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Abstract

The interplay between local consistency and global consistency has been the object
of study in several different areas, including probability theory, relational databases,
and quantum information. For relational databases, Beeri, Fagin, Maier, and Yan-
nakakis showed that a database schema is acyclic if and only if it has the local-to-
global consistency property for relations, which means that every collection of pairwise
consistent relations over the schema is globally consistent. More recently, the same
result has been shown under bag semantics. In this paper, we carry out a systematic
study of local vs. global consistency for relations over positive commutative monoids,
which is a common generalization of ordinary relations and bags. Let K be an arbitrary
positive commutative monoid. We begin by showing that acyclicity of the schema is
a necessary condition for the local-to-global consistency property for K-relations to
hold. Unlike the case of ordinary relations and bags, however, we show that acyclicity
is not always sufficient. After this, we characterize the positive commutative monoids
for which acyclicity is both necessary and sufficient for the local-to-global consistency
property to hold; this characterization involves a combinatorial property of monoids,
which we call the transportation property. We then identify several different classes
of monoids that possess the transportation property. As our final contribution, we
introduce a modified notion of local consistency of K-relations, which we call pairwise
consistency up to the free cover. We prove that, for all positive commutative monoids
K, even those without the transportation property, acyclicity is both necessary and
sufficient for every family of K-relations that is pairwise consistent up to the free cover
to be globally consistent.
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1 Introduction

The interplay between local consistency and global consistency has been investigated in sev-
eral different settings. In each such setting, the concepts “local”, “global”, and “consistent”
are defined rigorously and a study is carried out as to when objects that are locally con-
sistent are also globally consistent. In probability theory, Vorob’ev [Vor62] studied when,
for a collection of probability distributions on overlapping sets of variables, there is a global
probability distribution whose marginals coincide with the probability distributions in that
collection. In quantum mechanics, Bell’s theorem [Bel64] is about contextuality phenomena,
where empirical local measurements may be locally consistent but there is no global explana-
tion for these measurements in terms of hidden local variables. In relational databases, there
has been an extensive study of the universal relation problem [ABU79, HLY80, Ull82]: given
relations R1, . . . ,Rm, is there a relation W such that, for each relation Ri, the projection of
W on the attributes of Ri is equal to Ri? If the answer is positive, the relations R1, . . . ,Rm

are said to be globally consistent and W is a universal relation for them. Note that if the
relations R1, . . . ,Rm are globally consistent, then they are pairwise consistent (i.e., every
two of them are globally consistent), but the converse need not hold.

Beeri, Fagin, Maier, and Yannakakis [BFMY83] showed that a relational schema is acyclic
if and only if the local-to-global consistency property for relations over that schema holds,
which means that every collection of pairwise consistent relations over the schema is globally
consistent. Thus, for acyclic schemas, pairwise consistency and global consistency coincide.
Note that set semantics is used in this result, i.e., the result is about ordinary relations. More
recently, in [AK21] it was shown that an analogous result holds also under bag semantics:
a relational schema is acyclic if and only if the local-to-global consistency property for bags
holds, where in the definitions of pairwise consistency and global consistency for bags, the
projection operation adds the multiplicities of all tuples in the relation that are projected
to the same tuple. It should be pointed out, however, that there are significant differences
between set semantics and bag semantics as regards consistency properties. In particular,
under set semantics, the relational join of two consistent relations is the largest witness of
their consistency, while, under bag semantics, the join of two consistent bags need not even
be a witness of their consistency [AK21].

During the past two decades and starting with the influential paper [GKT07], there has
been a growing study of K-relations, where tuples in K-relations are annotated with values
from the universe of a fixed semiring K. Clearly, ordinary relations are B-relations, where B
is the Boolean semiring, while bags are N-relations, where N is the semiring of non-negative
integers. Originally, K-relations were studied in the context of provenance in databases
[GKT07]; since that time, the study has been expanded to other fundamental problems in
databases, including the query containment problem [Gre11, KRS14]. Note that in the study
of both provenance and query containment, the definitions of the basic concepts involve both
the addition operation and the multiplication operation of the semiring K.

Aiming to obtain a common generalization of the results in [BFMY83] and in [AK21], we
carry out a systematic investigation of local consistency vs. global consistency for relations
whose tuples are annotated with values from the universe of some suitable algebraic structure.
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At first sight, semirings appear to be the most general algebraic structures for this purpose.
Upon closer reflection, however, one realizes that the definition of a projection of K-relation
involves only the addition operation of the semiring (and not the multiplication operation),
hence so do the definitions of the notions of local and global consistency for K-relations.
For this reason, we embark on a study of the interplay between local vs. global consistency
for K-relations, where K � �K,�,0� is a commutative monoid. In addition, we require the
monoid K to be positive, which means that the sum of non-zero elements from K is non-zero.
This condition is needed in key technical results, but it also ensures that the support of the
projection of a K-relation is equal to the support of that relation.

Let K be an arbitrary positive commutative monoid. Our first result asserts that if a
hypergraph H is not acyclic, then there is a collection of pairwise consistent K-relations over
H that are not globally consistent; in other words, acyclicity is a necessary condition for
the local-to-global consistency property for K-relations to hold. The construction of such
K-relations is similar to the one used for bags in [AK21], which, in turn, was inspired from
an earlier construction of hard-to-prove tautologies in propositional logic by Tseitin [Tse68].

Unlike the Boolean monoid B (case of ordinary relations) and the monoid N of non-
negative integers (case of bags), however, we show that there are positive commutative
monoids K for which acyclicity is not a sufficent condition for the local-to-global consistency
property for K-relations to hold. We then go on to characterize the positive commutative
monoids for which acyclicity is both necessary and sufficient for the local-to-global consis-
tency property to hold. In fact, we obtain two different characterizations, a semantic one,
which we call the inner consistency property, and a combinatorial one, which we call the
transportation property. The inner consistency property asserts that if two K-relations have
the same projection on the set of their common attributes, then they are consistent (note
that the converse is always true). The transportation property asserts that every balanced
instance of the transportation problem with values from K has a solution in K; these concepts
and the terminology are as in the well-studied transportation problem in linear programming.

We then identify several different classes of monoids that possess the transportation prop-
erty. Special cases include the Boolean monoid B, the monoid N of non-negative integers,
the monoid RC0 of the non-negative real numbers with addition, the monoids obtained by
restricting tropical semirings to their additive structure, various monoids of provenance poly-
nomials, and the free commutative monoid on a set of indeterminates. Furthermore, for each
such class of monoids, we give either an explicit construction or a procedure for computing
a witness to the consistency of two consistent K-relations.

After this extended investigation of classes of positive commutative monoids with the
transportation property, we revisit the broader question of characterizing the local-to-global
consistency property for collections of K-relations on acyclic schemas for arbitrary positive
commutative monoids K. By the “no-go examples” in the first part of the paper, we know
that any such characterization that applies to all positive commutative monoids must either
require more than just pairwise consistency or settle for less than global consistency.

In [AK23], the second scenario was explored. Specifically, by relaxing the notion of
consistency to what was called there consistency up to normalization, it was shown that
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the local-to-global consistency property up to normalization holds precisely for the acyclic
schemas. While this result is a common generalization of the theorems by Vorob’ev [Vor62]
and by Beeri et al. [BFMY83] (because for ordinary relations and for probability distributions
the relaxed concept of consistency up to normalization agrees with the standard one), it fails
to generalize the local-to-global consistency property for bags from [AK21]. Furthermore,
the definition of this relaxed notion of consistency required K to come equipped with a
multiplication operation making it into a positive semiring, hence the result in [AK23] does
not apply to arbitrary positive commutative monoids.

Here, we explore the first scenario by introducing a stronger notion of consistency, which
we call consistency up to the free cover (the term reflects the role that the free commuta-
tive monoid plays in the definition of this notion). First, we prove that the local-to-global
consistency property with consistency strengthened to consistency up to the free cover holds
precisely for the acyclic schemas. Second and perhaps unexpectedly, by exploiting the uni-
versal property of the free commutative monoid, we establish that the notion of global
consistency up to the free cover is absolute, in the sense that global consistency holds up
to the free cover if and only if it holds in the standard sense. As a consequence, we have
that for every positive commutative monoid K, a schema H is acyclic precisely when every
collection of K-relations over H that is pairwise consistent up to the free cover is indeed
globally consistent. Vice versa, every collection of K-relations that is globally consistent is
pairwise consistent up to the free cover. We view these results as an answer to the question
of characterizing the global consistency of relations for acyclic schemas in the broader setting
of relations over arbitrary positive commutative monoids.

2 Preliminaries

Positive Commutative Monoids A commutative monoid is a structure K � �K,�,0�,
where � is a binary operation on the universe K of K that is associative, commutative, and
has 0 as its neutral element, i.e., p� 0 � p � 0� p holds for all p >K. A positive commutative
monoid is a commutative monoid K � �K,�,0� such that for all elements p, q > K with
p � q � 0, we have that p � 0 and q � 0. To avoid trivialities, we will assume that all
commutative monoids considered have at least two elements in their universe.

As an example, the structure B � ��0,1�,-,0� with disjunction - as its operation
and 0 (false) as its neutral element is a positive commutative monoid. Other examples
of positive commutative monoids include the structures N � �ZC0,�,0, �, QC0 � �QC0,�,0�,
RC0 � �RC0,�,0�, where ZC0 is the set of non-negative integers, QC0 is the set of non-negative
rational numbers, RC0 is the set of non-negative real numbers, and � is the standard addition
operation. In contrast, the structure Z � �Z,�,0�, where Z is the set of integers, is a com-
mutative monoid, but not a positive one. Two examples of positive commutative monoids of
different flavor are the structures T � �R 8 �ª�,min,ª� and V � ��0,1�,max,0�, where R is
the set of real numbers, and min and max are the standard minimum and maximum opera-
tions. Finally, if A is a set and P�A� is its powerset, then the structure P�A� � �P�A�,8,g�
is a positive commutative monoid, where 8 is the union operation on sets.
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Definition of K-relations and their Marginals An attribute A is a symbol with an asso-
ciated set Dom�A�, called its domain. If X is a finite set of attributes, then we write Tup�X�
for the set of X-tuples, i.e., Tup�X� is the set of functions that take each attribute A >X to
an element of its domain Dom�A�. Note that Tup�g� is non-empty as it contains the empty
tuple, i.e., the unique function with empty domain. If Y b X is a subset of attributes and t
is an X-tuple, then the projection of t on Y , denoted by t�Y �, is the unique Y -tuple that
agrees with t on Y . In particular, t�g� is the empty tuple.

Let K � �K,�,0� be a positive commutative monoid and let X be a finite set of attributes.
A K-relation over X is a function R � Tup�X��K that assigns a value R�t� inK to everyX-
tuple t in Tup�X�. We will often write R�X� to indicate that R is a K-relation over X, and
we will refer to X as the set of attributes of R. These notions make sense even if X is the
empty set of attributes, in which case a K-relation over X is simply a single value from K
that is assigned to the empty tuple. Clearly, the B-relations are just the ordinary relations,
while the N-relations are the bags or multisets, i.e., each tuple has a non-negative integer
associated with it that denotes the multiplicity of the tuple.

The support of a K-relation R�X�, denoted by Supp�R�, is the set of X-tuples t that are
assigned non-zero value, i.e.,

Supp�R� �� �t > Tup�X� � R�t� ~� 0�. (1)

Whenever this does not lead to confusion, we write R� to denote Supp�R�. Note that R� is
an ordinary relation over X. A K-relation is finitely supported if its support is a finite set.
In this paper, all K-relations considered will be finitely supported, and we omit the term;
thus, from now on, a K-relation is a finitely supported K-relation. When R� is empty, we
say that R is the empty K-relation over X.

If Y b X, then the marginal R�Y � of R on Y is the K-relation over Y such that for
every Y -tuple t, we have that

R�Y ��t� �� Q
r>R�

�

r�Y ��t

R�r�. (2)

The value R�Y ��t� is the marginal of R over t. In what follows and for notational simplicity,
we will often write R�t� for the marginal of R over t, instead of R�Y ��t�. It will be clear
from the context (e.g., from the arity of the tuple t) if R�t� is indeed the marginal of R over
t (in which case t must be a Y -tuple) or R�t� is the actual value of R on t as a mapping from
Tup�X� to K (in which case t must be an X-tuple). Note that if R is an ordinary relation
(i.e., R is a B-relation), then the marginal R�Y � is the projection of R on Y .

Lemma 1. Let K be a positive commutative monoid and let R�X� be a K-relation. The
following statements hold:

1. For all Y bX, we have R��Y � � R�Y ��.
2. For all Z b Y bX, we have R�Y ��Z� � R�Z�.

Proof. For the first part, the inclusion R�Y �� b R��Y � is obvious. For the converse, assume
that t > R��Y �, so there exists r such that R�r� ~� 0 and r�Y � � t. By (2) and the positivity
of K, we have that R�t� ~� 0. Hence t > R�Y ��.
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For the second part, we have

R�Y ��Z��u� � Q
v>R�Y ���
v�Z��u

R�Y ��v� � Q
v>R��Y ��
v�Z��u

Q
w>R�

�

w�Y ��v

R�w� � Q
w>R�

�

w�Z��u

R�w� � R�Z��u� (3)

where the first equality follows from (2), the second follows from the first part of this lemma
to replace R�Y �� by R��Y �, and again (2), the third follows from partitioning the tuples in R�

by their projection on Y , together with Z b Y , and the fourth follows from (2) again.

If X and Y are sets of attributes, then we write XY as shorthand for the union X 8 Y .
Accordingly, if x is an X-tuple and y is a Y -tuple with the property that x�X9Y � � y�X9Y �,
then we write xy to denote the XY -tuple that agrees with x on X and on y on Y . We say
that x joins with y, and that y joins with x, to produce the tuple xy.

A schema is a sequence X1, . . . ,Xm of sets of attributes. A collection of K-relations over
the schema X1, . . . ,Xm is a sequence R1�X1�, . . . ,Rm�Xm� of K-relations, where Ri�Xi� is
a K-relation over Xi, for i � 1, . . . ,m.

Homomorphisms, Subalgebras, Products, and Varieties For later reference, we in-
troduce some basic terminology from universal algebra for the particular case of monoids.

If M1 � �M1,�1,01� and M2 � �M2,�2,02� are monoids, then a homomorphism from M1

to M2 is a map h �M1 �M2 such that h�01� � 02 and

h�a �1 b� � h�a� �2 h�b�
holds for all a, b >M1. The homomorphism is surjective if h is surjective, i.e., if for all b >M2

there exists a > M1 such that h�a� � b. If h is a surjective homomorphism from M1 to M2

then we say that M2 is a homomorphic image of M1, and we write h � M1
s
� M2 to denote

this fact. An isomorphism is a bijection h �M1 �M2 such that both h and its its inverse h�1

are homomorphisms. We say that M1 is a subalgebra of M2 if M1 bM2 with 01 � 02 and M1 is
closed under �2, that is, for all a, b, c >M1, if a�2 b � c, then c >M1. If I is a finite or infinite
set of indices and �Mi � i > I� is an indexed set of monoids, then the product monoid Li>I Mi

is defined as follows. The domain of Li>I Mi is the product set Li>I Mi, where Mi is the
domain of Mi, that is, the elements of the product monoid are the maps f with domain I
that map each index i > I to an element f�i� >Mi; the operation � of the product monoid is
defined pointwise: for two maps f and g in Li>I Mi, the sum f �g is defined by the equation

�f � g��i� � f�i� �i g�i� (4)

for all i > I, where the addition operation �i on the right-hand side is over Mi; finally, the
neutral element 0 of the product monoid is the map that maps i > I to 0i, where 0i is the
neutral element of Mi. The special case of a product monoid in which every factor Mi is the
same monoid M is called an I-power of M and is denoted by MI ; furthermore, its domain
is denoted by M I . In the special case in which the index set I has the form �k� � �1, . . . , k�
for some natural number k, we write Mk and Mk, instead of M�k� and M �k�, respectively.
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A variety of monoids is a class of monoids that is closed under homomorphic images,
subalgebras, and products. By Birkhoff’s HSP theorem [Bir35], a class of monoids is a
variety if and only if it is the class of all monoids that satisfy a set of identities (for a
modern exposition of this classical result, see [BS81]). For example, the class of commutative
monoids is a variety. In contrast, the class of positive commutative monoids is not a variety
because it is not closed under homomorphic images. Indeed, the map that sends each non-
negative integer n to its residue class mod 2 is a surjective homomorphism from the positive
commutative monoid N � �ZC0,�,0� onto the structure Z~2Z � ��0,1�,`,0�, where ` is
addition mod 2. The latter is a commutative monoid but it is not positive because 1`1 � 0.

3 Consistency over Positive Commutative Monoids

The following definitions are the direct generalizations of the standard notions of consistency
for collections of ordinary relations to collections of K-relations, where K is an arbitrary
positive commutative monoid. Recall that a schema is a collection X1, . . . ,Xm of sets of
attributes.

Definition 1. Let K be a positive commutative monoid, let X1, . . . ,Xm be a schema, let
R1�X1�, . . . ,Rm�Xm� be a collection of K-relations over X1, . . . ,Xm, and let k be a positive
integer. We say that the collection R1, . . . ,Rm is k-wise consistent if for all q > �k� and
i1, . . . , iq > �m� there exists a K-relation W �Xi1�Xiq� such that W �Xi� � Ri holds for all
i > �q�. If k � 2, then we say that the collection R1, . . . ,Rm is pairwise consistent. If k �m,
then we say that the collection R1, . . . ,Rm is globally consistent. In all such cases we say
that W �Xi1�Xiq� witnesses the consistency of Ri1 , . . . ,Riq .

From Definition 1, it follows that if a collection of K-relations is �k � 1�-wise consistent,
then it is also k-wise consistent. In particular, if a collection of K-relations is globally
consistent, then it is also pairwise consistent. Our goal in this paper is to investigate when the
converse is true. In other words, we focus on the following question: under what conditions on
the positive commutative monoid K and on the schema X1, . . . ,Xm is it the case that every
collection of K-relations of schema X1, . . . ,Xm that is pairwise consistent is also globally
consistent? Our investigation begins by identifying a very broad necessary condition.

3.1 Acyclicity is Always Necessary

To formulate the necessary condition, we need to introduce some terminology. A hypergraph
is a pair H � �V,E�, where V is a set of vertices and E is a set of hyperedges, each of which is
a non-empty subset of V . Every collection X1, . . . ,Xm of sets of attributes can be identified
with a hypergraph H � �V,E�, where V � X1 8� 8Xm and E � �X1, . . . ,Xm�. Conversely,
every hypergraph H � �V,E� gives rise to a collection X1, . . . ,Xm of sets of attributes,
whereX1, . . . ,Xm are the hyperedges ofH. Thus, we can move seamlessly between collections
of sets of attributes and hypergraphs.
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Acyclic Hypergraphs The notion of an acyclic hypergraph generalizes the notion of an
acyclic graph. Since we will not work directly with the definition of an acyclic hypergraph,
we refer the reader to [BFMY83] for the precise definition. Instead, we focus on other notions
that are equivalent to hypergraph acyclicity and will be of interest to us in the sequel.

Conformal and Chordal Hypergraphs The primal graph of a hypergraph H � �V,E�
is the undirected graph that has V as its set of vertices and has an edge between any two
distinct vertices that appear together in at least one hyperedge of H. A hypergraph H is
conformal if the set of vertices of every clique (i.e., complete subgraph) of the primal graph
of H is contained in some hyperedge of H. A hypergraph H is chordal if its primal graph is
chordal, that is, if every cycle of length at least four of the primal graph of H has a chord.
To illustrate these concepts, let Vn � �A1, . . . ,An� be a set of n vertices and consider the
hypergraphs

Pn � �Vn,�A1,A2�, . . . ,�An�1,An�� (5)

Cn � �Vn,�A1,A2�, . . . ,�An�1,An�,�An,A1�� (6)

Hn � �Vn,�Vn � �Ai� � 1 B i B n�� (7)

If n C 2, then the hypergraph Pn is both conformal and chordal. The hypergraph C3 � H3

is chordal, but not conformal. For every n C 4, the hypergraph Cn is conformal, but not
chordal, while the hypergraph Hn is chordal, but not conformal.

Running Intersection Property We say that a hypergraph H has the running intersec-
tion property if there is a listing X1, . . . ,Xm of all hyperedges of H such that for every i > �m�
with i C 2, there exists a j > �1, . . . , i � 1� such that Xi 9 �X1 8� 8Xi�1� bXj.

Join Tree A join tree for a hypergraph H is an undirected tree T with the set E of the
hyperedges of H as its vertices and such that for every vertex v of H, the set of vertices of T
containing v forms a subtree of T , i.e., if v belongs to two vertices Xi and Xj of T , then v
belongs to every vertex of T in the unique simple path from Xi to Xj in T .

Local-to-Global Consistency Property for Relations Let H be a hypergraph and
let X1, . . . ,Xm be a listing of all hyperedges of H. We say that H has the local-to-global
consistency property for relations if every collection R1�X1�, . . . ,Rm�Xm� of relations of
schema X1, . . . ,Xm that is pairwise consistent is also globally consistent.

We are now ready to state the main result in Beeri et al. [BFMY83].

Theorem 1 (Theorem 3.4 in [BFMY83]). Let H be a hypergraph. The following statements
are equivalent:

(a) H is an acyclic hypergraph.

(b) H is a conformal and chordal hypergraph.
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(c) H has the running intersection property.

(d) H has a join tree.

(e) H has the local-to-global consistency property for relations.

As an illustration, if n C 2, the hypergraph Pn is acyclic, hence it has the local-to-global
consistency property for relations. In contrast, if n C 3, the hypergraphs Cn and Hn are
cyclic, hence they do not have the local-to-global consistency property for relations.

We now generalize the notion of local-to-global consistency from relations to K-relations.

Definition 2. Let K be a positive commutative monoid, and let X1, . . . ,Xm be a listing of all
the hyperedges of a hypergraph H. We say that H has the local-to-global consistency prop-
erty for K-relations if every collection R1�X1�, . . . ,Rm�Xm� of K-relations that is pairwise
consistent is also globally consistent.

In what follows, we will show that the implication (e)� (a) in Theorem 1 holds more gen-
erally for K-relations, where K is an arbitrary positive commutative monoid. To prove this
result, we will need to find a more general construction than the one devised in [BFMY83]
since the construction given there uses some special properties of ordinary (set-theoretic)
relations that are not always shared by K-relations when K is an arbitrary positive commu-
tative monoid. We are now ready to state the main result of this section.

Theorem 2. Let K be a positive commutative monoid and let H be a hypergraph. If H has
the local-to-global consistency property for K-relations, then H is acyclic.

Before embarking on the proof of Theorem 2, we need some additional notions about
hypergraphs. The hypergraph H is called k-uniform if every hyperedge of H has exactly k
vertices. It is called d-regular if any vertex of H appears in exactly d hyperedges of H.
We show that hypergraphs that have such properties with k C 1 and d C 2 do not have
the local-to-global consistency property for any positive commutative monoid. After this is
proved, we will show how to reduce the general case of an arbitrary acyclic hypergraph H
to the k-uniform and d-regular case. If a schema X1, . . . ,Xm is the set of hyperedges of a
k-uniform or d-regular hypergraph, then we say that the schema X1, . . . ,Xm is k-uniform or
d-regular, respectively.

Lemma 2. Let K be a positive commutative monoid and let X1, . . . ,Xm be a schema that
is k-uniform and d-regular with k C 1 and d C 2. Then, there exists a collection of K-relations
over X1, . . . ,Xm that is pairwise consistent but not globally consistent.

Proof. Let c be an element of the universe K of K � �K,�,0� such that c ~� 0 (recall that we
have made the blanket assumption that the universes of the positive commutative monoids
considered have at least two elements). Let a �� c � � � c with c appearing dk times in the
sum. Since c ~� 0, the positivity of K implies that a is a non-zero element of K; i.e.., a ~� 0.
The K-relations that we build will have all its attributes valued in the set �0, . . . , d � 1�.
Therefore, if Z is a set of attributes, then a Z-tuple t is a map

t � Z � �0, . . . , d � 1�. (8)
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For each i > �m� with i ~� m, let Ri�Xi� be defined by Ri�t� � a for every Xi-tuple t whose
total sum PC>Xi

t�C� as integers is congruent to 0 mod d, and R�t� � 0 for every other
Xi-tuple t. For i �m, let Rm�Xm� be defined by Rm�t� � a for every Xi-tuple t whose total
sum PC>Xm

t�C� as integers is congruent to 1 mod d, and Rm�t� � 0 for every other Xm-
tuple t.

To show that the collection R1, . . . ,Rm of K-relations is pairwise consistent, fix any two
indices i, j > �m� and let ai, aj > �0,1� be such that the supports of the K-relations Ri and Rj

are, respectively, the set of Xi-tuples t that satisfy the congruence equation PC>Xi
t�C� �

ai mod d, and the set of Xj-tuples t that satisfy the congruence equation PC>Xj
t�C� �

aj mod d. Let X � Xi 8Xj and Z � Xi 9Xj, and let b �� c � � � c with c appearing dSZS�1

times in the sum. Again, b is an element of K, and b ~� 0 because K is a positive commutative
monoid. Let T �X� be the K-relation defined by T �t� � b for every X-tuple t that satisfies
the system of two congruence equations

PC>Xi
t�C� � ai mod d, (9)

PC>Xj
t�C� � aj mod d, (10)

and T �t� � 0 for every other X-tuple t. We claim that T witnesses the consistency of Ri

and Rj. Indeed, each Xi-tuple u that satisfies the congruence equation PC>Xi
u�C� �

ai mod d extends in exactly dk�SZS�1 ways to an X-tuple t that is a solution to the sys-
tem of two congruence equations (9)–(10). Symmetrically, each Xj-tuple v that satisfies the
congruence equation PC>Xj

v�C� � aj mod d extends in exactly dk�SZS�1 ways to an X-tuple t
that is a solution to the same system of two congruence equations. The consequence of this
is that for each u > R�

i and each v > R�

j we have T �Xi��u� � T �Xj��v� � b���b with b appear-

ing dk�SZS�1 times in the sum. Recalling now that b � c �� � c with c appearing dSZS�1 times
in the sum we see that T �Xi��u� � T �Xj��v� � c � � � c with c appearing dk�SZS�1dSZS�1 � dk

times in the sum, which equals a � Ri�u� � Rj�v�.
To argue that the relations R1, . . . ,Rm are not globally consistent, we proceed by con-

tradiction. If R were a K-relation that witnesses their consistency, then its support would
contain a tuple t such that the projections t�Xi� belong to the supports R�

i of the Ri, for
each i > �m�. In turn this means that

PC>Xi
t�C� � 0 mod d, for i ~�m (11)

PC>Xi
t�C� � 1 mod d, for i �m. (12)

Since by d-regularity each C > V belongs to exactly d sets Xi, adding up all the equations
in (11) and (12) gives

PC>V dt�C� � 1 mod d, (13)

which is absurd since the left-hand side is congruent to 0 mod d, the right-hand side is
congruent to 1 mod d, and d C 2 by assumption. This completes the proof of Theorem 2.

Building towards the proof of Theorem 2, in what follows we show how to reduce the
general case of an arbitrary acyclic schema to a special case of Lemma 2. We need some
more terminology about hypergraphs, and two more lemmas.
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Let H � �V,E� be a hypergraph. The reduction of H is the hypergraph R�H� whose
set of vertices is V and whose hyperedges are those hyperedges X > E that are not included
in any other hyperedge of H. A hypergraph H is reduced if H � R�H�. If W b V , then
the hypergraph induced by W on H is the hypergraph H�W � whose set of vertices is W and
whose hyperedges are the non-empty subsets of the form X 9W , where X > E is a hyperedge
of H; in symbols,

H�W � � �W,�X 9W �X > E� � �g��.
For a vertex u > V , we write H � u for the hypergraph induced by V � �u� on H. For
an edge e > E, we write H � e for the hypergraph with V as the set of its vertices and
with E � �e� as the set of its edges. We say that another hypergraph H � is obtained from H
by a vertex-deletion if H � � H � u for some u > V . We say that H � is obtained from H by a
covered-edge-deletion if H � � H � e for some e > E such that e b f for some f > E � �e�. In
either case, we say that H � is obtained from H by a safe-deletion operation. We say that a
sequence of safe-deletion operations transforms H to H � if H � can be obtained from H by
starting with H and applying the operations in order.

Note that if W is a subset of V , then the hypergraph R�H�W �� is obtained from H by
a sequence of safe-deletion operations. Indeed, we can first obtain the hypergraph H�W �
from H by a sequence of vertex-deletions in which the vertices of the set of V � W are
removed one by one; after this, we can obtain the hypergraph R�H�W �� from H�W � by a
sequence of covered-edge deletions.

Lemma 3. For every hypergraph H � �V,E� the following statements hold:

1. H is not chordal if and only if there exists W b V with SW S C 4 and R�H�W �� � CSW S.

2. H is not conformal if and only if there exists W b V with SW S C 3 and R�H�W �� �HSW S.

Moreover, there is a polynomial-time algorithm that, given a hypergraph H that is not chordal
or not conformal, finds both a set W as stated in (1) or (2) and a sequence of safe-deletion
operations that transforms H to R�H�W ��.
Proof. The proof of (1) is straightforward. For the proof of (2) see [Bra16]. Since there exist
polynomial-time algorithms that test whether a graph is chordal (see, e.g., [RTL76]), an
algorithm to find a W as stated in (1), when H is not chordal, is to iteratively delete vertices
whose removal leaves a hypergraph with a non-chordal primal graph until no more vertices
can be removed. Also, since there exist polynomial-time algorithms that test whether a
hypergraph is conformal (see, e.g., Gilmore’s Theorem in page 31 of [Ber89]), an algorithm to
find aW stated in (2), whenH is not conformal, is to iteratively delete vertices whose removal
leaves a non-conformal hypergraph until no more vertices can be removed. In both cases, once
the set W is found, a sequence of safe-deletion operations that transforms H to R�H�W ��
is obtained by first deleting all vertices in V �W , and then deleting all covered edges.

Lemma 4. Let K be a positive commutative monoid, and let H0 and H1 be hypergraphs such
that H0 is obtained from H1 by a sequence of safe-deletion operations. For every collection D0

of K-relations over H0, there exists a collection D1 of K-relations over H1 such that, for
every k C 1, it holds that D0 is k-wise consistent if and only if D1 is k-wise consistent.
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Proof. We define D1 when H0 is obtained from H1 by a single safe-deletion operation. The
general case follows from iterating the construction. In what follows, suppose that H1 ��V1,E1�, where V1 � �A1, . . . ,An� and E1 � �X1, . . . ,Xm�.

Assume first that H0 � H1 � X where X > E1 is such that X b Xj for some j > �m�
with X ~� Xj; i.e., H0 is obtained from H1 by deleting a covered edge. In particular, V0 � V1

and E0 � E1 � �X�. If the K-relations of D0 are Si�Xi� for i > �m� with Xi ~� X, then D1

is defined as the collection with K-relations Ri�Xi� for i > �m� defined as follows: For
each i > �m�, if Xi ~�X, then let Ri �� Si, else let Ri �� Sj�X�.

Assume next that H0 � H1 �A where A > V1; i.e., H0 is obtained from H1 by deleting a
vertex. In particular, V0 � V1��A� and E0 � �Y1, . . . , Ym� where Yi �Xi��A� for i � 1, . . . ,m.
Fix a default value u0 in the domain Dom�A� of the attribute A. If the K-relations of D0

are Si�Yi� for i > �m�, then D1 is defined as the collection with K-relations Ri�Xi� for i > �m�
defined as follows: For each i > �m�, if A ~>Xi, then let Ri �� Si; else let Ri be the K-relation
of schema Xi � Yi 8 �A� defined for every Xi-tuple t by Ri�t� �� Si�t�Yi�� if t�A� � u0

and Ri�t� �� 0 if t�A� ~� u0. Here, 0 denotes the neutral element of addition in K. We note
that in case Xi � �A�, the K-relation Ri has empty schema Yi � g and consists of the empty
tuple with K-value Si�u0�.

We prove the main property by cases. Fix an integer k C 1.

Claim 1. Assume H0 � H1 �A for some vertex A > V1. Then, the K-relations Si�Yi� of D0

are k-wise consistent if and only if the K-relations Ri�Xi� of D1 are k-wise consistent.

Proof. Fix I b �m� with SI S B k, let X � �i>I Xi and Y � �i>I Yi. Observe that Y � X � �A�.
In particular Y �X if A is not in X.

(If): Let R be a K-relation over X that witnesses the consistency of �Ri � i > I�, and
let S �� R�Y �. We claim that S witnesses the consistency of �Si � i > I�. Indeed,

S�Yi� � R�Y ��Yi� � R�Yi� � Ri�Yi� � Si,

where the first equality follows from the choice of S, the second equality follows from Yi b Y ,
the third equality follows from the facts that R�Xi� � Ri and Yi bXi, and the fourth equality
follows from the definition of Ri.

(Only if): Consider the two cases: A ~> X or A > X. If A ~> X, then Ri � Si for every i > I
and there is nothing to prove. If A > X, then let S be a K-relation over Y that witnesses
the consistency of the K-relations �Si � i > I�, and let R be the K-relation over X defined
for every X-tuple t by R�t� �� 0 if t�A� ~� u0 and by R�t� �� S�t�Y �� if t�A� � u0. We claim
that R witnesses the consistency of the K-relations Ri for i > I. We show that Ri � R�Xi�
for i > I. Towards this, first we argue that S�Yi� � R�Yi�. Indeed, for every Yi-tuple r we
have

S�Yi��r� � Q
s>S�

�

s�Yi��r

S�s� � Q
t>Tup�X��

t�Yi��r,

t�A��u0

S�t�Y �� � Q
t>S�

�

t�Yi��r

R�t� � R�Yi��r�, (14)

where the first equality is the definition of marginal, the second equality follows from the
fact that the map t ( t�Y � is a bijection between the set of X-tuples t such that t�Yi� � r
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and t�A� � u0 and the set of Y -tuples s such that s�Yi� � r, the third equality follows from
the definition of R, and the fourth equality is the definition of marginal.

In case A ~> Xi, we have that Yi � Xi, hence (14) already shows that Ri � Si � S�Yi� �
R�Yi� � R�Xi�. In case A >Xi, we use the fact that Si � S�Yi� to show that Ri � R�Xi�. For
every Xi-tuple r with r�A� ~� u0, we have Ri�r� � 0 and also R�Xi��r� � Pt�t�Xi��rR�t� � 0
since the conditions that t�Xi� � r and A > Xi imply that t�A� � r�A� ~� u0. Thus, Ri�r� �
R�Xi��r� � 0 in this case. For every Xi-tuple r with r�A� � u0, we have

Ri�r� � Si�r�Yi�� � S�Yi��r�Yi�� � R�Yi��r�Yi��, (15)

where the first equality follows from the definition of Ri and the assumption that r�A� �

u0, the second equality follows from Si � S�Yi�, and the third equality follows from (14).
Continuing from the right-hand side of (15), we have

R�Yi��r�Yi�� � Q
t>R�

�

t�Yi��r�Yi�

R�t� � Q
t>R�

�

t�Xi��r

R�t� � R�Xi��r�, (16)

where the first equality is the definition of marginal, the second equality follows from the
assumption that A >Xi and r�A� � u0 together with R�t� � 0 in case t�A� ~� u0, and the third
equality is the definition of marginal. Combining (15) with (16), we get Ri�r� � R�Xi��r�
also in this case. This proves that Ri � R�Xi�.
Claim 2. Assume H0 � H1 � X for some edge X > E1 that is covered in H1. Then, the
K-relations Si�Xi� of D0 are k-wise consistent if and only if the K-relations Ri�Yi� of D1

are k-wise consistent.

Proof. Let l > �m� be such that X �Xl bXj for some j > �m���l�, so E0 � �Xi � i > �m���l��.
(If): Fix I b �m���l� with SI S B k and let X � �i>I Xi. Let R be a K-relation over X that

witnesses the consistency of �Ri � i > I� and let S � R. Since Si � Ri for every i > �m� � �l�,
it is obvious that S witnesses the consistency of �Si � i > I�.

(Only if): Fix I b �m� with SI S B k and let X � �i>I Xi. Let S be a K-relation over X
that witnesses the consistency of �Si � i > I � �l�� and let R � S. We have Rl � Sj�Xl� �
S�Xj��Xl� � R�Xj��Xl� � R�Xl� where the first equality follows from the definition of Rl,
the second equality follows from the fact that Sj � S�Xj�, the third equality follows from
the choice of R, and the fourth equality follows from Xl bXj.

The proof of Lemma 4 is now complete.

Lemma 4 implies that the local-to-global consistency property for K-relations is preserved
under induced hypergraphs and under reductions.

Corollary 1. Let K be a positive commutative monoid and let H be a hypergraph. If H
has the local-to-global consistency property for K-relations, then, for every subset W of the
set of vertices of H, the hypergraph R�H�W �� also has the local-to-global consistency prop-
erty for K-relations.
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Proof. As discussed earlier, the hypergraph R�H�W �� is obtained from the hypergraph H
by a sequence of safe-deletion operations. We will apply Lemma 4 with H0 � R�H�W ��
and H1 �H. Let m be the number of hyperedges of R�H�W �� and let m� be the number of
hyperedges of H; clearly, we have that m Bm�. Let R1, . . . ,Rm be a collection of K-relations
over R�H�W �� that are pairwise consistent. We have to show that this collection is globally
consistent. By Lemma 4, there is a collection of K-relations S1, . . . , Sm� over H that are
pairwise consistent. Since H has the local-to-global consistency property for K-relations,
it follows that the collection S1, . . . , Sm� is globally consistent, i.e., it is m�-wise consistent.
Since m Bm�, we have that the collection S1, . . . , Sm� is also m-wise consistent. By Lemma 4
(but in the reverse direction this time), we have that the collection R1, . . . ,Rm is m-wise
consistent, which means that it is globally consistent, as it was to be shown.

We are now ready to give the proof of Theorem 2.

Proof of Theorem 2. Assume that the hypergraph H is not acyclic, so in particular H is
not both chordal and conformal. By Lemma 3, there is a subset W of V such that SW S C 3
and R�H�W �� � CSW S or there is a subset W of V such that SW S C 4 and R�H�W �� � HSW S.
Now note that for n C 3 the (hyper)graph Cn is k-uniform and d-regular for k � 2 C 1 and
d � 2, and for n C 4 the hypergraph Hn is k-uniform and d-regular for k � n � 1 C 1 and
d � n � 1 C 2. Therefore, Lemma 2 applies to conclude that R�H�W �� does not have the
local-to-global consistency property for K-relations, and Corollary 1 implies that H does not
have it either.

3.2 Acyclicity is Not Always Sufficient

In this section, we show that there are positive commutative monoids K and acyclic schemas
H such that H does not have the local-to-global consistency property for K-relations. In
other words, the acyclicity of a schema is not a sufficient condition for the local-to-global
consistency property to hold for arbitrary positive commutative monoids.

Let N2 � ��0,1,2�,`,0� be the structure with the set �0,1,2� as its universe and addition
rounded to 2 as its operation, i.e., 1 ` 1 � 2 ` 1 � 2 ` 2 � 2, and 0 ` x � x ` 0 � x for all
x > �0,1,2�. It is easy to verify that N2 is a positive commutative monoid.

Let P3 be the path-of-length-3 hypergraph whose vertices form the set �A,B,C� and
whose edges form the set ��A,B�,�B,C�,�C,D��. Clearly, P3 is an acyclic hypergraph.

Proposition 1. The path-of-length-3 hypergraph P3 does not have the local-to-global consis-
tency property for N2-relations.

Proof. Consider the following three N2-relations R1�AB�,R2�BC�,R3�CD�:
A B : R1 B C : R2 C D : R3

a1 b1 : 1 b1 c1 : 2 c1 d1 : 1
a2 b1 : 1 b2 c2 : 2 c1 d2 : 1
a3 b2 : 2 c1 d3 : 1

c2 d4 : 2
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The N2-relations R12�ABC�,R23�BCD�,R13�ABCD� that follow witness the pairwise con-
sistency of the N2-relations R1�AB�,R2�BC�,R3�CD�.

A B C : R12 B C D : R23 A B C D : R13

a1 b1 c1 : 1 b1 c1 d1 : 1 a1 b1 c1 d1 : 1
a2 b1 c1 : 1 b1 c1 d2 : 1 a2 b1 c1 d2 : 1
a3 b2 c2 : 2 b1 c1 d3 : 1 a3 b2 c1 d3 : 1

b2 c2 d4 : 2 a3 b2 c2 d4 : 2

We now show that the relations R1,R2,R3 are not globally consistent. Towards a contra-
diction, assume that there is a N2-relation W �ABCD� witnessing their global consistency.
For each i � 1,2,3, the support of Ri must be equal to the support of the projection of W
on the attributes of Ri; thus, W �ABCD� must be of the form:

A B C D : W

a1 b1 c1 d1 : x1

a1 b1 c1 d2 : x2

a1 b1 c1 d3 : x3

a2 b1 c1 d1 : x4

a2 b1 c1 d2 : x5

a2 b1 c1 d3 : x6

a3 b2 c2 d4 : x7.

For example, the support of W �ABCD� cannot contain the tuple �a3, b2, c1, d3� because
the pair �b2, c1� does not belong to the support of R2�BC�. Since W witnesses the global
consistency of R1,R2,R3 and since R1�a1, b1� � R1�a2, b1� � 1, we must have that

x1 ` x2 ` x3 � 1 (17)

x4 ` x5 ` x6 � 1. (18)

Similarly and since R3�c1, d1� � R3�c1, d2� � R3�c1, d3� � 1, we must have that

x1 ` x4 � 1 (19)

x2 ` x5 � 1 (20)

x3 ` x6 � 1. (21)

By Equation (19), we must have either x1 � 1 and x4 � 0, or x1 � 0 and x4 � 1. If x1 � 1 and
x4 � 0, then, by Equations (17) and (18), we have that x2 � x3 � 0 and x5`x6 � 1. But then,
by Equations (20) and (21), we have that x5 � 1 � x6, hence x5 ` x6 � 2, a contradiction. If
x1 � 0 and x4 � 1, then, by Equations (17) and (18), we have that x2`x3 � 1 and x5 � x6 � 0.
But then, by Equations (19) and (20), we have that x2 � 1 � x3, hence x2 ` x3 � 2, a
contradiction. Therefore, the N2-relations R1,R2,R3 are not globally consistent.
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4 Acyclicity and the Transportation Property

As seen in the previous section, there exist positive commutative monoids K for which
acyclicity of a hypergraph is not a sufficient condition for the hypergraph to have the local-to-
global consistency property for K-relations. In this section we ask: under what conditions on
the monoid is acyclicity sufficient? We introduce a property of commutative monoids, which
we call the transportation property, and show that it characterizes the positive commutative
monoids K for which acyclicity of a hypergraph H is sufficient for H to have the local-to-
global consistency property for K-relations. Then, in the next section, we show that many
positive commutative monoids of interest have the transportation property.

4.1 Transportation Property and Inner Consistency Property

Let K be a positive commutative monoid. Recall that if R�X� and S�Y � are K-relations,
then, by definition, R�X� and S�Y � are consistent if there is a K-relation T �XY � such
that T �X� � R and T �Y � � S. It is not difficult to see that if R�X� and S�Y � are consistent,
then R�X 9Y � � S�X 9Y �, i.e., R�X� and S�Y � have the same marginals on the set of their
common attributes. Motivated by this, we introduce the following two notions.

Definition 3. Let K be a positive commutative monoid. Two K-relations R�X� and S�Y �
are inner consistent if R�X 9Y � � S�X 9Y � holds. The inner consistency property holds for
K-relations if whenever two K-relations R�X� and S�Y � are inner consistent, then R�X�
and S�Y � are also consistent.

The main result of this section asserts that the inner consistency property holds for
K-relations if and only if every acyclic hypergraph has the local-to-global consistency prop-
erty for K-relations. Rather unexpectedly, it turns out that this last property is equivalent
to just the path-of-length three hypergraph P3 having the local-to-global consistency prop-
erty for K-relations. To prove this result, we will introduce a combinatorial property of
monoids whose definition involves only elements from the universe of the monoid, i.e., no
relations are involved in the definition of this combinatorial property.

Definition 4. Let K � �K,�,0� be a positive commutative monoid. The transportation
problem for K is the following decision problem: given two positive integers m and n, a
column m-vector b � �b1, . . . , bm� >Km with entries in K, and a row n-vector c � �c1, . . . , cn� >
Kn with entries in K, does there exist an m�n matrix D � �dij � i > �m�, j > �n�� >Km�n with
entries in K such that di1 �� � dim � bi for all i > �m� and d1j �� � dmj � cj for all j > �n�?
In words, this means that the rows of D sum to b and the columns of D sum to c.

An instance b � �b1, . . . , bm� and c � �c1, . . . , cn� of the transportation problem can be
viewed as a system of linear equations having mn variables and m � n equations. Graphi-
cally, we represent the first m equations horizontally and the next n equations vertically, in
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accordance with the convention that b is a column vector and c is a row vector:

x11 � x12 � � � x1n � b1
� � �

x21 � x22 � � � x2n � b2
� � �

� � � �

� � �

xm1 � xm2 � � � xmn � bm
þ þ þ

c1 c2 cn

(22)

The term “transportation problem” comes from linear programming, where this problem
has the following interpretation. Suppose a product is manufactured in m different factories,
where factory i produces bi units of the product, i > �m�. The units produced have to be
transported to n different markets, where the demand of the product at market j is cj units,
j > �n�. The question is whether there is a way to ship every unit produced at each factory,
so that the demand at each market is met; thus, the variable xij represents the number of
units produced in factory i that are shipped to market j, where i > �m� and j > �n�.

Suppose that an instance of the transportation problem has a solution �dij � i > �m�, j >�n�� in K. By summing over all rows of the system (22), we have that Pm
i�1P

n
j�1 dij �

b1 � � � bm. Similarly, by summing over all columns of the system (22), we have that

Pn
j�1P

m
i�1 dij � c1 �� � cn. The commutativity of K implies that Pm

i�1P
n
j�1 dij � P

n
j�1P

m
i�1 dij,

hence b1���bm � c1���cn. Thus, a necessary condition for an instance of the transportation
problem to have a solution is that this instance is balanced, i.e., b1 � � � bn � c1 � � � cm.
In words, if an instance of the transportation problem has a solution, then the total supply
must be equal to the total demand.

We are now ready to introduce the notion of the transportation property.

Definition 5. Let K � �K,�,0� be a positive commutative monoid. We say that K has
the transportation property if for every two positive integers m and n, every column m-
vector b � �b1, . . . , bm� > Km with entries in K and every row n-vector c � �c1, . . . , cn� > Kn

with entries in K such that b1 ��� bm � c1 ��� cn holds, we have that there exists an m�n
matrix D � �dij � i > �m�, j > �n�� > Km�n with entries in K whose rows sum to b and whose
columns sum to c, i.e., di1 �� � dim � bi for all i > �m� and d1j �� � dmj � cj for all j > �n�.

In words, K has the transportation property if every balanced instance of the transporta-
tion problem has a solution in K.

The following three examples will turn out to be special cases of more general results that
will be established in Section 5, where many additional examples of positive commutative
monoids that have the transportation property will be provided.

Example 1. The monoid B � ��0,1�,-,0� of Boolean truth-values with disjunction has
the transportation property. To see this, consider a system of equations as in (22) where
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b1 � � � bm � c1 � � � cn; moreover, here we have that each bi or cj is a truth-value, and �

is -. This means that either every bi and every cj is equal to 0, or at least one bi is equal
to 1 and at least one cj is equal to 1. To find a solution, set xij � bi , cj for all i > �m� and
j > �n�, where , is the standard Boolean conjunction. It is easy to see that this candidate
solution satisfies all equations. Ú

Example 2. The monoid RC0 � �RC0,�,0� of non-negative reals with addition has the trans-
portation property. To see this, consider a system of equations as in (22) and consider the
matrices defined by dij � bicj~Pn

k�1 ck and eij � bicj~Pm
k�1 bk for all i > �m� and j > �n�, with

the convention that 0~0 � 0. It is straightforward to see that the dij matrix satisfies all
horizontal equations and the eij matrix satisfies all vertical equations. Furthermore, if the
instance is balanced so that b1 � � � bm � c1 � � � cn holds, then dij � eij and then both
matrices are equal and satisfy all equations. Ú

Example 3. The monoid N � �ZC0,�,0� of non-negative integers with addition has the
transportation property. This will follow from results established in subsequent sections.
For now, an appealing but indirect way to see this is to notice that if we write the system
of equations (22) in the form Ax � b, where A is an �m � n� �mn matrix with 0-1 entries
and b is an �m � n�-vector with non-negative integer entries, then A is the incidence matrix
of a bipartite graph and hence a totally unimodular matrix (see Example 1 in page 273 of
Schrijver’s book [Sch86]). The main result about totally unimodular matrices implies that
if the linear program given by Ax � b and x C 0 has a solution over R, then it has a solution
with integer entries (see Corollary 19.2a in [Sch86] and the discussion immediately following
its proof). Since the transportation property holds for RC0, the conclusion of this is that
the transportation property for N follows from the transportation property for RC0 from
Example 2. Ú

4.2 Transportation Property and Acyclicity

With all definitions in place, we are ready to state and prove the main result of this section.

Theorem 3. Let K be a positive commutative monoid. Then, the following statements are
equivalent:

(1) K has the transportation property.

(2) The inner consistency property holds for K-relations.

(3) Every acyclic hypergraph has the local-to-global consistency property for K-relations.

(4) The hypergraph P3 has the local-to-global consistency property for K-relations.

Proof. We close a cycle of implications: (1) Ô� (2) Ô� (3) Ô� (4) Ô� (1).
(1) Ô� (2). Suppose that K has the transportation property. Let R�X� and S�Y �

be two inner consistent K-relations and let Z � X 9 Y . For each Z-tuple w in the support
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of R�Z� � S�Z�, let u1, . . . , umw be an enumeration of the X-tuples that are in the support R�

of R and extend w, and let v1, . . . , vnw be an enumeration of the Y -tuples that are in the
support S� of S and extend w. Let bw � �bw,1, . . . , bw,mw� be the column vector defined
by bw,j �� R�uj� for j > �mw�, and let cw � �cw,1, . . . , cw,nw� be the row vector defined by cw,i ��

S�vi� for i > �nw�. Since R and S are inner consistent, we have that R�w� � S�w�, hence
bw,1 �� � bw,mw � cw,1 �� � cw,nw . (23)

By the transportation property of K, there exists an mw � nw matrix Mw � �dw�i, j� � i >�mw�, j > �nw�� that has bw as column sum and cw as row sum. Let T �XY � be the K-
relation defined for every XY -tuple t by T �t� �� dw�i, j� where w � t�Z� and i and j are such
that t�X� � ui and t�Y � � vj in the enumerations of the tuples in R� and S� that are used in
defining bw and cw. For any other XY -tuple t, set T �t� �� 0. It follows from the definitions
that T is a K-relation that witnesses the consistency of R and S.

(2) Ô� (3). Assume that the hypergraph H is acyclic and therefore it has the run-
ning intersection property. Hence, there is a listing X1, . . . ,Xm of its hyperedges such that
for every i > �m� with i C 2, there is a j > �i � 1� such that Xi 9 �X1 8 � 8 Xi�1� b Xj.
Let R1�X1�, . . . ,Rm�Xm� be a collection of K-relations that is pairwise consistent. By in-
duction on i � 1, . . . ,m, we show that there is a K-relation Ti over X1 8 � 8Xi that wit-
nesses the global consistency of the K-relations R1, . . . ,Ri. For i � 1 the claim is obvious
by taking T1 � R1. Assume then that i C 2 and that the claim is true for all smaller in-
dices. Let X �� X1 8 � 8Xi�1. By the running intersection property, let j > �i � 1� be such
that Xi 9X bXj. By induction hypothesis, there is a K-relation Ti�1�X� that witnesses the
global consistency of R1, . . . ,Ri�1. First, we show that Ti�1 and Ri are consistent. Since, by
assumption, the inner consistency property for K-relations holds, it suffices to show that Ti�1

and Ri are inner consistent, i.e., that Ti�1�X9Xi� � Ri�X9Xi�. Let Z �X9Xi, so Z bXj by
the choice of j, and indeed Z �Xj 9Xi. Since j B i�1, we have Rj � Ti�1�Xj�. Since Z bXj,
we have

Rj�Z� � Ti�1�Xj��Z� � Ti�1�Z�. (24)

By assumption, also Rj and Ri are consistent, and if W is any K-relation that witnesses
their consistency and Z �Xj 9Xi, then

Rj�Z� �W �Xj��Z� �W �Z� �W �Xi��Z� � Ri�Z�. (25)

By transitivity, (24) and (25) give Ti�1�Z� � Ri�Z�, as was to be proved to show that Ti�1

and Ri are consistent. Now, let Ti be a K-relation that witnesses the consistency of Ti�1

and Ri. We show that Ti witnesses the global consistency of R1, . . . ,Ri. Since Ti�1 and Ri

are consistent and Ti is a witness, we have Ti�1 � Ti�X� and Ri � Ti�Xi�. Now fix k B i � 1
and note that

Rk � Ti�1�Xk� � Ti�X��Xk� � Ti�Xk�,
where the first equality follows from the fact that Ti�1 witnesses the consistency ofR1, . . . ,Ri�1

and k B i�1, and the other two equalities follow from Ti�1 � Ti�X� and the fact that Xk bX.
Thus, Ti witnesses the consistency of R1, . . . ,Ri, which was to be shown.
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(3) Ô� (4). This statement is obvious.
(4) Ô� (1). Assume that the path-of-length-3 hypergraph P3 has the local-to-global

consistency property for K-relations. Let �b1, . . . , bm� and �c1, . . . , cn� be the two vectors of
a balanced instance of the transportation problem for K. Consider the associated system of
equations as in (22). Let a � b1 � � � bm � c1 � � � cn. If a � 0, then b1 � � � bm � c1 �

� � cn � 0 by the positivity of K, and then setting xij � 0 for all i and j we get a solution
to (22). Assume then that a ~� 0. Based on this instance, we first build three K-relations
R�AB�, S�BC�, T �CD�, then we show that they are pairwise consistent, and finally we show
how to use any witness of their global consistency to build a solution to the given balanced
instance of the transportation problem. The three K-relations are given by the following
tables, where the third column is the annotation value from K for the tuple on its left:

A B : R B C : S C D : T

u1 0 : b1 0 0 : a 1 u1 : b1
� � � 1 1 : a � � �

um 0 : bm 1 um : bm
v1 1 : c1 0 v1 : c1
� � � � � �

vn 1 : cm 0 vn : cn

As witnesses to the pairwise consistency of these three K-relations, consider the following
K-relations:

A B C : U B C D : V A B C D : W

u1 0 0 : b1 1 1 u1 : b1 u1 0 1 u1 : b1
� � � � � � � � � � � � �

um 0 0 : bm 1 1 um : bm um 0 1 um : bm
v1 1 1 : c1 0 0 v1 : c1 v1 1 0 v1 : c1
� � � � � � � � � � � � �

vm 1 1 : cm 0 0 vm : cm vm 1 0 vm : cm

By construction, we have U�AB� � R and U�BC� � S, also V �BC� � S and V �CD� � T ,
and W �AB� � R and W �CD� � T . By the assumption that the hypergraph P3 has the
local-to-global consistency property for K-relations, there is a K-relation Y �ABCD� that
witnesses the global consistency of R,S,T . Since Y �BC� � S, for every tuple �a, b, c, d� in
the support Y � of Y , we have b � c � 0 or b � c � 1. Similarly, since Y �AB� � R, we have that
if b � 0 then a � ui for some i > �m�, and since Y �CD� � T , we have that if c � 0 then d � vj
for some j > �n�. Now, set dij �� Y �ui,0,0, vj� for every i > �m� and j > �n�. For every i > �m�
we have

Q
j>�n�

dij � Q
j>�n�

Y �ui,0,0, vj� � Q
�ui,0,c,d�>Y �

Y �ui,0, c, d� � R�ui,0� � bi,

where the first equality follows from the choice of dij, the second follows from the above-
mentioned properties of the tuples �a, b, c, d� in the support Y � of Y , the third follows from
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Y �AB� � R, and the last follows from the choice of R. Similarly, for every j > �n� we have

Q
i>�m�

dij � Q
i>�m�

Y �ui,0,0, vj� � Q
�a,b,0,vj�>Y �

Y �a, b,0, vj� � T �0, vj� � cj,

with very similar justifications for each step. This proves that D � �dij � i > �m�, j > �n�� is a
solution to the balanced instance of the transportation property of K given by the vectors�b1, . . . , bm� and �c1, . . . , cn�, which completes the proof.

By combining Theorems 2 and 3, we obtain the following result.

Corollary 2. Let K be a positive commutative monoid that has the transportation property.
For every hypergraph H, the following statements are equivalent:

1. H is an acyclic hypergraph.

2. H has the local-to-global consistency property for K-relations.

Since the transportation property holds for B and since the B-relations are the ordinary
relations, Corollary 2 contains the Beeri-Fagin-Maier-Yannakakis Theorem 1 as a special case.
In the next section, we identify several different classes of positive commutative monoids that
have the transportation property; therefore, Corollary 2 applies to all such monoids.

5 Monoids with the Transportation Property

We now turn to the question of identifying broad classes of positive commutative monoids
that do have the transportation property. We give five different types of such monoids:

– monoids that can be expanded to a semiring with the standard join;

– monoids that can be expanded to a semifield with the Vorob’ev join;

– monoids to which the Northwest Corner Method applies;

– power monoids;

– free commutative monoids.

For the first two types of monoids, the solution to the system of equations of a balanced
instance of the transportation problem can be obtained using an operation that, when inter-
preted on K-relations, generalizes the relational join of ordinary relations (i.e., B-relations)
in the first case and the Vorob’ev join of probability distributions in the second. For the
third type of monoids, the solution is not obtained using an operation but via a procedural
method that we call the Northwest Corner Method and comes inspired by the theory of linear
programming.
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5.1 Expansion to a Semiring and the Standard Join

To motivate the concepts and results in this section, let us first consider ordinary rela-
tions. As discussed earlier, the ordinary relations coincide with the B-relations, where
B � ��0,1�,-,0� is the Boolean commutative monoid. Also, B has the inner consistency
property and, moreover, there is a natural witness to the consistency of two consistent B-
relations. Specifically, if R and S are ordinary relations, then the relational join of R and S,
denoted by R & S, is the ordinary relation that consists of all XY -tuples t such that t�X�
is in R and t�Y � is in S. It is well known and easy to see that if R and S are consistent
ordinary relations, then R & S is a witness to their consistency. Note, however, that the
relational join is defined using the conjunction , of two Boolean values, since

�R & S��t� � R�t�X�� , S�t�Y ��. (26)

This suggests that for some positive commutative monoids K � �K,�,0�, witnesses to the
consistency of two K-relations may be explicitly constructed using operations other than
the operation � of K. As we will see in this section, certain positive commutative monoids
can be shown to have the inner consistency property via an expansion to semirings with
additional properties, where witnesses to the consistency of two K-relations can be explicitly
constructed using the operations in the expansion.

Additively Positive Semirings A semiring is a structure K � �K,�,�,0,1� with the
following properties:

� �K,�,0� and �K,�,1� are commutative monoids;

� � distributes over �, i.e., p � �q � r� � p � q � p � r, for all p, q, r >K. .

� 0 annihilates, i.e., 0 � p � p � 0 � 0, for all p >K.

An additively positive semiring is a semiringK � �K,�,�,0,1� whose additive reduct �K,�,0�
is a positive monoid, i.e., p � q � 0 implies that p � 0 and q � 0.

The Boolean semiring B � ��0,1�,-,,,0,1�, the bag semiring N � �ZC0,�,�,0,1� of
the non-negative integers, and the semiring RC0 � �RC0,�,�,0,1� of the non-negative real
numbers, where � and � are the standard arithmetic operations, are examples of additively
positive semirings. Note that, to keep the notation simple, we used the same symbol (B,
N, RC0) to denote both the original positive commutative monoid and its expansion to a
semiring. We will use a similar convention in the sequel.

The Standard Join Let K � �K,�,�,0,1� be an additively positive semiring. If R�X�
and S�Y � are two K-relations, then the standard K-join of R and S, denoted by R &K,S S,
is the K-relation W �XY � defined for every XY -tuple t by the equation

W �t� � R�t�X�� � S�t�Y ��. (27)

Clearly, if K is the Boolean semiring B, then the standard K-join coincides with the relational
join. Unfortunately, if K is an arbitrary positive semiring, then the standard K-join need not
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always be a witness to consistency of two consistent K-relations. For example, consider the
positive commutative monoid N � �ZC0,�,0� of the non-negative integers with addition and
its expansion to the semiring N � �ZC0,�,�,0,1�, where � and � are the standard arithmetic
operations. As pointed out in [AK21], the standard N-join need not witness the consistency
of two consistent N-relations. To see this, consider the N-relations

R�AB� � ��1,2� � 1, �2,2� � 1�,
S�BC� � ��2,1� � 1, �2,2� � 1�.

Their standard N-join is �R &N,S S��ABC� � ��1,2,1� � 1, �1,2,2� � 1, �2,2,1� � 1, �2,2,2� � 1�,
which clearly does not witness the consistency of R and S. In fact, it is easy to verify that
the only N-relations that witness the consistency of R and S are

T1�ABC� � ��1,2,2� � 1, �2,2,1� � 1�,
T2�ABC� � ��1,2,1� � 1, �2,2,2� � 1�.

In what follows, we will pinpoint the class of additively positive semirings for which the
inner consistency property holds for K-relations with the standard K-join witnessing the
consistency of two consistent K-relations. In such a case, we say that the inner consistency
property holds for K-relations via the standard K-join.

Characterization Our aim is to characterize the additively positive semirings K for which
the inner consistency property holds for K-relations via the standard K-join. For this we need
two definitions. Let K � �K,�,�,0,1� be a semiring. We say that K is additively absorptive
if for all p, q > K it holds that p � p � q � p. We say that K is multiplicatively idempotent
if for all p > K it holds that p � p � p. Being additively absorptive has three immediate
consequences that we now discuss. First, being additively absorptive is equivalent to having
that 1 � q � 1 holds, for all q >K. Second, if K is additively absorptive, then K is additively
idempotent, i.e., p � p � p, for all p > K (take q � 1 in the identity p � p � q � p). Third, if
K is additively absorptive, then K is additively positive. Indeed, suppose that p and q are
two elements of K such that p � q � 0. Then p � p � �p � q� � �p � p� � q � p � q � 0, where
the first and last equalities follow from the assumption that p � q � 0, and the second and
third equalities follow from associativity and additive idempotence, respectively. In a similar
manner we get q � �p � q� � q � p � �q � q� � p � q � 0, hence p � q � 0.

Proposition 2. Let K be a semiring. Then the following statements are equivalent.

(1) K is additively absorptive and multiplicatively idempotent.

(2) K is additively positive and the inner consistency property holds for K-relations via the
standard K-join.

Proof. We prove the implications (1) Ô� (2) and (2) Ô� (1).
(1) Ô� (2). We argued already that the assumption that K is additively absorptive

implies that K is additively positive. For the second part, for notational simplicity, con-
sider two K-relations R�AB� and S�BC� such that R�B� � S�B�. We will show that the
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standard K-join R &K,S S witnesses their consistency. Setting W �� R &K,S S, we will show
that W �AB� � R; the proof that W �BC� � S is similar. We may assume that R and S have
non-empty support or else, since K is additively positive, the assumption R�B� � S�B� im-
plies that both have empty support and then the claim is trivial. Let �a, b� be a tuple in the
support of R and let p � R�a, b�. Then there are elements u and w in K such that R�b� � w �

S�b� and w � p�u. Let �b, c1�, . . . , �b, cm� be a list of the tuples in the support of S that join
with �a, b�, and let qi � S�b, ci� for i � 1, . . . ,m. Then W �a, b� � Pm

i�1 p�qi � p�Pm
i�1 qi � p�w,

where the last equality follows from the fact that R�b� � w � S�b�. Therefore, we have
that W �a, b� � p � w � p � �p � u� � p � p � p � u � p � p � u � p, where the last two equali-
ties follow from the assumption that K is both multiplicatively idempotent and additively
absorptive.

(2)Ô� (1). The assumption thatK is additively positive makes the definition of the inner
consistency property apply to K-relations. Assume it holds via the standard K-join. We first
show that K is multiplicatively idempotent. For this, take an arbitrary element p of K and
consider the K-relations R�AB� and S�BC� given by R�a, b� � S�b, c� � p, where a, b, c are
three fixed values in the domains of the attributes A,B,C, and R�r� � S�s� � 0 for any
other tuples r and s. Clearly, R�B� � S�B�. By the hypothesis about K, the relations R
and S are consistent and their consistency is witnessed by R &K,S S. Since R &K,S S takes
value p � p on the tuple �a, b, c� and 0 everywhere else, we conclude that p � p � p. Hence,
since p was an arbitrary element of K, it follows that K is multiplicatively idempotent. To
show that K is additively absorptive, consider two arbitrary elements p and q of K and
the K-relations R�AB� and S�BC� given by R�a, b� � S�b, c� � p and R�a�, b� � S�b, c�� � q,
where b is a fixed value in the domain of B, and a, a� and c, c� are fixed values in the
domains of A and C, respectively, and R�r� � S�s� � 0 for any other tuples r and s.
Clearly R�b� � p � q � S�b� and hence R�B� � S�B�. By the hypothesis about K, the
relations R and S are consistent and their consistency is witnessed by R&K,SS. Since R&K,SS
takes value p � p on the tuple �a, b, c�, value p � q on the tuple �a, b, c��, and value 0 on any
other tuple that projects to �a, b�, we conclude that p � p�p�p�q. Since K is multiplicatively
idempotent, it follows that p � p � p � q. Hence, since p and q were arbitrary elements of K,
it follows that K is additively absorptive.

Every semiring K � �K,�,�,0,1� that is additively absorptive and multiplicatively idem-
potent is a bounded distributive lattice. To see this, recall that a lattice is an algebraic
structure M � �M,-,,� such that the join and meet operations - and , are binary, com-
mutative and associative, and satisfy the absorption laws x - �x , y� � x and x , �x - y� � x.
Recall also that a lattice is bounded if it has a least element 0 and a greatest element 1
with respect to the partial order B defined by a B b if a - b � b (equivalently, if a , b � a),
for all a, b > M . The first absorption law in the language of K reads x � x � y � x, which
holds for K because K is additively absorptive. For the second absorption law, we have
that x� �x�y� � x�x�x�y � x�x�y � x where the first equality holds by the distibutivity
property for K, the second equality holds by the multiplicative idempotence of K, and the
third one holds by the additive absorptiveness of K. We also have that 0 is the least element
of K (viewed as a lattice) and 1 is its greatest element, since 0 � q � q and q � 1 � 1, for all
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q >K. Furthermore, it is easy to verify that the converse is true, i.e., every bounded distribu-
tive lattice is an additively absorptive and multiplicatively idempotent semiring. Thus, the
additively absorptive and multiplicatively idempotent semirings are precisely the bounded
distributive lattices.

Example 4. Examples of bounded distributive lattices include the Boolean semiring B ���0,1�,-,,,0,1�, the powerset semiring PA � �P�A�,8,9,g,A� for an arbitrary set A, and
every max/min semiring MA � �A,max,min, a, b�, where �A,B� is a totally ordered set with
smallest element a and greatest element b. Note that the max/min semirings contain as
special cases the fuzzy semiring F � ��0,1�,max,min,0,1� and the access control semirings,
which are max/min semirings based on finite linear orders with each element indicating a
different level of access control (“confidential”, “secret”, and so on). Another example is the
semiring PB�X� � �PosBool�X�,-,,,0,1�, whereX is a set of variables and PosBool�X�
is the set all Boolean positive expressions (i.e., Boolean formulas over X built from 0, 1, and
variables from X using - and ,) and where two such expressions are identified if they are
logically equivalent. This semiring has been studied in the context of provenance for database
queries (e.g., see [Gre11]). Ú

For each semiringK � �K,�,�,0,1� considered in Example 4, the underlying commutative
monoid K � �K,�,0� is positive, the inner consistency property holds for K-relations, and
the standard K-join witnesses the consistency of two consistent K-relations.

5.2 Expansion to a Semifield and the Vorob’ev Join

If the standard K-join does not always witness the consistency of two consistent K-relations,
then a natural alternative to consider is what we call the Vorob’ev K-join. This, however,
requires an expansion of the positive commutative monoid to a semifield. By definition, a
semifield is a structure K � �K,�,�,0,1� with the following properties:

� K � �K,�,�,0,1� is a semiring.

� For every element p x 0 in K, there exists an element q in K such that p� q � 1 � q �p.

In other words, a semifield is a semiring such that �K � �0�,�,1� is a group. Note that if K
is a semifield, then for every p x 0, there is exactly one element q such that p � q � 1 � q � p
(if there were two such elements q and q�, then p � q � 1 implies that q� � p � q � q�, which
implies that q � q�). This unique element q is called the multiplicative inverse of p and is
denoted by 1~p. As usual if q x 0 and p is an arbitrary element of K, we will write p~q, or p

q ,

for the element p � �1~q�.
An additively positive semifield is a semifield K � �K,�,�,0,1� in which the underlying

additive monoid �K,�,0� is positive. Two well known examples of positive semifields are
the semiring RC0 � �RC0,�,�,0,1� of non-negative real numbers and its rational substruc-
ture QC0 � �QC0,�,�,0,1�.
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The Vorob’ev Join Let K � �K,�,�,0,1� be a semifield. If R�X� and S�Y � are two inner
consistent K-relations (i.e., they satisfy R�X 9 Y � � S�X 9 Y �), then the Vorob’ev K-join of
R and S, denoted by R &K,V S, is the K-relation W �XY � defined for every XY -tuple t by
the equation

W �t� � R�t�X�� � S�t�Y ��
R�t�X 9 Y �� �

R�t�X�� � S�t�Y ��
S�t�X 9 Y ��

if R�t�X 9Y �� � S�t�X 9Y �� ~� 0, and by W �t� � 0 otherwise. Note that the Vorob’ev K-join
of two K-relations is well-defined because the two K-relations R�X� and S�Y � were assumed
to be inner consistent.

We say that the inner consistency property holds for K-relations via the Vorob’ev K-join
if the inner consistency property holds for K-relations and, moreover, the Vorob’ev K-join
witnesses the consistency of two consistent K-relations.

Proposition 3. If K is an additively positive semifield, then the inner consistency property
holds for K-relations via the Vorob’ev K-join.

Proof. Suppose that R and S are two inner consistent K-relations and let Z � X 9 Y ;
i.e., R�Z� � S�Z�. Therefore, their Vorob’ev K-joinW �� R&K,VS is a well-defined K-relation.
We now check that for each X-tuple r, we have W �X��r� � R�r�. If r is not in the support
of R, then W �t� � 0 for every XY -tuple t with t�X� � r and hence W �X��r� � Pt�t�X��r 0 �
0 � R�r�. Suppose then that r is in the support of R; in particular, by the assumption
that R�Z� � S�Z� and the hypothesis that K is additively positive, we have S�t�Z�� �

R�t�Z�� ~� 0 for every XY -tuple t such that t�X� � r. Therefore, we have

W �X��r� � Q
t>W �

�

t�X��r

R�t�X�� � S�t�Y ��~S�t�Z�� � R�r� � Q
t>W �

�

t�X��r

S�t�Y ��~S�t�Z��.

Now note that t�Z� � t�X��Z� � r�Z� whenever t�X� � r, and that there is a bijection between
the set of XY -tuples t such that t�X� � r and the set of Y -tuples s such that s�Z� � r�Z�.
Therefore, this last expression can be rewritten as

R�r� � Q
s>S�

�

s�Z��r�Z�

S�s�~S�r�Z�� � R�r� � S�r�Z��~S�r�Z�� � R�r�,

where the last equality follows from the already argued fact that S�r�Z�� � S�t�Z�� ~� 0.
This proves W �X��r� � R�r�. A symmetric argument shows that for each Y -tuple s we have
that W �Y ��s� � S�s�, and the proposition is proved.

Example 5. The semiring RC0 � �RC0,�,�,0,1� of non-negative real numbers and its rational
substructure QC0 � �QC0,�,�,0,1� where mentioned before as examples of additively positive
semifields. Other well-known examples include the tropical semirings, and their smooth
variants, the log semirings:

Tmin � ���ª,�ª�,min,�,�ª,0� Tmax � ���ª,�ª�,max,�,�ª,0� (28)

Lmin � ���ª,�ª�,`min,�,�ª,0� Lmax � ���ª,�ª�,`max,�,�ª,0� (29)
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where x`miny � � log�e�x�e�y� and x`maxy � log�ex�ey�, with the conventions that e�ª � 0
and log�0� � �ª. In all four cases the multiplicative inverse of the semifield is the standard
inverse of addition over ��ª,�ª�. It is obvious that Tmin is additively positive; furthermore,
Lmin is additively positive because � log�e�x � e�y� � �ª if and only if e�x � e�y � 0 if and
only if x � y � �ª. Dually, the semirings Tmax and Lmax are additively positive. Ú

For each semiring K � �K,�,�,0,1� considered in Example 5, the underlying positive
commutative monoid K � �K,�,0� is positive, the inner consistency property for K-relations
holds, and the Vorob’ev K-join witnesses the consistency of two consistent K-relations.

5.3 Northwest Corner Method

In the previous two sections, we established the inner consistency property for different classes
of positive commutative monoids by expanding them to richer algebraic structures. In this
section, we will establish the inner consistency property for certain positive commutative
monoids without expanding them. There will be a trade-off, however, in the sense that the
witnesses to the consistency of two consistent relations will be obtained via an algorithm,
instead of an explicit construction such as the standard join or the Vorob’ev join. In return,
the witnessing relations will be sparse in that their supports consist of relatively few tuples.
This is in contrast to the standard join and the Vorob’ev joins whose supports, in general,
consist of a large number of tuples. We will quantify these notions later in this section.

Canonical Order and Cancellativity Let K � �K,�,0� be a positive commutative
monoid. Consider the binary relation Z on K defined, for all b, c > K, by b Z c if and
only if there exists some a > K such that b � a � c. The binary relation Z is reflexive and
transitive, and is hence a pre-order, called the canonical pre-order of K.

� K is cancellative if a � b � a � c implies b � c, for all a, b, c >K,

� K is weakly cancellative if a � b � a � c implies b � c or b � 0 or c � 0, for all a, b, c >K,

� K is totally canonically pre-ordered if b Z c or c Z b, for all b, c >K.

Let us consider some examples before proceeding. The positive commutative monoid
N � �ZC0,�,0� of the non-negative integers is cancellative and totally canonically preordered;
in fact, its canonical pre-order is a total order. These properties are also shared by the
positive commutative monoids QC0 � �QC0,�,0� and RC0 � �RC0,�,0� of the non-negative
rational numbers and the non-negative real numbers.

Consider the positive commutative monoid R1 � ��0�8 �1,ª�,�,0� where the universe is
the set of non-negative reals with a gap in the interval �0,1� as only the endpoints of that
interval are maintained.. The operation is the standard addition of the real numbers. This
monoid is cancellative, but it is not totally canonically pre-ordered because if b and c are
different elements between 1 and 2, then neither b Z c nor c Z b holds. The 3-element positive
commutative monoid N2 � ��0,1,2�,`,0� discussed in Section 3.2 is totally canonically pre-
ordered because 1`1 � 2, but it is not weakly cancellative because 2`1 � 2 � 2`2 but 1 x 2,
2 x 0, 1 x 0.
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Northwest Corner Method We will show that if a positive commutative monoid K is
weakly cancellative and totally canonically pre-ordered, then the inner consistency property
for K-relations holds. In fact, we will establish that every such monoid has the transportation
property introduced in Section 4. This will be achieved by using the northwest corner method
of linear programming for finding solutions for the transportation problem.

Intuitively, the northwest corner method starts by assigning a value to the variable in the
northwest corner of the system of equations, eliminating at least one equation, and iterating
this process by considering next the variable in the northwest corner of the resulting system.
Unlike the case of linear programming, here we cannot subtract values; instead, we have to
carefully use the assumption that the monoid is weakly cancellative and totally canonically
pre-ordered.

Proposition 4. If K is positive commutative monoid that is weakly cancellative and totally
canonically pre-ordered, then K has the transportation property.

Proof. Let K � �K,�,0� be a monoid that satisfies the hypothesis of the proposition at
hand. We need to show that for every two positive integers m and n, every m-vector�b1, . . . , bm� > Km and every n-vector �c1, . . . , cn� > Kn with b1 � � � bm � c1 � � � cn, the
following system of m � n equations on mn variables has a solution in K. The first m
equations are written horizontally, and the next n are written vertically:

x11 � x12 � � � x1n � b1
� � �

x21 � x22 � � � x2n � b2
� � �

� � � �

� � �

xm1 � xm2 � � � xmn � bm
þ þ þ

c1 c2 cn

Note that, by the positivity of K, we may assume that bi x 0 and cj x 0 for all i > �m�
and j > �n�. Indeed, if, say, bi � 0, then each variable xij in the i-row of the system must
take value 0, hence the equation in that row and all variables appearing in that row can be
eliminated.

We proceed by induction on the sum m�n, which is the total number of equations in the
system. We take the pairs �m,n� with m � 1 or n � 1 as the base cases of induction. If m � 1,
then we can set x1j � cj for j � 1, . . . , n and we get a solution since c1 ��� cn � b1. Similarly,
if n � 1, then we can set xi1 � bi for i � 1, . . . ,m and we get a solution since b1 �� � bm � c1.
Let then the pair �m,n� be such that m C 2 and n C 2, so k ��m�n C 4, and assume that the
induction hypothesis holds for all systems with m � n @ k. Let us consider b1 and c1. Since
K is totally canonically pre-ordered, we have that b1 � c1 holds or b1 Z c1 holds or c1 Z b1
holds (more than one of these conditions may hold at the same time).
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If b1 � c1, we set x11 � b1, we set x1j � 0 for j � 2, . . . , n, and we set xi1 � 0 for i � 2, . . . ,m.
This assignment satisfies the equations

x11 � x12 � � � x1n � b1
x11 � x21 � � � xm1 � c1.

After eliminating from the other equations the variables that are set to 0 in these two
equations, we are left with the following system of m � n � 2 equations on �m � 1��n � 1�
variables. Again the first m � 1 equations are written horizontally, and the next n � 1 are
written vertically:

x22 � � � x2n � b2
� �

� � �

� �

xm2 � � � xmn � bm
þ þ

c2 cn

We claim that this system is a balanced instance of the transportation problem, i.e.,
b2 �� � bm � c2 �� � cn. Indeed, we have that b1 � b2 �� � bm � c1 � c2 �� � cn and b1 � c1,
which means that b1 � b2 ��� bm � b1 � c2 ��� cn. Since all the bi’s and the cj’s are different
from 0, the positivity of K implies that b2 � � � bm x 0 and c2 � � � cn x 0. Since K is
weakly cancellative, we conclude that b2 ��� bm � c2 ��� cn. By induction hypothesis, the
preceding system has a solution in K, hence the original system also has a solution in K.

Next assume that b1 x c1 and b1 Z c1. This means that there is an element a >K such that
b1 � a � c1. Moreover, a x 0 because b1 x c1. We now set x11 � b1 and x1j � 0 for j � 2, . . . , n.
This assignment satisfies the equation

x11 � x12 � � � x1n � b1.

We eliminate from the other equations the variables that are set to 0 in this equation,
eliminate also x11 from the equation of c1, and replace c1 by a. This results into the following
system of m � n � 1 equations on n�m � 1� variables

x21 � x22 � � � x2n � b2
� � �

� � � �

� � �

xm1 � xm2 � � � xmn � bm
þ þ þ

a c2 cn

We claim that this system is a balanced instance of the transportation problem, i.e., we
claim that b2 ��� bm � a� c2 ��� cn. Indeed, we have that b1 � b2 ��� bm � c1 � c2 ��� cn
and b1�a � c1, which means that b1�b2���bm � b1�a�c2���cn. Since a x 0 and since all
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the bi’s and the cj’s are different from 0, the positivity of K implies that b2 ��� bm x 0 and
c2 ��� cn x 0. Since K is weakly cancellative, we conclude that b2 ��� bm � a� c2 ��� cn.
By induction hypothesis, the preceding system has a solution in K, hence the original system
also has a solution in K.

The remaining case b1 x c1 and c1 Z b1 is similar to the previous one with the roles of b1
and c1 exchanged.

Northwest Corner Joins By combining the proof of the implication (1) Ô� (2) in
Theorem 3 with the northwest corner method described in the proof of Proposition 4, we
obtain a procedure that computes a witness of the consistency of two consistent K-relations,
provided the monoid K meets the conditions of Proposition 4. We make this procedure
explicit in what follows. Mirroring the earlier state of affairs with the standard join and
the Vorob’ev join, here we say that the inner consistency property holds for K-relations via
the northwest corner method. To be clear, though, it should be noted that in contrast to
the standard join and the Vorob’ev join considered earlier, the witnesses of consistency that
will be produced by the northwest corner method will not be canonical. In other words,
their construction involves some arbitrary choices during the execution of the procedure,
and while any choices will lead to a correct witness of consistency, different choices may lead
to different witnesses. To reflect this multitude of witnesses, we refer to them as northwest
corner joins ; in plural.

To describe the procedure that computes a witness of the consistency of two inner con-
sistent K-relations R�X� and S�Y �, let us assume that the monoid K � �K,�,0� is fixed at
the outset and that it is positive, commutative, weakly cancellative, and totally canonically
pre-ordered. Our goal is to produce a K-relation W �XY � that witnesses the consistency
of R�X� and S�Y �, i.e., W �XY � is such that W �X� � R and W �Y � � S. Write X � AB
and Y � AC, where A,B,C are disjoint sets of attributes. First we enumerate the tuples
a1, . . . , ar in the supports R�A�� � S�A�� of the marginals on the common attributes, where
the equality between the supports follows from Lemma 1 and the assumption that R and
S are inner consistent, and K is positive. For each k � 1, . . . , r, we enumerate the B-tuples
bk1, . . . , bkmk

such that R�ak, bkj� ~� 0 for j � 1, . . . ,mk, and the C-tuples ck1, . . . , cknk
such

that S�ak, ckj� ~� 0 for j � 1, . . . , nk. Since R�A� � S�A� holds by inner consistency, we have
that for each k � 1, . . . , r the equality

R�ak, bk1� �� �R�ak, bkmk
� � S�ak, ck1� �� � S�ak, cknk

� (30)

holds, so we are dealing with a different balanced instance of the transportation problem
for each k � 1, . . . , r. By applying the northwest corner method as described in the proof of
Proposition 4 to each such instance with k � 1, . . . , r, we find a values xk,ij in K that solve
the corresponding system of equations. From those, we build the K-relation W �ABC� by
setting

W �ak, bkj, ckj� �� xk,ij

for all k � 1, . . . , r, all j � 1, . . . ,mk, and all i � 1, . . . , nk, and W �a, b, c� � 0 for any other
ABC-tuple �a, b, c�. It is a matter of unfolding the definitions to check that this K-relation
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W �ABC� satisfies W �AB� � R and W �AC� � S, hence it witnesses the consistency of R and
S. We say that W is a northwest corner join for R and S.

As an immediate corollary of Proposition 4 and the description of the procedure for
computing a northwest corner join, we obtain the following proposition.

Proposition 5. If K is a positive commutative monoid that is weakly cancellative and totally
canonically pre-ordered, then the inner consistency property holds for K-relations via the
northwest corner method.

As indicated earlier, the witness W that is obtained from applying the northwest corner
method to R and S is not canonically defined in the sense that its definition depends on
the choice of the orders in the enumerations bk1, . . . , bkmk

and ck1, . . . , cknk
featuring above.

One of the advantages of the northwest corner method, however, is that it always produces
a sparse K-relation in the sense of the following proposition.

Proposition 6. Let K be a positive commutative monoid such that the inner consistency
property for K-relations via the northwest corner method. Let R�X� and S�Y � be two inner
consistent K-relations, and let W be a northwest corner join for R and S. Then the support
size SW �S of W is bounded by the sum of the support sizes SR�S and SS�S, i.e.,

SW �S B SR�S � SS�S. (31)

Proof. Consider the procedure that computes W from R and S as described above. Write
X � AC and Y � BC, where A,B,C are disjoint sets of attributes. In the proof of Propo-
sition 4 applied to the system corresponding to ak, where a1, . . . , ar is the enumeration of
R�A�� � S�A��, at each iteration at least one row or column (or both) is eliminated while
adding exactly one tuple in the support of W . At the base cases, either the single remaining
row is eliminated while adding one tuple in the support of W for each remaining column, or
the single remaining column is eliminated while adding one tuple in the support of W for
each remaning row. Thus, for each separate k at most one tuple for each row or column is
added, which gives the bound in (31).

The sparsity of the support size SW �S of any northwest corner join W for R and S con-
trasts with the standard join, and with the Vorob’ev join, whose support sizes could grow
multiplicatively as in SR�S � SS�S.

Finally, we point out that for most examples of positive monoids, the operations that are
involved in the computation of a northwest corner join W for R and S can be performed
efficiently. In particular, this the case for the monoid N � �ZC0,�,0� of the natural numbers
with addition when the numbers are represented in binary notation. This is the prime
example of a positive commutative monoid that has the transportation property via the
northwest corner method. We discuss this example along with several others next.

Example 6. Since the positive commutative monoid N � �ZC0,�,0� of the non-negative in-
tegers is cancellative and totally canonically ordered, Proposition 4 implies that N has the
inner consistency property via the northwest corner method, hence every acyclic hypergraph
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has the local-to-global consistency property for N-relations; the latter property was estab-
lished via a different argument in [AK21]. An example of similar flavor to N is the positive
monoid N~bN � ��m~bn � m,n > N�,�,0� of terminating fractions in base b, where b C 2 is a
natural number. This monoid is additively cancellative and totally canonically ordered; in
fact, its canonical order is the natural order of the rational numbers restricted to the ter-
minating fractions. The non-negative reals RC0 � �RC0,�,0� and the non-negative rationals
QC0 � �QC0,�,0� are also positive, totally ordered, and additively cancellative commutative
monoids. Ú

Example 7. For an application of a different flavor, consider the positive commutative monoid
M2 � ��0,1,2�,`�,0�, where 1 `� 1 � 2, 1 `� 2 � 1 � 2 `� 1, and 2 `� 2 � 2. It is easy to see
that M2 is weakly cancellative (but not cancellative) and totally canonically pre-ordered.
Thus, M2 has the inner consistency property and every acyclic hypergraph has the local-
to-global consistency property for M2-relations, unlike the positive commutative monoid
N2 � ��0,1,2�,`,0�. Ú

Example 8. The additive monoids of the tropical semirings Tmin and Tmax from (28) are non-
examples since they are not weakly cancellative: if a, b, c > ��ª,�ª� are such that b ~� c and
a @ b @ c @ �ª, then min�a, b� �min�a, c�, yet b ~� c and b ~� �ª and c ~� �ª. The max case is
dual. In contrast, the additive monoids of the log semirings Lmin and Lmax from (29), seen
as smooth approximations of Tmin and Tmax, are totally canonically ordered and additively
cancellative. For Lmin, the canonical order Z is the reverse order C on ��ª,�ª�, which is
total. To see this, observe that for all x, y > ��ª,�ª� we have that x Z y if and only if
there exists z > ��ª,�ª� such that � log�e�x � e�z� � y, which happens if and only if there
exists z > ��ª,�ª� such that e�y � e�x � e�z, which is the case if and only if e�y � e�x C 0,
and hence if and only if x C y. The equivalence in which z drops out from the equation
holds by the combination of the following three facts: first, e�z is a non-negative real for
every z > ��ª,�ª�; second, e�y �e�x is a finite non-negative real whenever x C y; and, third,
each finite non-negative real number r can be put in the form e�z for z � log�1~r�, which is a
value in ��ª,�ª�, if we use the convention that log�1~0� � �ª. Further, Lmin is additively
cancellative since � log�e�x � e�z� � � log�e�y � e�z� if and only if e�x � e�z � e�y � e�z, and
hence if and only if x � y because e�z is finite for every z > ��ª,�ª�. As usual, the cases
of Tmax and Lmax are dual. Ú

Example 9. Finally, consider next the non-negative version LC0
min � ��0,�ª�,`min,�,�ª,0�

of Lmin, and its dual, the non-positive version LB0
max � ���ª,0�,`max,�,�ª,0� of Lmax. The

additive monoids of these are positive, canonically totally ordered, and additively cancella-
tive. For LC0

min, the canonical order is also the reverse natural order on �0,�ª�. To see
this, follow the same argument as in the proof for its version over all reals noting that,
if x, y > �0,�ª�, then Se�y � e�xS B 1. Since each real number r in the interval �0,1� can be
put in the form e�z for z � log�1~r�, which is in �0,�ª� since r > �0,1�, the claim follows.
It should be pointed out that, unlike its version over all reals Lmin, the non-negative log
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semiring LC0
min is not a semifield because its multiplicative part, the addition of the real num-

bers restricted to �0,�ª�, is not a group on �0,�ª�. Furthermore, its additive part, the
operation `min restricted to �0,�ª�, is not absorptive. This means that LC0

min is an example
of a semiring that is not covered by the cases considered in earlier sections. Ú

5.4 Products and Powers

The purpose of this section is to show that the standard product composition of positive
commutative monoids inherits the transportation property from its factors. This will give a
way to produce new examples of monoids with the transportation property from old ones.

Recall from Section 2 the definition of the product monoid Li>I Ki for a finite or infinite
indexed sequence of monoids �Ki � i > I�. It is easy to check that if each Ki is a positive
commutative monoid, then their product Li>I Ki is also a positive commutative monoid.
Actually, many properties of the factors are preserved in the product, except an important
one: the canonical order of the product is not total in general, even if that of each factor is.
Because of this, the product construction will constitute a different source of monoids for
which the transportation property cannot be derived from the constructions seen so far.

Powers and Finite Support Powers Recall from Section 2 the definition of the power
construction KI . We will need a variant KI

fin of KI , which we call the finite support power of
K � �K,�,0�. Its elements are the finite support maps from the index set I to the base set
K. More precisely, the finite support power KI

fin is the monoid whose base set is the set of all
maps f � I � K of finite support, i.e., the maps for which f�1�0� is co-finite, with addition
f �g of two maps f and g defined also pointwise as in (4). Observe that if f and g have finite
support, then f � g also has finite support and, therefore, the operation is well defined. The
neutral element of the power KI is the constant 0 map, which of course has finite support.
In the sequel, we treat maps f � I � K and indexed sequences f � �f�i� � i > I� > KI

interchangeably.

Proposition 7. Let I be a finite or infinite non-empty index set and let K be a positive
commutative monoid. The following statements are equivalent:

(1) K has the transportation property,

(2) KI has the transportation property,

(3) KI
fin has the transportation property.

Proof. We close a cycle of implications (3) Ô� (1) Ô� (2) Ô� (3).
(3) Ô� (1). First observe that K is isomorphic to a substructure of KI

fin: consider the
embedding a( â that sends a >K to the map â � I �K defined by â�k0� �� a for some fixed
index k0 > I and â�k� �� 0 for every other index k > I � �k0�. With this embedding, every
balanced instance b � �b1, . . . , bm� and c � �c1, . . . , cn� of the transportation problem for K
lifts to a balanced instance b̂ � �b̂1, . . . , b̂m� and ĉ � �ĉ1, . . . , ĉn� of the transportation problem
for KI

fin. By (3), this instance has a solution, say u � �uij � i > �m�, j > �n��, where each
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uij is an indexed sequence of finite support, say uij � �uij�k� � k > I�. Furthermore, since

b̂i�k� � ĉj�k� � 0 for all k > I � �k0� and K is positive, we must have that uij�k� � 0 for all

k > I��k0�, since u is a solution. This means that u is indeed of the form �d̂ij � i > �m�, j > �n��
where dij �� uij�k0�. Setting D �� �dij � i > �m�, j > �n�� we get a solution to the balanced
instance of the transportation problem for K given by b and c, which proves that (1) holds.

(1) Ô� (2). Let b � �b1, . . . , bm� and c � �c1, . . . , cn� be a balanced instance of the
transportation problem for KI , where each bi and cj is an indexed sequence, say bi � �bi�k� �
k > I� and cj � �cj�k� � k > I�. We proceed by defining a solution component by component.
For each k > I, the pair of vectors b�k� �� �b1�k�, . . . , bm�k�� and c�k� �� �c1�k�, . . . , cn�k��
is a balanced instance of the transportation problem for K. By (1), each such instance has
a solution, say d�k� � �dij�k� � i > �m�, j > �n��. It follows that the collection of indexed
sequences d �� �dij � i > �m�, j > �n��, where dij �� �dij�k� � k > I�, is a solution to the balanced
instance of the transportation problem for KI given by b and c, which proves that (2) holds.

(2) Ô� (3). Let b � �b1, . . . , bm� and c � �c1, . . . , cn� be a balanced instance of the
transportation problem for KI

fin, i.e., bi � �bi�k� � k > I� and cj � �cj�k� � k > I� have
finite support and the balance condition holds. View this as a balanced instance of the
transportation problem for KI and, by (2), let d � �dij � i > �m�, j > �n�� be a solution over
KI . Then, by the finite support condition on the bi and cj we have dij�k� � 0 for all but
finitely many k > I because K is positive. This means that d is then also a solution over KI

fin,
which proves that (3) holds.

Component-Based Join and its Sparsity Let K be a positive commutative monoid for
which the inner consistency property holds for K-relations, and let &K be a join operation
that produces a witness of the consistency of any two inner consistent K-relations, i.e., if R
and S are K-relations that are inner consistent, then R and S are consistent and R &K S
witnesses their consistency. We say that the inner consistency property holds for K-relations
via the join operation &K.

Consider now the power monoids KI and KI
fin for an index set I. The proof of the

implications (1) Ô� (2) Ô� (3) in Proposition 7 proceeds component by component. In
turn, by inspecting the proof of the implication (1) Ô� (2) in Theorem 3, this means that
if the inner consistency property holds for K-relations via a join operation &K, then the
same join operation can be applied component by component to witness the consistency
of any two inner consistent KI-relations R and S, or two inner consistent KI

fin-relations R
and S. The result will be denoted by R &

I
K S and will be described more explicitly in the

proof of Proposition 8 below, where it is called the component-wise join of R and S. In
the terminology above, we say that the inner consistency property holds for KI-relations,
or KI

fin-relations respectively, via the component-wise join &
I
K. Furthermore, as we will see,

the sparsity of the witnesses of consistency of the factors may be preserved in the following
sense.

For a positive real number c, two consistent K-relations R�X� and S�Y �, and a K-relation
W �XY � that witnesses their consistency, we say that W is an c-sparse witness if

SW �S B �SR�S � SS�S�c. (32)
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In Example 3, we have seen that the bag monoid N has the inner consistency property via
the northwest corner method and, hence, by Proposition 6, any two inner consistent bags
have a 1-sparse witness of consistency.

We say that the inner consistency property for K-relations holds with sparse witnesses
if there exists a positive real number c such that for any two inner consistent K-relations
R�X� and S�Y � there is a K-relation W �XY � that is an c-sparse witness of consistency of
R�X� and S�Y �. If the c-sparse witness W can be chosen as R &K S for a join operation
&K, then we say that the join operation &K produces sparse witnesses, or that it produces
c-sparse witnesses, when the c-factor is important.

Proposition 8. Let I be a finite or infinite non-empty index set and let K be a positive
commutative monoid such that the inner consistency property holds for K-relations via a
join operation &K. Then, the inner consistency property holds for KI

fin-relations via the
component-wise join operation &

I
K. Furthermore, if the join operation &K produces c-sparse

witnesses for some positive real c, then the component-wise join operation &
I
K produces cd-

sparse witnesses R &
I
K S where d is any bound on the maximum number of non-zero compo-

nents in the annotation of any tuple in the (finite) supports of the KI
fin-relations R or S. In

particular, if I is finite and the inner consistency property holds for K-relations with sparse
witnesses, then the inner consistency property holds for KI-relations with sparse witnesses.

Proof. Suppose that K is a positive commutative monoid such that the inner consistency
property holds for K-relations via a join operation &K. Let I be a finite or infinite non-empty
index set and consider the finite support power monoid KI

fin. Let R�X� and S�Y � be two
KI

fin-relations that are inner consistent. In this proof we offer a more explicit description of
the component-wise join R &

I
K S of R and S, and then use this more explicit description to

analyze its sparsity.
First we define two new K-relations R0�X,C� and S0�Y,C�, where C is a new attribute

that does not appear in XY and has the index set I as its domain of values, i.e., Dom�C� � I.
These new K-relations are populated by setting

R0�r, i� �� R�r��i� and S0�s, i� �� S�s��i� (33)

for every X-tuple r, every Y -tuple s, and every index i > I. Observe that R0 and S0 are
proper K-relations, i.e., their supports are finite because the supports of R and S are finite,
and each element f in KI

fin has, by definition, finite support as a function that maps each
index i > I to an element f�i� of K. We claim that, since R and S are inner consistent, so
are R0 and S0; indeed, by setting Z �X 9 Y , we have

R0�Z��t, i� � Q
r�r�Z��t

R�r��i� � R�Z��t��i� � S�Z��t��i� � Q
s�s�Z��t

S�s��i� � S0�Z��t, i� (34)

for every Z-tuple t and every index i > I. The point of the definition of R0 and S0 is that
they encode the KI

fin-relations R and S as K-relations in a way that from a K-relation W0

that witnesses the consistency of R0 and S0, it is possible to produce a KI
fin-relation W that

witnesses the consistency of R and S. Concretely, if we take the join W0 � R0 &K S0 that we
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assumed to exist as witness of the consistency of R0 and S0, then the KI
fin-relation W that

works is the one defined by the equation

W �t��i� �W0�t, i� � �R0 &K S0��t, i�. (35)

for every XY -tuple t and every index i > I. It is easy to see that this agrees with what
we earlier described as applying the join operation &K component by component; i.e., the
component-wise join R &

I
K S of R and S.

For the sparsity analysis first note that, by the choice of d, the K-relations R0 and S0 have
support sizes bounded by SR�Sd and SS�Sd, respectively. It follows that R0 &K S0 is a c-sparse
witness of their consistency, which means that its support size is at most �SR�S� SS�S�cd. The
cd bound on the sparsity of R &

I
K S now follows from the definition of the component-based

join in (35).

Next we discuss examples of monoids for which the inner consistency property can be
derived using the product construction. We start with various collections of monoids of
polynomials with coefficients over a monoid K and variables from a set of indeterminates X.

Example 10. Monoids of Polynomials. Let K�x� be the monoid of formal univariate polyno-
mials with coefficients in the monoid K and a single indeterminate variable x. More broadly,
let K�X� be the monoid of formal multivariate polynomials K�X� with coefficients in the
monoid and indeterminates in the set X. Here, X is a finite or infinite indexed set of com-
muting variables, or indeterminates. To view K�x� and K�X� as product monoids of the
form KI

fin, in both cases the indexed set I is taken as the collection of all monomials; that
is to say, I is 1, x, x2, x3, . . . in the univariate case, and I is the collection of monomials Xα

in the multivariate case, where α � X � N is a map that takes each indeterminate to its
degree with the condition that the total degree Px>α� α�x� is finite, where α� is the support
of α. The notation Xα is then a shorthand for the formal monomial Lx>α� xα�x�, where L is
a formal product operation for indexed sets. With this notation, the polynomials in K�X�
take the form of formal sums

Q
m>c�

c�m�m,

where c � I �K is a coefficient map of finite support c�, where I is the set of monomials. In
this monoid, addition is defined component-wise on the coefficients:

Q
m>c�

c�m�m � Q
m>d�

d�m�m � Q
m>c�

8d�

�c�m� � d�m��m.

The same idea can be applied to polynomials of restricted types by restricting the indexed
set I of monomials. For example, the collection K�X�m of multilinear polynomials with
coefficients in K can be obtained by restricting I to the set of monomials Xα that have
α�x� > �0,1� for each x > X. Similarly, for an integer d, the collection K�X�Bd of total
degree-d polynomials is obtained by restricting I to the set of monomials Xα that have

Px>α� α�x� B d. The collection K�X�d of degree-d forms is obtained by restricting I to the
set of monomials Xα with Px>α� α�x� � d. The special case K�X�1 is the collection of linear
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N�X�
� �

B�X� Trio�X�
� �

Why�X�
� �

Lin�X� PosBool�X�
� �

B

Figure 1: The provenance semirings from [GKT07]. In this diagram, an arrow K1 � K2

means that there is a surjective semiring homomorphism from K1 to K2.

forms on the variables X with coefficients in K. The monoid N�X�1 will feature prominently
in Section 5.5. Note that the elements in N�X�1 can be identified with the finite support
maps c �X � ZC0 that assign a non-negative integer to each indeterminate.

For all these examples, if K has the transportation property, so do the various monoids
of polynomials K�x�, K�X�, K�X�m, etc., by Proposition 7. Similarly, if the inner consis-
tency property holds for K-relations with sparse witnesses, then the sparsity of witnesses
is inherited for K�X�-relations annotated by polynomials with few non-zero coefficients, by
Proposition 8. Ú

Example 11. Powersets revisited. An example of a different flavour is the powerset monoid
P�A� � �P�A�,8,g� of a finite set A. This monoid is isomorphic to the product BA, where
B � ��0,1�,-,0� is the Boolean monoid, and A is viewed as a finite index set. Note that it
in this case it makes no difference whether we consider BA or BA

fin because the index set is
finite and, therefore, any indexed sequence has finite support.

Similarly, the monoid Pfin�A� � �Pfin�A�,8,g� of finite subsets of a countably infinite
set A is isomorphic to BA

fin. It is also isomorphic to the monoid B�X� of formal multivariate
polynomials with coefficients in B from the previous paragraph. Ú

Example 12. Additive monoids of provenance semirings. The semiring N�X� of formal
multivariate polynomials with coefficients in N is the most informative member of a well-
studied hierarchy of provenance semirings in database theory - see Figure 1.

The Trio�X� semiring has a technical definition (see [Gre11]) but it is easily seen to be
equivalently defined as N�X�m, the semiring of multilinear multivariate polynomials with
coefficients in N. The Why�X� semiring is equivalently defined as B�X�m, the semiring of
multilinear multivariate polynomials with coefficients in B. The Lin�X� semiring is defined
to have Pfin�X�8��� as its base set, where Pfin�X� denotes the collection of finite subsets of
X and � is a fresh element, with addition and multiplication both defined as the union of sets,
except for � which is treated as the neutral element of addition and as the absorptive element
of multiplication. Finally, the PosBool�X� semiring has as base set the collection of positive
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Boolean formulas with variables in X and constants 1 and 0 for true and false, identified
up to logical equivalence. Its operations are the standard disjunction and conjunction of
formulas for addition and multiplication, respectively.

For the questions of interest in this paper, only the additive monoid structure of these
semirings matters. It should be clear that N�X� and Trio�X� have the additive structure
of NI

fin for an appropriate index set I, and, likewise, B�X� and Why�X� have the additive
structure of BI

fin again for appropriate index set I. Thus, the additive monoids of these four
cases are covered by Proposition 7, which means that these monoids have the transportation
property. The additive structure of Lin�X� is somewhat peculiar, but it is not hard to
check that if it is alternatively expanded with the intersection of sets for its multiplicative
structure, viewing � as a second copy of the empty set, then we get an additively absorptive
and multiplicatively idempotent semiring, which is then covered by Proposition 2. Similarly,
PosBool�X� is covered in the same way and therefore the additive monoids of these two
semirings also have the transportation property. Finally, we argued already that the Boolean
semiring B has the transportation property, which completes all cases in the diagram of
Figure 1. Ú

5.5 The Free Commutative Monoid

For this section, recall the basic definitions of universal algebra concerning homomorphisms,
subalgebras, products and varieties of monoids as they were presented in Section 2. An
important result of universal algebra states that varieties have universal objects, referred to
as free algebras. We state this in the special case of monoids, but first we need two definitions.

Let C be a class of monoids. Note that so far we do not require C to be a variety.
Let K�X� � �K,�,0� be a monoid which is generated by a finite or infinite set X b K of
generators; this means that each a >K can be written in the form t�a1, . . . , an� for some n C 0
and a1, . . . , an >X, where t�a1, . . . , an� denotes the result of evaluating an expression formed
by composing the constants 0 and a1, . . . , an with the binary operation �. We say that K�X�
has the universal mapping property for C over X if for every M � �M,�,0� in C and every
map g � X �M there is a homomorphism h � K �M which extends g (see Definition 10.5
in [BS81]).

With these definitions, now we can state the result that we need from universal algebra.
The general theorem is due to Birkhoff and here we state only its specialization to varieties
of monoids: For every finite or infinite set X of indeterminates (also called variables or
free generators), and for every variety C of monoids, there is a monoid FC�X� in C that is
generated by X and has the universal mapping property for C over X (see Theorems 10.10
and 10.12 in [BS81]). Furthermore, FC�X� is, up to isomorphism, the unique monoid K�Y �
in C that is generated by a set Y of generators of cardinality SY S � SX S and has the universal
mapping property for C over Y (see Exercise 6 in Chapter II.10 in [BS81]). Since we care
only for commutative monoids, which form a variety of monoids, we write F�X� for FC�X�,
when C is the variety of commutative monoids, and we refer to it as the free commutative
monoid generated by X.
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It turns out that, as we argue below, the free commutative monoid generated by X has an
explicit description: it is precisely the monoid that we called N�X�1 in Section 5.4, i.e., the
monoid of linear forms on the indeterminates X with non-negative integer coefficients. One
consequence of this is that the free commutative monoid F�X� is always positive. Another
consequence is that it has the transportation property. A third consequence that is inherited
from this is that any two F�X�-relations that are inner consistent have a sparse witness of
consistency, when the set X of generators is finite. We collect the first two properties in the
following proposition.

Proposition 9. For every set X of indeterminates, the free commutative monoid generated
by X is isomorphic to N�X�1, i.e., F�X� � N�X�1, and is a positive commutative monoid
that has the transportation property.

Proof. Since N�X�1 is positive and has the transportation property by Example 10, it suffices
to show that F�X� � N�X�1. For this proof, let C denote the variety of commutative monoids,
so that FC�X� � F�X�. Since N�X�1 is generated byX, by the uniqueness of FC�X� it suffices
to show that N�X�1 has the universal mapping property for C over X. Before we do this,
let us recall from Example 10 that every element in N�X�1 is identified with a finite-support
map c � X � ZC0, with each indeterminate x > X being identified with the finite-support
map cx �X � ZC0 defined by cx�x� � 1 and cx�y� � 0 for all y >X � �x�.

Now, to prove the universal mapping property for N�X�1, fix a commutative monoid
M � �M,�,0� and let g � X �M be any map. Define the required homomorphism h as the
evaluation map

c( Q
x>X �

c�x�~�0

c�x�g�x�, (36)

where c is an element in N�X�1 identified with a finite-support map c � X � ZC0. The
external sum on the right-hand side of Equation (36) is in M, and the notation na for a
positive integer n and an element a >M stands for the sum a���a in M with n occurrences
of a in the sum if n C 1, and the neutral element 0 of M if n � 0. Note that the summation
sign in (36) has finite extension because c has finite support. Using the choice of cx for x >X
defined above, it is straightforward to prove that h is a homomorphism from N�X�1 to M
that extends g.

The additional claim we made that any two F�X�-relations that are inner consistency
have a sparse witness of consistency when the set X of generators is finite follows from
combining the fact that F�X� � N�X�1 with the correspondence N�X�1 � NX

fin discussed in
Example 10, together with Example 6, Proposition 5, Proposition 6, and Proposition 8.

5.6 Some Important Non-Examples

As we have seen, many important positive commutative monoids have the transportation
property. Unfortunately there are positive commutative monoids of different character that
fail to have the transportation property. Here we present a few examples of such monoids.
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Example 13. Natural numbers with addition truncated to 2. Recall the positive commutative
monoid N2 from Section 3.2: the natural numbers �0,1,2� with addition truncated to 2. In
that section we showed that the path-of-length-3 hypergraph P3 does not have the local-
to-global consistency property for N2-relations. From the implications (1) Ô� (3) and (2)
Ô� (3) in Theorem 3, it follows that N2 does not have the transportation property and,
furthermore, the inner consistency property for N2-relations fails. Here, we give a simple
example showing that the inner consistency property for N2-relations fails. Combined with
Theorem 3, this gives a different proof that N2 does not have the transportation property.

Let R�AC� and S�BC� be the N2-relations given by R�a1, c� � R�a2, c� � S�b1, c� � 1
and S�b2, c� � 2, and no other tuples in their support. These two N2-relations are inner
consistent because R�c� � S�c� � 2. However, they are not consistent. To prove this and
towards a contradiction, assume that W �ABC� is an N2-relation such that W �AB� � R and
W �BC� � S. Let us say W �ai, bj, c� � xij for i � 1,2,3 and j � 1,2, where each xij is a value
in �0,1,2�. This assumption gives rise to a system of five equations:

xi1 ` xi2 � 1 for i � 1,2,3
x1j ` x2j ` x3j � 2 for j � 1,2.

We reach a contradiction by double-counting the number of xij’s that are assigned the value 1.
The first type of equation implies that, for all i � 1,2,3, either xi1 � 0 and xi2 � 1, or xi1 � 1
and xi2 � 0. In particular, exactly three among all xij with i � 1,2,3 and j � 1,2 are assigned
the value 1 and the rest are assigned the value 0. Therefore, for at least one among j � 1,2
there is at most one among i � 1,2,3 such that xij is assigned the value 1 and the rest are
assigned the value 0, which is against the second type of equation for this j. Ú

Example 14. Non-negative real numbers with addition and a gap. Let R1 � ��0�8�1,�ª�,�,0�
be the structure with 0 and all real numbers bigger or equal than 1 as its universe, and with
the standard addition as its operation. It is obvious that R1 is a positive commutative
monoid. We show that the inner consistency property for R1 fails, hence R1 does not have
the transportation property.

LetR�AC� and S�BC� be the R1-relations given byR�ai, c� � 1 for i � 1,2,3 and S�bj, c� �
1.5 for j � 1,2, and no other tuples in their supports. These two R1-relations are inner con-
sistent, since R�c� � S�c� � 3. We claim that they are not consistent. Indeed, assume that
there is an R1-relation W �ABC� witnessing the consistency of R�AB� and S�BC�. Let us
say that W �ai, bj, c� � xij for i � 1,2,3 and j � 1,2, where each xij is a value in �0�8 �1,�ª�.
This assumption gives rise to a system of five equations:

xi1 � xi2 � 1 for i � 1,2,3
x1j � x2j � x3j � 1.5 for j � 1,2.

The first type of equation with i � 1 implies that either x11 � 0 and x12 � 1, or that x11 � 1
and x12 � 0. If x11 � 0, then the second type of equation with j � 1 implies that x21 � x31 �

0.5, which is impossible. If x12 � 0, then the second type of equation with j � 2 implies
that x22�x32 � 0.5, which is impossible. Since the system has no solution in R1, we conclude
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that the relations R�AC� and S�BC� are not consistent. Note that in this proof we used
only three of the six equations. However, the other two are forced by the inner consistency
condition (i.e., there is no choice but to have x21 � x22 � 1 and x31 � x32 � 1). Ú

Example 15. Truncated powersets. For each natural number k, let Pk � ��0, . . . , k � 1�,�,0�
be the monoid with neutral element 0, absorbing element k � 1, and such that i � i � i for
all i > �k�, and i � j � k � 1 for all i, j > �k� with i ~� j. An alternative presentation of Pk is
as the substructure of the powerset monoid P��k � 1�� � �P��k � 1��,8,g� induced by the
empty set g, the full set �k � 1�, and the �k � 1�-element subsets �k� � �i� for i � 1, . . . , k.
This explains the name truncated powersets. For example, this alternative presentation of
P3 is the structure ��g,�1,2�,�1,3�,�2,3�,�1,2,3��,8,g�.

Clearly each Pk is positive and commutative. We show that Pk does not have the trans-
portation property unless k � 0 or k � 1 or k � 2. For k � 0 we have that Pk is isomor-
phic to Boolean monoid B � ��0,1�,-,0�. For k � 1 we have that Pk is isomorphic to��0,1,2�,max,0�. For k � 2 we have that Pk is isomorphic to �P��1,2��,8,g�. These three
cases are covered by the lattice case in Example 4 and have then the transportation property.
For k C 3 we show that Pk does not have the transportation property.

Let k C 3, and let R�AC� and S�BC� be the Pk-relations with R�a1, c� � 1 and R�a2, c� �
3 and S�b1, c� � 2 and S�b2, c� � 3, and no other tuples in their supports. These are in-
ner consistent since, in the structure Pk with k C 3, we have R�C��c� � 1 � 3 � k � 1 �

2 � 3 � S�C��c�. We show that R and S are not consistent. Indeed, assume that there
is a Pk-relation W �ABC� witnessing the consistency of R�AB� and S�BC�. Let us say
that W �ai, bj, c� � xij for i � 1,2 and j � 1,2, where each xij is a value in �0, . . . , k � 1�. This
assumption gives rise to a system of four equations:

x11 � x12 � 1
x21 � x22 � 3
x11 � x21 � 2
x12 � x22 � 3.

The first equation interpreted in Pk implies that x11 � 1 or x12 � 1. If x11 � 1, then the third
equation cannot be satisfied since there is no j such that 1�j � 2 in Pk, while if x12 � 1, then
the fourth equation cannot be satisfied since there is no j such that 1 � j � 3 in Pk. Ú

Our last example involves a natural positive commutative monoid for which the failure
of the transportation property is conceptually significant as it corresponds to the deep fact
of quantum mechanics that there exist pairs of binary observables that cannot be jointly
measured. This is a manifestation of the celebrated Heisenberg uncertainty principle for
positive-operator-valued measures [MI08]; we do not elaborate on this here and refer the
interested reader to the introduction of the cited article for an extensive survey of related
literature.

Example 16. Positive semidefinite matrices under addition. Let n C 1 be a positive integer
and let PSDn be the set of positive semidefinite matrices in Rn�n, i.e., the n�n symmetric real
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matrices A for which zTAz C 0 holds for all z > Rn. Equivalently, A is positive semidefinite
if and only if it is symmetric and all its eigenvalues are non-negative. This is a commutative
monoid under componentwise addition; commutativity is obvious and the sum of positive
semidefinite matrices is positive semidefinite since zT�A�B�z � zTAz�zTBz C 0 for all z > Rn,
where the inequality follows from the positive semidefiniteness of A and B. The monoid is
also positive. To see this, first note that if A �B � 0, then zTAz � zTBz � zT�A �B�z � 0,
so zTAz � zTBz � 0 for all vectors z > Rn by the positive semidefiniteness of A and B. By
applying this to the standard basis vectors ei � �0, . . . ,0,1,0, . . . ,0� > Rn with i � 1, . . . , n we
see that the diagonals of A and B vanish, so the traces of A and B vanish, which means that
the sums of their eigenvalues vanish, so all their eigenvalues vanish since positive semidefinite
matrices have non-negative eigenvalues. From this it follows that A and B are the zero matrix
by considering their spectral decompositions A � PDPT and B � QEQT, where D and E
are the diagonal matrices that collect their eigenvalues.

Next we show that PSDn does not have the transportation property, provided n A 1. For
n � 1, we have that PSDn is isomorphic to the monoid RC0 of the non-negative reals with
addition, and this has been shown to have the transportation property in Example 3. Next
we argue that PSD2 does not have the transportation property. From this, the claim follows
for PSDn with n A 2 by padding the matrices with zeros. Our proof for n � 2 is an adaptation
of a more general statement that can be found in [KHF14].

Consider the classical Pauli matrices:

X � � 0 1
1 0

� Y � � 0 �i
i 0

� Z � � 1 0
0 �1

� .
Observe that Y has complex entries, but X and Z are 2 � 2 real matrices. Consider the
instance of the transportation problem given by the four matrices

B1 � �I �X�~2 B2 � �I �X�~2
C1 � �I �Z�~2 C2 � �I �Z�~2,

where I is the 2 � 2 identity matrix. These are positive semidefinite matrices since their
eigenvalues are in �0,1�, and the vectors �B1,B2� and �C1,C2� form a balanced instance of
the transportation problem since B1 �B2 � C1 � C2 � I. This gives rise to a system of four
matrix equations

X11 �X12 � B1

X21 �X22 � B2

X11 �X21 � C1

X12 �X22 � C2

We claim that this system is infeasible in 2 � 2 positive semidefinite matrices. Suppose
otherwise. Left-multiply the first equation by X, the second equation by �X, the third
equation by Z, the fourth equation by �Z, and add up everything. Using the fact that
X2 � Z2 � I and hence XB1 �XB2 � ZC1 �ZC2 � I, this gives the identity

A11X11 �A12X12 �A21X21 �A22X22 � 2I (37)
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where
A11 � X �Z A12 � X �Z
A21 � �X �Z A22 � �X �Z.

The trace of the matrix on the right-hand side in (37) is 4. In contrast, by Hölder’s inequality
for the Schatten norm with p � 1 and q �ª, the trace of the matrix on the left-hand side in
(37) is bounded by

YA11Ytr�X11� � YA12Ytr�X12� � YA21Ytr�X21� � YA22Ytr�X22�, (38)

where YAY denotes the spectral norm of A, i.e., the largest eigenvalue of the matrix A,
in absolute value. It can be checked by direct computation that each of the matrices Aij

has eigenvalues �
º
2, so their spectral norm is

º
2. Furthermore, each Xij is a positive

semidefinite matrix by assumption; hence its trace, which is the sum of the eigenvalues, which
are non-negative for positive semidefinite matrices, is non-negative. It follows that (38) is
bounded by

�tr�X11� � tr�X12� � tr�X21� � tr�X22��º2 � tr�X11 �X12 �X21 �X22�º2 � 2
º
2, (39)

where the first equality follows from the linearity of the trace, and the second follows from
the fact that the sum of the Xij is B1 �B2 � C1 �C2 � I, which has trace 2. The conclusion
is that the trace of the left-hand side in (37) is at most 2

º
2 @ 4, which is against the fact

that the trace of the right-hand side in (37) is 4. Ú

6 Local Consistency up to a Cover

In the previous sections, we characterized the class of positive commutative monoids K for
which the standard local consistency of K-relations agrees with their global consistency for
precisely the acyclic hypergraphs. The goal of this section is to investigate whether there
is a suitably modified notion of local consistency of K-relations that has the same effect of
capturing the global consistency of K-relations for precisely the acyclic hypergraphs, but
that applies to every positive commutative monoid.

We achieve this by strengthening the requirement of locality: in addition to requiring
that the relations are pairwise consistent as K-relations, we will also require that they are
pairwise consistent when they are appropriately viewed as F�X�-relations, where F�X� is
the free commutative monoid with a large enough set X of generators. We refer to this
new notion of local consistency of K-relations as pairwise consistency up to the free cover
of K. Surprisingly, we show that this abstract notion of local consistency of K-relations
characterizes global consistency of K-relations for precisely the acyclic hypergraphs, and for
every positive commutative monoid K.

6.1 Consistency up to a Cover

Let K be a positive commutative monoid. A cover of K is a positive commutative monoid K�

such that there is a surjective homomorphism h from K� onto K. The identity cover is the
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cover where K� is K itself and h is the identity map. A cover of K is given by the pair �K�, h�
of both objects; we use the notation h � K�

s
� K to say that the pair �K�, h� is a cover of K.

For the definitions of the next paragraph, fix such a cover.
For a K-relation R�Y �, an h-lift of R is a K�-relation R��Y � such that h�R��t�� � R�t�

holds for every Y -tuple t, i.e., h XR� � R holds. In most of the cases that follow, the cover
will be clear from the context, and we simply say that R� is a lift of R, without any reference
to h. Note that, since the homomorphism h is surjective onto K, every K-relation R has
at least one h-lift R�. Consider the special case where h � K�

s
� K is a retraction, meaning

that K b K� and h is the identity on K, where K and K� are the universes of K and K�,
respectively; in this case, the direct h-lift of R is the K�-relation R� defined by R��t� � R�t�,
for every Y -tuple t.

Definition 6. Let K be a positive commutative monoid, let h � K�
s
� K be a cover of K,

let X1, . . . ,Xm be a schema, let R1�X1�, . . . ,Rm�Xm� be a collection of K-relations over the
schema X1, . . . ,Xm, and let k be a positive integer. We say that the collection R1, . . . ,Rm

is k-wise consistent up to the cover h � K�
s
� K if there exists a collection R�

1 , . . . ,R
�

m of h-
lifts of R1, . . . ,Rm that is k-wise consistent (as a collection of K�-relations). If k � 2, then
we say that the collection R1, . . . ,Rm is pairwise consistent up to the cover. If k � m, then
we say that the collection R1, . . . ,Rm is globally consistent up to the cover. When k �m � 2
we just say that R1 and R2 are consistent up to the cover.

Before we go on, it is important to point out that in the definition of consistency up to
a cover, not only the choice of the cover h � K�

s
� K potentially matters, but also the choice

of h-lifts R�

1 , . . . ,R
�

m matters. We illustrate this with an example.

Example 17. Consider the N2-relations R2�BC� and R3�CD� in Proposition 1. Consider the
cover h � F�x, y� s

� N2 given by the canonical homomorphism h from the free commutative
monoid F�x, y� with two generators x and y for the non-zero elements 1 and 2 of N2, which is
of course a surjective homomorphism. As shown in Proposition 1, the N2-relations R2�BC�
and R3�CD� are consistent as N2-relations. However, when viewed as F�x, y�-relations R�

2

and R�

3 through the direct h-lift with the retraction that identifies x with 1 and y with 2,
the two F�x, y�-relations R�

2 and R�

3 are h-lifts of R2 and R3 that are not consistent because
they are not even inner consistent, since we have that R�

2�C��c1� � y ~� x�x�x � R�

3�C��c1�.
Nonetheless, if we take the N2-relation R23�BCD� that witnesses the consistency of R2 and
R3 as N2-relations, then we can view R23 as an F�x, y�-relation W � that is an h-lift of R23,
and we can now take R�

2 �� W ��BC� and R�

3 � W ��CD�, and these are obviously both
consistent F�x, y�-relations and h-lifts of R2 and R3, though not direct h-lifts. Ú

Global Consistency up to Covers and its Absoluteness The first technical result
of this section is the following simple but important observation stating that, as regards to
global consistency, the choice of the cover does not really matter. While this independence
of the cover will not be shared by the notion of pairwise consistency up to a cover that we
will introduce later on, the fact that it holds for global consistency is key for our purposes.
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Proposition 10 (Absoluteness of Global Consistency). Let K be a positive commutative
monoid and let R1, . . . ,Rm be a collection of K-relations. The following statements are
equivalent:

1. the collection R1, . . . ,Rm is globally consistent,

2. the collection R1, . . . ,Rm is globally consistent up to every cover of K,

3. the collection R1, . . . ,Rm is globally consistent up to some cover of K.

Proof. Let Yi be the set of attributes of Ri for i � 1, . . . ,m.
(1) Ô� (2): Let W be a K-relation such that W �Yi� � Ri holds for all i > �m�. Fix an

arbitrary cover h � K�
s
� K and let W � be any h-lift of W . Such a lift exists because h is

surjective onto K. For each i > �m�, choose R�

i ��W ��Yi�. We claim that R�

1 , . . . ,R
�

m are lifts
of R1, . . . ,Rm, and also that W � witnesses their global consistency. Indeed, for each i > �m�
and each Yi-tuple t we have

h�R�

i �t�� � h�W ��Yi��t�� � h� Q
r�r�Yi��t

W ��r�� � (40)

� Q
r�r�Yi��t

h�W ��r�� � Q
r�r�Yi��t

W �r� �W �Yi��t� � Ri�t�, (41)

where the first equality follows from the choice of R�

i , the second follows from the definition
of marginal, the third follows from the fact that h is a homomorphism, the fourth follows
from the fact that W � is a lift of W , the fifth follows from the definition of marginal, and
the sixth follows from W �Yi� � Ri. This shows that h X R�

i � Ri, so R�

1 , . . . ,R
�

m are lifts
of R1, . . . ,Rm. Finally, the fact that W � witnesses the global consistency of R�

1 , . . . ,R
�

m is
obvious by construction.

(2) Ô� (3): This is obvious by choosing the identity cover.
(3) Ô� (1): Let h � K�

s
� K be a cover up to which the collection R1, . . . ,Rm is globally

consistent. Let then R�

1 , . . . ,R
�

m be a collection of lifts of R1, . . . ,Rm that is globally consis-
tent. Let W � be the K�-relation that witnesses its global consistency and define W �� hXW �.
We claim that W witnesses the global consistency of R1, . . . ,Rm. Indeed, for each i > �m�
and each Yi-tuple t it holds that

W �Yi��t� � Q
r�r�Yi��t

W �r� � Q
r�r�Yi��t

h�W ��r�� � (42)

� h� Q
r�r�Yi��t

W ��r�� � h�W ��Yi��t�� � h�R�

i �t�� � Ri�t�, (43)

where the first equality follows from the definition of marginal, the second follows from the
choice of W , the third follows from the fact that h is a homomorphism, the fourth follows
from the definition of marginal, the fifth follows from the fact that W ��Yi� � R�

i , and the
sixth follows from the fact that R�

i is an h-lift of Ri. This shows that W �Yi� � Ri, hence the
collection R1, . . . ,Rm is globally consistent.
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In view of Proposition 10, we say that the notion of global consistency up to covers is
absolute as if it holds for some cover, then it holds for all covers. Next we localize this notion.
Unlike the global notion, the local notion will not be absolute in the sense that a collection
of K-relations may be locally consistent up to some cover but not up to every cover.

Local Consistency up to Covers We show that, up to covers, two thirds of Proposi-
tion 10 descend from global consistency to local consistency. Concretely, we show in Propo-
sition 11 below that a collection is k-wise consistent in the standard sense if and only if it
is k-wise consistent up to some cover of K. In contrast, we also show in Example 18 below
that a third statement quantifying over all covers of K would not be equivalent. This state
of affairs notwithstanding, two additional refined notions of local consistency up to a cover
make sense and those are indeed equivalent to the one we defined. While these refined no-
tions will not play a role in later sections, we spell them out next to clarify the choices that
were involved in the original definition of local consistency up to a cover.

We say that the collection R1, . . . ,Rm is weakly k-wise consistent up to the cover h � K�
s
�

K if for every t > �k�, every i1, . . . , it > �m�, and every j > �t�, there exists an h-lift R�

ij
of Rij

such that the collection R�

i1
, . . . ,R�

it
is globally consistent. Finally, we say that the collection

R1, . . . ,Rm is very weakly k-wise consistent up to some covers of K if for every t > �k� and
every i1, . . . , it > �m� there exists a cover h � K�

t

s
� K such that for and every j > �t�, there

exist an h-lift R�

ij
of Rij such that the collection R�

i1
, . . . ,R�

it
is globally consistent. Note

the difference with the earlier definition: in the weak case, the choices of lifts for each Ri

may depend on the subcollection, and in the very weak case even the cover up to which
consistency is defined may depend on the subcollection.

Proposition 11. Let K be a positive commutative monoid, let R1, . . . ,Rm be a collection
of K-relations, and let k be a positive integer. The following statements are equivalent:

(1) the collection R1, . . . ,Rm is k-wise consistent,

(2) the collection R1, . . . ,Rm is k-wise consistent up to some cover of K,

(3) the collection R1, . . . ,Rm is weakly k-wise consistent up to some cover of K,

(4) the collection R1, . . . ,Rm is very weakly k-wise consistent up to some covers of K.

Proof. Let Yi be the set of attributes in Ri for i � 1, . . . ,m.
(1) Ô� (2): This is obvious by choosing the identity cover.
(2) Ô� (3): This is obvious by choosing the same lifts.
(3) Ô� (4): This is obvious by choosing the same cover and the same lifts.
(4) Ô� (1): Fix t > �k� and i1, . . . , it > �m�, and let h � K�

s
� K and R�

i1
, . . . ,R�

it
be as

given by the definition of very weakly k-wise consistency up to some covers for this t and
these i1, . . . , it. In particular the collection R�

i1
, . . . ,R�

it
is globally consistent. Therefore, the

subcollection Ri1 , . . . ,Rit of the original K-relations is globally consistent up to some cover,
i.e., namely h � K�

� K, and hence globally consistent by Proposition 10.
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It should be pointed out that the equivalence of the items in Proposition 11 would not
go through if the same cover of K were fixed at the outset for all items. This will follow from
the fact that, as we argue below, absoluteness fails for local consistency. For the main result
of this section, what really matters from Proposition 11 is the equivalence between items (1)
and (2), which states that local consistency up to a cover is a conservative generalization of
the classical notion of local consistency.

Finally we give the promised example showing that, in general, k-wise consistency up to
a cover is not absolute in the sense of Proposition 10. Concretely, the example will show
that for the positive commutative monoid N2 in Proposition 1 and for the values k � 2 and
m � 3, one cannot add to Proposition 11 a condition analogous to the second condition in
Proposition 10 stating that the collection R1, . . . ,Rm is k-wise consistent up to every cover
of N2. In other words, there are collections of N2-relations that are pairwise consistent but
are not pairwise consistent up to every cover of N2.

Example 18. Consider the collection R�AB�, S�BC�, T �CD� of the three N2-relations from
Proposition 1. These relations are pairwise consistent but are not globally consistent as N2-
relations. Consider the cover h � N s

� N2, where N is the bag monoid and h maps n to n if
n � 0 or n � 1, and maps n to 2 if n C 2, i.e., h truncates addition to 2. We claim that the
collection R,S,T cannot be lifted to a collection of pairwise consistent N-relations R�, S�, T �.
For, if they could, then R�, S�, T � would be a collection of pairwise consistent bags, hence
they would also be globally consistent by the local-to-global consistency property for bags on
acyclic schemas, since the schema AB,BC,CD is acyclic. But then R�AB�, S�BC�, T �CD�
would be also globally consistent as N2-relations by truncating to 2 every natural number
bigger than 2 in the bag W � that witnesses the global consistency of R�, S�, T �. This
contradicts Proposition 1 and completes the example. Ú

6.2 Local-to-Global Consistency up to Covers

The local-to-global consistency property up to a cover is defined to generalize Definition 2
as follows:

Definition 7. Let K be a positive commutative monoid, let h � K�
s
� K be a cover of K,

and let X1, . . . ,Xm be a listing of all the hyperedges of a hypergraph H. We say that H has
the local-to-global consistency property for K-relations up to the cover h � K�

s
� K if every

collection R1�X1�, . . . ,R�Xm� of K-relations that is pairwise consistent up to the cover is
globally consistent.

Recall from Section 5.5 the definition of the free commutative monoid F�X� for a finite
or finite set of indeterminates X. In the statement of the following theorem, let F�K��
denote the free commutative monoid generated by the set K� of non-zero elements in K
seen as indeterminates. Note that F�K�� is positive by Proposition 9. The free cover of K
refers to the cover h � F�K�� s

� K provided by the homomorphism h from F�K�� to K
given by the universal mapping property of F�K�� applied to the identity map g �K�

�K�
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defined by g�x� � x for all x > K�. Clearly, h is surjective onto K as it extends g and any
homomorphism between monoids maps the neutral element of the first monoid to the neural
element of the second. Hence, h � F�K�� s

� K is indeed a cover.

Theorem 4. Let K be a positive commutative monoid and let H be a hypergraph. Then, the
following statements are equivalent:

1. H is acyclic,

2. H has the local-to-global consistency property up to the free cover of K,

3. H has the local-to-global consistency property up to some cover of K.

Proof. Let Y1, . . . , Ym be a listing of the hyperedges of H.
(1) Ô� (2). We need to show that if H is acyclic, then pairwise consistency up to the

free cover of K is a sufficient condition for global consistency. This proof uses as a black box
the previously established fact that, for any non-empty set X of indeterminates, the free
commutative monoid F�X� has the transportation property, hence every acyclic hypergraph
has the (standard) local-to-global consistency property for F�X�-relations - see Proposition 9
in Section 5.5, and Theorem 3 in Section 4.

Let R1�Y1�, . . . ,Rm�Ym� be a collection of K-relations and assume that it is pairwise
consistent up to the free cover h � F�K�� s

� K. Accordingly, let R�

1 , . . . ,R
�

m be a collec-
tion of F�K��-relations that are h-lifts of R1, . . . ,Rm, respectively, and assume that the
collection R�

1 , . . . ,R
�

m is pairwise consistent. Since H is acyclic, it has the local-to-global
consistency property for F�K��-relations, so the collection R�

1 , . . . ,R
�

m of F�K��-relations is
globally consistent as F�K��-relations. But, then, the collection R1, . . . ,Rm of K-relations
itself is globally consistent up to the free cover of K, so it is globally consistent by the
absoluteness property stated in Proposition 10.

(2) Ô� (3). This is obvious because the free cover of K is a cover of K.
(3) Ô� (1). First we adapt the proof of Lemma 2 to show that there is no cover up to

which the minimal non-acyclic hypergraphs Cn and Hn with n C 3 have the local-to-global
consistency property. As in Lemma 2, we prove this more generally for any non-trivial
uniform and regular hypergraph in Lemma 5 below. After this is proved, we show that
the reduction that transfers the local-to-global consistency property from any non-acyclic
hypergraph to the minimal cases also works up to covers. This is done by adapting Lemma 4
to the new context in Lemma 6 below.

The statement of the following lemma is almost identical to its predecessor Lemma 2, the
only difference being that the pairwise consistency of the collection of K-relations is claimed
up to every cover. We prove it by indicating how the original arguments need to be adjusted.

Lemma 5. Let K be a positive commutative monoid and let X1, . . . ,Xm be a schema that
is k-uniform and d-regular with k C 1 and d C 2. Then, there exists a collection of K-
relations of schema X1, . . . ,Xm that is pairwise consistent up to every cover of K but not
globally consistent.
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Proof. The construction of the K-relations R1, . . . ,Rm proceeds exactly as in Lemma 2 until
the point where it is argued that it is pairwise consistent. Here we need to show that it is
pairwise consistent up to every cover of K. Fix such a cover h � K�

� K and argue as follows.
By the surjectivity of h, there exists an element c� of K� such that h�c�� � c. Since h

is a homomorphism and c ~� 0 in K, we have that also c� ~� 0 in K�. Let a� �� c� � � � c�

with c� appearing dk times in the sum, which is computed in K�. Using the notation nx for
x���x with x appearing n C 1 times in the sum, which is computed in K or K� depending
on whether x is an element of K or of K�, we have

h�a�� � h�dkc�� � dkh�c�� � dkc � a, (44)

and a� ~� 0 in K�, again because h is a homomorphism and a ~� 0 in K. Next we define
a collection R�

1 , . . . ,R
�

m of h-lifts of R1, . . . ,Rm by setting R�

i �t� � a� for every Xi-tuple t
such that t > R�

i, and R�

i �t� � 0 for every other Xi-tuple. By (44) we have h X R�

i � Ri, so
R�

i is an h-lift of Ri. The proof that the collection R�

1 , . . . ,R
�

m is pairwise consistent as a
collection K�-relations is identical to that in Lemma 2 for R1, . . . ,Rm but arguing with c�

and a� in K� instead of arguing with c and a in K.
The proof that the collection R1, . . . ,Rm of K-relations is not globally consistent stays

the same, which completes the proof.

Next we argue that the two operations that transform an arbitrary non-acyclic hyper-
graph to a minimal one of the form Cn with n C 3, or Hn with n C 4, preserve the same levels
of consistency up to a cover. The statement of the following lemma is almost identical to
that of Lemma 4. To prove it we will only indicate the differences in the arguments.

Lemma 6. Let K be a positive commutative monoid and let h � K�
s
� K be a cover of K.

Let H0 and H1 be hypergraphs such that H0 is obtained from H1 by a sequence of safe-deletion
operations. For every collection D0 of K-relations over H0, there exists a collection D1 of K-
relations over H1 such that, for every positive integer k, it holds that D0 is k-wise consistent
up to the cover if and only if D1 is k-wise consistent up to the cover.

Proof. The construction is the same as in Lemma 4 just that besides the K-relations Ri we
also need to construct their h-lifts R�

i from the h-lifts S�

i of the Si. Concretely, the argument
is as follows. In an edge-deletion operation with the notation as in the proof of Lemma 4,
the lift R�

i associated to an Ri with Xi ~� X is taken as R�

i �� S�

i , and that associated to the
Ri with Xi �X is taken as R�

i �� S�

j �X�. In a vertex-deletion operation with the notation as
in the proof of Lemma 4, the lift R�

i associated to an Ri with A ~> Xi is taken as R�

i �� S�

i ,
and that associated to an Ri with A > Xi is defined by R�

i �t� �� S�

i �t�Xi�� if t�A� � u0

and R�

i �t� �� 0 if t�A� ~� u0. Observe that, in both cases, since hXS�

i � Si holds for all indices
i > �m� for which Si and S�

i exist, also h XR�

i � Ri holds for all i > �m�, so R�

1 , . . . ,R
�

m are
h-lifts of R1, . . . ,Rm.

With these definitions, the proof follows from Claims 1 and 2 applied to the positive
commutative monoid K� instead of K, and to the collections of K�-relations R�

i and S�

i

instead of the collections of K-relations Ri and Si.
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7 Concluding Remarks

In this paper, we carried out a systematic investigation of the interplay between local consis-
tency and global consistency for K-relations, where K is a positive commutative monoid. In
particular, we characterized the positive commutative monoids K for which a schema H is
acyclic if and only if H has the local-to-global consistency property for K-relations; this char-
acterization was in terms of the inner consistency property, which is a semantic notion, and
also in terms of the transportation property, which is a combinatorial notion. Furthermore,
we showed that, by strengthening the notion of pairwise consistency to pairwise consistency
up to the free cover of K, we can characterize the local-to-global consistency property for
collections of K-relations on acyclic schemas for arbitrary positive commutative monoids.

We conclude by describing a few open problems motivated by the work reported here.
As seen earlier, there are finite positive commutative monoids that have the transporta-

tion property (e.g., B) and others that do not (e.g., N2). How difficult is it to decide whether
or not a given finite positive commutative monoid K has the transportation property? Is this
problem decidable or undecidable? The same question can be asked when the given monoid
is finitely presentable. Note that the transportation property is defined using an infinite set
of first-order axioms in the language of monoids. Thus, a related question is whether or not
the transportation property is finitely axiomatizable.

We exhibited several classes of monoids that have the transportation property. In each
case, we gave an explicit construction or a procedure for finding a witness to the consistency
of two consistent K-relations. In some cases (e.g., when the monoid has an expansion to a
semifield), there is a suitable join operation that yields a canonical such witness. However,
in some other cases (e.g., when the northwest corner method is used), no canonical such
witness seems to exist. Is there a way to compare the different witnesses to consistency
and classify them according to some desirable property, such as maximizing some carefully
chosen objective function?

Beeri et al. [BFMY83] showed that hypergraph acyclicity is also equivalent to semantic
conditions other than the local-to-global consistency property for ordinary relations, such as
the existence of a full reducer, which is a sequence of semi-join operations for computing
a witness to global consistency. Does an analogous result hold for positive commutative
monoids K that have the transportation property? The main difficulty is that it is not clear
if a suitable semi-join operation on K-relations can be defined for such monoids.

Finally, the work presented here expands the study of relations with annotations over
semirings to relations with annotations over monoids. As explained in the Introduction,
consistency notions only require the use of an addition operation (and not a multiplication
operation). What other fundamental problems in databases can be studied in this broader
framework of relations with annotations over monoids?
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