞‖(Y − λ̂I)vl‖1 ≥ −λ̂vTl vl −
δ

2n
,

(10)

where the last but one inequality is a consequence of Holder’s inequality. It follows that

〈−vlvTl , Y 〉+
δ

n
≥ −λ̂vTl vl +

δ

2n
.

Now if λ̂ ≤ 0, then −λ̂vTl vl + δ/2n = −λ̂‖vl‖2
2 + δ/2n ≥ δ/2n > 0. Otherwise 0 < λ̂ ≤

δ/2n2, and

λ̂vTl vl ≤
δ

2n2
‖vl‖2

2 ≤
δ

2n2
(
√
n‖vl‖∞)2 =

δ

2n2
n =

δ

2n
.

Hence, −λ̂vTl vl + δ/2n ≥ −δ/2n+ δ/2n = 0.

We finish the proof by showing that for every X ∈ KA,b,

〈S, Y 〉+ δ ≥ 〈S,X〉.

Let X be any matrix in KA,b. From now on, let D = ‖
∑

l∈T vlv
T
l ‖∞. It holds that

〈S, Y 〉 = 〈−
∑
l∈T

vlv
T
l

D
, Y 〉 =

1

D

∑
l∈T

〈−vlvTl , Y 〉 ≥
1

D

∑
l∈T

(〈−vlvTl , X〉 −
δ

n
) =

= 〈−
∑
l∈T

vlv
T
l

D
,X〉 − |T |

D

δ

n
= 〈S,X〉 − |T |

n

δ

D
≥ 〈S,X〉 − δ,

(11)

where the last inequality follows from the fact that |T | ≤ n and D ≥ 1.

4.3 Exact feasibility

We use Theorem 3 to prove the main result of this section:

Theorem 5. The exact feasibility problem for semidefinite sets is Cω
∞ω-definable.

20

We begin the proof by relating the problem of exact feasibility to the subject of Theo-
rem 3, i.e., the weak feasibility problem for circumscribed semidefinite sets.

For any R > 0, the R-restriction of a semidefinite set KA,b is the set of all those points
in KA,b whose L∞-norm is bounded by R, i.e., it is the semidefinite set given by:

〈Ai, X〉 ≤ bi for i ∈M ,
X{i,j} ≤ R for i, j ∈ J ,
−X{i,j} ≤ R for i, j ∈ J ,
X � 0.

For any ε > 0, the ε-relaxation of a semidefinite set KA,b is the semidefinite set given by:

〈Ai, X〉 ≤ bi + ε for i ∈M
X � 0.

The question of emptiness for ε-relaxations of R-restrictions of semidefinite sets is closely
linked to the exact feasibility problem under consideration. Recall the Cantor Intersection
Theorem: If K1 ⊇ K2 ⊇ · · · is a decreasing nested sequence of non-empty compact subsets
of Rn, then the intersection

⋂
i≥1Ki is non-empty. We use it for the following lemma.

Lemma 5. A semidefinite set KA,b is non-empty if and only if there exists a positive ratio-
nal R such that for every positive rational ε it holds that the ε-relaxation of the R-restriction
of KA,b is non-empty.

Proof. Assume that KA,b is non-empty and let x be a point in it. Let R be a rational bigger
than ‖x‖∞. Then x is also in the R-restriction of KA,b, and therefore in the ε-relaxation of
the R-restriction of KA,b for every positive rational ε.

Assume now that R is a positive rational such that the ε-relaxation of the R-restriction
of KA,b is non-empty for every positive rational ε. For each positive integer m, let Km be
the 1/m-relaxation of the R-restriction of KA,b. Each Km is closed and bounded, hence
compact. Moreover K1 ⊇ K2 ⊇ · · · , i.e., the sets Km form a decreasing nested sequence of
non-empty subsets of RI . It therefore follows from the Cantor Intersection Theorem that⋂
m≥1Km is non-empty. The claim follows from the observation that

⋂
m≥1Km is indeed the

R-restriction of KA,b.

It follows from Theorem 3 that the emptiness problem for ε-relaxations of R-restrictions
of semidefinite sets is definable in FPC in the following sense.

Proposition 2. There exists a formula ψ of FPC such that if A is a structure over LSDP ∪̇
LQ ∪̇ LQ, representing a semidefinite set KA,b ⊆ RI and two positive rational numbers R
and ε, then:

1. if A |= ψ then the ε-relaxation of the R-restriction of KA,b is non-empty, and

2. if A 6|= ψ then the R-restriction of KA,b is empty.

21

Proof. Let Φ be an FPC-interpretation that witnesses that the weak feasibility problem for
the class of circumscribed semidefinite sets is FPC-definable. The formula ψ takes as input
the representation of a semidefinite set KA,b ⊆ RI , a rational ε > 0 and a rational R > 0,
and does the following:

01. given KA,b ⊆ RI , ε and R as specified,
02. compute k := |I|,
03. compute R′ := d

√
k(R + ε)2e,

04. compute a representation of K, the ε-relaxation of the R-restriction of KA,b,
05. compute m := max {‖Ai‖2 : i ∈M} ∪ {1},
06. compute δ = εk/(k!(2km)k),
07. compute (b, x) := Φ((K,R′), δ),
08. if b = 1 output >,
09. if b = 0 output ⊥.

This procedure is clearly FPC-definable. In order to prove correctness we will need the
following lemma.

Lemma 6. Let A ∈ RM×(J×J), b ∈ RM , I = {{i, j} : i, j ∈ J}, k = |I|, and m =
max {‖Ai‖2 : i ∈ M} ∪ {1}. For any ε > 0, if the semidefinite set KA,b ∈ RI is non-
empty, then its ε-relaxation has volume greater than

δ =
εk

k!(2km)k
.

Proof. Take ε1 = ε/2km. Let Y be an element of KA,b. We will show that S(Y + ε1I, ε1) is
included in the ε-relaxation of KA,b. It will follow that the volume of the ε-relaxation of KA,b

is at least εk1Vk, where Vk is the volume of a 1-ball in the k-dimensional real vector space.
Since Vk > 1/k! this finishes the proof.

Suppose that T ∈ S(Y + ε1I, ε1). This means that T = Y + ε1I + Z, where ‖Z‖2 ≤ ε1.
Let v be a vector whose L2-norm is 1. We have

vTTv = vT (Y + ε1I + Z)v = vTY v + ε1v
T Iv + vTZv ≥

≥ 0 + ε1‖v‖2
2 + 〈vvT , Z〉 ≥ ε1 − |〈vvT , Z〉| ≥

≥ ε1 − ‖vvT‖2‖Z‖2 = ε1 − ‖v‖2
2‖Z‖2 ≥ ε1 − ε1 = 0.

(12)

Moreover, for every i ∈M , we have

|〈Ai, T 〉 − bi| = |〈Ai, Y 〉+ 〈Ai, ε1I〉+ 〈Ai, Z〉 − bi| ≤
≤ |〈Ai, ε1I〉+ 〈Ai, Z〉| ≤ ε1|〈Ai, I〉|+ |〈Ai, Z〉| ≤
≤ ε1‖Ai‖2‖I‖2 + ‖Ai‖2‖Z‖2 ≤

≤ ε‖Ai‖2

√
k

2km
+
‖Ai‖2ε

2km
≤

≤ ε

2
√
k

+
ε

2k
≤ ε,

(13)

22

where the one to last inequality follows from the fact that m = max {‖Ai‖2 : i ∈M} ∪ {1},
and the last inequality follows from the fact that k = |I| ≥ 1.

We are now ready to conclude the proof. Observe that the L∞-norm of any point that
belongs to the ε-relaxation of the R-restriction of a semidefinite set is bounded by R + ε,
therefore the pair (K,R′) computed in Steps 03 and 04 is a representation of a circumscribed
semidefinite set. Let (b, x) be the pair computed in Step 07.

If b = 1 then there exists a point in S(K, δ), which in particular means that K is non-
empty, so the output in Step 08 is correct. If b = 0, then we know that the volume of K is
at most δ. The inequalities that define K have the form 〈Ai, X〉 ≤ bi + ε for i ∈ M , and
X{i,j} ≤ R+ ε or −X{i,j} ≤ R+ ε for i, j ∈ J . The maximum 2-norm of the normals of these
inequalities and 1 is m = max {‖Ai‖2 : i ∈M} ∪ {1}, so Lemma 6 applies. This means that
K is empty, and the output in Step 09 is correct.

To finish the proof of Theorem 5 we show a technical lemma that may sound a bit
surprising at first: it sounds as if it was stating that Ck

∞ω-definability is closed under second-
order quantification over unbounded domains, which cannot be true. However, on closer
look, the lemma states this only if the vocabularies of the quantified and the body parts
of the formula are totally disjoint. In particular, this means that the domains of the sorts
in the quantified and body parts of the formula stay unrelated except through the counting
mechanism of Ck

∞ω.
Note for the record that if L and K are two many-sorted vocabularies with disjoint sorts,

then obviously the vocabulary L∪K does not contain any relation symbol whose type mixes
the sorts of L and K. If A is a class of L ∪K-structures and B is a class of K-structures,
we use the notation ∃B ·A to denote the class of all finite L-structures A for which there
exists a structure B ∈ B such that A ∪̇B ∈ A . Similarly, we use ∀B ·A to denote the class
of all finite L-structures A such that for all structures B ∈ B we have that A ∪̇ B ∈ A .

Lemma 7. Let L and K be many-sorted vocabularies with disjoint sorts, let A be a class of
finite L ∪K-structures, and let B be a class of finite K-structures. If A is Ck

∞ω-definable,
then the classes of L-structures ∃B ·A and ∀B ·A are also Ck

∞ω-definable.

Proof. The proof is a simple Booleanization trick to replace the finite quantifiers ∃≥i over
the sorts in K by finite propositional formulas, followed by replacing ∃B and ∀B by infinite
disjunctions and conjunctions, respectively, indexed by the structures in B. We provide
the details. Let φ be a formula of the many-sorted vocabulary L ∪K with all variables of
the L-sorts among x1, . . . , xk, and all variables of the K-sorts among y1, . . . , yk. Note that
since L and K have disjoint sorts, all the atomic subformulas of φ have all its variables
among x1, . . . , xk or all its variables among y1, . . . , yk. In other words, there are no atomic
subformulas with mixed x-y variables. For every finite K-structure B with domain B and
every b = (b1, . . . , bk) ∈ Bk, let φ(B, b) be the Booleanization of φ with respect to the atomic
interpretation of K given by B, the domain of quantification B for the variables of the K-
sorts, and the free-variable substitution x := b. Formally, using the notation [E] for the
truth value of the statement E, the formula φ(B, b) is defined inductively as follows:

23

1. if φ = R(xi1 , . . . , xi`) with R ∈ L ∪ {=}, define φ(B, b) := φ,

2. if φ = R(yi1 , . . . , yi`) with R ∈ K ∪ {=}, define φ(B, b) := [(bi1 , . . . , bi`) ∈ R(B)],

3. if φ = ¬θ, define φ(B, b) := ¬θ(B, b),
4. if φ =

∧
i θi, define φ(B, b) :=

∧
i θi(B, b),

5. if φ = ∃≥txi(θ), define φ(B, b) := ∃≥txi(θ(B, b)),
6. if φ = ∃≥tyi(θ), define

φ(B, b) :=
∨
c∈Bt

(∧
j,j′∈[t]
j 6=j′

[cj 6= cj′] ∧
∧
j∈[t]

θ(B, b[i/cj])
)
. (14)

Since there are no atomic subformulas with mixed x-y variables, the definition covers all
cases. The construction of φ(B, b) was designed so that for every finite (L ∪ K)-structure
C with L- and K-reducts A and B with domains A and B, respectively, every a ∈ Ak and
every b ∈ Bk, it holds that C |= φ[a, b] if and only if A |= φ(B, b)[a]. Now, if φ is an (L∪K)-
sentence, define φ(B) :=

∨
b∈Bk φ(B, b) and φ∃ :=

∨
B∈B φ(B). It follows from the definitions

that φ∃ defines ∃B ·A . Similarly, defining φ∀ :=
∧

B∈B φ(B) works for ∀B ·A .

We put everything together in the proof of Theorem 5.

Proof of the Theorem 5. Let ψ be the LSDP ∪̇ LQ ∪̇ LQ-formula of FPC defined in Proposi-
tion 2. Let l be the number of variables in ψ. By the translation from l-variable FPC to
Cl
∞ω (see Section 2), there exists an LSDP ∪̇ LQ ∪̇ LQ-formula τ of Cl

∞ω defining the same
class A of finite structures. The vocabulary of A has disjoint sorts. Let BR be the class of
finite structures which are representations of positive rational numbers over the first copy of
LQ, and let Bε be the class of finite structures which are representations of positive rational
numbers over the second copy of LQ. By Lemma 7 the class ∀Bε ·A , and hence ∃BR ·∀Bε ·A ,
is also Cl

∞ω-definable. Let φ be the LSDP-formula of Cl
∞ω defining this last class. Lemma 5

implies that φ defines the exact feasibility problem for semidefinite sets.

5 Sums-of-Squares Proofs and Lasserre Hierarchy

In this section we develop the descriptive complexity of the problem of deciding the existence
of Sums-of-Squares proofs. Along the way we discuss the relationship between the Lasserre
hierarchy of SDP relaxations and SOS, and how 0/1-valued variables ensure strong duality.
We use the strong duality to argue the equivalence between the existence of SOS refutations
and the existence of a notion of SOS approximate refutations that we introduce.

5.1 Descriptive Complexity of SOS Proofs

Let x1, . . . , xn be a set of variables. In the following whenever we talk about polynomials or
monomials we mean polynomials and monomials over the set of variables x1, . . . , xn and real

24

or rational coefficients. For a set Q = {q1, . . . , qk} of polynomials and a further polynomial
q, a Sums-of-Squares proof of q ≥ 0 from Q is an identity:∑

j∈[m]

pjsj = q, (15)

where, for every j ∈ [m], the polynomial sj is a sum of squares of polynomials, and the
polynomial pj is either in Q or in the set Bn defined as follows:

1, xi, 1− xi, x2
i − xi, xi − x2

i , for every i ∈ [n]. (16)

The inequalities p ≥ 0 for p ∈ Bn are called Boolean axioms. If q = −1, then the proof is
called a refutation of Q. Sometimes we allow the system to include equations qi = 0, which
we think of as the set of two inequalities qi ≥ 0 and −qi ≥ 0. The degree of the proof is
defined as max{deg(pjsj) : j ∈ [m]}, where, for a polynomial p, the notation deg(p) denotes
the degree of p.

We consider the problem of deciding the existence of SOS proofs and refutations of a
fixed degree 2d for a set of polynomials given as input. The first easy observation is that the
proof-existence problem can be reduced to the exact feasibility problem for semidefinite sets,
and the reduction can be done in FPC. Then we ask whether the exactness condition in the
feasibility problem for semidefinite sets can be relaxed, and we achieve this for refutations.
In other words:

1. Proof-existence reduces in FPC to exact feasibility for semidefinite sets.

2. Refutation-existence reduces in FPC to weak feasibility for semidefinite sets.

We note that, in both cases, the semidefinite sets in the outcome of this reduction are not
circumbscribed. As stated, point 1. above is almost a reformulation of the problem. In order
to prove point 2. we need to develop a notion of approximate refutation, and combine it
with a strong duality theorem that characterizes the existence of SOS refutations in terms
of so-called pseudoexpectations. We note that the strong duality theorem that we need relies
on the assumption that the Boolean axioms are allowed for free in the definition of SOS.

Finally, we combine these FPC reductions with the results of the previous section in
order to get the following:

Corollary 1. For every fixed positive integer d, the problems of deciding the existence of
SOS proofs of degree 2d, and SOS refutations of degree 2d, are Cω

∞ω-definable. Moreover,
there exists a constant c, independent of d, such that the defining formulas are in Ccd

∞ω.

As usual with descriptive complexity results like these, we need to fix some encoding of the
input as finite relational structures. In this case the inputs are indexed sets of polynomials.
The exact choice of encoding is not very essential, but we propose one for concreteness.

Let I be an index set and let {xi : i ∈ I} be a set of formal variables. A monomial is a
product of variables. We use the notation xα, where α ∈ NI , to denote the monomial that
has degree αi on variable xi. We write |α| for the degree

∑
i∈I αi of the monomial xα. A

25

polynomial
∑

α cαx
α is a finite linear combination of monomials, i.e. all but finitely many

of the coefficients cα are zero. A polynomial p with rational coefficients is represented by a
three-sorted structure, with a sort Ī for the index set I, a second sort M̄ for the finite set of
monomials that have non-zero coefficient in p, and a third sort B̄ for a domain {0, . . . , N−1}
of bit positions, where N is large enough to encode all the coefficients of p and all the degrees
of its monomials in binary. The vocabulary Lpol of this structure has one unary relation
symbol I for Ī, one binary relation symbol ≤ for the natural linear order on B̄, three binary
relations symbols Ps, Pn, and Pd of type M̄ × B̄ that encode, for each monomial, the sign,
the bits of the numerator, and the bits of the denominator of its coefficient, respectively, and
a ternary relation symbol D of type M̄ × Ī × B̄ that encodes, for each monomial and each
variable, the bits of the degree of this variable in the monomial.

5.2 Lasserre hierarchy

For a set of polynomials {q0, q1, . . . , qk}, by POP(q0; {q1, . . . , qk}) we denote the polynomial
optimisation problem :

(POP) : inf x q0 s.t. qi ≥ 0 for i ∈ [k], (17)

Take d > 0. By Md we denote the matrix indexed by monomials of degree at most d
over the variables x1, . . . , xn where (Md)α,β = xα+β. For every monomial xα, we intro-
duce a variable yα and by Md(y) we denote the corresponding matrix of variables, i.e.,
(Md(y))α,β = yα+β. More generally, for any polynomial q =

∑
γ cγx

γ, the matrix Mq,d, in-

dexed by monomials of degree at most d, is defined by Mq,d = qMd, i.e., (Mq,d)α,β = qxα+β.
The corresponding matrix Mq,d(y) is defined by (Mq,d(y))α,β =

∑
γ cγyα+β+γ. Observe that

the entries of the matrix Mq,d are polynomials of degree at most 2d + deg q, while the en-
tries of the matrix Mq,d(y) are the corresponding linear combinations of variables. Note
also that M1,d = Md and M1,d(y) = Md(y). For every variable yα, consider the coefficients
of yα in the matrix Mq,d(y). Those coefficients form a matrix which we denote by Aq,d,α.
Formally, for |α| ≤ 2d+ deg q, the matrices Aq,d,α are defined as the real matrices satisfying
Mq,d(y) =

∑
α yαAq,d,α or equivalently Mq,d =

∑
α x

αAq,d,α. Finally, for any polynomial q,
by dq we denote the biggest integer satisfying 2dq + deg q ≤ 2d.

Let Q be a set of polynomials. For any positive integer d, the Lasserre SDP relaxation of
the polynomial optimisation problem POP(

∑
α aαx

α;Q) of order d is the pair of semidefinite
programs (Pd, Dd), where Pd is the primal semidefinite program:

inf y
∑

α aαyα

y∅ = 1

Mq,dq(y) � 0, for every q ∈ Q
(18)

26

and Dd is the dual semidefinite program:

sup z,Z z∑
q∈Q〈Aq,dq ,∅, Zq〉 = a∅ − z∑
q∈Q〈Aq,dq ,α, Zq〉 = aα, for 1 ≤ |α| ≤ 2d

Zq � 0, for every q ∈ Q

(19)

Weak SDP duality implies that the optimal value of Pd is always greater or equal to
the optimal value of Dd. In [10] the authors establish a condition which guarantees strong
duality for primal and dual SDP problems in the Lasserre hierarchy.

Theorem 6 ([10]). If POP(q0;Q) is a polynomial optimisation problem where one of the
inequalities describing the feasibility region is R2 −

∑
i∈[n] x

2
i ≥ 0, then for every positive

integer d, the optimal values of Pd and Dd are equal.

The polynomial optimisation problem POP(q0;Q) is called encircled if a polynomial
R2 −

∑
i∈[n] x

2
i can be obtained as a positive linear combination of polynomials from Q of

degree at most 2. The following lemma implies strong duality for primal and dual SDP
problems in the Lasserre hierarchy for encircled polynomial optimisation problems.

Lemma 8. Let Q be a set of polynomials and let p =
∑

q∈Q cqq be a positive linear com-
bination of polynomials from Q, such that deg p = max{deg q : cq > 0}. For some polyno-
mial q0, let (Pd, Dd) and (P ′d, D

′
d) be the order d Lasserre SDP relaxations of POP(q0;Q)

and POP(q0;Q∪ {p}), respectively. The optimal values of Pd and P ′d, as well as the optimal
values of Dd and D′d are equal.

Proof. Let q0 =
∑

α aαx
α and let d be some positive integer.

The primal P ′d is the following semidefinite program:

inf y
∑

α aαyα

y∅ = 1

Mq,dq(y) � 0, for every q ∈ Q
Mp,dp(y) � 0

(20)

Let P = {q ∈ Q : cq > 0}. Note that since deg p = max{deg q : q ∈ P}, for every q ∈ P ,
we have dp ≤ dq. For each q ∈ P , byM ′

q,dq
(y) let us denote the principal submatrix ofMq,dq(y)

obtained by removing the rows and columns indexed by monomials of degree greater than dp.
Observe that Mp,dp(y) =

∑
q∈P cqM

′
q,dq

(y). Since the constraints {Mq,dq(y) � 0 : q ∈ P}
imply the constraint Mp,dp(y) =

∑
q∈P cqM

′
q,dq

(y) � 0, the feasibility regions, and therefore
also the optimal values, of Pd and P ′d are the same.

27

The dual D′d is the following semidefinite program:

sup z,Z z∑
q∈Q〈Aq,dq ,∅, Zq〉+ 〈Ap,dp,∅, Zp〉 = a∅ − z∑
q∈Q〈Aq,dq ,α, Zq〉+ 〈Ap,dp,α, Zp〉 = aα, for 1 ≤ |α| ≤ 2d

Zq � 0, for every q ∈ Q
Zp � 0

(21)

Any solution to the program Dd can be extended to a solution to the program D′d with
the same optimal value by taking Zp to be the zero matrix. On the other hand, any solution
(z, {Zq}q∈Q, Zp) to the program D′d gives rise to a solution (z̃, {Z̃q}q∈Q) to the program Dd

with the same optimal value by setting z̃ := z, Z̃q := Zq+cqZp, for each q ∈ P , and Z̃q := Zq,
for each q ∈ Q \ P . This follows form the fact that Ap,dp,α =

∑
q∈P cqAq,dq ,α.

5.3 SOS proofs as semidefinite sets

Fix a set of polynomials Q and a further polynomial p =
∑

α aαx
α. Let Q̄ = Q ∪ Bn. A

polynomial s of degree at most 2t is a sum of squares if and only if there exists a positive
semidefinite matrix Z indexed by monomials of degree at most t such that s = 〈Mt, Z〉.
Therefore, there exists a degree-2d SOS proof of the polynomial inequality p ≥ 0 from Q
if and only if, for every q ∈ Q̄, there exists a positive semidefinite matrix Zq indexed by
monomials of degree at most dq such that∑

q∈Q̄

q〈Mdq , Zq〉 =
∑
q∈Q̄

〈Mq,dq , Zq〉 =
∑
q∈Q̄

〈
∑
α

xαAq,dq ,α, Zq〉 =

=
∑
α

xα
∑
q∈Q̄

〈Aq,dq ,α, Zq〉 =
∑
α

aαx
α.

(22)

Observe that the existence of a set of positive semidefinite matrices {Zq : q ∈ Q̄} satisfying
the identity (22) is exactly the same as non-emptiness of the semidefinite set Kd(Q, p) ⊆ RId

given by: ∑
q∈Q̄

〈Aq,dq ,α, Zq〉 = aα for |α| ≤ 2d and X � 0, (23)

where Jd = {(q, xα) : q ∈ Q̄, |α| ≤ dq} is a set of indices, X is a Jd× Jd symmetric matrix of
formal variables, Id = {{(q, xα), (q′, xα

′
)} : (q, xα), (q′, xα

′
) ∈ Jd} is a set of variable indices,

and for every q ∈ Q̄, the matrix Zq is the principal submatrix of X corresponding to the
rows and columns indexed by {(q, xα) : |α| ≤ dq}.

Indeed, from every feasible point X ∈ Kd(Q, p) we get a set of positive semidefinite
matrices {Zq : q ∈ Q̄} satisfying the identity (22) by setting Zq be the principal submatrix
of X corresponding to the rows and columns indexed by {(q, xα) : |α| ≤ dq}. On the other
hand, any set of positive semidefinite matrices {Zq : q ∈ Q̄} satisfying the identity (22) can
be extended to a point in Kd(Q, p) by setting all remaining variables to 0.

28

The representation of the semidefinite set Kd(Q, p) can be easily obtained from the repre-
sentation of the set of polynomials Q and the polynomial p by means of FPC-interpretations:

Fact 2. For every fixed positive integer d, there is an FPC-interpretation that takes a set of
polynomials Q and a polynomial p as input and outputs a representation of the semidefinite
set Kd(Q, p). Moreover, there exists a constant c, independent of d, such that the formulas
in the FPC interpretation have at most cd variables.

Therefore, as a consequence of Theorem 5 we obtain Corollary 1. Indeed, let us fix a
positive integer d and let Φ be the FPC-interpretation from Fact 2. We compose Φ with the
Cω
∞ω-sentence from Theorem 5 that decides the exact feasibility of semidefinite sets. The

resulting sentence ψ decides the existence of an SOS proof of degree 2d. It is a sentence
of Ck

∞ω, where k = cd, for an integer c that is independent of d. A Cω
∞ω-sentence deciding

the existence of an SOS refutation of degree 2d is obtained analogously by starting with an
FPC-interpretation which takes as input a set of polynomials Q and outputs the semidefinite
set Kd(Q,−1).

5.4 Approximate SOS refutations

For any ε > 0, an ε-approximate degree-2d SOS refutation of a set of polynomials Q is an
identity: ∑

q∈Q̄

qsq =
∑
α

aαx
α, (24)

where for every q ∈ Q̄, the polynomial sq is a sum of squares, for each α of degree at least 1,
we have |aα| ≤ ε, and |1 + a∅| ≤ ε. In the same way as the degree-2d SOS refutations
correspond to the points in the semidefinite set Kd(Q,−1), the ε-approximate degree-2d
SOS refutations correspond to the points in the ε-relaxation of Kd(Q,−1).

We will now relate the existence of SOS refutations to the primal and dual problems in
the Lasserre hierarchy for the polynomial optimisation problem POP(0; Q̄). The goal is to
use strong SDP duality for showing that, for small enough ε depending on the degree and
the number of variables, the existence of SOS refutations is equivalent to the existence of
ε-approximate ones. It follows that the problem of deciding the existence of SOS refutations
of a fixed degree reduces, by means of FPC-interpretations, to the weak feasibility problem
for semidefinite sets.

For any set of polynomials Q, the polynomial optimisation problem POP(0; Q̄) will be
denoted by SOL(Q):

(SOL(Q)) : inf x 0 s.t. q ≥ 0 for q ∈ Q̄. (25)

Clearly, the optimisation problem SOL(Q) is feasible if and only if the system of polynomial
inequalities {q ≥ 0 : q ∈ Q} has a 0/1-solution.

29

For a positive integer d, by (Pd(Q), Dd(Q)) we denote Lasserre SDP relaxation of the
polynomial optimisation problem SOL(Q) of order d, i.e., Pd(Q) is the semidefinite program:

inf y 0

y∅ = 1

Mq,dq(y) � 0, for every q ∈ Q̄
(26)

and Dd(Q) is the semidefinite program:

sup z,Z z∑
q∈Q̄〈Aq,dq ,∅, Zq〉 = −z∑
q∈Q̄〈Aq,dq ,α, Zq〉 = 0, for 1 ≤ |α| ≤ 2d

Zq � 0, for every q ∈ Q̄

(27)

Observe that degree-2d SOS refutations of Q correspond precisely to the feasible solutions
to Dd(Q) with value 1 (see identity (22)). The following lemma summarizes the relationship
between degree-2d SOS refutations of Q and solutions to the program Dd(Q). The second
equivalence follows from the fact that by multiplying a solution to Dd(Q) with value v by
any p ≥ 0 we obtain another solution with value pv.

Lemma 9. There exists an SOS refutation of Q of degree 2d if and only if Dd(Q) has a
solution with value 1 if and only if the optimal value of Dd(Q) is +∞.

For a system of polynomials Q, a pseudoexpectation of degree 2d is a linear mapping F
from the set of polynomials of degree at most 2d over the set of variables x1, . . . , xn to the
reals such that F (1) = 1, and for every q ∈ Q̄ and every sum of squares polynomial s of
degree at most 2dq, we have F (qs) ≥ 0.

A linear mapping from the set of polynomials of degree at most 2d to the reals is uniquely
defined by its restriction to monomials. Therefore, there is a natural one-to-one correspon-
dence between linear functions from the set of polynomials of degree at most 2d to the reals
and assignments to the set of variables {yα : |α| ≤ 2d} of the program Pd(Q), given by
G(yα) = F (xα). It is easy to see that an assignment G to the variables of Pd(Q) is a feasible
solution if and only if F is a pseudoexpectation of degree 2d.

Lemma 10. There exists a degree-2d pseudoexpectation for Q if and only if the program
Pd(Q) is feasible.

Proof. Let F be a linear functions from the set of polynomials of degree at most 2d to the
reals and let G be the corresponding assignment to the variables of Pd(Q). The statement
of the lemma follows by showing that for every q ∈ Q̄, the matrix Mq,dq(G(y)) is positive
semidefinite if and only if for every sum of squares polynomial s of degree at most 2dq, we
have F (qs) ≥ 0.

Let us take some q ∈ Q̄. Observe that for every matrix Z indexed by monomials of degree
at most dq, we have

〈Mq,dq(G(y)), Z〉 = 〈F (Mq,dq), Z〉) = F (〈qMdq , Z〉) = F (q〈Mdq , Z〉).

30

The matrix Mq,dq(G(y)) is positive semidefinite if and only if for every positive semidef-
inite matrix Z indexed by monomials of degree at most dq, it holds 〈Mq,dq(G(y)), Z〉 =
F (q〈Mdq , Z〉) ≥ 0 if and only if F (qs) ≥ 0 for every sum of squares polynomial s of degree at
most 2dq. The last equivalence follows from the fact that a polynomial s of degree at most 2t
is a sum of squares if and only if there exists a positive semidefinite matrix Z indexed by
monomials of degree at most t such that s = 〈Mt, Z〉.

Note that by summing the inequalities 1 − x1 ≥ 0, . . . , 1 − xn ≥ 0, together with the
inequalities x1 − x2

1 ≥ 0, . . . , xn − x2
n ≥ 0 one obtains an inequality n−

∑
i∈[n] x

2 ≥ 0, which

witnesses the fact that the problem SOL(Q) is encircled. Therefore, by Lemma 8 for the
problem SOL(Q) there is no duality gap between primal and dual SDP problems in the
Lasserre hierarchy and the optimal value of Dd(Q) is +∞ if and only if Pd(Q) is infeasible.
As a consequence of Lemmas 9 and 10 we get the following.

Corollary 2. There exists an SOS refutation of Q of degree 2d if and only if there is no
pseudo expectation of degree 2d.

Suppose that Q has no degree-2d SOS refutation. By strong duality this implies the
existence of a degree-2d pseudoexpectation. This in turn, as we will show now, precludes
even the existence of ε-approximate refutations, for small enough ε. The key is the fol-
lowing lemma, which says that in the presence of boolean axioms the absolute values of a
pseudoexpectation on the set of monomials are bounded by 1.

Lemma 11. If F is a degree-2d pseudoexpectation for Q, then 0 ≤ F (m) ≤ 1 for every
monomial m of degree at most d, and −1 ≤ F (m) ≤ 1 for every monomial m of degree at
most 2d.

Proof. First we show that if m is a monomial of degree at most 2d and m̄ denotes its
multilinearization, then F (m̄) = F (m). We do this by showing that F (x2m) = F (xm) for
every variable x and every monomial m of degree at most 2d−2. Fix such a monomial m and
let r and s be monomials of degree at most d− 1 such that m = rs. Note that m = p2 − q2

where p = (r + s)/2 and q = (r − s)/2, and both p2 and q2 have degree at most 2d − 2. It
holds that

F ((x2 − x)m) = F ((x2 − x)(p2 − q2)) = F ((x2 − x)p2) + F ((x− x2)q2) ≥ 0 (28)

F ((x2 − x)m) = F ((x2 − x)(p2 − q2)) = −F ((x2 − x)q2)− F ((x− x2)p2) ≤ 0. (29)

This shows F ((x2 − x)m) = 0 and hence F (x2m) = F (xm).
Now we show that 0 ≤ F (m) ≤ 1 for every monomial m of degree at most d. By the

previous paragraph we have F (m) = F (m2), and F (m2) ≥ 0 because m2 is a square of
degree at most 2d. The other inequality will be shown by induction on the degree. For the
empty monomial 1 we have F (1) = 1. Now let m be a monomial of degree at most d − 1
such that F (m) ≤ 1 and let x be a variable. It holds that F (m)− F (xm) = F ((1− x)m) =
F ((1− x)m2) ≥ 0, and hence F (xm) ≤ F (m) ≤ 1.

31

Finally, let m be a monomial of degree at most 2d and let r and s be monomials of degree
at most d such that m = rs. We have F (r2) + 2F (rs) +F (s2) = F ((r+ s)2) ≥ 0. Therefore,
2F (rs) ≥ −F (r2) − F (s2) ≥ −2, so F (m) ≥ −1. Similarly F (r2) − 2F (rs) + F (s2) =
F ((r − s)2) ≥ 0. Therefore, 2F (rs) ≤ F (r2) + F (s2) ≤ 2, so F (m) ≤ 1.

The number of monomials of degree 2d over the set of n variables is
(
n+2d−1

2d

)
. Let

εn,d = 1/(3
(
n+2d−1

2d

)
). We are now ready to show that the existence of a degree-2d SOS

refutation of a system of polynomial inequalities with n variables is equivalent to the existence
of an εn,d-approximate such refutation.

Proposition 3. Let Q be a set of polynomials with at most n variables. The set Q has
an SOS refutation of degree 2d if and only if it has an εn,d-approximate SOS refutation of
degree 2d.

Proof. If Q has an SOS refutation of degree 2d, then clearly it has an εn,d-approximate
refutation of degree 2d

Now assume that Q has no SOS refutation of degree 2d. Therefore, by Corollary 2
there exists a pseudoexpectation of degree 2d. Let us denote it by F . Suppose that Q has
an εn,d-approximate SOS refutation of degree 2d, i.e., there exists a set of sum of squares
polynomials {sq : q ∈ Q̄} such that ∑

q∈Q̄

qsq =
∑
α

aαx
α, (30)

where for each α of degree at least 1, we have |aα| ≤ εn,d, and |1 + a∅| ≤ εn,d.
Now, observe that F

(∑
q∈Q̄ qsq

)
=
∑

q∈Q̄ F (qsq) ≥ 0, while

F (
∑
α

aαx
α) = F (a∅) +

∑
α

aαF (xα) ≤ −1 + εn,d +

(
n+ 2d− 1

2d

)
εn,d ≤ −

1

3
. (31)

The obtained contradiction finishes the proof.

An ε-relaxation of a convex set K is either empty, which clearly implies the emptiness of
the set K itself, or it has volume greater than δ, where δ can be easily computed by means
of FPC-interpretations from the representation of K and ε (see Lemma 6). We therefore get
the following:

Corollary 3. For every positive integer d, there is an FPC-definable reduction from the
problem of deciding the existence of SOS refutations of degree 2d, to the weak feasibility
problem for semidefinite sets.

Proof. The reduction is an FPC-interpretation which takes a set of polynomials Q with n
variables as input and outputs the εn,d-relaxation of Kd(Q,−1) and a rational δ > 0, such
that either the εn,d-relaxation of Kd(Q,−1) is empty, or it has volume greater than δ.

32

6 Isomorphism

We formulate the isomorphism problem for two graphs G and H as a system ISO(G,H)
of quadratic polynomial equations over R, with 0/1-valued variables. Let U and V denote
the sets of vertices of G and H, respectively. For u1, u2 ∈ U , we write tpG(u1, u2) for the
atomic type of (u1, u2) in G. Similarly, for v1, v2 ∈ V , we write tpH(v1, v2) for the atomic
type of (v1, v2) in H. The system of equations has one variable xuv for each pair of vertices
u ∈ U and v ∈ V ; the intended meaning of xuv is that vertex u is mapped to v by an alleged
isomorphism. The set of equations of ISO(G,H) is the following:∑

v∈V xuv − 1 = 0 for each u ∈ U ,∑
u∈U xuv − 1 = 0 for each v ∈ V ,

xu1v1xu2v2 = 0 for each u1, u2 ∈ U , v1, v2 ∈ V with tpG(u1, u2) 6= tpH(v1, v2).

It is straightfoward to check that the set of equations ISO(G,H) can be produced from G
and H by an FPC-interpretation:

Fact 3. There is an FPC-interpretation that takes two graphs G and H as input and outputs
the set of equations ISO(G,H).

An SOS proof that G and H are not isomorphic is an SOS refutation of ISO(G,H). A
Sherali-Adams (SA) proof that G and H are not isomorphic is an SA proof of the inequality
−1 ≥ 0 from ISO(G,H), where an SA proof is an identity of the type (15) in which the
polynomials sj are not sums-of-squares but extended monomials, i.e., polynomials of the
form c ·

∏
j∈J xj

∏
k∈K(1 − xk) where c is positive real. A Polynomial Calculus (PC) proof

that G and H are not isomorphic is a PC proof of the equation −1 = 0 from the system
of polynomial equations ISO(G,H), where by PC we mean the (dynamic) algebraic proof
system for deriving polynomial equations through the following inference rules: from nothing
derive the axiom polynomial equation x2−x = 0, from the equations p = 0 and q = 0 derive
the equation ap+ bq = 0, and from the equation p = 0 derive the equation xp = 0, where p
and q are polynomials, a and b are reals, and x is a variable. In monomial PC, as defined
in [5], the polynomial p in the last rule is required to be either a monomial, or the product of
a monomial with one of the polynomials from the set of hypotheses (in our case ISO(G,H)),
or the product of a monomial and an axiom polynomial x2 − x.

We rely on the following facts from [3] and [5]:

Theorem 7. Let G and H be graphs and let k be a positive integer. The following are
equivalent:

1. G ≡k H, i.e., G and H cannot be distinguished by Ck
∞ω-sentences,

2. there is no degree-k SA proof that G and H are not isomorphic,

3. there is no degree-k monomial PC proof that G and H are not isomorphic.

For the collapse result we are about to prove, we use 2 implies 1 and Corollary 1.

33

Theorem 8. There exist an integer constant c such that, for all pairs of graphs G and H and
all positive integers d, if there is a degree-2d SOS proof that G and H are not isomorphic,
then there is a degree-cd SA proof that G and H are not isomorphic.

Proof. Fix a positive integer d. Let Φ be the FPC-interpretation from Fact 3 and compose
it with the Cω

∞ω-sentence from Corollary 1 that decides the existence of an SOS proof of
degree 2d. The resulting sentence φ is a sentence of Ck

∞ω, where k = cd for an integer c
that is independent of d. The sentence φ was designed in such a way that for every pair
of graphs G and H it holds that (G,H) |= φ if and only if there is a degree-2d SOS proof
that G and H are not isomorphic. In particular, since there certainly is no degree-2d SOS
proof that G is not isomorphic to itself, we have (G,G) |= ¬φ. Now assume that there is no
degree-k SA proof that G and H are not isomorphic. We get G ≡k H by Theorem 7, from
which it follows that (G,H) ≡k (G,G). Since φ is a Ck

∞ω-sentence and (G,G) |= ¬φ we get
(G,H) |= ¬φ. Therefore, by design of φ, there is no degree-2d SOS proof that G and H are
not isomorphic.

Next we use the following recent result of Berkholz [4] unexpectedly showing that SOS
simulates PC; we remark that this result holds only for systems of equations with 0/1-values.

Theorem 9. Let Q be a system of polynomial equations over R with 0/1-valued variables.
If Q has a PC refutation of degree d, then Q has an SOS refutation of degree 2d.

For two non-isomorphic graphs G and H, let sos(G,H), sa(G,H), monpc(G,H) and
pc(G,H) denote the smallest degrees for which SOS, SA, monomial PC and PC can prove
that G and H are not isomorphic, respectively. For isomorphic graphs let us take all three
quantities to be ∞. Combining Theorems 9, 7, 8, we get the following full cycle of implica-
tions:

1
2
· sos(G,H) ≤ pc(G,H) ≤ monpc(G,H) ≤ sa(G,H) ≤ c

2
· sos(G,H). (32)

where c is the constant in Theorem 8. By returning to the primals, the same results can
be stated in terms of the number of levels that are required for the Lasserre [11] and the
Sherali-Adams [15] hierarchies to become infeasible. The result says that, for any pair of
graphs G and H, the first levels at which the relaxations for ISO(G,H) become infeasible
are separated by no more than a constant c/2-factor.

Acknowledgments. We are grateful to Christoph Berkholz, Anuj Dawar, and Wied
Pakusa, for useful discussions at an early stage of this work. We are also grateful to Aaron
Potechin for pointing out that the ability of the Lasserre hierarchy to capture spectral argu-
ments was relevant for our result. First author partially funded by European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation programme,
grant agreement ERC-2014-CoG 648276 (AUTAR) and MICCIN grant TIN2016-76573-C2-
1P (TASSAT3). Second author supported by the French Agence Nationale de la Recherche,
AGGREG project reference ANR-14-CE25-0017-01. Part of this work was done while the
second author was visiting UPC funded by AUTAR.

34

References

[1] E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. B. Miltersen. On the com-
plexity of numerical analysis. SIAM J. Comput., 38(5):1987–2006, 2009.

[2] M. Anderson, A. Dawar, and B. Holm. Solving linear programs without breaking ab-
stractions. J. ACM, 62(6):48:1–48:26, 2015.

[3] A. Atserias and E. Maneva. Sherali–Adams relaxations and indistinguishability in count-
ing logics. SIAM J. Comput., 42(1):112–137, 2013.

[4] C. Berkholz. The Relation between Polynomial Calculus, Sherali-Adams, and Sum-of-
Squares Proofs. ECCC, 2017.

[5] C. Berkholz and M. Grohe. Limitations of algebraic approaches to graph isomorphism
testing. In ICALP, pages 155–166, 2015.

[6] A. Blass, Y. Gurevich, and S. Shelah. On polynomial time computation over unordered
structures. J. Symbolic Logic, 67(3):1093–1125, 2002.

[7] A. Dawar, S. Severini, and O. Zapata. Descriptive complexity of graph spectra. In
WoLLIC, pages 183–199, 2016.

[8] A. Dawar and P. Wang. Definability of semidefinite programming and Lasserre lower
bounds for CSPs. In LICS, pages 1–12, 2017.

[9] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial
Optimization. Springer-Verlag, 1993.

[10] C. Josz and Didier Henrion. Strong duality in Lasserre’s hierarchy for polynomial
optimization. Optimization Letters, 10(1):3–10, 2016.

[11] J. B. Lasserre. Global optimization with polynomials and the problems of moments.
SIAM Journal on Optimization, 11(3):796–817, 2001.

[12] P. N. Malkin. Sherali–Adams relaxations of graph isomorphism polytopes. Discrete
Optimization, 12:73–97, 2014.

[13] R. O’Donnell, J. Wright, C. Wu, and Y. Zhou. Hardness of robust graph isomorphism,
Lasserre gaps, and asymmetry of random graphs. In SODA, pages 1659–1677, 2014.

[14] M. Otto. Bounded variable logics and counting – A study in finite models, volume 9.
Springer-Verlag, 1997.

[15] H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous
and convex hull representations for zero-one programming problems. SIAM Journal on
Discrete Mathematics, 3(3):411–430, 1990.

35

[16] S. P. Tarasov and M. N. Vyalyi. Semidefinite programming and arithmetic circuit
evaluation. Discrete Appl. Math., 156(11):2070–2078, 2008.

[17] G. Tinhofer. Graph isomorphism and theorems of birkhoff type. Computing, 36(4):285–
300, 1986.

36

