
Consistency Witnesses for Annotated Relations

Albert Atserias

Universitat Politècnica de Catalunya

Centre de Recerca Matemàtica

Barcelona, Catalonia, Spain

Phokion G. Kolaitis

UC Santa Cruz & IBM Research

Santa Cruz, California, USA

July 24, 2025

Abstract

The study of local consistency vs. global consistency of database relations received

considerable attention in the early days of relational database theory. In a recent paper,

we investigated the notions of local consistency and global consistency for annotated

relations, where the annotations come from a positive commutative monoid. One of the

di�erences from the classical case is that the join of two consistent annotated relations

need not always be a witness of their consistency. Here, we bring to center stage the

notion of a consistency witness function for annotated relations, investigate the prop-

erties of consistency witness functions, and provide a new perspective to understanding

the interplay between local and global consistency for annotated relations.

1 Introduction

During the past two decades, there has been a growing body of research on annotated
databases, i.e., databases in which each fact is annotated with a value from some algebraic
structure. This framework generalizes both standard relational databases, where the anno-
tations are 1 (true) and 0 (false), and bag databases, where the annotations are non-negative
integers denoting the multiplicity of a fact in the database. Much of the work in this area
uses annotations from the universe of some �xed semiring K = (K,+,×, 0, 1), where the ad-
dition operation + is used to model �alternative� information (e.g., disjunction or existential
quanti�cation), while the multiplication operation × is used to model �joint� information
(e.g., conjunction or universal quanti�cation). For this reason, the term semiring semantics
is often used to refer to the work in this area. Database provenance was the �rst extensively
studied topic in this framework [8, 10, 4]. Subsequent studies focused on conjunctive query
containment for annotated databases [7, 12], semiring semantics for �rst-order logic [6], and
evaluation of Datalog programs under semiring semantics [11].

Since the early days of the relational database model, the study of consistency of relations
has received signi�cant attention [9, 3, 5]. By de�nition, a collection of relations R1, . . . , Rm

1

is globally consistent if there is a relation T such that the projection of T on the attributes
of Ri is equal to Ri, for each i = 1, . . . ,m. We call such a relation T a consistency witness
for R1, . . . , Rm. It is well known that if the collection R1, . . . , Rm is globally consistent, then
the join R1 ⋊⋉ · · · ⋊⋉ Rm is a consistency witness for R1, . . . , Rm; in fact, it is the largest
such consistency witness (see, e.g., [9]). As pointed out in [1], however, the state of a�airs
is di�erent for bags, since there are two bags that are consistent but their join is not a
consistency witness for them; moreover, no largest consistency witness for these bags exists.

In [2], we carried out an investigation of the consistency of annotated relations. Since
the de�nition of consistency of annotated relations involves only the projection operation
on relations and since projection is de�ned using only addition +, we considered annotated
relations in which the annotations come from a monoid K = (K,+, 0). The main focus of
that investigation was the interplay between local consistency and global consistency, that
is, under what conditions a collection of pairwise consistent relations R1, . . . , Rm is globally
consistent. In particular, we identi�ed a condition on monoids, called the transportation
property, and showed that a positive monoid K = (K,+, 0) has the transportation property
if and only if every acyclic hypergraph H has the local-to-global consistency property for K-
relations, which means that every pairwise consistent collection of K-relations over H is
globally consistent. This �nding generalizes results about local vs. global consistency for
standard relations in [3], as well as results about local vs. global consistency for bags in [1].

In this paper, we bring to front stage the notion of a consistency witness function on a
positive monoid K, that is to say, a function W that, given two K-relations R and S, returns
a K-relation W (R, S) that is a consistency witness for R and S, provided that R and S are
consistent K-relations. While the notion of a consistency witness function on K underlies
much of the work in [2], it has not been studied in its own right thus far. Our goal is to
make the case that this is a fundamental notion whose study is well deserved.

After presenting some basic properties of consistency witness functions onK, we introduce
the two notions of a c-join-expression and a monotone c-join expression for a consistency
witness function on K. These notions extend the notions of join expression and monotone
join expressions for the standard join ⋊⋉ operation and for standard relations in [3, 5]. We
then establish that the transportation property of a positive monoid K can be characterized
in terms of properties of monotone c-join expressions. Furthermore, we argue that the notion
a consistency witness function provides a new perspective to the proofs of the main results
in [2]. We elaborate on this new perspective here and, along the way, we discuss meth-
ods for de�ning or constructing consistency witness functions for di�erent types of monoids.
Finally, we present some observations concerning the existence of �largest� consistency wit-
ness functions for annotated relations. In particular, we point out that a positive monoid
being idempotent is a su�cient, but not necessary, condition for the existence of �largest�
consistency witness functions for relations annotated with elements from that monoid.

2

2 Preliminaries

Monoids A commutative monoid is a structure K = (K,+, 0), where + is a binary op-
eration on the universe K of K that is associative, commutative, and has 0 as its neutral
element, i.e., p + 0 = p = 0 + p holds for all p ∈ K. A commutative monoid K = (K,+, 0)
is positive if for all elements p, q ∈ K with p + q = 0, we have that p = 0 and q = 0. From
now on, we assume that all commutative monoids considered have at least two elements in
their universe.

As an example, the structure B = ({0, 1},∨, 0) with disjunction ∨ as its operation
and 0 (false) as its neutral element is a positive commutative monoid. Other examples of
positive commutative monoids include the structure N = (Z≥0,+, 0), and R≥0 = (R≥0,+, 0),
where Z≥0 is the set of non-negative integers, R≥0 is the set of non-negative real numbers,
and + is the standard addition operation. In contrast, the structure Z = (Z,+, 0), where
Z is the set of integers, is a commutative monoid, but not a positive one. Two examples of
positive commutative monoids of di�erent �avor are the structures T = (R ∪ {∞},min,∞)
and V = ([0, 1],max, 0), where R is the set of real numbers, and min and max are the stan-
dard minimum and maximum operations. Finally, if A is a set and P(A) is its powerset,
then the structure P(A) = (P(A),∪, ∅) is a positive commutative monoid, where ∪ is the
union operation on sets.

K-relations and their marginals An attribute A is a symbol with an associated setDom(A)
as its domain. If X is a �nite set of attributes, then we write Tup(X) for the set of X-tuples,
i.e., Tup(X) is the set of functions that take each attribute A ∈ X to an element of its
domain Dom(A). Note that Tup(∅) is non-empty as it contains the empty tuple, i.e., the
unique function with empty domain. If Y ⊆ X is a subset of attributes and t is an X-tuple,
then the projection of t on Y , denoted by t[Y], is the unique Y -tuple that agrees with t on Y .
In particular, t[∅] is the empty tuple.

LetK = (K,+, 0) be a positive commutative monoid and letX be a �nite set of attributes.
AK-relation over X is a function R : Tup(X) → K that assigns a value R(t) inK to everyX-
tuple t in Tup(X). We will often write R(X) to indicate that R is a K-relation over X, and
we will refer to X as the set of attributes of R. These notions make sense even if X is the
empty set of attributes, in which case a K-relation over X is simply a single value from K
that is assigned to the empty tuple. Clearly, the B-relations are just the standard relations,
while the N-relations are the bags or multisets, i.e., each tuple has a non-negative integer
associated with it that denotes the multiplicity of the tuple.

The support Supp(R) of a K-relation R(X) is the set of X-tuples t that are assigned
non-zero value, i.e.,

Supp(R) := {t ∈ Tup(X) : R(t) ̸= 0}. (1)

We will often write R′ to denote Supp(R). Note that R′ is a standard relation over X.
A K-relation is �nitely supported if its support is a �nite set. In this paper, all K-relations
considered will be �nitely supported, and we omit the term; thus, from now on, a K-relation
is a �nitely supported K-relation. When R′ is empty, we say that R is the empty K-relation

3

over X.
If Y ⊆ X, then the marginal R[Y] of R on Y is the K-relation over Y such that for

every Y -tuple t, we have that

R[Y](t) :=
∑
r∈R′:
r[Y]=t

R(r). (2)

The value R[Y](t) is the marginal of R over t. In what follows and for notational simplicity,
we will often write R(t) for the marginal of R over t, instead of R[Y](t). It will be clear from
the context (e.g., from the arity of the tuple t) if R(t) is indeed the marginal of R over t (in
which case t must be a Y -tuple) or R(t) is the actual value of R on t as a mapping from
Tup(X) to K (in which case t must be an X-tuple). Note that if R is a standard relation
(i.e., R is a B-relation), then the marginal R[Y] is the projection of R on Y .

The proof of the next basic proposition follows easily from the de�nitions.

Proposition 1 Let K be a positive commutative monoid and let R(X) be a K-relation. Then
the following hold:

1. For all Y ⊆ X, we have R′[Y] = R[Y]′.

2. For all Z ⊆ Y ⊆ X, we have R[Y][Z] = R[Z].

If X and Y are sets of attributes, then we write XY as shorthand for the union X ∪ Y .
Accordingly, if x is an X-tuple and y is a Y -tuple such that x[X ∩ Y] = y[X ∩ Y], then we
write xy to denote the XY -tuple that agrees with x on X and on y on Y . We say that x
joins with y, and that y joins with x, to produce the tuple xy.

A schema is a sequence X1, . . . , Xm of sets of attributes. A schema can also be identi�ed
with a hypergraph H having X1, . . . , Xm as its hyperedges. We will use the terms schema
and hypergraph interchangeably. A collection of K-relations over such a schema is a sequence
R1(X1), . . . , Rm(Xm) of K-relations so that Ri(Xi) is a K-relation over Xi, for i = 1, . . . ,m.

3 Consistency and Consistency Witnesses

Let K = (K,+, 0) be a positive commutative monoid.
We say that two K-relations R(X) and S(Y) are consistent if there is a K-relation T (XY)

such that T [X] = R and T [Y] = S. Such a K-relation T is called a consistency witness for R
and S.

A consistency witness function on K is a binary function W that takes as arguments
two K-relation R(X) and S(Y), and returns as value a K-relation W (R, S) over XY such
that if R and S are consistent K-relations, then W (R, S) is a consistency witness for R
and S. For example, the join ⋊⋉ of two standard relations is a consistency witness function
on the Boolean monoid B.

We say that a collection R1(X1), . . . , Rm(Xm) of K-relations over a schema X1, . . . , Xm is
globally consistent if there is a K-relation T (X1 . . . Xm) such that T [Xi] = Ri, for i with 1 ≤
i ≤ m. Such a K-relation T is called a consistency witness for R1, . . . , Rm.

4

It is easy to see that if R1(X1), . . . , Rm(Xm) is a globally consistent collection of K-
relations, then these relations are pairwise consistent. Indeed, if T is a consistency witness
for R1(X1), . . . , Rm(Xm), then for all i and j with 1 ≤ i, j ≤ m, we have that the K-
relation T [XiXj] is a consistency witness for Ri and Rj, because

Ri = T [Xi] = T [XiXj][Xi]

Rj = T [Xj] = T [XiXj][Xj]

where, in each case, the �rst equality follows from the de�nition of global consistency and
the second equality follows from Proposition 1.

The converse is known to fail, even for standard relations, i.e., there are standard relations
that are pairwise consistent but not globally consistent. The main result by Beeri et al. [3]
characterizes the schemas for which the pairwise consistency of a collection of standard
relations implies that they are globally consistent. Later on in this paper, we will see how
this result extends to K-relations over positive monoids satisfying a condition we call the
transportation property.

We are interested in obtaining global consistency witnesses by using consistency witnesses
for two relations. To this e�ect, we introduce certain syntactic expressions, which, under
some additional hypotheses, will give rise to global consistency witnesses. In what follows, ⋊⋉c

is a binary function symbol, which will be interpreted by some consistency witness function.
Assume that X1, . . . , Xm is a schema.
The collection of c-join expressions over X1, . . . , Xm is the smallest collection of strings

that contains each Xi and has the property that if E1 and E2 are in the collection, then also
the string (E1 ⋊⋉c E2) is in the collection.

The collection of sequential c-join expressions over X1, . . . , Xm is the smallest collection
of strings that contains each Xi and has the property that if E in the collection and X is
one of the Xi's, then also the string (E ⋊⋉c X) is in the collection.

A c-join expression over X1, . . . , Xm is called read-once if each Xi appears exactly once in
the expression. We write E[X1, . . . , Xm] to denote the read-once sequential c-join-expression
onX1, . . . , Xm where theXi appear in the indicated order; in the sequel, we refer toE[X1, . . . , Xm]
as the read-once sequential c-join-expression associated with the ordering X1 . . . , Xm. In sym-
bols, we have that E[X1, . . . , Xm] is the c-join expression

(· · · ((X1 ⋊⋉c X2) ⋊⋉c X3) ⋊⋉c · · · ⋊⋉c Xm).

Clearly, the string ((X1 ⋊⋉c X2) ⋊⋉c X3) is a sequential c-join-expression, while the string

((X1 ⋊⋉c X2) ⋊⋉c (X3 ⋊⋉c X4))

is a c-join expression, but not a sequential one. Furthermore, both these strings are read-
once c-join expressions, while ((X1 ⋊⋉c X2) ⋊⋉c (X3 ⋊⋉c X1)) is not. From now on we drop the
outermost parentheses.

The notion of a c-join expression is a syntactic one. We will now assign semantics to
c-join expressions.

5

Let X1, . . . , Xm be a schema and let E be a c-join-expression over X1, . . . , Xm. If W is a
consistency witness function on K and R1(X1), . . . , Rm(Xm) is a collection of K-relations, we
write E(W,R1, . . . , Rm) to denote the K-relation over X1 · · ·Xm obtained by evaluating E
when ⋊⋉c is interpreted by W and each Xi is interpreted by Ri for i = 1, . . . ,m.

We say that E ismonotone with respect toW and R1, . . . , Rm if for every sub-expressionE1 ⋊⋉c

E2 of E, we have that the K-relations E1(W,R1, . . . , Rm) and E2(W,R1, . . . , Rm) are consis-
tent.

According to the next proposition, monotone c-join-expressions give rise to global con-
sistency witnesses.

Proposition 2 Let E be a c-join expression over X1, . . . , Xm, let W be a consistency wit-
ness function on K, and let R1(X1), . . . , Rm(Xm) be K-relations. If E is monotone with
respect to W and R1, . . . , Rm, and every Xi occurs in E, then E(W,R1, . . . , Rm) is a global
consistency witness for the K-relations R1, . . . , Rm.

This proposition is proved by induction on the construction of c-join expressions.
The base case is trivial, since in this caseE isXi for some i with 1 ≤ i ≤ n, hence E(W,Ri) =

Ri, which is a consistency witness for Ri.
For the inductive step, assume that E is E1 ⋊⋉c E2, where E1 and E2 are c-join expres-

sions for which the inductive hypothesis holds. To simplify the notation, let us put R =
(R1, . . . , Rm); furthermore, we put R1 = (Ri : i ∈ I1) and R2 = (Ri : i ∈ I2), where I1 and I2
are the sets of indices i such that Xi occurs in E1 and in E2, respectively. In this case, we
have that E(W,R) = W (E1(W,R1), E2(W,R2)).

Since E is monotone with respect to W and R, we have that the K-relations E1(W,R1)
and E2(W,R2) are consistent, hence W (E1(W,R1), E2(W,R2)) is a consistency witness
for E1(W,R1) and E2(W,R2). We must show that W (E1(W,R1), E2(W,R2))[Xi] = Ri

holds, for every i such that Xi occurs in E. Consider such an Xi. Since Xi occurs in E, it
must occur in at least one of E1 and E2. Let's assume that Xi occurs in E1; the case in which
it occurs in E2 is entirely similar. If Y is the set of attributes of E1(W,R1), then Xi ⊆ Y .
Furthermore, the property of an expression being monotone with respect to a witness func-
tion and a collection of relations is inherited by its subexpressions, so E1 is monotone with
respect to W and R1. By induction hypothesis, E1(W,R1) is a global consistency witness
of all relations Rj occurring in it, hence

E1(W,R1)[Xi] = Ri. (3)

Also, since W (E1(W,R1), E2(W,R2)) is a consistency witness for E1(W,R1) and E2(W,R2),
we have that

W (E1(W,R1), E2(W,R2))[Y] = E1(W,R1). (4)

By putting everything together, we have that

W (E1(W,R1), E2(W,R2))[Xi]

= W (E1(W,R1), E2(W,R2))[Y][Xi]

= E1(W,R1)[Xi]

= Ri,

6

where in the �rst equality we used Proposition 1 and the fact that Xi ⊆ Y , in the second
we used (4), and the third is (3). This completes the proof of Proposition 2.

4 The Transportation Property

We consider several di�erent properties of monoids and establish that they are equivalent to
each other.

Let K = (K,+, 0) be a positive commutative monoid.
If m and n are positive integers, we say that K has the m× n transportation property if

for every column m-vector b = (b1, . . . , bm) ∈ Km with entries in K and every row n-
vector c = (c1, . . . , cn) ∈ Kn with entries in K such that b1 + · · · + bm = c1 + · · · + cn
holds, there is an m × n matrix D = (dij : i ∈ [m], j ∈ [n]) ∈ Km×n with entries in K
whose rows sum to b and whose columns sum to c, i.e., di1 + · · · + dim = bi for all i ∈ [m]
and d1j + · · ·+ dmj = cj for all j ∈ [n].

We say that K has the transportation property if K has the m× n transportation prop-
erty for every pair (m,n) of positive integers.

We now consider a number of properties of monoids that involve K-relations.
Two K-relations R(X) and S(Y) are inner consistent if R[X ∩ Y] = S[X ∩ Y]. Using

Proposition 1, it is easy to verify that if R and S are consistent K-relations, then they are also
inner consistent. The converse, however, is not true for all positive commutative monoids.
We single out the ones for which inner consistency implies consistency (consequently, for
such monoids, these two notions are equivalent).

We say that K has the inner consistency property if whenever two K-relations are inner
consistent, then they are also consistent.

We say that a schema X1, . . . , Xm has the local-to-global consistency property for K-
relations if every collection R1(X1), . . . , Rm(Xm) of pairwise consistent K-relations is also
globally consistent.

Let E be a c-join-expression over X1, . . . , Xm. We say that E is monotone on K if E is
monotone with respect to every consistency witness function W on K and every collection
R1(X1), . . . , Rm(Xm) of pairwise consistent K-relations.

Finally, we say that a schema X1, . . . , Xm admits a monotone c-join expression on K
if there is a c-join-expression E over X1, . . . , Xm that is monotone on K and, furthermore,
every Xi occurs in E.

Theorem 1 The following statements are equivalent for a positive monoid K:

1. K has the 2× 2 transportation property.

2. K has the transportation property.

3. K has the inner consistency property.

4. Every acyclic hypergraph admits a monotone read-once sequential c-join-expression on K.

5. Every acyclic hypergraph admits a monotone read-once c-join-expression on K.

7

6. Every acyclic hypergraph admits a monotone c-join-expression on K.

7. Every acyclic hypergraph has the local-to-global consistency property for K-relations.

The proofs of the implications (1) ⇒ (2) and (2) ⇒ (3) are given in [2]. A new perspective
on these proofs will be presented in Section 6. Here, we sketch the proofs of the remaining
implications in a round-robin fashion.

We begin with the implication (3) ⇒ (4). As shown in Beeri et al. [3], if H is an acyclic
hypergraph, then H has the running intersection property, which means that there is an
ordering X1, . . . , Xm of the hyperedges of H so that for every j ≤ m, there is some i ≤ j− 1
such that (X1 ∪ · · · ∪ Xj−1) ∩ Xj ⊆ Xi. Let E[X1, . . . , Xm] be the read-once sequential
c-join-expression associated with this ordering, i.e., E[X1, . . . , Xm] is

(· · · ((X1 ⋊⋉c X2) ⋊⋉c X3) ⋊⋉c · · · ⋊⋉c Xm).

Using the inner consistency property of K, it is not hard to show that E[X1, . . . , Xm] is
monotone on K. The implications (4) ⇒ (5) and (5) ⇒ (6) are trivial. The implication
(6) ⇒ (7) uses Proposition 2 and, of course, the de�nitions.

Finally, we prove (7) ⇒ (1). We are given a 2× 2 instance of the transportation problem
on K: four elements b1, b2, c1, c2 ∈ K such that b1+b2 = c1+c2. Consider the following three
K-relations where e = b1 + b2 = c1 + c2:

AB BC CD
1 0 : b1 0 0 : e 0 1 : c1
2 0 : b2 1 1 : e 0 2 : c2
1 1 : c1 1 1 : b1
2 1 : c2 1 2 : b2

It is easy to see that these are pairwise consistent, and the schema is acyclic as it is the path
of length three. By (7) the three K-relations are also globally consistent. Let W (ABCD) be
a witness of global consistency. Setting dij = W (i00j) or dij = W (j11i) we get a solution to
the 2× 2 instance, which completes the proof.

Beeri et al. showed that a hypergraph H is acyclic if and only if H has the local-to-global
consistency property for standard relations (i.e., for B-relations, where B is the Boolean
monoid). In [2], we showed that if K is an arbitrary positive monoid and H is a hypergraph
that has the local-to-global consistency property for K-relations, then H must be acyclic.
We also showed that there are positive commutative monoids K and acyclic schemas H
that do not have the local-to-global consistency property for K-relations. Thus, acyclicity
is a necessary, but not su�cient, condition for H to have the local-to-global consistency
property for K-relations. Theorem 1, however, implies that acyclicity is both necessary
and su�cient, provided K has the transportation property. Thus, we have the following
generalization of the main result in Beeri et al. [3].

Theorem 2 Assume that K is a positive commutative monoid that has the transportation
property. For every hypergraph H, the following statements are equivalent:

8

1. H is acyclic.

2. H admits an ordering X1, . . . , Xm of its hyperedges so that the sequential c-join expres-
sion associated with X1, . . . , Xm is monotone on K.

3. H admits a monotone c-join-expression on K.

4. H has the local-to-global consistency property for K-relations.

Naturally, in Theorem 2 we can also add as equivalent statements that H admits a
sequential monotone c-join-expression on K, as well as a read-once sequential monotone c-
join-expression on K. Recall that this last condition is equivalent to the statement that there
is an ordering X1, . . . , Xm of the hyperedges of H so that the sequential c-join expression
E[X1, . . . , Xm] associated with X1, . . . , Xm is monotone on K.

5 De�ning Consistency Witnesses

By de�nition, every consistency witness function for a positive commutative monoid K pro-
duces a consistency witness W = W (R, S), given two consistent K-relations R(X) and
S(Y). But how can such a consistency witness function be de�ned? Are there general ways
of constructing a consistency witness function?

For several speci�c monoids of interest, the consistency witness can be found via an
explicit expression or via a procedural method. For example, for the Boolean monoid B,
the standard join R ⋊⋉ S of standard relations is an explicit consistency witness function.
More generally, if K = (K,∨, 0) is the join semilattice of a bounded distributive lattice
(K,∨,∧, 0, 1) (the same way the Boolean monoid B is the join semilattice of the 2-element
Boolean algebra), then setting

W (t) = R(t[X]) ∧ S(t[Y]) (5)

for every XY -tuple t gives an explicit expression that de�nes a consistency witness function
for every two consistent K-relations R(X) and S(Y).

Similarly, ifK = (K,+, 0) is the additive monoid of a semi�eld (K,+,×, /, 0, 1), (the same
way the positive monoid R≥0 of non-negative reals with addition is the additive monoid of
the semi�eld of non-negative real numbers with addition and multiplication), then an explicit
expression for a consistency witness is given by setting

W (t) = R(t[X])×S(t[Y])/D(t) (6)

where D(t) = R(t[X ∩ Y]) = S(t[X ∩ Y]) with the convention that 0/0 = 0. Note that the
equality in the de�nition of D(t) follows from the assumption that R and S are consistent;
indeed, if U witnesses their consistency, then

R[X ∩ Y] = U [X][X ∩ Y] = U [Y][X ∩ Y] = S[X ∩ Y],

where the middle equation follows from Proposition 1.

9

The expressions in (5) and (6) are called respectively the standard join of the distributive
lattice, which is denoted by R ⋊⋉K S, and the Vorobe'v join of the semi�eld, which is denoted
by R ⋊⋉VK S.

When it comes to the bag monoid N = (N,+, 0), it turns out that the standard join of
bags is not a valid consistent witness function. For example, the two bags R(X) = {a:1, b:1}
and S(Y) = {c:1, d:1} are consistent via the witness {ac:1, bd:1} or {ad:1, bc:1}, but their
bag join is the bag {ac:1, ad:1, bc:1, bd:1}, which projects to {a:2, b:2} on X and to {c:2, d:2}
on Y , thus it is not a witness of their consistency. Nonetheless, the bag monoid does admit
an explicit consistency witness function, which can be de�ned via a procedure called the
Northwest Corner Method. As explained in [2], the inspiration for this procedure came from
linear programming, simplifying an earlier method from [1]. In Section 7 we provide an
alternative perspective to it.

We refer the reader to Section 5 of [2] for an ample discussion of speci�c monoids and
classes of monoids for which a consistency witness can be explicitly de�ned by an expression
or by a procedural method, such as the Northwest Corner Method.

In the next section, we discuss a more general problem, which is implicit in the validity
of the implications (1) ⇒ (2) ⇒ (3) of Theorem 1. The problem can be stated as follows:
How can the transportation property alone be used to construct consistency witnesses in
full generality? First we discuss how a direct interpretation of the proof of the implication
(2) ⇒ (3) in Theorem 1 gives a way to construct consistency witnesses by solving explicit
but typically large systems of equations over the monoid. Then we argue that the proof of
the implication (1) ⇒ (2) in Theorem 1 indeed gives a way to construct witnesses from just
solving 2× 2 systems.

This is a rather remarkable phenomenon that enables the construction of consistency
witnesses by repeatedly solving many but tiny 2× 2 systems of equations over the monoid.
This phenomenon is akin to the fact that the standard join of standard relations can be
computed very e�ciently (in terms of the output size) by scanning the pairs of tuples in
the two relations in a carefully chosen order. As we will see, in the general case of positive
commutative monoids with the transportation property, it su�ces to scan not pairs of tuples
(i.e., 1 × 1 systems) but pairs of pairs of tuples (i.e., 2 × 2 systems), also in some suitable
order.

We begin our discussion by recalling the aforementioned standard and e�cient method
for computing joins of standard relations.

6 From 2 × 2 Systems to Witnesses

For relational databases, the Sort-Merge Join algorithm is a well-known method to compute
the join of two relations R(X) and S(Y); e.g., see Section 12.5.2 in [13]. The algorithm
works as follows.

First sort the tuples in R and S in the two relations lexicographically by the entries of
the tuples on the common attributes Z = X ∩ Y , i.e., sort all tuples r ∈ R by r[Z] and sort
all tuples s ∈ S by s[Z]. Then, scan the two sorted lists in parallel to �nd a tuple t ∈ Tup(Z)

10

on the common attributes that appears in both lists. For each such t found, scan all pairs
of tuples r ∈ R and s ∈ S such that r[Z] = t and s[Z] = t, produce the join tuple rs in
the output W (XY), and proceed to the next common t in the sorted lists. Since the join of
two consistent standard relations is a witness of their consistency, this algorithm computes
a consistency witness function for the Boolean monoid B.

When the positive monoid K has the transportation property, there is a natural ana-
logue of the Sort-Merge Join algorithm that produces consistency witnesses for consistent
K-relations R(X) and S(Y). Again, �rst sort all tuples r ∈ R′ and all tuples s ∈ S ′ in the
supports R′ and S ′ of R and S lexicographically by the entries of the tuples on the common
attributes Z = X ∩ Y . Then, scan the sorted lists to �nd the �rst tuple t ∈ Tup(Z) that
appears in both lists. For such t, form a system of equations over K. For each r ∈ R′

and s ∈ S ′ such that r[Z] = s[Z] = t, the system has one variable xr,s;t. The system has
equations ∑

s∈S′:
s[Z]=t

xr,s;t = br and
∑
r∈R′:
r[Z]=t

xr,s;t = cs

for each r ∈ R′ with r[Z] = t and br = R(r) in the �rst equation, and each s ∈ S ′ with
s[Z] = t and cs = S(s) in the second equation.

Now note that by the assumption that R(X) and S(Y) are consistent, we have
∑

r br =∑
s cs. By the transportation property of K, the system has a solution in K, say by setting

xr,s;t to ar,s;t. Finally, use this solution to produce the annotated tuple rs:ar,s;t in the output
W (XY) for each considered r and s, and proceed to the next common t in the sorted lists.
The fact that the resulting K-relation W (XY) is a consistency witness for R and S is an
immediate consequence of the de�nitions and the way the system of equations was set up.
This construction is also what goes behind the scenes in the proof of the implication (2) ⇒
(3) in Theorem 1. We refer the reader to [2] for more details on this proof.

An important point about the Sort-Merge Join algorithm of the previous paragraph is
that it involves solving systems of equations of many di�erent sizes, and often very big ones.
Concretely, if for a tuple t that appears in both lists we have mt tuples r ∈ R′ such r[Z] = t
and nt tuples s ∈ S ′ such that s[Z] = t, then the system associated to tuple t has mt × nt

variables and mt + nt equations. Since mt and nt could in general be quite big, solving each
such system for each tuple t individually could be computationally expensive. This should
be compared with the explicit and usually e�ciently computable expressions of Equation (5)
for the standard join of a distributive lattice, and Equation (6) for the Vorobe'v join of a
semi�eld. In contrast to these explicit expressions, if all we know about the monoid is that
it has the transportation property, then no such explicit expression may be available; thus,
it looks like we are stuck with the daunting task of solving potentially huge mt × nt systems
of equations for each t.

Or are we?
Interestingly, the implication (1)⇒ (2) in Theorem 1 asserts that the 2×2 transportation

property alone already implies the m×n transportation property for every positive integers
m and n. At least in principle, this means that in order to solve the mt×nt systems of each
t it should su�ce to solve perhaps many but tiny 2 × 2 systems. In the rest of this section

11

we explain how the proof of the implication (1) ⇒ (2) in Theorem 1 can be leveraged to
reduce the task for solving the mt × nt systems within the context of the Sort-Merge Join
algorithm to that of solving many but tiny 2× 2 systems.

To discuss this, let us �rst examine one possible implementation of the inner loop in the
Sort-Merge Join algorithm for standard relations. The method we suggest below is almost
certainly not what would be implemented in practice because, for practical implementations,
iterative methods are preferred over recursive ones. However, it is conceptually useful to
explain the method as a recursive algorithm to see how it generalizes to the case of K-
relations over monoids that have the transportation property.

Within the Sort-Merge Join algorithm for standard relations, let's say we are in the
situation where we have detected a tuple t ∈ Tup(Z) that appears in both sorted lists of
the tuples of R(X) and S(Y). The subroutine that we are about to describe produces all
join-tuples rs for r ∈ R and s ∈ S such that r[Z] = s[Z] = t.

Let the sorted lists of such tuples be r1, . . . , rm and s1, . . . , sn, respectively. If m = 1,
then we output the join tuples r1sj for j = 1, . . . , n and we are done. Symmetrically, if
n = 1, then we output ris1 for i = 1, . . . ,m and we are done again. Suppose then that
m ≥ 2 and n ≥ 2. If m > n, then we split the problem into a base case with the singleton
list rm and a recursive case with the reduced list r1, . . . , rm−1. In both cases the other list
remains s1, . . . , sn. Symmetrically, if m < n, then we split the problem into a base case with
the singleton list sn, and a recursive case with the reduced list s1, . . . , sn−1. Again, in both
cases the other list remains r1, . . . , rm. In case m = n, we just break ties arbitrarily and go
with one of the two. Since m ≥ 2 and n ≥ 2, the recursive calls made in this subroutine
call always make progress in reducing the sizes of the lists and we end up producing all pairs
risj, as required.

What we need to answer now is why we cannot just do the same for the variant of the
Sort-Merge Join algorithm for consistent K-relations. The base cases m = 1 and n = 1 can
certainly be handled the same way, using the annotations ar1,sj ;t = S(sj) for the tuples r1sj
in the case m = 1, and the annotations ari,s1;t = R(ri) for the tuples ris1 in the case n = 1.
The problem is with the subroutine call in the inductive case m ≥ 2 and n ≥ 2: the recursive
call with the reduced list does not interact at all with the call with the singleton list, so it
is hard to believe that the two calls will magically produce a solution ari,sj ;t that satis�es
the equations of the consistency requirement. These equations impose global conditions
that involve the full lists r1, . . . , rm and s1, . . . , sn; therefore, they require some kind of
coordination between calls. It is here where it is useful to upgrade the kind of processing
that the algorithm does from handling pairs of tuples to handling pairs of pairs of tuples
(i.e., 2× 2 systems). Let us see how to do this.

As a reminder, it is useful to keep in mind the following graphical representation of the

12

system of equations that we need to satisfy:

x1,1 + · · · + x1,n = b1
+ +
...

. . .
...

+ +
xm,1 + · · · + xm,n = bn
q q
c1 cn

(7)

where for simplicity we wrote xi,j instead of xri,sj ;t and bi and cj instead of R(ri) and S(sj).
The solution to the problem of non-interacting calls can be discovered by examining how

we would manually handle the next limiting cases after the base cases. Let's say m = 2, so
the �rst list of tuples is r1, r2 and the column vector in the right-hand side of the system (7)
is b1, b2, and the second list of tuples is s1, . . . , sn with n ≥ 2. If we were able to solve any
2× 2 instance of the transportation problem, then we could split the problem of solving the
system (7) in the special case m = 2 as follows. First we solve the 2× 2 system given by the
equations

y1 + x1,n = b1
+ +
y2 + x2,n = b2
q q
c cn

where y1, y2 are two new variables and c = c1 + · · ·+ cn−1. Observe that c+ cn = b1 + b2, as
required by the transportation property. Once this is solved, we go on recursively to solve
the 2× (n− 1) system given by the equations

x1,1 + · · · + x1,n−1 = y1
+ +
x2,1 + · · · + x2,n−1 = y2
q q
c1 cn−1

Observe that c1 + · · ·+ cn−1 = c = y1 + y2, as required by the transportation property. Note
also how the part y1, y2 of the solution to the �rst system is used to de�ne the right-hand
side of the second system, so the two calls of the subroutine now do interact. A simple
inspection shows that the concatenation of the solutions of the two systems gives a solution
to the global m× n system (7) in the special case m = 2.

This analysis takes care of the case m = 2 and n ≥ 2. To take care of the case m ≥ 2 and
n = 2, we proceed symmetrically exchanging rows and columns. Finally, for the case m ≥ 3
and n ≥ 3, we can use the cases 2× n and m× 2 that we just discussed as base cases. We
split an m× n system as in (7) into a 2× n system and an (m− 1)× n system if m > n, or
into an m×2 system and an m× (n−1) system if m < n, breaking ties arbitrarily if m = n.

13

This completes the description and the analysis of the recursive algorithm. The inductive
argument that proves its correctness is also what goes behind the scenes in the proof of the
implication (1) ⇒ (2) in Theorem 1, as presented in [2].

The bottom line of this section is that the Sort-Merge Join algorithm for computing
joins of standard relations, and hence consistency witnesses of standard relations, nicely
generalizes to an algorithm for computing consistency witnesses of two given consistent K-
relations from just knowing how to solve many but explicit and tiny 2 × 2 instances of the
transportation problem.

7 Solving 2 × 2 Systems in Speci�c Cases

In view of the analysis of the previous section, it is now natural to revisit the question of
solving 2× 2 systems for speci�c monoids. In this section, we revisit the standard join and
the Vorobe'v join in Section 5 from the perspective of 2×2 systems. We also give an explicit
solution to the 2 × 2 systems for monoids for which such systems are solvable using the
Northwest Corner Method, also mentioned in Section 5. As stated there, the most natural
example of this last case is the bag monoid N. By unfolding the recursive algorithm of
the previous section, the explicit solution we give in this section gives an alternative and
computationally more explicit de�nition of the Northwest Corner Method, as compared to
how it was presented in [2].

Let K = (K,+, 0) be a positive commutative monoid. We are given b1, b2, c1, c2 such that
b1 + b2 = c1 + c2. We want to solve the following system:

x11 + x12 = b1
+ +
x21 + x22 = b2
q q
c1 c2

We may assume that all b1, b2, c1, c2 are di�erent from 0 as otherwise we can set both variables
of the corresponding row or column equation to 0 and reduce the system to a single trivially
satis�able equation.

Let e = b1 + b2 = c1 + c2 and note e ̸= 0 by positivity.
If K = (K,∨, 0) is the join semilattice of a bounded distributive lattice (K,∨,∧, 0, 1),

then setting xij = bi∧cj for i, j = 1, 2 gives a solution. Indeed, xi1∨xi2 = (bi∧c1)∨(bi∧c2) =
bi∧(c1∨c2) = bi∧e = bi∧(b1∨b2) = bi. An entirely symmetric argument gives x1j∨x2j = cj.
Examples include the Boolean monoid, the power set monoid, and many others.

If K = (K,+, 0) is the additive monoid of a semi�eld (K,+,×, /, 0, 1), then setting
xij = (bi × cj)/e for i, j = 1, 2 gives a solution. Indeed, xi1 + xi2 = (bi × c1)/e+(bi × c2)/e =
bi × (c1 + c2)/e = bi. Similarly, x1j + x2j = cj. Examples include the non-negative reals with
addition, tropical monoids such as (R ∪ {−∞},max,−∞) and many others.

Finally we come to the bag monoid N = (Z≥0,+, 0) and those positive monoids whose
instances of the transportation problem can be solved by the Northwest Corner Method. We

14

need some preliminary de�nitions.
Every positive commutative monoid K = (K,+, 0) is canonically preordered by the binary

relation x ≤ y de�ned to hold between two elements x, y ∈ K if there exists an element z ∈ K
such that x+z = y. If for any every two elements x, y ∈ K we have x ≤ y or y ≤ x (or both),
then we say that this preorder is total and that the monoid is totally canonically preordered.
In such a case, the operation min(x, y), which returns x if x ≤ y and y otherwise, satis�es
the inequalities min(x, y) ≤ x and min(x, y) ≤ y. Similarly, the operation max(x, y), which
returns y if x ≤ y and x otherwise, satis�es the inequalities x ≤ max(x, y) and y ≤ max(x, y).
We say that K is weakly cancellative if for every x, y, z, we have that x+ y = x+ z implies
that y = z or y = 0 or z = 0. When a monoid is weakly cancellative, it is natural to de�ne
an operation x −̇ y on pairs x, y. Concretely, if x ̸≤ y, then we set x −̇ y = 0, and if x ≤ y
via x+ z = y, then we set x −̇ y = z if x ̸= y and x −̇ y = 0 if x = y. By weak cancellativity,
x −̇ y is well de�ned because if both x + z = y and x + z′ = y hold, then x + z = x + z′ so
by weak cancellativity we have z = z′, or z = 0 in which case x = y, or z′ = 0 in which case
again x = y. This operation has the property that if x ≤ y, then x+ (y −̇ x) = y.

Suppose now that K is totally canonically preordered and weakly cancellative. The
typical example is the bag monoid N, for which min(x, y) and max(x, y) are the minimum
and the maximum operations, and −̇ is the subtraction operation truncated to 0. In this
case, a solution is given by the Northwest Corner Method, which in the 2 × 2 case reduces
to the following explicit assignment (recall that e = b1 + b2 = c1 + c2 and b1, b2, c1, c2 are
di�erent from 0):

x11 = min(b1, c1)
x12 = b1 −̇ x11

x21 = c1 −̇ x11

x22 = e −̇max(b1, c1)

To see that this system satis�es the 2×2 system �rst observe that x11 ≤ b1 and x11 ≤ c1,
so x11+x12 = x11+(b1 −̇x11) = b1 and x11+x21 = x11+(c1 −̇x11) = c1. This already shows
that half of the equations of the 2× 2 system are satis�ed. For the remaining two equations,
�rst we claim that

b2 = (c1 −̇ b1) + c2 if b1 ≤ c1
c2 = (b1 −̇ c1) + b2 if b1 ̸≤ c1.

(8)

Indeed, if b1 ≤ c1 then c1 = b1 + (c1 −̇ b1), so we have b1 + b2 = c1 + c2 = b1 + (c1 −̇ b1) + c2.
The �rst equality in (8) then follows from weak cancellativity because b2 ̸= 0 and c2 ̸= 0, and
therefore also (c1−̇b1)+c2 ̸= 0 by positivity. Similarly, if b1 ̸≤ c1, then we have c1 ≤ b1 because
the preorder is total, so b1 = c1+(b1 −̇ c1) and we have c1+ c2 = b1+ b2 = c1+(b1 −̇ c1)+ b2.
The second equality in (8) follows then again by weak cancellativity and positivity. Now we
use (8) to show, by cases, that the remaining two equations of the 2× 2 system are satis�ed.

If b1 ≤ c1, then x12 = b1 −̇ b1 = 0 and x21 = c1 −̇ b1, as well as x22 = e −̇ c1 = c2 because
c1 + c2 = e and therefore c1 ≤ e. This shows that x12 + x22 = c2 and x21 + x22 = b2 by (8).
Similarly, if b1 ̸≤ c1, then x21 = c1 −̇ c1 = 0 and x12 = b1 −̇ c1, as well as x22 = e −̇ b1 = b2
because b1 + b2 = e and therefore b1 ≤ e. This shows that x21 + x22 = b2 and x12 + x22 = c2
by (8).

15

8 Largest Consistency Witnesses

A key fact about standard relations is that if R(X) and S(Y) are two consistent standard
relations, then there is a consistency witness W (XY) for R(X) and S(Y) that is largest in
the sense that every other consistency witness U(XY) for R(X) and S(Y) is included in
it, i.e., U ⊆ W holds. This follows from the basic fact that if W1(XY) and W2(XY) are
consistency witnesses for the standard relations R(X) and S(Y), then their set-theoretic
union W1 ∪W2 is also a consistency witness for R(X) and S(Y). Therefore, the union of all
consistency witnesses for R(X) and S(Y) is the largest consistency witness for them (and it
actually coincides with the standard join R ⋊⋉ S).

Assume that K is a positive commutative monoid and let R(X) and S(Y) be two consis-
tent K-relations. We say that a K-relation W (XY) is a largest consistency witness for R(X)
and S(Y) if for every consistency witness U(XY) for R(X) and S(Y), we have U ′ ⊆ W ′,
where U ′, W ′ are the supports of U(XY), W (XY). In words, a largest consistency witness
for two K-relations is a consistency witness of largest support.

For arbitrary positive commutative monoids, largest consistency witnesses need not ex-
ist. A case in point is the bag monoid N = (N,+, 0). Speci�cally, consider the two bags
R(X) = {a:1, b:1} and S(Y) = {c:1, d:1}. These two bags are consistent, but their only two
consistency witnesses areW1(XY) = {ac:1, bd:1} andW2(XY) = {ad:1, bc:1}, which have in-
comparable supports. Consider also the positive commutative monoid N2 = ({0, 1, 2},⊕, 0),
where 1 ⊕ 1 = 1 ⊕ 2 = 2 ⊕ 1 = 2 ⊕ 2 = 2, and 0 is the neutral element of ⊕. The same
bags as above, but now viewed as N2-relations are an example of two consistent N2-relations
with no largest consistency witness. Note that the monoid N2 is �nite, while the monoid N
is in�nite.

Nonetheless, the property of standard consistent relations having largest consistency
witnesses generalizes to relations over idempotent monoids, where a monoid K = (K,+, 0)
is idempotent if the identity x+ x = x holds, for every x ∈ K.

Proposition 3 Let K be an idempotent and positive commutative monoid. Then, for every
two consistent K-relations, there is a largest consistency witness.

Let K be such a monoid. If R(X) and S(Y) are two consistent K-relations with con-
sistency witnesses W1(XY) and W2(XY), then the K-relation T (XY) de�ned by T (t) =
W1(t) + W2(t) for every XY -tuple t is also a consistency witness for R(X) and S(Y). In-
deed, for every X-tuple r and every Y -tuple s, we have

T (r) = W1(r) +W2(r) = R(r) +R(r) = R(r)
T (s) = W1(s) +W2(s) = S(s) + S(s) = S(s).

Therefore, T [X] = R and T [Y] = S, so T is a consistency witness for R and S. We now claim
that since K is positive and since K-relations have (by de�nition) �nite support, there is a
consistency witness W (XY) of largest support, which is then a largest consistency witness
for R(X) and S(Y).

16

To see why this claim is true, suppose that K is positive and idempotent and that R(X)
and S(Y) are consistent K-relations. Let N be the number of tuples in the standard join
of the standard relations R′ ⋊⋉ S ′, where R′ and S ′ are the supports of R and S. Since,
by positivity, every consistency witness for R and S has its support in R′ ⋊⋉ S ′, there are
at most 2N possible supports of witnesses of consistency for R and S. Let M ≤ 2N be
the number of such di�erent supports and let W1,W2, . . . ,WM be a collection of witnesses
of consistency such that their list of supports W ′

1,W
′
2, . . . ,W

′
M is the complete enumeration

of all supports of witnesses of consistency. Now, consider the K-relation W (XY) de�ned
by W (t) =

∑M
i=1Wi(t) for every XY -tuple t, where the sum is in K. By the idempotency

of K, the K-relation W is a consistency witness of R and S. And by the positivity of K,
the support W ′ of W contains the support W ′

i of every Wi, and hence the support of any
consistency witness for R(X) and S(Y) by the choice of the enumeration W1,W2, . . . ,WM .

In addition to the Boolean monoid B = ({0, 1},∨, 0), examples of idempotent monoids
include the monoids T = (R ∪ {∞},min,∞), V = ([0, 1],max, 0), and P(A) = (P(A),∪, ∅)
introduced in Section 2.

Note that, unlike the case of standard relations, largest consistency witnesses need not
be unique for relations over arbitrary idempotent monoids. To see this, consider the pos-
itive commutative monoid L = (Q≥0,max, 0) of non-negative rationals with maximum as
operation, and 0 as neutral element, which is idempotent. Consider also the L-relations
R(X) = {a:1, b:1} and S(Y) = {c:1, d:1} with disjoint sets of attributes. These two
L-relations are consistent and have largest consistency witnesses, namely, any L-relation
W (XY) of the form {ac:1, ad:p, bc:p, bd:1} with p ∈ (0, 1] is a consistency witness for R and
S. Thus, while the largest witnesses W are �canonical� in terms of support, they need not
be �canonical� when taking the annotations into account.

There is another sense, however, in which idempotent positive commutative monoids
admit canonical-looking consistency witnesses, in addition to having largest support. As
discussed earlier, for every positive monoid K = (K,+, 0), there is a partial preorder ≤
on K de�ned by declaring that x ≤ y holds if and only if there exists z ∈ K such that
x + z = y. What holds for idempotent positive commutative monoids is that for every
two consistent K-relations R(X) and S(Y) and for every �nite collection of consistency
witnesses U1, . . . , Un there is a consistency witness W (XY), still of largest support among
all witnesses of consistency of R and S, such that Uj(t) ≤ W (t) holds in the preorder ≤ of K,
for every j = 1, . . . , n and every XY -tuple t. For this, simply ensure that all target witnesses
U1, . . . , Un appear in the enumeration W1,W2, . . . ,WM featuring in the construction of W of
the previous paragraph, perhaps by taking M to be an additive term n larger than it was,
if necessary. Since by positivity the inequality Uj(t) ≤

∑M
i=1Wi(t) = W (t) holds whenever

Uj appears in the enumeration W1,W2, . . . ,WM , the claim follows. It is apparent from this
argument that, in this construction, the witness W depends on the �nite list U1, . . . , Un;
however, only the annotations depend on U1, . . . , Un and, therefore, W is still largest (with
respect to support). As regards annotations, the set of consistency witnesses is dense:
for every �nite collection of consistency witnesses U1, . . . , Un, there is a largest consistency
witness W that sits simultaneously above all of them, point-wise in the preorder ≤, i.e., W

17

satis�es Ui(t) ≤ W (t) for all i = 1, . . . , n and all XY -tuples t.
Furthermore, there is a case of special interest where not even the annotations of W need

depend on the �nite list U1, . . . , Un. Speci�cally, if the monoid K is �nite, then not only
there is a �nite number M ≤ 2N of supports of consistency witnesses, but there is just a
�nite number of consistency witnesses overall. Thus, if in the construction of W we take
M to be the total number of consistency witnesses and we let W1,W2, . . . ,WM to be the
complete enumeration of these witnesses, then the resulting W is uniquely determined and
sits simultaneously above all consistency witnesses.

Finally, we note that idempotency is not a necessary condition for the existence of largest
consistency witnesses. Indeed, let R≥0 = (R≥0,+, 0) be the monoid of the non-negative real
numbers with addition. This monoid is the reduct of a semi�eld, namely, the semi�eld of
non-negative reals with the standard addition and multiplication of real numbers, and the
standard division by non-zero real numbers as inverse for the multiplication. The reduct R≥0

is a positive commutative monoid that has the transportation property but is not, of course,
idempotent. Now consider two consistent R≥0-relations R(X) and S(Y). As with every other
positive commutative monoid that arises from a semi�eld, their Vorob'ev join W = R ⋊⋉V S
as de�ned in Equation (6) is a consistency witness for R and S. It is easy to check that
if U(XY) is some other consistency witness, then W (t) = 0 implies U(t) = 0: indeed, by
the absence of zero-divisors in any semi�eld, the multiplication in (6) gives W (t) = 0 only
if R(t[X]) = 0 or S(t[Y]) = 0. Thus, by combining the positivity of the monoid with the
fact that U [X] = R and U [Y] = S, we get that W (t) = 0 only if U(t) = 0. This shows that
U ′ ⊆ W ′ and hence W has largest support. Indeed, in this case W is even �canonical� in its
annotations because they depend only on R and S.

An open problem arising from the preceding discussion is to characterize the positive
commutative monoids for which largest consistency witnesses always exist.

Acknowledgments Part of the research on this article was carried out at the Simons
Institute for the Theory of Computing, where the authors were visiting in the spring and
the fall of 2023. Atserias was partially supported by grant no. PID2022-138506NB-C22
(PROOFS BEYOND) and the Severo Ochoa and María de Maeztu Program for Centers and
Units of Excellence in R&D (CEX2020-001084-M) of the AEI, and the CERCA and ICREA
Academia Programmes of the Generalitat.

References

[1] Albert Atserias and Phokion G. Kolaitis. Structure and complexity of bag consistency.
In Leonid Libkin, Reinhard Pichler, and Paolo Guagliardo, editors, PODS'21: Proceed-
ings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, Virtual Event, China, June 20-25, 2021, pages 247�259. ACM, 2021.

18

[2] Albert Atserias and Phokion G. Kolaitis. Consistency of relations over monoids. Journal
of the ACM, 72(3, Article 18):47 pages, 2025. Earlier version in Proc. ACM Manag.
Data, 2(2):107, 2024.

[3] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the desirability
of acyclic database schemes. J. ACM, 30(3):479�513, July 1983.

[4] Katrin M. Dannert, Erich Grädel, Matthias Naaf, and Val Tannen. Semiring provenance
for �xed-point logic. In Christel Baier and Jean Goubault-Larrecq, editors, 29th EACSL
Annual Conference on Computer Science Logic, CSL 2021, January 25-28, 2021, Ljubl-
jana, Slovenia (Virtual Conference), volume 183 of LIPIcs, pages 17:1�17:22. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[5] Ronald Fagin. Degrees of acyclicity for hypergraphs and relational database schemes.
J. ACM, 30(3):514�550, 1983.

[6] Erich Grädel and Val Tannen. Semiring provenance for �rst-order model checking.
CoRR, abs/1712.01980, 2017.

[7] Todd J. Green. Containment of conjunctive queries on annotated relations. Theory
Comput. Syst., 49(2):429�459, 2011.

[8] Todd J. Green, Gregory Karvounarakis, and Val Tannen. Provenance semirings.
In Leonid Libkin, editor, Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 11-13, 2007, Beijing,
China, pages 31�40. ACM, 2007.

[9] Peter Honeyman, Richard E. Ladner, and Mihalis Yannakakis. Testing the universal
instance assumption. Inf. Process. Lett., 10(1):14�19, 1980.

[10] Grigoris Karvounarakis and Todd J. Green. Semiring-annotated data: queries and
provenance? SIGMOD Rec., 41(3):5�14, 2012.

[11] Mahmoud Abo Khamis, Hung Q. Ngo, Reinhard Pichler, Dan Suciu, and Yisu Remy
Wang. Convergence of datalog over (pre-) semirings. J. ACM, 71(2):8:1�8:55, 2024.

[12] Egor V. Kostylev, Juan L. Reutter, and András Z. Salamon. Classi�cation of annota-
tion semirings over containment of conjunctive queries. ACM Trans. Database Syst.,
39(1):1:1�1:39, 2014.

[13] Raghu Ramakrishnan. Database Management Systems. WCB/McGraw-Hill, 1998.

19

	Introduction
	Preliminaries
	Consistency and Consistency Witnesses
	The Transportation Property
	Defining Consistency Witnesses
	From 2 2 Systems to Witnesses
	Solving 2 2 Systems in Specific Cases
	Largest Consistency Witnesses

