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Abstract

We prove the first unconditional consistency result for superpolynomial circuit lower
bounds with a relatively strong theory of bounded arithmetic. Namely, we show that
the theory V0

2 is consistent with the conjecture that NEXP /⊆ P/poly, i.e., some problem
that is solvable in non-deterministic exponential time does not have polynomial size
circuits. We suggest this is the best currently available evidence for the truth of the
conjecture. The same techniques establish the same results with NEXP replaced by
the class of problems decidable in non-deterministic barely superpolynomial time such
as NTIME(nO(log log logn)

). Additionally, we establish a magnification result on the
hardness of proving circuit lower bounds.
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1 Introduction

Bounded arithmetics are fragments of Peano arithmetic that formalize reasoning with con-
cepts and constructions of bounded computational complexity. Their language is tailored
so that natural classes of bounded formulas define important complexity classes. For ex-
ample, the set of all bounded formulas defines precisely the problems in PH and the set
of Σb

1-formulas those in NP. The central theories are comprised in Buss’ hierarchy [6]

S1
2 ⊆ T1

2 ⊆ S2
2 ⊆ T2

2 ⊆ ⋯ ⊆ T2 ⊆ V0
2 ⊆ V1

2 (1)

The theory S1
2 can be understood as formalizing P-reasoning, and V1

2 as formalizing EXP-
reasoning. The levels of T2 are determined by induction schemes for properties of bounded
computational complexity. E.g., T1

2 has induction for NP, and T2 for PH. Intuitively, these
theories can construct and reason with polynomially large objects of various computational
complexities. The theories V0

2 and V1
2 are extensions with a second sort of variables ranging

over bounded sets of numbers and are given by comprehension schemes. Intuitively, these
sets represent exponentially large objects.

Low levels of the bounded arithmetic hierarchy formalize a considerable part of contem-
porary complexity theory. This includes some advanced topics such as the Arthur-Merlin hi-
erarchy [17], hardness amplification [16], Toda’s theorem [7], and the PCP Theorem [30]. We
refer to [26, Section 5] for a list of successful formalizations. Concerning circuit complexity,
the topic of this paper, Jeřábek proved that his theory of approximate counting [15, 16, 17],
which sits below T2

2, formalizes Rabin’s primality test, and proves that it is in P/poly [16,
Example 3.2.10, Lemma 3.2.9]. Concerning lower bounds, many of the known (weak) circuit
lower bounds can be formalized in a theory of approximate counting [26] and thus also in
the theory T2

2. For example, the AC0 lower bound for parity has been formalized in [26, The-
orem 1.1] via probabilistic reasoning with Furst, Saxe and Sipser’s random restrictions [13],
and in [22, Theorem 15.2.3] via Razborov’s [32] proof of H̊astad’s switching lemma.

Razborov asked in his seminal work from 1995 for the “right fragment capturing the kind
of techniques existing in Boolean complexity” [32, p.344]. Showing that any theory that is
strong enough to capture these techniques cannot prove lower bounds for general circuits
would give a precise sense in which current techniques are insufficient. This however seems
to be very difficult. We refer to [34, Introduction] or [23, Ch.27-30] for a description of the
resulting research program, and to [31] for a recent result.

In contrast to unprovability, the first and final words of Kraj́ıček’s 1995 monograph [22]
ask for consistency results1, namely to prove the conjecture in question “for nonstandard
models of systems of bounded arithmetic”. These are “not ridiculously pathological struc-
tures, and a part of the difficulty in constructing them stems exactly from the fact that it is
hard to distinguish these structures, by the studied properties, from natural numbers” [22,
p.xii]. In particular, showing that a given conjecture is consistent with certain bounded arith-
metics, already low ones, would exhibit a world where both the conjecture and a considerable
part of complexity theory are true.

1The citations to follow refer not to circuit lower bounds but to P /= NP.
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We therefore interpret consistency results as giving precise evidence for the truth of
the conjecture. This is without doubt preferable to appealing to intuitions, or alluding to
the experience that the conjectures appear to be theoretically coherent, exactly because a
consistency result gives a precise meaning to this coherence.

1.1 Previous consistency results

Being well motivated, consistency results are also hard to come by, and not much is known.
In particular, it is unknown whether NP /⊆ P/poly is consistent with S1

2.
It is not straightforward to formalize NP /⊆ P/poly because exponentiation is not provably

total in bounded arithmetics. On the formal level, call a number n small if 2n exists. A
size-nc circuit can be coded by a binary string of length at most 10 ⋅ nc ⋅ log(nc), and hence
by a number below 210⋅nc

⋅log(nc
); this bound exists for small n.

On the formal level, an NP-problem is represented by a Σb
1-formula ϕ(x). A sentence

expressing that the problem defined by ϕ(x) has size nc circuits looks as follows:

αcϕ ∶= ∀n∈Log
>1 ∃C<2n

c ∀x<2n (C(x)=1↔ ϕ(x)).

Here, the quantifier on n ranges over small numbers above 1. We think of the quantifier
on C as ranging over circuits of encoding-size nc, and of the quantifier on x as ranging
over length n binary strings. Counting the ∃ hidden in ϕ, this is a bounded ∀∃∀∃-sentence
(namely a ∀Σb

3-sentence).
Now more precisely, the central question whether S1

2 is consistent with NP /⊆ P/poly
asks for a Σb

1-formula ϕ(x) such that S1
2 + {¬αcϕ ∣ c ∈ N} is consistent. As mentioned a

model witnessing this consistency would be a world where a considerable part of complexity
theory is true and the NP-problem defined by ϕ does not have polynomial-size circuits. This
is faithful in that there also exists an NP-machine M that cannot be simulated by small
circuits in the model. Namely, S1

2 proves that ϕ(x) is equivalent to a formula

∃y<2n
d

“y is an accepting computation of M on x” (2)

for a suitable NP-machine M , namely a model-checker for ϕ. Here, the constant d stems
from the polynomial running time of M . We write αcM ∶= αcϕ for ϕ(x) equal to (2). One
can also fix the machine M in advance to a universal one, namely a model-checker M∗ for
an S1

2-provably NP-complete problem (e.g., SAT).
The predominant approach to the consistency of circuit lower bounds is based on witness-

ing theorems: a proof of αcM in some bounded arithmetic implies a low-complexity algorithm
that computes a witness C from 1n. E.g., if the theory has feasible witnessing in P, then it
does not prove αcϕ for any c unless the problem defined by ϕ(x) is in P. However, S1

2 is only
known to have feasible witnessing in P for bounded ∀∃-sentences and αcϕ is a ∀∃∀∃-sentence.

Fortunately, a self-reducibility argument implies that the quantifier complexity of this for-
mula can be reduced. Up to suitable changes of c, the formula αcM∗ is S1

2-provably equivalent
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to the following sentence of lower quantifier complexity:

βcM∗ ∶= ∀n∈Log
>1 ∃C<2n

c ∃D<2n
c ∀x<2n ∀y<2n

d

(C(x)=0→ ¬“y is an accepting computation of M∗ on x”) ∧
(C(x)=1→ “D(x) is an accepting computation of M∗ on x”),

where d stems from the polynomial runtime of M∗. We define

“NP /⊆ P/poly” ∶= {¬βcM∗ ∣ c ∈ N}.

Note, βcM∗ is a bounded ∀∃∀-sentence (namely a ∀Σb
2-sentence). For such sentences, S2

2

has feasible witnessing in PNP [6], and S1
2 has feasible witnessing by certain interactive

polynomial-time computations [21]. This was exploited by Cook and Kraj́ıček [12] to prove2

that “NP /⊆ P/poly” is consistent with S2
2 unless PH ⊆ PNP, and with S1

2 unless PH ⊆ PNP
tt .

Since the complexity of witnessing increases with the strength of the theory, it seems ques-
tionable whether this method yields insights for much stronger theories: by the Karp-Lipton
Theorem [19], PH /⊆ NPNP implies that “NP /⊆ P/poly” is true, and true sentences are consis-
tent with any true theory. Moreover, the focus of this work is on unconditional consistency
results.

Using similar methods, a recent line of works [24, 8, 9, 10] achieved unconditional con-
sistency results for fixed-polynomial lower bounds, even for P instead of NP (based on [36]).
For example, the main result in [8] implies that S2

2 + ¬αcϕ and S1
2 + ¬αcψ are consistent for

certain formulas ϕ(x) and ψ(x) that define problems in PNP and NP, respectively. Again
it seems questionable whether the underlying methods can yield insights for much stronger
theories: by Kannan [18], the lower bound stated by ¬αcχ is true for some formula χ(x)
defining a problem in NPNP. Moreover, the formulas above depend on c and new ideas seem
to be required to reach the unconditional consistency of superpolynomial lower bounds.

1.2 New consistency results

The purpose of this paper is to prove the unconditional consistency of NEXP /⊆ P/poly with
the comparatively strong theory V0

2. Consistency results for V0
2 are meaningful, since V0

2

is stronger than T2
2 which, as discussed earlier, can formalize many results in complexity

theory. Our approach is not via witnessing but via simulating comprehension.
The problems in NEXP are naturally represented on the formal level by Σ̂1,b

1 -formulas ϕ(x):
an existentially quantified set variable followed by a bounded formula. We discuss three
ways to formalize NEXP /⊆ P/poly, namely with {¬αcϕ ∣ c ⩾ 1} for a Σ̂1,b

1 -formula ϕ(x), with
{¬αcM0

∣ c ⩾ 1} and with {¬βcM0
∣ c ⩾ 1} for a suitable universal NEXP-machine M0. We

now discuss these formalizations; they are analogous to the formalizations discussed in the
previous section.

The “direct formalization” of the consistency of NEXP /⊆ P/poly is based on the formu-
las αcϕ. These are defined similarly as before but with ϕ a Σ̂1,b

1 -formula:

2PNP
tt denotes polynomial time with non-adaptive queries to an NP-oracle. In [12] a distinct but similar

formalization of NP /⊆ P/poly is used.
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Definition 1. Let c ∈ N and let ϕ = ϕ(x) be a Σ̂1,b
1 -formula (with only one free variable x,

and in particular without free variables of the set sort). Define

αcϕ ∶= ∀n∈Log
>1 ∃C⩽2n

c∀x<2n (C(x) ↔ ϕ(x)).

Then our direct formalization of the consistency of NEXP /⊆ P/poly is:

Theorem 2. There exists ϕ(x) ∈ Σ̂1,b
1 such that V0

2 + {¬αcϕ ∣ c ∈ N} is consistent.

Theorem 2 can be strengthened to establish the consistency of NEXP /⊆ PH/poly (see
Section 2.3) but our focus is on P/poly.

Theorem 2 is proved in Section 2.2 but in hindsight is not hard to prove. For ϕ(x)
take a formula negating the pigeonhole principle: it states that there exists a set coding
an injection from {0, . . . , x + 1} into {0, . . . , x}, and thus is expressible as a Σ̂1,b

1 -formula.
The intermediate steps in the usual proof of the pigeonhole principle involve further sets
encoding injections, and these can also expressed with Σ̂1,b

1 -formulas. If these formulas were
computed by polynomial-size circuits, then we could use quantifier-free induction to show
that the pigeonhole principle is provable in V0

2. But it is well known that this is not the case
(see [22, Corollary 12.5.5]).

Concerning the faithfulness of the direct formalization we get, as before, a model of V0
2

where a certain NEXP-machine cannot be simulated by small circuits. Indeed, for an ex-
plicit NEXP-machine M we can write the formula (2) using instead of ∃y a quantification ∃Y
for a set variable Y :

∃Y “Y is an accepting computation of M on x”. (3)

Roughly, an explicit NEXP-machine is one such that S1
2 can verify a suitable bound on its

runtime; we defer the details to Section 3.1. It turns out that V0
2 proves that every Σ̂1,b

1 -
formula ϕ(x) is equivalent to (3) for a suitable M , namely a model-checker for ϕ(x). Proving
this is not trivial because V0

2 is agnostic about the existence of computations of exponential-
time machines. One of our contributions is to prove it; we give the details in Section 3.

Definition 3. For an explicit NEXP-machine M and c ∈ N we set αcM ∶= αcψ where ψ is the
formula (3).

Intuitively, V0
2 does not know whether non-trivial exponential-size sets exist, namely sets

not given by bounded formulas. But then, how meaningful is the consistency statement
of Theorem 2 or the corresponding statement for {¬αcM ∣ c ⩾ 1}? These sentences contain
(universal and) existential set quantifiers. It turns out that we can move again to a suitably
modified sentence βcM of lower quantifier complexity, namely a sentence all of whose set

quantifiers are universal (i.e., ∀Π1,b
1 ): such sentences do not entail the existence of non-

trivial large sets. This does not follow from simple self-reducibility arguments but is a deep
result of complexity theory, namely the Easy Witness Lemma of Impagliazzo, Kabanets and
Wigderson [14, Theorem 31]. We use Williams’ version as stated in [38, Lemma 3.1] (see
[39, Theorem 3.1] for the equivalence):
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Lemma 4 (Easy Witness Lemma). If NEXP ⊆ P/poly, then every NEXP-machine has
polynomial-size oblivious witness circuits.

An oblivious witness circuit for a machine M and input length n is a circuit D with at
least n inputs such that for every x of length n, if M accepts x, then tt(Dx) encodes an
accepting computation of M on x. Here, the circuit Dx is obtained from D by fixing the
first n inputs to the bits of x, and tt(Dx) is the truth table of Dx. In the statement of the
lemma, polynomial-size refers to polynomial in n, and the qualifier oblivious refers to the
fact that D depends only on the length of x, not on x itself.

In the language of two-sorted bounded arithmetic the string tt(Dx) corresponds to the
set Dx(⋅) of numbers accepted by Dx. We thus define the formula βcM by replacing D(x)
by Dx(⋅) and ∀y by ∀Y :

Definition 5. For c ∈ N and an explicit NEXP-machine M we set

βcM ∶= ∀n∈Log
>1 ∃C<2n

c ∃D<2n
c ∀x<2n ∀Y

(C(x)=0 → ¬“Y is an accepting computation of M on x”) ∧
(C(x)=1 → “Dx(⋅) is an accepting computation of M on x”).

In Section 4.1 we define a suitable universal explicit NEXP-machine M0 and arrive at our
formalization of NEXP /⊆ P/poly:

Definition 6. “NEXP /⊆ P/poly” ∶= {¬βcM0
∣ c ∈ N}.

The main result of this paper is:

Theorem 7. The theory V0
2 is consistent with both formalizations of NEXP /⊆ P/poly; con-

cretely, V0
2 + {¬αcM0

∶ c ∈ N} and V0
2 + {¬βcM0

∶ c ∈ N} are consistent.

In the notation introduced above, this gives:

Corollary 8. V0
2 + “NEXP /⊆ P/poly” is consistent.

Both {¬αcM0
∶ c ∈ N} and {¬βcM0

∶ c ∈ N} are formalizations of NEXP /⊆ P/poly. The first
has the advantage of being more direct whereas the second has the advantage of having
lower quantifier complexity: βcM0

is ∀Π1,b
1 while αcM0

is ∀Σb
∞
(Π1,b

1 ). In addition, being ∀Π1,b
1

is instrumental for our magnification result discussed below (Theorem 11). It is easy to see
that V0

2 proves that {¬αcM0
∶ c ∈ N} implies {¬βcM0

∶ c ∈ N}. The converse implication is true
too, but depends on the Easy Witness Lemma. It is open whether V0

2 proves this implication
or the Easy Witness Lemma.

We emphasize here that our formalization of NEXP /⊆ P/poly through the universal ma-
chine M0 and the αcM0

and βcM0
sentences refers exclusively to the setting of non-relativized

complexity classes.

Second we show that NEXP can be lowered to just above NP. For k ∈ N, define log(k) n
inductively by log(1) n ∶= logn, and log(k+1) n ∶= log log(k) n. We prove:
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Theorem 9. V0
2 + “NTIME(nO(log(k) n)) /⊆ P/poly” is consistent for every positive k ∈ N.

The formalization and proof proceeds similarly and relies on an Easy Witness Lemma
for barely superpolynomial time by Murray and Williams [27]. Theorem 9 “almost” settles
the central question for the consistency of NP /⊆ P/poly with a strong bounded arithmetic.
Closing the tiny gap, however, seems to require some new ideas.

1.3 Simulating comprehension

The proof of the consistency of circuit lower bounds is based on the complexity of constant
depth propositional proofs for the pigeonhole principle. We shall see that V0

2+αcM0
(and thus

V0
2+βcM0

) proves the pigeonhole principle. This implies Theorem 7 as it is well-known that V0
2

cannot prove this principle. Thereby, Theorem 7 is ultimately based on the exponential lower
bound for this principle in bounded depth Frege systems [1, 4]. On a high level, while the
approach based on witnessing uses complexity theoretic methods, our approach is based on
methods that arose from mathematical logic, in particular forcing (cf. [3]).

The {¬βcM0
} formulation of “NEXP /⊆ P/poly” provides an additional insight into the con-

sistency lower bound. By the Easy Witness Lemma, the inclusion NEXP ⊆ P/poly implies
that a rich collection of sets is represented by circuits (via their truth tables). A weak the-
ory can quantify over circuits and hence implicitly over this collection. Thus, intuitively,
βcM0

should enable a weak theory to simulate a two-sorted theory of considerable strength.

More precisely, we show that βcM0
can be used to simulate a considerable fragment of Σ1,b

1 -
comprehension, i.e., a considerable fragment of V1

2.
The sketched idea can be made explicit as follows. By S1

2(α) we denote the two-sorted
variant of S1

2. Its models consist of two universes M and X interpreting the number and the
set sort, respectively. Given such a model that additionally satisfies βcM0

for some c ∈ N, we
will show in Lemma 45 that shrinking X to the sets represented by circuits in M yields a
model of V1

2. This has two interesting consequences. The first is:

Theorem 10. Let T be a theory that contains S1
2(α) but does not prove all number-sort

consequences of V1
2. Then T + “NEXP /⊆ P/poly” is consistent.

By a number-sort formula we mean one that does not use set-sort variables. Note that the
corollary refers to number-sort sentences of arbitrary unbounded quantifier complexity. It is
conjectured that V1

2 has more number-sort consequences than all other theories mentioned
so far. But this is known only for S1

2 [37, 20], and there even for ∀Πb
1-sentences. Theorem 10

directly infers evidence for the truth of “NEXP /⊆ P/poly” from progress in mathematical logic
on understanding independence. Loosely speaking, we view it in line with the belief that it
is mathematical logic that ultimately bears on fundamental complexity-theoretic conjectures
(see e.g. again the preface of [22]).

The second consequence is:

Theorem 11. If S1
2(α) does not prove “NEXP /⊆ P/poly”, then V1

2 does not prove “NEXP /⊆
P/poly”.
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This is a magnification result on the hardness of proving circuit lower bounds: it infers
strong hardness (for V1

2) from weak hardness (for S1
2(α)). The term magnification has been

coined in [28] in the context of circuit lower bounds where such results are currently inten-
sively investigated (cf. [11]). In proof complexity such results are rare so far. An example in
propositional proof complexity appears in [26, Proposition 4.14]. Magnification results are
interesting because they reveal inconsistencies in common beliefs about what is and what is
not within the reach of currently available techniques. Theorem 11 might foster hopes to
complete Razborov’s program to find a precise barrier in circuit complexity (cf. Remark 46).

2 Consistency of the direct formalization

In this section we provide the details of the simple proof of Theorem 2. We begin by recalling
the necessary preliminaries on bounded arithmetic. This will be needed also in later sections.
We refer to [22, Ch.5] for the missing details.

2.1 Preliminaries: bounded arithmetic

Bounded arithmetics have language x⩽y, 0, 1, x+y, x⋅y, ⌊x/2⌋, x#y, ∣x∣, and built-in equal-
ity x=y. Note that Cantor’s pairing ⟨x, y⟩ is given by a term. Iterating it gives ⟨x1, . . . , xk⟩
for k > 2. A number x is called small if it satisfies the formula ∃y x=∣y∣. We abbreviate
∃y x=∣y∣ by x∈Log and x∈Log ∧ 1<x by x∈Log

>1. The quantifiers ∀x∈Log
>1 and ∃x∈Log

>1

range over small numbers above 1. If x = ∣y∣, we write 2x for 1#y and similarly for other
exponential functions. E.g., a formula of the form ∀x∈Log

>1 . . . 2x
2
. . . stands for the formula

∀x∀y (1<x ∧ x=∣y∣ → . . . y#y . . .).

Theories. The theories of bounded arithmetic are given by a set BASIC of universal sen-
tences determining the meaning of the symbols, plus induction schemes. For a set of formu-
las Φ, the set (of the universal closures) of formulas

ϕ(x̄,0) ∧ ∀y<z (ϕ(x̄, y) → ϕ(x̄, y + 1)) → ϕ(x̄, z),

for ϕ ∈ Φ, is the scheme of Φ-induction. Restricting to small numbers z gives the scheme
of Φ-length induction; formally, replace z by ∣z∣ above. Here, and throughout, when writing
a formula ψ as ψ(x̄) we mean that all free variables of ψ are among x̄.

The set Σb
∞

contains all bounded formulas, and Σb
i ,Π

b
i , for i ∈ N, are subsets of Σb

∞

that are defined by counting alternations of bounded quantifiers ∃x⩽t,∀x⩽t, not counting
sharply bounded ones ∃x⩽∣t∣,∀x⩽∣t∣. In particular, Σb

0 = Πb
0 is the set of sharply bounded

formulas. The theories Ti2 are defined by BASIC +Σb
i -induction. The theories Si2 are defined

by BASIC +Σb
i -length-induction. Full bounded arithmetic T2 ∶= ⋃i∈NTi2 has Σb

∞
-induction.

Two-sorted theories. Two-sorted bounded arithmetics are obtained by adding a new set
of variables X,Y, . . . of the set sort. Original variables x, y, . . . are of the number sort. We
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shall use capital letters also for number-sort variables. Therefore, for clarity, from now on
we write ∃2X and ∀2X for quantifiers on set-sort variables X. The language is enlarged by
adding a binary relation x∈X between the number and the set sort. A number-sort formula
is one that uses only the number sort. In particular, it has no set-sort parameters. By a
term we mean a term in the number sort. We write X⩽z for ∀y (y∈X → y⩽z).

Models have the form (M,X) where M is a universe for the number sort and X is a
universe for the set sort. The symbol ∈ is interpreted by a subset of M × X . The standard
model is (N, [N]<ω) where [N]<ω is the set of finite subsets of N; the number sort symbols
are interpreted as usual over N and ∈ by actual element-hood.

The sets Σb
∞
(α),Σb

i(α),Πb
i(α) are defined as Σb

∞
,Σb

i ,Π
b
i , allowing free set-variables and

the symbol ∈, but not allowing set-sort quantifiers, nor set-sort equalities X=Y . Another
name for the set Σb

∞
(α) is Σ1,b

0 . The theories Ti2(α), Si2(α), and T2(α), are given by BASIC
and analogous induction schemes as before, namely Σb

i(α)-induction, Σb
i(α)-length induction,

and Σb
∞
(α)-induction, respectively. Additionally, we add the following axioms with the set

sort. Recalling the notation X⩽z introduced above, the new axioms are (the universal
closures of):

set-boundedness axiom: ∃z X⩽z.
extensionality axiom: X⩽z ∧ Y ⩽z ∧ ∀y⩽z (y∈X ↔ y∈Y ) →X=Y .

We add the scheme of (bounded) ∆b
1(α)-comprehension, given by (the universal closures of)

the formulas
∃2Y ⩽z ∀y⩽z (y ∈ Y ↔ ϕ(X̄, x̄, y)), (4)

where ϕ(X̄, x̄, y) is ∆b
1(α) with respect to the theory defined over the two-sorted language

as BASIC plus Σb
1(α)-length-induction, i.e., this theory proves ϕ(X̄, x̄, y) equivalent to both

a Πb
1(α)-formula and a Σb

1(α)-formula.
For example, this scheme implies that there is a set Y as described when ϕ(X̄, x̄, y) is

f X̄(x̄, y)=1 where f X̄(x̄, y) is a function that is Σb
1(α)-definable in S1

2(α). The superscript
indicates that X̄ comprises all the free variables of the set sort that appear in the Σb

1(α)-
formula that defines f X̄(x̄, y). It is well known [6] that these are precisely the functions that
are computable in polynomial time with oracles denoted by the set variables. We do not
distinguish S1

2 (or S1
2(α)) from its variant in the language PV (resp., PV(α)) which has a

symbol for all polynomial time functions (resp., with oracles denoted by the set variables).
We shall often use that S1

2(α) proves induction for quantifier-free PV(α)-formulas (cf. [22,
Lemma 5.2.9]). We write quantifier-free PV(α)-formulas with latin capital letters; e.g.,
F (X̄, x̄).

A piece of notation. For formulas ϕ(Y, X̄, x̄) and ψ(Z̄, z̄, u) we write

ϕ(ψ(Z̄, z̄, ⋅), X̄, x̄)
for the formula obtained from ϕ by replacing every atomic subformula of the form t∈Y , for t
a term, by the formula ψ(Z̄, z̄, t), preceded by any necessary renaming of the bound variables
of ϕ to avoid the capturing of free variables. We use this notation only for formulas ϕ without
set equalities.
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Genuine two-sorted theories. It is easy to see that the theories Ti2(α),Si2(α) have the
same number sort consequences as Ti2,S

i
2, respectively. Also Ti2(α),Si2(α) are conservative

over their subtheories without ∆b
1(α)-comprehension. Intuitively, the two-sorted versions of

bounded arithmetics are the usual ones plus syntactic sugar. Genuine set-sorted theories are
obtained from T2(α) by adding (bounded) Φ-comprehension for certain sets of formulas Φ,
i.e., (4) for ϕ(X̄, x̄, y) in Φ.

The set Σ1,b
∞ contains all two-sorted formulas with quantifiers of both sorts, but bounded

number-sort quantifiers. Again we disallow set equalities. The sets Σ1,b
i ,Π

1,b
i , for i ∈ N,

are subsets of Σ1,b
∞ defined by counting the alternations of set quantifiers (and not counting

number quantifiers). A Σ̂1,b
1 -formula is of the form

∃2Y ϕ(X̄, Y, x̄) (5)

where ϕ(X̄, Y, x̄) is a Σ1,b
0 -formula.

For i ∈ N the theory Vi2 is given by Σ1,b
i -comprehension. In particular, V0

2 is given by

Σ1,b
0 -comprehension. It has the same number-sort consequences as T2.

Remark 12. Sometimes, the sets Σ1,b
i (α) are defined with bounded set quantifiers ∃X⩽ t

and ∀X⩽t. The difference is not essential: for every Σ1,b
∞ -formula ϕ(X̄, Y, x̄) there is a

term t(x̄) such that S1
2(α) proves

t(x̄)⩽y → (ϕ(X̄, Y, x̄) ↔ ϕ(X̄, Y ⩽y, x̄))

where Y ⩽y stands for ψ(Y, y, ⋅) with ψ(Y, y, u) ∶= (u⩽y ∧ u∈Y ). By ∆b
1(α)-comprehension,

∃2Y ϕ is S1
2(α)-provably equivalent to ∃2Y ⩽t(x̄) ϕ. It follows that every Σ1,b

i (α)-formula is
S1

2(α)-provably equivalent to one with bounded set sort quantifiers.

Remark 13. Disallowing set equalities is convenient but inessential in the sense that Vi2 does
not change when set equalities are allowed in Σ1,b

i . Indeed, let ϕ(X̄, x̄) be a Σ1,b
i -formula

except that set equalities are allowed. Then there is a Σ1,b
i -formula ϕ∗(X̄, x̄, u) (without set

equalities and) with bounded set quantifiers such that S1
2(α) proves

∃u (ϕ(X̄, x̄) ↔ ϕ∗(X̄, x̄, u)).

Proof. The formula ϕ∗ is defined by a straightforward recursion on ϕ. For example, if ϕ
is X1=X2, then ϕ∗ is ∀y⩽u (y∈X1 → y∈X2) ∧ ∀y⩽u (y∈X2 → y∈X1); a u witnessing the
equivalence is any common upper bound on X1 and X2. If ϕ is ∃2Y ψ(X̄, Y, x̄) and ψ∗ =
ψ∗(X̄, Y, x̄, u) is already defined, then ϕ∗ is ∃2Y ⩽t(x̄, u) ψ∗(X̄, Y, x̄, u) where the term t is
chosen according to the previous remark.

Circuits. A circuit with s gates is coded by a number below 210⋅s⋅∣s∣. On the formal level
we shall only consider small circuits, i.e., s ∈ Log , so 210⋅s⋅∣s∣ exists. We use capital letters
C,D,E for number variables when they are intended to range over circuits. There is a PV-
function eval(C,x) that (in the standard model) takes a circuit C with, say, n ⩽ ∣C ∣ input
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gates, and evaluates it on inputs x < 2n. This means that the input gates of C are assigned
the bits of the length-n binary representation of x; we assume eval(C,x) = 0 if x ⩾ 2n or if
C does not code a circuit.

It is notationally convenient to have circuits take finite tuples x̄ = (x1, . . . , xk) as inputs;
formally, such a circuit has k sequences of input gates, the i-th taking the bits of xi. Again,
eval(C, x̄) denotes the evaluation function; it outputs 0 if any xi has length bigger than the
length of its allotted input sequence. Our circuits have exactly one output gate, so S1

2 proves
eval(C, x̄)<2. We write C(x̄) for the quantifier-free PV-formula eval(C, x̄)=1; in some places
we also write C(x̄)=1 and C(x̄)=0 instead of C(x̄) and ¬C(x̄), respectively.

For a circuit C taking (` + k)-tuples as inputs and an `-tuple x̄ we let Cx̄ be the circuit
obtained by fixing the first ` inputs to x̄; it takes k-tuples as inputs. Formally, Cx̄ is a PV-
term with variables C, x̄ and S1

2(α) proves (Cx̄(ȳ) ↔ C(x̄, ȳ)) and ∣Cx̄∣⩽∣C ∣.

Lemma 14. For every quantifier-free PV-formula F (x̄) there is a c ∈ N such that S1
2 proves

∀n∈Log
>1 ∃C<2n

c ∀x̄<2n (C(x̄) ↔ F (x̄)).

On the formal level, if Y is a set and C is a circuit, then we say that Y is represented by C
if ∀y (C(y) ↔ y∈Y ). In our notation, such set Y is written C(⋅), or eval(C, ⋅)=1. More
precisely, for a formula ϕ(Y, X̄, x̄) and a circuit C we write

ϕ(C(⋅), X̄, x̄),

for the formula obtained from ϕ by replacing every formula of the form t∈Y by C(t), i.e.,
by eval(C, t)=1. Note that if the set Y is represented by a circuit with n inputs, then Y <2n,
provably in S1

2. For example, we shall use circuits to represent computations of exponential-
time machines M . Using the notation introduced in Section 3.1,

“C(⋅) is a halting computation of M on x̄”

is a Πb
1-formula with free variables C, x̄ stating that the circuit C represents a halting com-

putation of M on x̄.

2.2 Consistency of the direct formalization for NEXP

The set of Σ̂1,b
1 -formulas without free variables of the set sort is a natural class of formulas

defining, in the standard model, all the problems in NEXP. For such a formula ψ it is
straightforward to write down a set of sentences (a.k.a. a theory) stating that ψ does not
have polynomial-size circuits. We explicitly define this direct formalization of NEXP /⊆ P/poly
as the set of all sentences of the form ¬αcψ, for c ∈ N, for the sentence αcψ defined in the
introduction, and then argue that its consistency with V0

2 follows from known lower bounds
in proof complexity.

We are ready to prove Theorem 2.
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Proof of Theorem 2: The (functional) pigeonhole principle PHP(x) is the following Π1,b
1 -

formula:

∀2X (∃y⩽x+1 ∀z⩽x ¬⟨y, z⟩∈X ∨
∃y⩽x+1 ∃z⩽x ∃z′⩽x (¬z=z′ ∧ ⟨y, z⟩∈X ∧ ⟨y, z′⟩∈X) ∨
∃y⩽x+1 ∃y′⩽x+1 ∃z⩽x (¬y=y′ ∧ ⟨y, z⟩∈X ∧ ⟨y′, z⟩∈X)).

Note that ψ = ψ(x) ∶= ¬PHP(x) is (logically equivalent to) a Σ̂1,b
1 -formula. For the sake of

contradiction assume that V0
2 + {¬αcψ ∣ c ∈ N} is inconsistent. By compactness, there exists

c ∈ N such that V0
2 proves αcψ.

Claim: V0
2 + αcψ proves PHP(x).

The claim implies the theorem: it is well known [22, Corollary 12.5.5] that there is
an expansion (M,RM) of a model M of BASIC by an interpretation RM ⊆ M of a new
predicate R such that RM is bounded and witnesses ¬PHP(n) for some (nonstandard) n ∈M ,
and, further, (M,RM) models induction for bounded formulas. Let Y be the collection of
bounded sets definable in (M,RM) by bounded formulas. Then (M,Y) is a model of V0

2

with RM ∈ Y, so (M,Y) ⊧ ¬PHP(n).
We are left to prove the claim. Argue in V0

2 and set n ∶= max{∣x∣,2}. Then αcψ gives a
circuit C such that

∀u⩽x (¬C(u) ↔ PHP(u)).
We observe that V0

2 proves that PHP(x) is inductive, i.e.,

PHP(0) ∧ ∀u<x (PHP(u) → PHP(u + 1)). (6)

Indeed, if X is a set that witnesses ¬PHP(u + 1), then we construct a set Y that witnesses
¬PHP(u) as follows. If there does not exist any v⩽u+1 with ⟨v, u⟩∈X, then the set Y ∶= X
itself is the witness we want. On the other hand, if there exists v⩽u+1 with ⟨v, u⟩∈X, then
let Y be the set of pairs z = ⟨x, y⟩ such that the two projections x = π1(z) and y = π2(z)
satisfy the formula ϕ(x, y, u, v) below, for the fixed parameters u and v:

ϕ(x, y, u, v) ∶= x⩽u ∧ y<u ∧ ((x>v ∧ ⟨x−1, y⟩∈X) ∨ (x<v ∧ ⟨x, y⟩∈X)).

Here, x−1 denotes the (truncated) predecessor PV-function. In the definition of Y we used
the two projections π1 and π2, also as PV-functions. Since the definition of Y is a quantifier-
free PV(α)-formula, the set Y exists by quantifier-free PV(α)-comprehension, and it is clear
by construction that it witnesses ¬PHP(u).

To complete the proof, plug ¬C(u) for PHP(u) in (6) and quantifier-free PV(α)-induction
gives ¬C(x), and hence PHP(x).

Remark 15. The model (M,X) that witnesses the above consistency is a model of V0
2

where PHP(n) fails for some nonstandard n ∈ M : otherwise α1
¬PHP would be true and

witnessed by trivial circuits that always reject.
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2.3 A strengthening to PH/poly
While our focus is on P/poly, in this section we point out a version of Theorem 2 stating the
consistency of NEXP /⊆ PH/poly.

For i > 0, let Ti(e, t, x) denote a universal Σb
i -formula: for every Σb

i -formula ϕ(x), there
are e, d ∈ N such that V0

2 (in fact, S1
2 [22, Corollary 6.1.4]) proves

ϕ(x) ↔ Ti(e,2∣x∣
d
+d, x).

Intuitively, the parameter ∣x∣d + d serves as a runtime bound of a suitable model-checker
coded by e. Thus, the formulas Ti(e,2∣x∣d+d, x) for varying c, d ∈ N define (in the standard
model) precisely the problems in the i-th level ΣP

i of the polynomial hierarchy PH.
We incorporate nonuniformity as follows. Again, let π1, π2 be the PV-functions computing

the projections for pairs ⟨x, y⟩. Define

T ′

i (a, x) ∶= Ti(π1(a),2∣a∣, ⟨π2(a), x⟩).

Thus, a determines the runtime bound and some “advice” π2(a). Then Q ⊆ N is in PH/poly
if there exists i > 0 and a function a(n) such that ∣a(n)∣ is polynomially bounded in n and
such that for all x we have x ∈ Q if and only if T ′

i (a(∣x∣), x) is true (in the standard model).

Definition 16. Let i, c ∈ N and let ϕ = ϕ(x) be a Σ̂1,b
1 -formula (with only one free variable x,

and in particular without free variables of the set sort). Define

αi,cϕ ∶= ∀n∈Log
>1 ∃a⩽2n

c∀x<2n (T ′

i (a, x) ↔ ϕ(x)).

It is clear that {¬αi,cϕ ∣ i, c ∈ N} is true if and only if the NEXP-problem defined by ϕ(x)
does not belong to PH/poly. Hence, the following states the consistency of NEXP /⊆ PH/poly:
Theorem 17. There exists ϕ(x) ∈ Σ̂1,b

1 such that V0
2 + {¬αi,cϕ ∣ i, c ∈ N} is consistent.

This is proved in almost exactly the same way as the just-given proof of Theorem 2. The
only difference is that, working in a model of V0

2 +α
i,c
ϕ , the circuit C(x) is replaced with the

formula T ′

i (a, x) for an advice string a ⩽ 2∣x∣
c
. The details are left to the reader.

3 Formally verified model-checkers

We shall need to formally reason about certain straightforwardly defined exponential time
machines, namely model-checkers and universal machines. A model-checker Mϕ for a for-
mula ϕ(X̄, x̄) has oracle access to X̄ and, on input x̄, decides whether ϕ(X̄, x̄) is true.
For example, by nesting a loop for each bounded quantifier, Σ1,b

0 -formulas have straightfor-
ward model-checkers that run in exponential time and polynomial space. We define such
model-checkers with care, so that S1

2(α) verifies their time and space bounds as well as
their correctness. This correctness statement has to be formulated carefully because, in
general, S1

2(α) cannot prove that a halting computation of M X̄
ϕ on x̄ exists. Thus, proving

correctness means to show that if a computation exists, then it does what it is supposed to
do. To prove this we use some constructions that are similar in spirit to those in [5].
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3.1 Preliminaries: explicit machines

In short, a machine will be called explicit if the theory S1
2(α) proves that its halting compu-

tations terminate within a specified number of steps, using no more than a specified amount
of space in its work tapes, and by querying its oracles no further than a specified position.

Machine model. Our model of computation is the multi-tape oracle Turing machine
with one-sided infinite tapes (i.e., cells indexed by N) and an alphabet containing {0,1}.
The content of cell 0 is fixed to a fixed symbol marking the end of the tape. At the start,
the heads scan cell 1. The machines can be deterministic or non-deterministic. Such a
machine M has read-only input tapes, and work tapes and oracle tapes. If there are k input
tapes, then its inputs are k-tuples x̄ = (x1, . . . , xk) of numbers with the length-∣xi∣ binary
representation of xi written on the i-th input tape. The length of the input is ∣x̄∣ = maxi ∣xi∣.
If M does not have oracle tapes, then it is a machine without oracles. If M has ` ⩾ 1 oracle
tapes, then we write M X̄ for the machine with oracles X̄ = (X1, . . . ,X`). When the machine
enters a special query state, it moves to one out of 2` many special answer states which codes
the answers to the ` queries written on the ` oracle tapes, i.e., whether the number written
(in binary) on the i-th oracle tape belongs to Xi or not.

A partial space-s time-t query-q computation of M X̄ on x̄ comprises t+ 1 configurations,
the first one being the starting configuration, every other being a successor of the previous
one, and repeating halting configurations, if any. Being space-s means that the largest visited
cell on each tape is at most s, and being query-q means that the largest visited cell on each
oracle tape is at most most ∣q∣; in other words, all queries have length at most ∣q∣. Query
lengths are bounded by ∣q∣ instead of q so that all queries are restricted to have polynomial
length.

Coding computations. Fix a machine M . Let s, t, q ∈ N and consider a partial space-
s, time-t, query-q computation of M on an unspecified input with unspecified oracles. A
configuration is coded by an (s+1)-tuple (q, c0, . . . , cs−1) of numbers: q codes the current state
of the machine; ci codes, for each tape, a position bit indicating whether the index of the
currently scanned cell is at most i and, for each work or oracle tape, the content of cell i. We
assume that these numbers are smaller than M (the machine is (coded by) a number), so we
get an (s+1) × (t+1) matrix of such numbers. This matrix is coded by the set Y of numbers
bounded by ⟨s, t, ∣M ∣⟩ that contains exactly those ⟨i, j, k⟩ such that i ⩽ s, j ⩽ t, k < ∣M ∣ and
the (i, j)-entry of the matrix has k-bit 1.

The details of the encoding are irrelevant. What is required is that there is a PV(α)-
function fY such that fY (t, s, q, j) gives, about the j-th configuration, a number coding the
state, the positions of the heads, the contents of the cells they scan, and the numbers that
are written in binary in the first ∣q∣ cells of the oracle tapes. In the encoding sketched above,
to find the position of a specific head, fY uses binary search to find i ⩽ s where its position
bit flips; computing the oracle queries is possible because the oracle tapes contain numbers
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below 2∣q∣. Having fY , it is straightforward to write a natural Πb
1(α)-formula stating

“Y is a partial space-s time-t query-q computation of M X̄ on x̄”. (7)

The free variables of this formula are Y, X̄, x̄, s, t, q. Exceptionally, we shall also consider M
on the formal level, in which case M is an additional free number variable. All quantifiers
in the Πb

1(α)-formula (7) can be S1
2(α)-provably bounded by p(s, t, ∣q∣, ∣M ∣, ∣x̄∣) for a poly-

nomial p, where ∣x̄∣ stands for ∣x1∣, . . . , ∣xk∣. If M is a machine without oracles, the formula
is S1

2(α)-provably equivalent to the one with q = 0, and we omit ‘query-q’. We also omit
‘space s’ if s = t. Further, replacing ‘partial’ by ‘halting’ or ‘accepting’ or ‘rejecting’ are
obvious modifications of the formula.

Explicit machines. Binary search gives a PV(α)-function timeY (s, t) such that, provably
in S1

2(α), if Y is a halting time-t space-s query-q computation of M X̄ on x̄, then timeY (s, t)
is the minimal j ⩽ t such that the j-th configuration in Y is halting. We make the further
assumption that M never writes blank (but can write a copy of this symbol), so heads
leave marks on visited cells. Binary search can then compute the maximal non-blank cell
in the j-th configuration on any tape. By quantifier-free induction for PV(α)-formulas,
S1

2(α) proves that this cell number is non-decreasing for j = 0,1, . . . , t. Hence, there is
a PV(α)-function spaceY (s, t) such that, provably in S1

2(α), if Y is a halting time-t space-
s query-q computation of M X̄ on x̄, then spaceY (s, t) is the maximal cell visited in Y on
any tape. Similarly, there is a PV(α)-function queryY (s, t) that computes the maximal cell
visited on a query tape.

Definition 18. A machine M is explicit if there are terms s(x̄), t(x̄), q(x̄) such that

S1
2(α) ⊢ “Y is a halting space-s′ time-t′ query-q′ computation of M X̄ on x̄”→

timeY (s′, t′) ⩽ t(x̄) ∧ spaceY (s′, t′) ⩽ s(x̄) ∧ queryY (s′, t′) ⩽ ∣q(x̄)∣.

We say that the terms s = s(x̄), t = t(x̄), q = q(x̄) witness that M is explicit. Further, if r(x̄)
is another term, then we say that r = r(x̄) witnesses that M is an

explicit NEXP-machine if it is non-deterministic with t = s = q = r;
explicit EXP-machine if it is deterministic with t = s = q = r;
explicit PSPACE-machine if it is deterministic with t = q = r and s = ∣r∣;
explicit NP-machine if it is non-deterministic with t = s = ∣r∣ and q = r;
explicit P-machine if it is deterministic with t = s = ∣r∣ and q = r.

Observe that, if s, t, q witness that M is explicit, and s′ = s′(x̄), t′ = t′(x̄), q′ = q′(x̄) are
terms such that S1

2 ⊢ s(x̄)⩽s′(x̄) ∧ t(x̄)⩽t′(x̄) ∧ q(x̄)⩽q′(x̄), then also s′, t′, q′ witness that M
is explicit. E.g., if r witnesses that M is an explicit P-machine, then r also witnesses that
M is an explicit PSPACE-machine.

Given an explicit machine M , we omit ‘space-s time-t query-q’ in (7) and its variations
with ‘halting’, ‘accepting’ or ‘rejecting’. E.g. for an explicit EXP-machine M , say witnessed
by r = r(x̄), we have a Πb

1(α)-formula

“Y is an accepting computation of M X̄ on x̄”. (8)
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This means that Y is a space-r(x̄) time-r(x̄) query-r(x̄) computation of M X̄ on x̄ that ends
in an accepting halting configuration, and all queries “z ∈ X?” during the computation
satisfy z < 2∣r(x̄)∣. In particular,

Y ⩽⟨r(x̄), r(x̄), ∣M ∣⟩ (9)

provably in S1
2(α). Furthermore, all quantifiers in the Πb

1(α)-formula (8) can be S1
2(α)-

provably bounded by p(r(x̄), ∣M ∣, ∣x̄∣) for a polynomial p, where ∣x̄∣ stands for ∣x1∣, . . . , ∣xk∣.
Thereby, our mode of speech follows [22, Definition 8.1.2] in that the time bound is used

to determine the bound on the oracle tapes.

Polynomial-time computations. It is well-known that S1
2 formalizes polynomial time

computations. We shall use this in the form of the following lemma.
For an explicit P-machine M , its computations Y can be coded by numbers y and we get

a Πb
1(α)-formula

“y is a halting computation of M X̄ on x̄”.

Here, y is a number sort variable, and the free variables are X̄, x̄, y. If M has a special output
tape, we agree that the output of a computation is the number whose binary representation
is written in cells 1,2, . . . up to the first cell not containing a bit. We have a PV(α)-
function outM such that, provably in S1

2(α), if y is a halting computation of M X̄ on x̄,
then outM(y, j) is the content of cell j of the output tape in the halting configuration in case
this is a bit; otherwise outM(y, j)=2. In particular, S1

2(α) proves outM(y, j)⩽2,

Lemma 19. For every PV(α)-function f X̄(x̄) there are an explicit P-machine M and
a PV(α)-function gX̄(x̄) such that S1

2(α) proves

(“y is a halting computation of M X̄ on x̄”↔ y=gX̄(x̄)) ∧
(j<∣f X̄(x̄)∣ → outM(gX̄(x̄), j+1)=bit(f X̄(x̄), j)) ∧
(j⩾∣f X̄(x̄)∣ → outM(gX̄(x̄), j+1)=2).

In the statement of the lemma, bit(n, i) is a PV-function computing the i-bit of the binary
representation of n, i.e., bit(n, i) = ⌊n/2i⌋ mod 2 (in the standard model). In particular, we
have bit(n, i) = 0 for i ⩾ ∣n∣.

3.2 Deterministic model-checkers

For every Σ1,b
0 -formula ϕ = ϕ(X̄, x̄) in the language PV(α) we define its bounding term btϕ(x̄)

as follows:

1. btϕ = 0 if ϕ is atomic,

2. btϕ = btψ if ϕ = ¬ψ,

3. btϕ = btψ + btθ if ϕ = (ψ ∧ θ),
4. btϕ = btψ(x̄, t(x̄)) + t(x̄) if ϕ = ∃y⩽t(x̄) ψ(X̄, x̄, y).
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Lemma 20. For every Σ1,b
0 -formula ϕ = ϕ(X̄, x̄) there are an explicit PSPACE-machine M X̄

ϕ ,

a Σ1,b
0 -formula Cϕ(X̄, x̄, u), terms rϕ(x̄), sϕ(x̄), and a polynomial pϕ(m, n̄), such that

(a) S1
2(α) ⊢ “Y is an accepting computation of M X̄

ϕ on x̄”→ ϕ(X̄, x̄),

(b) S1
2(α) ⊢ “Y is a rejecting computation of M X̄

ϕ on x̄”→ ¬ϕ(X̄, x̄),

(c) S1
2(α) ⊢ “Cϕ(X̄, x̄, ⋅) is a halting computation of M X̄

ϕ on x̄”,

(d) S1
2(α) ⊢ rϕ(x̄) ⩽ pϕ(btϕ(x̄), ∣x̄∣) ,

(e) rϕ(x̄), sϕ(x̄) witness M X̄
ϕ as explicit EXP- and PSPACE-machines, respectively.

In addition, if ϕ = ϕ(X̄, x̄) is a Πb
1(α)-formula, then there are a term tϕ(x̄) and a quantifier-

free PV(α)-formula Cϕ(X̄, x̄,w, u) such that

(f) T1
2(α) ⊢ ∃w⩽tϕ(x̄) “Cϕ(X̄, x̄,w, ⋅) is a halting computation of M X̄

ϕ on x̄”,

(g) S1
2(α) ⊢ ϕ(X̄, x̄) → “Cϕ(X̄, x̄, tϕ(x̄), ⋅) is an accepting computation of M X̄

ϕ on x̄”.

Proof. Call a Σ1,b
0 -formula ϕ = ϕ(X̄, x̄) good if it satisfies (a)–(e). Observe that all Σb

0(α)-
formulas are good: they are S1

2(α)-provably equivalent to formulas of the form f X̄(x̄)=1 for
some PV(α)-function f X̄(x̄), and we can choose a machine according to Lemma 19. Recall
that an explicit P-machine is also an explicit PSPACE-machine and explicit EXP-machine (in
this case, all three witnessed by the same term).

We leave it to the reader to check that the good formulas are closed under Boolean
combinations. We are then left to show that if

ϕ(X̄, x̄) = ∃y⩽t(x̄) ψ(X̄, x̄, y) (10)

for a term t(x̄) and a good formula ψ = ψ(X̄, x̄, y), then ϕ is good. To lighten the notation,
in the following we drop any reference to the set-parameters X̄ in the formulas, and to the
oracles X̄ in machines, since they remain fixed throughout the proof.

The machine Mϕ runs a loop searching for a y in {0, . . . , t(x̄)} that satisfies ψ. On
input x̄, it writes y ∶= 0 on a work tape and then loops: it checks whether y ⩽ t(x̄) and, if so,
it updates y ∶= y+1 and runs Mψ on (x̄, y); otherwise it halts. It accepts or rejects according
to a flag bit b stored in its state space: b is initially set to 0, and it is set to 1 when and if
an Mψ-run accepts.

To prove (a)–(e) we want a quantifier-free PV(α)-formula D(Y, x̄, y, u) that extracts
the Mψ-computation simulated in the y-loop. More precisely, we want S1

2(α) to prove that,
if Y is a halting computation of Mϕ on x̄, then D(Y, x̄, y, ⋅) is a halting computation of Mψ

on (x̄, y). For this, we design the details of Mϕ in a way so that the j-th step of the
computation of Mψ on (x̄, y) is simulated by Mϕ at a time easily computed from x̄, y, j.

Description of Mϕ. Set r(x̄) ∶= rψ(x̄, t(x̄)) where rψ(x̄, y) is the term claimed to exist
for ψ. Note that S1

2(α) proves that rψ(x̄, y) ⩽ r(x̄) for y ⩽ t(x̄). Additionally to proper-
ties (a)–(e) for ψ, we assume inductively that S1

2(α) proves that the halting configuration
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of Mψ on (x̄, y) equals the initial configuration except for the state, that is, Mψ cleans all
worktapes and moves all heads back to cell 1 before it halts.

Our machine initially computes t = t(x̄) and r = r(x̄) and two binary clocks initially set
to 0∣t∣ and 0∣r∣. The terms are evaluated using explicit P-machines according to Lemma 19.
The initial settings of the clocks are simply computed by scanning the binary representa-
tions of t and r that were computed at the start. This initial computation of terms, and
initialization of clocks, takes time exactly ini(x̄) for some PV-function ini(x̄). Further, S1

2(α)
proves ini(x̄) ⩽ ∣ti(x̄)∣ for a suitable term ti(x̄).

The y-loop is implemented as follows. First update y, the value of the first clock. To
do this, sweep over the first clock, and then back, in exactly (2∣t∣ + 2) steps, doing the
following: copy y without leading 0’s to some tape, so this tape holds the length-∣y∣ binary
representation of y (as expected by Mψ); increase the clock by 1 if y < t, and reset it to 0∣t∣

if y = t; in the latter case store a bit signaling this; this signal bit halts the computation (in
the next y-loop) instead of doing the y-update. After this y-update, simulate r steps of Mψ

on (x̄, y) by an inner loop: in 2∣r∣+2 steps sweep twice over the second clock. If its value was
smaller that r, then increase it by 1 and simulate the next step of Mψ’s computation; this
can mean repeating the halting computation. If its value was not smaller than r, then set
the clock back to 0∣r∣. Thus, exactly 2∣r∣+3 steps are spent for one step of Mψ and one y-loop
takes exactly t`(x̄) ∶= (r(x̄) + 1) ⋅ (2∣r(x̄)∣ + 3) steps.

If the signal bit halts the computation, then our machine first cleans all tapes and moves
heads back to cell 1, before halting. We omit a description of this final polynomial time
computation. It can be implemented to take exactly fin(x̄) steps for a PV-function fin(x̄),
and S1

2 proves fin(x̄) ⩽ ∣tf(x̄)∣ for a suitable term tf(x̄).
Thus Mϕ runs in time exactly ini(x̄)+(t(x̄)+1) ⋅t`(x̄)+fin(x̄). It simulates r steps of Mψ

on (x̄, y) at times

t(x̄, y, j) ∶= ini(x̄) + y ⋅ t`(x̄) + (j + 1) ⋅ (2∣r(x̄)∣ + 3) (11)

for j < r(x̄).
Explicitness: proof of (d)–(e). Let sψ(x̄, y) be the term that witnesses Mψ as an ex-

plicit PSPACE-machine. Let Y be a halting computation of Mϕ on x̄. There is a PV(α)-
function that from x̄ computes (a number coding) the initial computation of terms and
clocks, and S1

2(α) proves its halting configuration is as described. Clearly, S1
2(α) proves

that the first ini(x̄) steps of Y coincide with this computation. In particular, S1
2(α) proves

that the clocks computed in Y have the desired length. Similarly, there is a PV(α)-function
that from x̄, y, j computes (a number coding) the space-∣sψ(x̄, y)∣ configuration of Mψ at
time t(x̄, y, j) in Y .

We prove, by quantifier-free induction, that the computation Y simulates the steps of Mψ

at times t(y, j) ∶= t(x̄, y, j) for y ⩽ t and j < r. Assume this holds for time t(y, j). We verify it
for time t(y, j+1) or time t(y+1,0) depending on whether j < r or j = r. Assume the former;
the latter case is similar. Compute the time-(2∣r∣+3) computation (that sweeps twice over the
clock and simulates one more step of Mψ) starting at the configuration at time t(y, j); then Y
must coincide with this computation between time t(y, j) and time t(y, j + 1). Hence, Y
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simulates a step of Mψ at time t(y, j + 1). Similarly, quantifier-free induction proves that
the Mψ-configurations at the times t(y, j) in Y are successors of each others. This yields a
quantifier-free PV(α)-formula D(Y, x̄, y, u) as desired.

From the configuration at time ini(x̄)+(t+1)⋅t`(x̄) one can compute the final fin(x̄) steps
of the clean-up computation before Mϕ halts, and the last fin(x̄) steps of Y must coincide
with that. Hence, S1

2(α) proves that the configuration of Y at time ini(x̄)+(t+1) ⋅ t`+fin(x̄)
is halting. Recalling that ini(x̄) ⩽ ∣ti(x̄)∣ and fin(x̄) ⩽ ∣tf(x̄)∣, this implies that the term

rϕ(x̄) ∶= ∣ti(x̄)∣ + (t(x̄) + 1) ⋅ t`(x̄) + ∣tf(x̄)∣

witnesses Mϕ as an explicit NEXP-machine. Choose a term sϕ(x̄) such that S1
2-provably

sϕ(x̄) ⩾ rϕ(x̄) and

∣sϕ(x̄)∣ ⩾ ∣ti(x̄)∣ + (∣t(x̄)∣ + 1) + (∣r(x̄)∣ + 1) + ∣sψ(x̄, t(x̄))∣ + ∣tf(x̄)∣.

Then sϕ(x̄) witnesses Mϕ as an explicit PSPACE-machine. This shows (e).
For (d), recall t`(x̄) = (r(x̄) + 1) ⋅ (2∣r(x̄)∣ + 3) and hence rϕ(x̄) ⩽ p(r(x̄), t(x̄), ∣x̄∣) for a

suitable polynomial p, provably in S1
2. Recalling that r(x̄) = rψ(x̄, t(x̄)), and that by (d)

for ψ we have rψ(x̄, y) ⩽ pψ(btψ(x̄, y), ∣x̄∣, ∣y∣) provably in S1
2, from btϕ(x̄) = btψ(x̄, t(x̄))+t(x̄)

we get, also provably in S1
2, that rϕ(x̄) ⩽ pϕ(btϕ(x̄), ∣x̄∣) for a suitable polynomial pϕ.

Correctness: proof of (a)–(c). For (a) argue in S1
2(α) and suppose Y is an accepting

computation of Mϕ on x̄. Being accepting means that the final state has flag b = 1, while the
starting state has flag b = 0. By binary search we find a time when b flips from 0 to 1. This
time determines y0 ⩽ t such that the y0 loop accepts. Then Z ∶=D(Y, x̄, y0, ⋅) is an accepting
computation of Mψ on (x̄, y0). Note that Z exists by ∆b

1(α)-comprehension. Then (a) for ψ
implies ψ(x̄, y0) and thus ϕ(x̄).

For (b), argue in S1
2(α) and suppose Y is a rejecting computation of Mϕ on x̄, so the

flag is 0 in the final configuration. Let y ⩽ t. Then D(Y, x̄, y, ⋅) is a rejecting computation
of Mψ on (x̄, y): otherwise the y loop sets the flag to 1 and then binary search finds a time
where the flag flips from 1 to 0 in Y which contradicts the working of Mϕ. Then (b) for ψ
implies ¬ψ(x̄, y). As y was arbitrary, we get ¬ϕ(x̄).

For (c), it is easy to construct from Cψ a formula Cψ,0 such that S1
2(α) proves that

the set Cψ,0(x̄, y, ⋅) is the computation of the y-loop of Mϕ on x̄ with flag 0 stored in the
state space. There is an analogous formula Cψ,1 for flag 1. These formulas just stretch the
computation described by Cψ and interleave it with the trivial updates of the clocks. The
desired formula Cϕ(x̄, u) ‘glues together’ these computations, plus the initial ini(x̄) steps of
initialization, and the final fin(x̄) steps of clean-up. We sketch the definition of Cϕ(x̄, u):
from u we can compute y such that the truth value of Cϕ(x̄, u) is one of the bits in the code
of the computation of the y-loop of Mϕ on x̄, or one of the bits in the code of the initial or
final computation. Then Cϕ(x̄, u) states

(∃z<y ψ(x̄, z) ∧Cψ,1(x̄, y, u)) ∨ (¬∃z<y ψ(x̄, z) ∧Cψ,0(x̄, y, u)). (12)

18



Proof of (f)–(g). Assume ϕ is a Πb
1(α)-formula. We modify the given construction as

follows. Up to S1
2(α)-provable equivalence we have

ϕ(X̄, x̄) = ∀y⩽t(x̄) gX̄(x̄, y)=1

where t(x̄) is a term and gX̄(x̄, y) is a PV(α)-function. As before, we drop any reference to the
set-parameters X̄, and to the oracles X̄, since they will stay fixed throughout the proof. We
define Mϕ similarly as before with the role of Mψ played by a P-machine checking g(x̄, y)=1
according to Lemma 19. The only difference is in the flag bit: it is initially set to 1, and it
is set to 0 when and if a y-loop rejects (meaning ¬g(x̄, y)=1).

In this case we can choose r small, i.e., equal to ∣r′∣ for some term r′ = r′(x̄), so there
is a PV(α)-function h(x̄, y) that computes (a number that codes) the computation of the
y-loop of Mϕ. Then Cϕ(x̄,w, u) ‘glues together’ these computations plus suitable initial and
final computations. The only problem is to determine the flag b stored in the states of Mϕ.
For this we need to know the minimal w ⩽ t such that ¬g(x̄,w)=1 holds, or take w = t + 1 if
ϕ(x̄) holds. Such w exists provably in T1

2(α). This shows (f) for tϕ(x̄) ∶= t(x̄) + 1. For (g),
assuming ϕ(x̄) we can take w = t+1 directly since in this case the flag bit is always 1 provably
in S1

2(α).

Remark 21. The proof shows that the quantifier complexity of Cϕ is close to that of ϕ.
If ϕ ∈ Σb

0(α), then Cϕ is a quantifier free PV(α)-formula. If ϕ ∈ Σb
i(α) for i > 0, then Cϕ is a

Boolean combination of Σb
i(α)-formulas. Note that if the outer quantifier in (10) is sharply

bounded, i.e., t(x̄) = ∣t′(x̄)∣ for some term t′(x̄), then the y-bounded quantifiers in (12) are
sharply bounded too.

3.3 Optimality remarks

This subsection offers some remarks stating that Lemma 20.f cannot be improved in certain
respects. This material is not needed in the following.

Remark 22. For our definition of M X̄
ϕ , one cannot replace T1

2(α) by S1
2(α) in Lemma 20.f

unless S1
2 = T1

2.

Proof. Let ϕ(x) = ∃y⩽x ψ(y, x) for ψ a quantifier-free PV-formula, and assume (f) holds
for S1

2(α) instead of T1
2(α). We show S1

2(α) proves that, if there is y ⩽ x such that ψ(y, x),
then there is a minimal such y. Argue in S1

2(α) and suppose ϕ(x). By ∆b
1(α)-comprehension

and (f) there is a halting computation Y of Mϕ on x. By (b) it cannot be rejecting, so is
accepting. Our proof of (a) gives ψ(y0, x) for y0 ⩽ x such that the flag b flips from 0 to 1 in
loop y0. We claim y0 is minimal. This is clear if y0 = 0. Otherwise we had b = 0 after the
loop on y0 − 1 (in Y ). For contradiction, assume there is y1 < y0 with ψ(y1, x). Then the
loop on y1 would set b = 1. By quantifier-free induction we find a time between y1 and y0 − 1
where b flips from 1 to 0. This contradicts the working of Mϕ.

Fix any machines Mϕ satisfying the lemma. Call a formula true if its universal closure is
true in the standard model.
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Remark 23. In Lemma 20.f the auxiliary ∃w cannot be omitted. There is a Σb
1(α)-

formula ϕ(X,x) such that for all quantifier-free PV(α)-formulas C(X,x,u) the following
is not true:

“C(X,x, ⋅) is a halting computation of MX
ϕ on x”.

Proof. Otherwise every Σb
1(α)-formula ϕ(X,x) is equivalent to a quantifier-free PV(α)-

formula D(X,x). Let A ⊆ N be such that NPA /⊆ PA and choose Q in NPA ∖ PA. Choose
a Σb

1(α)-formula ϕ(X,x) defining Q in (N,A), the model where X is interpreted by A.
Note D(X,x) defines in (N,A) a problem in PA. Then (ϕ(X,x) ↔D(X,x)) fails in (N,A)
for some x, and hence also in (N,A′) for some bounded A′ ⊆ A (Remark 12). Thus, this
equivalence is not true.

Remark 24. Lemma 20.f does not extend to much more complex formulas. There is a Πb
2(α)-

formula ϕ(X,x) such that for all terms t and all quantifier-free PV(α)-formulas C the fol-
lowing is not true:

∃w⩽t(x)“C(X,x,w, ⋅) is a halting computation of MX
ϕ on x”.

Proof. Note this is a Σb
2(α)-formula, so for every A ⊆ N defines in (N,A) a problem in (ΣP

2 )A.
Choose A such that (ΠP

2 )A ≠ (ΣP
2 )A and argue similarly as before.

3.4 Non-deterministic model-checkers

We shall also need model-checkers for Σ̂1,b
1 -formulas. As a first step we prove a techni-

cal lemma showing how to convert an explicit oracle PSPACE-machine MY into an ex-
plicit NEXP-machine N that first guesses the oracle Y on a guess tape, and then simu-
lates MY . As usual, we need to show that S1

2(α) is able to prove that this construction does
what is claimed.

Lemma 25. For every explicit PSPACE-machine MY,X̄ that, as explicit EXP-machine, is
witnessed by term rM(x̄), there are an explicit NEXP-machine N X̄ , a term rN(x̄), a polyno-
mial pN(m, n̄), and quantifier-free PV(α)-formulas F,G,H such that

(a) S1
2(α) ⊢ “Z is an accepting computation of MY,X̄ on x̄”→

“F (Z,Y, X̄, x̄, ⋅) is an accepting computation of N X̄ on x̄”.

(b) S1
2(α) ⊢ “Z is an accepting computation of N X̄ on x̄”→

“G(Z, X̄, x̄, ⋅) is an accepting computation of MH(Z,X̄,x̄,⋅),X̄ on x̄”

(c) S1
2(α) ⊢ rN(x̄) ⩽ pN(rM(x̄), ∣x̄∣),

(d) The term rN(x̄) witnesses N X̄ as explicit NEXP-machine.

Proof. Set r = rM(x̄). By assumption, the triple of terms rM(x̄), rM(x̄), rM(x̄) witnesses
that MY,X̄ is explicit. In particular, every query “z ∈ Y ?” made by MY,X̄ on x̄ satisfies ∣z∣ ⩽ ∣r∣
and hence z < 2∣r∣. The machine N X̄ on x̄ guesses a binary string Y of length 2∣r∣ on a guess
tape and then simulates MY,X̄ on x̄ as follows: an oracle query “z ∈ Y ?” of MY,X̄ is answered
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reading cell z+1 on the guess tape. As in the proof of Lemma 20, to prove (a)–(d) we need to
design the details of N in a way so that the j-th step of the computation of M is simulated
by N at a time easily computed from x̄, j. To reduce notation, in the following we drop any
reference to the oracles X̄ as they will remain fixed throughout the proof.

Description of N . The machine N on x̄ first computes r and two binary clocks initialized
to 0∣r∣+1 and 0∣r∣, respectively. To write Y of length 2∣r∣ on the guess tape the machine checks
whether the first clock equals 2∣r∣ and, if not, increases it by one and moves one cell to the
right on the guess tape. This is done in exactly 2∣r∣ + 5 steps. Once the clock equals 2∣r∣, the
machine moves back to cell 1 on the guess tape and non-deterministically writes 0 or 1 in each
step, except in the step that finally rebounds on cell 0 to cell 1. The terms are computed
with explicit P-machines according to Lemma 19. The initial computation of terms, and
initialization of clocks, takes time exactly ini(x̄) for some PV-function ini(x̄). Therefore,
the guess of Y takes exactly guess(x̄) ∶= ini(x̄) + 2∣r∣ ⋅ (2∣r∣ + 5) + 2∣r∣ + 1 steps. Moreover, S1

2

proves guess(x̄) ⩽ tg(x̄), where

tg(x̄) ∶= ∣ti(x̄)∣ + 2∣rM (x̄)∣ ⋅ (2∣rM(x̄)∣ + 5) + 2∣rM (x̄)∣ + 1,

for a suitable term ti(x̄) such that S1
2 proves ini(x̄) ⩽ ∣ti(x̄)∣.

The machine simulates r steps of MY using the second clock. Comparing this clock
with r and updating it takes 2∣r∣ + 2 steps. If the value of the clock is less than r, then a
step of MY is simulated by reading the (z+1)-cell of the guess tape where z is the content
of MY ’s oracle tape for Y . This is done as follows. The machine moves forward over the
guess tape, and rewinds back to cell 1. With each step forward it increases the first clock
by one and checks whether it equals z or 2∣r∣. If and when the clock equals z, it stores the
oracle bit read on the guess tape in its state space. Otherwise, i.e., z⩾2∣r∣, the machine stores
oracle bit 0. When the clock equals 2∣r∣, the scan of the guess tape ends, and the rewinding
to cell 1 starts (in the next step). Doing this takes time exactly 2∣r∣ ⋅ (2∣r∣ + 4) + 2∣r∣ + 1 and
the oracle bit is stored at time min{z,2∣r∣} ⋅ (2∣r∣ + 4). Thus, when the value of the second
clock is less than r, one step of MY is simulated in exactly

ts(x̄) ∶= (2∣rM(x̄)∣ + 2) + 2∣rM (x̄)∣ ⋅ (2∣rM(x̄)∣ + 4) + 2∣rM (x̄)∣ + 2

steps. Otherwise, the simulation halts in an accepting or rejecting state according to MY ’s
state. In total, the machine runs for exactly guess(x̄) + r ⋅ ts(x̄) + (2∣r∣ + 2) steps. The steps
of MY on x̄ are simulated at times

t(x̄, j) ∶= guess(x̄) + (j + 1) ⋅ ts(x̄)

for j < rM(x). The runtime is bounded by the term

rN(x̄) ∶= tg(x̄) + rM(x̄) ⋅ ts(x̄) + (2∣rM(x̄)∣ + 2)

Explicitness. We argue that this bound on the runtime ofN can be verified in S1
2(α), given

a halting computation Z of N on x̄. Note that, unlike the simulation in Lemma 20, a single
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step is simulated in possibly exponential time ts(x̄). However, this possibly exponential time
computation is simply described: SinceMY is an explicit PSPACE-machine, its configurations
can be coded by numbers. Now, given a number coding the configuration of MY within Z
at time t(j) ∶= t(x̄, j), say with Y -oracle query z, and given a time i < ts(x̄), we can compute
the configuration of the clocks and the state of the (to-be-)stored oracle-bit at time t(j) + i.
Now, quantifier-free induction suffices to prove that the oracle bit is stored at the desired
time and equals the content of the (z+1)-cell of the guess tape (or 0 if z ⩾ 2∣r∣). Quantifier-
free induction proves that the configurations of MY within Z at times t(j) for j < r are
successors of those preceding them. In particular, S1

2(α) proves that the configuration at
time rN(x̄) is halting. Space and query bounds can be similarly verified, so N is explicit and
witnessed by rN(x̄).

Proof of (a)–(d). For (a), the quantifier-free formula F concatenates an initial polynomial-
time computation of the terms and clocks, a guess of Y , and a simulation of Z. Each config-
uration of the guess of Y is computable in polynomial time. The simulation of Z stretches
each step of MY to a time ts(x̄) computation, each configuration of which is easily computed
from Y and Z in polynomial time. Quantifier-free induction proves that a Y -query z in Z
is answered according to the bit in the (z+1)-cell on the guess tape.

For (b), the quantifier-free formula H extracts the guess Y from Z and the quantifier-free
formula G extracts the simulated computation at the times t(x̄, j) for j < rM(x̄).

For (c) and (d), we already argued that the term rN(x̄) witnesses N as an explicit NEXP-
machine. The claim that rN(x̄) ⩽ pN(rM(x̄), ∣x̄∣) holds for a suitable polynomial pN follows
by inspection, and S1

2(α) proves it.

Now we can state the lemma that proves that every Σ̂1,b
1 -formula has a formally verified

model-checker. In its statement, the bounding term btψ(x̄) of a Σ̂1,b
1 -formula ψ = ψ(X̄, x̄) as

in Equation (5) is defined to be the bounding term btϕ(x̄) of its maximal Σ1,b
0 subformula

ϕ = ϕ(Y, X̄, x̄).

Lemma 26. For every Σ̂1,b
1 -formula ψ = ψ(X̄, x̄), there exists an explicit NEXP-machine N X̄

ψ ,
a term rψ(x̄), and a polynomial pψ(m, n̄), such that

(a) V0
2 ⊢ ψ(X̄, x̄) → ∃2Y “Y is an accepting computation of N X̄

ψ on x̄”.

(b) S1
2(α) ⊢ ¬ψ(X̄, x̄) → ¬∃2Y “Y is an accepting computation of N X̄

ψ on x̄”.

(c) S1
2(α) ⊢ rψ(x̄) ⩽ pψ(btψ(x̄), ∣x̄∣),

(d) the term rψ(x̄) witnesses N X̄
ψ as explicit NEXP-machine.

Furthermore, if the maximal Σ1,b
0 -subformula of ψ is a Πb

1(α)-formula, then

(e) S1
2(α) ⊢ ψ(X̄, x̄) ↔ ∃2Y “Y is an accepting computation of N X̄

ψ on x̄”.

Proof. Let ψ(X̄, x̄) = ∃2Y ϕ(Y, X̄, x̄) where ϕ = ϕ(Y, X̄, x̄) is a Σ1,b
0 -formula. Recall that the

bounding term of ψ is btψ(x̄) = btϕ(x̄). In what follows, to lighten the notation, we drop
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any reference to the set parameters X̄ in formulas, and to the oracles X̄ in machines, since
they remain fixed throughout the proof.

Let MY
ϕ be the explicit PSPACE-machine given by Lemma 20 applied to ϕ. Let rϕ and pϕ

be the term and the polynomial also given by that lemma. By Lemma 20.e, the term rϕ
witnesses MY

ϕ as explicit EXP-machine. Therefore, Lemma 25 applies to MY
ϕ and rϕ and we

get an explicit NEXP-machine Nψ, a term rψ, and a polynomial pψ. We prove (a)–(e) using

the quantifier-free PV(α)-formulas F,G,H also given by Lemma 25, and the Σ1,b
0 -formula Cϕ

given by Lemma 20.
For (a), argue in V0

2 and assume ψ(x̄) holds. Choose Y such that ϕ(Y, x̄) holds. By
Lemma 20.c, the set Z ∶= Cϕ(Y, x̄, ⋅) is a halting computation of MY

ϕ on x̄. Note that Z exists

by Σ1,b
0 -comprehension, which defines the theory V0

2. By Lemma 20.b, the computation Z
cannot be rejecting, so it is accepting. By Lemma 25.a, the set F ∶= F (Z,Y, x̄, ⋅) is an
accepting computation of Nψ on x̄. Note that F exists by ∆b

1(α)-comprehension.
For (b), argue in S1

2(α) and assume Y is an accepting computation of Nψ on x̄. By
Lemma 25.b we have that G(Y, x̄, ⋅) is an accepting computation of MZ

ϕ on x̄, for Z ∶=
H(Y, x̄, ⋅). Note that Z exists by ∆b

1(α)-comprehension. By Lemma 20.a we get that ϕ(Z, x̄, ⋅)
holds. Thus ψ(x̄) follows.

For (c) and (d), refer to Lemma 25.c, the choices of rψ and pψ, and the fact that btψ(x̄) =
btϕ(x̄). This also gives the claim that rψ(x̄) witnesses Nψ as explicit NEXP-machine.

For (e), argue in S1
2(α). If ¬ψ(x̄) holds, use (b). If ψ(x̄) holds, choose Y such that ϕ(Y, x̄)

holds. Then Lemma 20.g and ∆b
1(α)-comprehension imply that there exists an accepting

computation Z of MY
ϕ on x̄. Now argue as in (a).

4 Consistency for NEXP

In this section we define a suitable universal explicit NEXP-machine M0. We verify the
claim from the introduction that both theories {¬αcM0

∣ c ⩾ 1} and {¬βcM0
∣ c ⩾ 1} formalize

NEXP /⊆ P/poly. We finally prove that the consistency of both formalizations with the
theory V0

2 follows from Theorem 2 and our work on formally-verified model-checkers.

4.1 A universal machine

A canonical NEXP-complete problem called Q0 is:

Given ⟨N,x, t⟩ as input, where N is a (number coding a) non-deterministic ma-
chine, and x and t are numbers written in binary, does N accept x in at most t
steps?

A non-deterministic exponential-time machine M0 for Q0, on input ⟨N,x, t⟩, guesses and
verifies a time-t computation of N on x. We ask for an implementation of this so that a
weak theory can verify its correctness. This is a quite direct consequence of Lemmas 20
and 26.
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Lemma 27. There exists an explicit NEXP-machine M0 with one input-tape and without
oracles, such that for every explicit NEXP-machine M with one input-tape and without or-
acles, say witnessed by the term tM(x), there are quantifier-free PV(α)-formulas F (Z,x, u)
and G(Z,x, u) such that

(a) S1
2(α) ⊢ “Z is an accepting computation of M on x”→

“F (Z,x, ⋅) is an accepting computation of M0 on ⟨M,x, tM(x)⟩”,
(b) S1

2(α) ⊢ “Z is an accepting computation of M0 on ⟨M,x, tM(x)⟩”→
“G(Z,x, ⋅) is an accepting computation of M on x”.

In particular,

(c) S1
2(α) ⊢ ∃2Z“Z is an accepting computation of M0 on ⟨M,x, tM(x)⟩”↔

∃2Z“Z is an accepting computation of M on x”.

Proof. Let π1, π2, π3 be PV-functions that extract x1, x2, x3 from z = ⟨x1, x2, x3⟩. Define Πb
1-

formulas as follows:

ϕ1(Z, z) ∶= ϕ2(Z,π1(z), π2(z), π3(z)),
ϕ2(Z,N,x, t) ∶= “Z is an accepting time-t computation of N on x”.

Let MZ
1 be the machine given by Lemma 20 applied to ϕ1 = ϕ1(Z, z), and let r1(z) be

the corresponding term. Since ϕ1 is a Πb
1(α)-formula, let t1(z) and C1(Z, z,w, u) be the

term and the quantifier-free PV(α)-formula given by Lemma 20.g. We set M0 to the ex-
plicit NEXP-machine given by Lemma 25 applied to MZ

1 with term r1(z) witnessing it
as explicit EXP-machine by Lemma 20.e. In the proof of (a)–(b) we use the quantifier-
free PV(α)-formulas F1,G1,H1 given by Lemma 25 on MZ

1 .
For (a) we set F (Z,x, u) ∶= F1(C,Z, z, u) where C abbreviates C1(Z, z, t1(z), ⋅) and in

both cases z abbreviates ⟨M,x, tM(x)⟩. Argue in S1
2(α) and assume Z is an accepting com-

putation of M on x. Since M is explicit and tM(x) is a term witnessing it, we have that Z is
an accepting time-t computation of M on x, for t ∶= tM(x). It follows that ϕ2(Z,M,x, tM(x))
holds, and hence ϕ1(Z, z) holds. Since ϕ1 is a Πb

1(α)-formula, by Lemma 20.g we have that
the set C ∶= C1(Z, z, t1(z), ⋅) is an accepting computation of MZ

1 on z. Such a C exists by
∆b

1(α)-comprehension because C1 is a quantifier-free PV(α)-formula. By Lemma 25.a we get
that the set F ∶= F (Z,x, ⋅) = F1(C,Z, z, ⋅) is an accepting computation of M0 on z; i.e., the
right-hand side of the implication in (a) holds. Again, F exists by ∆b

1(α)-comprehension.
For (b) we set G(Z,x, u) ∶= G1(Z, z, u) where, again, z abbreviates ⟨M,x, tM(x)⟩. Argue

in S1
2(α) and assume Z is an accepting computation of M0 on z. Then, by Lemma 25.b

we have that the set G ∶= G(Z,x, ⋅) = G1(Z, z, ⋅) is an accepting computation of MH
1 on z

for H ∶= H1(Z, z, ⋅). The two sets G and H exist by ∆b
1-comprehension. Now, Lemma 20.a

implies that ϕ1(H,z) holds; i.e., H is an accepting time-t computation of M on x, for
t ∶= tM(x), and hence also an accepting computation of M on x. This shows that the
right-hand side in the implication in (b) holds.

The final statement follows from (a) and (b) by ∆b
1(α)-comprehension.
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4.2 Formalization

The introduction claimed that the theories {¬αcM0
∣ c ⩾ 1} and {¬βcM0

∣ c ⩾ 1} both formalize
NEXP /⊆ P/poly. This is easy to check:

Proposition 28. The following are equivalent.

(a) NEXP /⊆ P/poly.

(b) {¬αcM0
∣ c ∈ N} is true.

(c) {¬αcM ∣ c ∈ N} is true for some explicit NEXP-machine M .

(d) {¬βcM0
∣ c ∈ N} is true.

(e) {¬βcM ∣ c ∈ N} is true for some explicit NEXP-machine M .

Proof. We show that (a)-(b)-(c) are equivalent, and that (a)-(d)-(e) are equivalent. To
see that (a) implies (b), assume (b) fails; i.e., αcM0

is true for some c ∈ N. Then Q0 ∈
SIZE[nc]. As Q0 is NEXP-complete, (a) fails. That (b) implies (c) is trivial since M0 is an
explicit NEXP-machine. That (c) implies (a) is obvious since every explicit NEXP-machine
defines a language in NEXP. To see that (a) implies (d) argue as in the proof that (a)
implies (b) swapping β for α. That (d) implies (e) is trivial since M0 is an explicit NEXP-
machine. Finally, that (e) implies (a) follows from the Easy Witness Lemma 4.

It is straightforward to see that the equivalences (b)-(c) and (d)-(e) in Proposition 28 have
direct proofs (i.e., proofs that do not rely on the easy witness lemma). We use Lemma 27
to prove this on the formal level, for both formalizations.

Lemma 29. For every c ∈ N and every 1-input explicit NEXP-machine M without oracles
there is d ∈ N such that S1

2(α) proves (αcM0
→ αdM) and (βcM0

→ βdM).

Proof. We refer to the implication between α’s as the α-case, and to the implication be-
tween β’s as the β-case. Both have similar proofs, so we prove them at the same time.
Let M be witnessed by the term tM(x). Let F (Z,x, u) and G(Z,x, u) be the formulas given
by Lemma 27 on M . Argue in S1

2(α) and assume αcM0
or βcM0

, as appropriate. Let n ∈ Log
>1

be given. We aim to find a circuit C in the α-case, and two circuits C,D in the β-case,
witnessing αeM or βeM , respectively, for the given n, and for suitable e ∈ N. Choose d ∈ N such
that ∣⟨M,x, tM(x)⟩∣ < nd for all x < 2n. In the α-case, let C0 be a circuit with ∣C0∣ < mc

that witnesses αcM0
for m ∶= nd. In the β-case let C0,D0 be circuits with ∣C0∣, ∣D0∣ <mc that

witness βcM0
for m ∶= nd.

Choose C such that C(x) = C0(⟨M,x, tM(x)⟩) and e ∈ N such that C < 2n
e
. This C will

be the witness-circuit in the α-case, and the first of the two witness-circuits in the β-case.
For the latter, we choose the second circuit D as follows. Choose formulas F,G according
to Lemma 27. By Lemma 14 there is a circuit D such that

D(x,u) ↔ G(D0(⟨M,x, tM(x)⟩, ⋅), x, u)
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for all x,u with x < 2n. Then C,D < 2n
e

for suitable e ∈ N. This is the e ∈ N we choose in
the β-case.

We claim that C witnesses αeM for the given n in the α-case, and C,D witness βeM for
the given n in the β-case. Let x < 2n and choose z ∶= ⟨x,M, tM(x)⟩. Let Z be any set
and let Y ∶= F (Z,x, ⋅), which exists by ∆b

1(α)-comprehension. If C(x) = 0, then C0(z) = 0
and both αcM0

and βcM0
imply that Y is not an accepting computation of M0 on z. By

Lemma 27.a this means that Z is not an accepting computation of M on x. In both cases,
this completes one half of the verification of the witnesses. If C(x) = 1, then C0(z) = 1
and αcM0

implies that there exists an accepting computation Y of M0 on z, and βcM0
implies

that Y ∶=D0(z, ⋅) is such an accepting computation of M0 on z. But then Lemma 27.b implies
that Z ∶= G(Y,x, ⋅), which exists by ∆b

1(α)-comprehension, is an accepting computation of M
on x. In both cases, this completes the other half of the verification of the witness: in the β-
case, because Z =D(x, ⋅).

4.3 Consistency

For every explicit NEXP-machine M , which by default has one input-tape and no oracles,
recall that αcM ∶= αcψ for ψ as in Definition 3. For a theory T that extends S1

2(α), consider
the following A-statements for T:

A: T + {¬αcM ∣ c ∈ N} is consistent for some explicit NEXP-machine M ,
A0: T + {¬αcM0

∣ c ∈ N} is consistent.

Consider also the corresponding B-statements for T:

B: T + {¬βcM ∣ c ∈ N} is consistent for some explicit NEXP-machine M ,
B0: T + {¬βcM0

∣ c ∈ N} is consistent.

Next, recall the statement of Theorem 2, which we now state for an arbitrary theory T that
extends S1

2(α). We refer to it as the C-statement, or the direct consistency statement for T:

C: T + {¬αcψ ∣ c ∈ N} is consistent for some Σ̂1,b
1 -formula ψ(x).

Let us explicitly point out that the formula ψ(x) of the C-statement has only one free variable
of the number sort, and no free variables of the set sort.

Lemma 30. For every c ∈ N and every explicit NEXP-machine M with one input-tape and
without oracles, S1

2(α) proves (βcM → αcM).

Proof. The formula βcM states that the (single) existential set-quantifier in αcM is witnessed
by Dx(⋅), and this set exists by ∆b

1(α)-comprehension.

We view the following proposition as justification that our formalization is faithful. It
takes record of which implications in Proposition 28 hold over weak theories.

26



Proposition 31. Let T be a theory extending S1
2(α) and consider the A,B,C-statements

for T. Then, the following hold: the A-statements are equivalent, the B-statements are
equivalent, and both A-statements imply both B-statements as well as the C-statement.

Proof. Lemma 30 and compactness show that each A-statement implies the correspond-
ing B-statement. Further, Lemma 29 proves that the A-statements are equivalent, and that
the B-statements are equivalent; for the back implications note that M0 is certainly an ex-
plicit NEXP-machine. Further, it is obvious from the definition of αcM that A implies C and
hence both A-statements imply C.

When T = V0
2, we argue below that the model-checker lemmas can be used to show that

the implication A-to-C in Proposition 31 can be reversed. It will follow that all A,B,C-
statements for V0

2 are equivalent. Composing with Theorem 2 we get the following corollary,
which entails Theorem 7.

Theorem 32. For T = V0
2 all statements C, A, A0, B, B0 are true.

Proof. Theorem 2 states that C is true for T = V0
2. Hence, by Proposition 31, it suffices to

show that C implies A for T = V0
2. But this follows from Lemma 26.a and 26.b. Indeed, these

state that every Σ̂1,b
1 -formula ψ(x) is V0

2-provably equivalent to (3) for suitable M .

5 Consistency for barely superpolynomial time

In this section we fix r ∈ PV such that

(r0) the function x↦ r(x) is computable in time O(r(x));
(r1) S1

2 ⊢ (∣x∣=∣y∣ → r(x)=r(y));
(r2) S1

2 ⊢ (∣x∣<∣y∣ → r(x)<r(y));
(r3) for every polynomial p there is f ∈ PV such that S1

2 ⊢ p(r(x)) ⩽ r(f(x));
(r4) for every c ∈ N there is nc ∈ N such that N ⊧ ∀x (∣x∣>nc → r(x)>∣x∣c).

We call a function r satisfying (r4) length-superpolynomial. An explicit NTIME(poly(r(x)))-
machine is an explicit NEXP-machine M that is witnessed by p(r(x)) for some polynomial p.

Here, we deviate from our convention that explicit machines are witnessed by terms
and allow PV-symbols. In the notation NTIME(poly(r(x))), the x is there to emphasize
that the runtime is measured as a function of the input x and not its length. If we want
to measure runtime as a function of the length of the input, then we use n instead of x.
For example, NP = NTIME(nO(1)) is given by the collection of explicit NTIME(poly(r(x)))-
machines with r(x) = ∣x∣, and the classes NE = NTIME(2O(n)) and NTIME(nO(log(k) n)) are
given by the collections of explicit NTIME(poly(r(x)))-machines for r(x) = 2∣x∣ and r(x) =
∣x∣log(k) ∣x∣, respectively; the latter two satisfy (r0)-(r4), if k ⩾ 1 in the second.

Remark 33. (r3) is not implied by the other conditions.
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Proof. We shall define a function r(x) which consists of slow growing segments interspersed
with fast growing segments. First, choose a fast growing function R ∈ PV so that R(x)
depends only on ∣x∣ and so that R(x)2 ⩾ R(x) + ∣x∣ω(1). For instance R(x) = 2∣x∣ works.
Second, define ` ∶ N → N be increasing with `(c + 1) > `(c)c + 1 and with R(x)2 ⩾ R(x) + ∣x∣c
for all x ⩾ 2`(c)−1. Let xc ∶= 2`(c)−1 and yc ∶= 2`(c)

c − 1 be the first and last numbers of length
`(c) and `(c)c, respectively. Finally, let r(x) ∶= R(xc) + ∣x∣ − ∣xc∣ for xc ⩽ x ⩽ yc, and let
r(x) ∶= R(x) for yc < x < xc+1. The slow growing segments of r(x) are where xc ⩽ x ⩽ yc, and
here r(x) is chosen to be as slow growing as possible while satisfying (r1) and (r2).

Clearly, ` and R can be chosen so that r(x) is in PV and properties (r0), (r1), (r2),
and (r4) hold for r. We claim (r3) fails for p(x) = x2.

Indeed, let f ∈ PV be given and choose c such that ∣f(xc)∣ < ∣xc∣c = ∣yc∣. Then

p(r(xc)) = r(xc)2 = R(xc)2 ⩾ R(xc) + ∣xc∣c = R(xc) + ∣yc∣ > r(yc) > r(f(xc))

where the last inequality follows from (r2).

5.1 A more general universal machine

We start with the analogue of Lemma 27.

Lemma 34. There is an explicit NTIME(poly(r(x)))-machine Mr with one input-tape and
without oracles such that for every explicit NTIME(poly(r(x)))-machine M with one input-
tape and without oracles there are fM(x) ∈ PV and quantifier-free PV(α)-formulas FM
and GM such that

(a) S1
2(α) ⊢ “Z is an accepting computation of M on x”→

“FM(Z,x, ⋅) is an accepting computation of Mr on ⟨M,x, fM(x)⟩”.
(b) S1

2(α) ⊢ “Z is an accepting computation of Mr on ⟨M,x, fM(x)⟩”→
“GM(Z,x, ⋅) is an accepting computation of M on x”,

In particular,

(c) S1
2(α) ⊢ ∃2Z“Z is an accepting computation of Mr on ⟨M,x, fM(x)⟩”↔

∃2Z“Z is an accepting computation of M on x”

Proof. Choose according to Lemma 20 a machine MZ
ϕ and a term rϕ(N,x, t) for

ϕ(Z,N,x, t) ∶= “Z is an accepting time-t computation of N on x”.

By the comment after Equation (7), there is a polynomial p1 so that btϕ(N,x, t)⩽p1(t, ∣N ∣, ∣x∣)
provably in S1

2. By Lemma 20.d, there is a polynomial p2 so that rϕ(N,x, t)⩽p2(t, ∣N ∣, ∣x∣)
provably in S1

2. For MZ
ϕ choose a machine M1 and a term r1(N,x, t) according to Lemma 25.

By Lemma 25.c, there is a polynomial p3 so that r1(N,x, t) ⩽ p3(t, ∣N ∣, ∣x∣).
Define Mr to compute on z as follows. It first checks that z = ⟨N,x, t⟩ for certain N,x, t

and computes ⟨N,x, r(t)⟩; if the check fails, the machine stops. After this initial compu-
tation Mr runs M1 on ⟨N,x, r(t)⟩. The initial computation can be implemented with ex-
plicit P-machines (Lemma 19), say with time bound p4(∣z∣) for a polynomial p4. Then Mr is
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an explicit NTIME(poly(r(x)))-machine. Indeed, it is witnessed by p4(∣z∣)+p3(r(z), ∣z∣, ∣z∣) ⩽
p5(r(z)) for a polynomial p5. Here we use that S1

2-provably t,N, x are bounded by z, and r
is non-decreasing with r(x) ⩾ ∣x∣ by (r1) and (r2).

Let M be an explicit NTIME(poly(r(x)))-machine, say witnessed by pM(r(x)) for a
polynomial pM . Choose fM for pM according to (r3).

For (a), argue in S1
2 and assume Z is an accepting computation of M on x. Then Z is

time pM(r(x)), so by (r3) we can repeat the halting configuration to get an accepting time
r(fM(x)) computation Z0 of M on x, i.e., ϕ(Z0,M,x, r(fM(x))) holds. By Lemma 20.g, the
set Z1 ∶= Cϕ(Z0,M,x, r(fM(x)), tϕ(M,x, r(fM(x))), ⋅) is an accepting computation of MZ0

ϕ

on the triple M,x, r(fM(x)). By Lemma 25.a, the set Z2 ∶= F (Z1, Z0,M,x, r(fM(x)), ⋅) is
an accepting computation of M1 on the triple M,x, r(fM(x)). Compose Z2 with an initial
computation of Mr on z ∶= ⟨M,x, fM(x)⟩ to get an accepting computation Z3 of Mr on z. It
is clear that Z3 = FM(Z,x, ⋅) for some quantifier-free PV(α)-formula FM .

For (b), argue in S1
2 and let Z be an accepting computation of Mr on ⟨M,x, fM(x)⟩.

From Z extract an accepting computation Z0 of M1 on the triple M,x, r(fM(x)). By
Lemma 25.b, Z1 ∶= G(Z0,M,x, r(fM(x)), ⋅) is an accepting computation of MZ2

ϕ on the
triple M,x, r(fM(x)) where Z2 ∶= H(Z0,M,x, r(fM(x)), ⋅). Clearly, Z0 can be described by
a quantifier-free PV(α)-formula, so Z1 and Z2 exist by ∆b

1(α)-comprehension. Hence, by
Lemma 20.a, ϕ(Z2,M,x, r(fM(x))) holds, i.e., Z2 is an accepting time-r(fM(x)) computa-
tion of M on x. By (r3) we can shrink Z2 to time pM(r(x)) and get an accepting computa-
tion Z3 of M on x. Clearly, Z3 = GM(Z,x, ⋅) for some quantifier-free PV(α)-formula GM .

Finally, (c) follows from (a) and (b) by ∆b
1(α)-comprehension.

5.2 Formalization

To faithfully formalize NTIME(poly(r(x))) /⊆ P/poly we intend to follow the path paved in
Section 4. Some modification are, however, required. First, we need an analogue of the Easy
Witness Lemma. This has been achieved by Murray and Williams [27]:

Lemma 35. Let t(n) be a function that is increasing, time-constructible, and superpoly-
nomial. If NTIME(poly(t(n))) ⊆ P/poly, then every NTIME(poly(t(n)))-machine M has
polynomial-size witness circuits.

That t(n) is superpolynomial means that for every c ∈ N there is nc ∈ N such that t(n) > nc
for all n > nc. That M has witness circuits of size s(n), where s ∶ N→ N is a function, means
that for every x ∈ {0,1}∗ that is accepted by M , there exists a circuit D of size at most s(∣x∣)
such that tt(D) encodes an accepting computation of M on x. Note that, in contrast to
Lemma 4, the circuit D can depend on x. We do not know whether Lemma 35 holds true
for oblivious witness circuits as in Lemma 4.

Lemma 35 follows from the central result of [27]:

Lemma 36 (Lemma 4.1 in [27]). There are e, g ∈ N with e, g ⩾ 1 such that for all increasing
time-constructible functions s(n) and t(n), and for s2(n) ∶= s(en)e, if NTIME(O(t(n)e)) ⊆
SIZE(s(n)), then every NTIME(t(n))-machine has witness circuits of size s2(s2(s2(n)))2g,
provided that s(n) < 2n/e/n and t(n) ⩾ s2(s2(s2(n)))d for a sufficiently large d ∈ N.

29



Proof of Lemma 35 from Lemma 36. We start noting that there is a non-deterministic ma-
chine U that decides the problem Q0 defined in Section 4.1 in time O(∣x∣ + ∣M ∣ ⋅ t2) on input
⟨M,x, t⟩: after reading the input, guess the non-deterministic choices of M and determin-
istically in time cM ⋅ t2 simulate the computation path of M on input x as determined by
those choices, where cM is a simulation overhead constant that depends only on M and that
we may assume is at most ∣M ∣.

Assume NTIME(poly(t(n))) ⊆ P/poly. Fix c ∈ N with c ⩾ 1 and an NTIME(t(n)c)-
machine M . We intend to apply Lemma 36 to M for a suitably chosen s(n), with t(n)c in
the role of t(n). For that, we will need to show that NTIME(O(t(n)ce)) ⊆ SIZE(s(n)) for
the chosen s(n), where e ⩾ 1 is the first of the two constants in Lemma 36.

The restriction of U to inputs of the form ⟨M,x, t(∣x∣)ce+1⟩ runs in time O(∣x∣ + ∣M ∣ ⋅
t(∣x∣)2ce+2). Therefore, the set of pairs ⟨M,x⟩ such that U accepts on input ⟨M,x, t(∣x∣)ce+1⟩
is in NTIME(poly(t(n))), so by the assumption, it is decided by circuits of size p(∣⟨M,x⟩∣)
for a suitable polynomial p(n).

Now, choose s(n) as a polynomial such that for every non-deterministic Turing ma-
chine M and every x that is sufficiently long with respect to M it holds that p(∣⟨M,x⟩∣) <
s(∣x∣). We verify that NTIME(O(t(n)ce)) ⊆ SIZE(s(n)): if B is a set in NTIME(O(t(n)ce))
and M is a non-deterministic Turing machine that witnesses this, then, for sufficiently long x,
we have that x is in B if and only if U accepts on ⟨M,x, t(∣x∣)ce+1⟩. Hence, by the choice
of s(n), the set B is in SIZE(s(n)).

The requirements of Lemma 36 that s(n) < 2n/e/n and t(n)c ⩾ s2(s2(s2(n)))d for a
sufficiently large constant d ∈ N are obviously met because s(n) is polynomially bounded
and t(n) is superpolynomial. Lemma 36 applied to s(n) and t(n)c then gives that M has
witness circuits of size s2(s2(s2(n)))2g, where g ⩾ 1 is the second of the two constants in
Lemma 36. Since s(n) is polynomially bounded, also this function is polynomially bounded.
Thus, M has polynomial-size witness circuits.

Lemma 35 enables a ∀Π1,b
1 -formalization of NTIME(poly(r(x))) /⊆ P/poly:

Definition 37. For an explicit NTIME(poly(r(x)))-machine M with one input-tape and
without oracles define

γcM ∶= ∀n∈Log
>1 ∃C<2n

c ∀x<2n ∃D<2n
c ∀2Y

(C(x)=0 → ¬“Y is an accepting computation of M on x”) ∧
(C(x)=1 → “D(⋅) is an accepting computation of M on x”).

Let Mr be the explicit NTIME(poly(r(x))))-machine of Lemma 34. Define

“NTIME(poly(r(x))) /⊆ P/poly” ∶= {¬γcMr
∣ c ∈ N}.

The following is the analogue of Lemma 30 and is similarly proved.

Lemma 38. For every c ∈ N and every explicit NTIME(poly(r(x)))-machine M with one
input-tape and without oracles, S1

2(α) proves (γcM → αcM).
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Lemma 39. For every c ∈ N and every explicit NTIME(poly(r(x)))-machine M with one
input-tape and without oracles there is d ∈ N such that S1

2(α) proves (αcMr
→ αdM) and

(γcMr
→ γdM).

Proof. This is proved similarly as Lemma 29. We only treat the γ-case. Choose fM(x) ∈ PV
according to Lemma 34. Argue in S1

2(α) + γcMr
. Let n ∈ Log

>1 be given. Choose e ∈ N such
that ∣⟨M,x, fM(x)⟩∣ < ne for all x < 2n. Choose C0 witnessing γcMr

for m ∶= ne. Choose a
circuit C such that C(x) = C0(⟨M,x, fM(x)⟩) for all x < 2n. We shall choose d large enough
such that C ⩽ 2n

d
and choose C to witness the first existential quantifier in γdM for n. To

verify this choice, let x < 2n be given.
If C(x) = 0, then there are no accepting computations of Mr on ⟨M,x, fM(x)⟩. By

Lemma 34.a and ∆b
1(α)-comprehension, there are no accepting computations of M on x.

If C(x) = 1, then there is a circuit D0 < 2m
c

such that D0(⋅) is an accepting computa-
tion of Mr on ⟨M,x, fM(x)⟩. By Lemma 34.b, GM(D0(⋅), x, ⋅) is an accepting computation
of M on x. By Lemma 14 there is a circuit D such that (D(u) ↔ GM(D0(⋅), x, u)) for
all u ⩽ ⟨pM(r(x)), pM(r(x), ∣M ∣)⟩ where pM is a polynomial such that pM(r(x)) witnesses M .
Choose d ∈ N large enough such that D < 2n

d
.

Finally, we are in the position to verify that the formulas considered formalize the in-
tended circuit lower bound.

Proposition 40. The following are equivalent.

(a) NTIME(poly(r(x))) /⊆ P/poly.

(b) {¬αcMr
∣ c ∈ N} is true.

(c) {¬αcM ∣ c ∈ N} is true for some explicit NTIME(poly(r(x)))-machine M .

(d) {¬γcM ∣ c ∈ N} is true for some explicit NTIME(poly(r(x)))-machine M .

(e) {¬γcMr
∣ c ∈ N} is true.

Proof. To see that (a) implies (b), assume (b) fails, so αcMr
is true for some c ∈ N. Then the

problem accepted by Mr is in SIZE[nc]. By Lemma 34 this problem is NTIME(poly(r(x)))-
hard under polynomial time reductions. Since P/poly is downward-closed under polynomial-
time reductions, (a) fails. The claim that (b) implies (c) is trivial since Mr is an explicit
NTIME(poly(r(x)))-machine. That (c) implies (d) follows from Lemma 38. That (d) im-
plies (e) follows from Lemma 39. That (e) implies (a) follows from Lemma 35: by (r1)
there is a function t(n) such that t(∣x∣) = r(x) for every x; then NTIME(poly(r(x))) =
NTIME(poly(t(n))) where the time-bound on the left is written as a function of the input x
and on the right as a function of its length n = ∣x∣; further, t(n) is time-constructible by (r0)
and (r1), increasing by (r2) and superpolynomial by (r4).

5.3 Consistency

For a theory T that extends S1
2(α), the new A,B-statements are the following:
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Ar: T + {¬αcM ∣ c ∈ N} is consistent for some explicit NTIME(poly(r(x)))-machine M ,
Br: T + {¬γcM ∣ c ∈ N} is consistent for some explicit NTIME(poly(r(x)))-machine M ,
A0r: T + {¬αcMr

∣ c ∈ N} is consistent.
B0r: T + {¬γcMr

∣ c ∈ N} is consistent.

To define the corresponding C-statement, we say that the bounding term of a Σ̂1,b
1 -formula ψ =

ψ(x) is polynomial in r(x) if S1
2 proves bt(ψ) ⩽ p(r(x)) for some polynomial p(n). Then:

Cr: T + {¬αcψ ∣ c ∈ N} is consistent for some Σ̂1,b
1 -formula ψ = ψ(x) whose

bounding term is polynomial in r(x).

Before we prove the analogue of Theorem 32 we state the proof complexity lower bound
on which it is based. Recall the Pigeonhole Principle formula PHP(x) from the proof
of Theorem 2. The first strong lower bounds on the provability of PHP(x) were due to
Ajtai [1]; here we need the later quantitative improvements from [4]. This can be called
the gem of proof complexity. We use it in the following form. Recall that a function is called
length-superpolynomial when it satisfies (r4).

Theorem 41 (Gem Theorem). For every length-superpolynomial PV-function s(x), the the-
ory V0

2 does not prove PHP(s(x)).

Proof. Consider the Paris-Wilkie propositional translations Fn ∶= ⟨PHP(s(n))⟩n for n ∈ N;
see [22, Definition 9.1.1] in the form used in [22, Corollary 9.1.4]. Assume for contradiction
that PHP(s(x)) is provable in V0

2. Then, there exist constants c, d ∈ N such that for every
sufficiently large n ∈ N, the propositional formulas Fn have Frege proofs of depth d and
size 2∣n∣

c
: apply [22, Corollary 9.1.4] with the function f(x) = x#x and note that V0

2 is
conservative over the theory considered there: from a model of that theory, get a model
of V0

2 by just adding all bounded sets that are definable by bounded formulas.
Now, let n ∈ N be large enough to ensure this upper bound and at the same time such

that s(n) > ∣n∣6dc, which exists because s(x) is length-superpolynomial. Setting m ∶= s(n),
this means that the propositional formula PHPm+1

m ∶= Fn has Frege proofs of depth d and
size bounded by an exponential in m1/6d . It is well-known that if m is sufficiently large, then
this is false; see [22, Theorem 12.5.3].

Finally we can prove the analogue of Theorem 32, which entails Theorem 9.

Theorem 42. For T = V0
2, all statements Cr, Ar, A0r, Br, B0r are true.

Proof. The analogue of Proposition 31 for the Ar,Br,Cr-statements has the same proof using
Lemmas 38, 39 in place of Lemmas 30, 29. Note that the claim that Ar implies Cr follows from
the remark after Equation (9). As in the proof of Theorem 32, that Cr implies Ar for T = V0

2

follows from Lemma 26.a and 26.b. We also need 26.c along with r(x) ⩾ ∣x∣ by (r1) and (r2)
to guarantee that the explicit NEXP-machine is an explicit NTIME(poly(r(x)))-machine.

We are left to show that Cr holds for T = V0
2. This is proved by tightening the choice of

parameters in the argument that proved Theorem 2.
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Consider the formula
y⩽r(x) ∧ ¬PHP(y) (13)

and write this as ψ = ψ(z), where z = ⟨x, y⟩; i.e., x = π1(z) and y = π2(z) with π1 and π2

as PV-functions. The formula ψ(z) is logically equivalent to a Σ̂1,b
1 -formula whose bounding

term is polynomial in r(z) by (r1) and (r2). We claim that V0
2 + {¬αcψ ∣ c ∈ N} is consistent,

which will give Cr.
For the sake of contradiction, assume otherwise. By compactness, there exists c ∈ N

such that V0
2 proves αcψ. As in the proof of Theorem 2, we show that this implies that V0

2

proves PHP(r(x)), which contradicts the Gem Theorem by (r4).
Argue in V0

2 and set n ∶= max{∣z∣,2}, where z = ⟨x, r(x)⟩. Then αcψ on n gives a circuit C
such that, for all u⩽z and v⩽z with ⟨u, v⟩⩽z, we have

¬C(⟨u, v⟩) ↔ (v⩽r(u) → PHP(v)).

Noting that ⟨x, v⟩⩽z for all v⩽r(x), fix u to x in the circuit C(⟨u, v⟩) and get a circuit D(v)
such that

∀v⩽r(x) (¬D(v) ↔ PHP(v)).
Recall that V0

2 proves that PHP(x) is inductive. Hence, plugging ¬D(v) for PHP(v)
gives PHP(r(x)) by quantifier-free PV(α)-induction.

6 Magnification

For this section, a ∃2Πb
1(α)-formula is a Σ̂1,b

1 -formula as in (5) in which its maximal Σ1,b
0 -

subformula ϕ(X̄, Y, x̄) is a Πb
1(α)-formula.

Lemma 43. For every c ∈ N and every ∃2Πb
1(α)-formula ψ(x̄, y) without free set variables,

the theory S1
2(α) + βcM0

proves

∃C ∀y⩽z (C(y)=1↔ ψ(x̄, y)). (14)

Proof. Argue in S1
2(α)+βcM0

. For simplicity assume x̄ is empty. For ψ = ψ(y) choose M ∶= Nψ

according to Lemma 26. Note that since ψ does not have free set variables, M is without
oracles. By Lemma 26.e, the formula ψ(y) is equivalent to

∃2Y “Y is an accepting computation of M on y”.

By Lemmas 30 and 29 we have αdM for some d ∈ N. Let z be given and choose n ∈ Log
>1 with

∣z∣ ⩽ n. Let C witness αdM for n. This C witnesses (14).

It follows that over S1
2(α) the circuit upper bound statement βcM0

implies comprehension
for ∃2Πb

1(α)-formulas without free set variables. For later reference, we note that allowing

free set variables entails full Σ̂1,b
1 -comprehension:

Lemma 44. S1
2(α) + ∃2Πb

1(α)-comprehension proves V1
2.
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Proof. Let T denote S1
2(α) + ∃2Πb

1(α)-comprehension. Since S1
2(α) + Σ1,b

1 -comprehension
proves V1

2, it suffices to show that the set of formulas that are T-provably equivalent to
an ∃2Πb

1(α)-formula is closed under ∨, ∧, ∃2Y , ∃y⩽t(x̄) and ∀y⩽t(x̄). We verify the latter:
the formula

∀y⩽u ∃2Y ϕ(X̄, Y, x̄, u, y)
with ϕ(X̄, Y, x̄, u, y) a Πb

1(α)-formula is T-provably equivalent to

∃2Z ∀y⩽u ϕ(X̄,Z(y, ⋅), x̄, u, y),

where Z(y, v) abbreviates the atomic formula ⟨y, v⟩ ∈ Z. Indeed, assuming the former for-
mula, the latter is proved by induction on u. As the latter is an ∃2Πb

1(α)-formula, induction
for it follows from comprehension.

The following lemma makes precise the idea sketched in Section 1.3.

Lemma 45. For every c ∈ N and every model (M,X) of S1
2(α) + βcM0

, there exists Y ⊆ X
such that (M,Y) is a model of V1

2.

Proof. By ∆b
1(α)-comprehension, for every C ∈M that is a circuit in the sense of M there

is a set A ∈ X such that
(M,X) ⊧ ∀y (C(y)=1↔ y∈A).

By extensionality such a set A is uniquely determined by C and we write Ĉ for it. For these
two claims we used the fact that C(y)=1→ y<2∣C∣ holds in every model of S1

2.
Let

Y ∶= {Ĉ ∈ X ∣ C ∈M is a circuit in the sense of M}.

Since Y ⊆ X , the model (M,Y) satisfies all Π1,b
1 -sentences which are true in (M,X), so in

particular extensionality, set boundedness, Σb
1(α)-induction, and βcM0

.
The point of the model (M,Y) is that it eliminates set parameters. More precisely,

let ϕ(x̄) be a Σ1,b
∞ -formula with parameters from (M,Y), and define ϕ∗(x̄) as follows: replace

every subformula of the form t∈Ĉ where t is a term (possibly with number parameters
from M) and Ĉ is a set parameter from Y by C(t)=1 (i.e., by eval(C, t)=1). Note every set
parameter in ϕ(x̄) becomes a number parameter in ϕ∗(x̄), and

(M,Y) ⊧ ∀x̄ (ϕ(x̄) ↔ ϕ∗(x̄)). (15)

Claim: (M,Y) ⊧ S1
2(α).

Proof of the Claim. It suffices to show that (M,Y) models ∆b
1(α)-comprehension. So let

ϕ(x) be a ∆b
1(α)-formula with parameters from (M,Y) and a ∈M . Then ϕ∗(x) is a number-

sort formula, namely a ∆b
1-formula with (number) parameters from M . Since M ⊧ S1

2, Buss’
witnessing theorem implies that ϕ∗(x) is equivalent in M to a quantifier-free PV-formula
with the same parameters. Lemma 14 applied to n ∶= max{∣a∣,2} gives a circuit C in the
sense of M such that

M ⊧ ∀x<2n(C(x) = 1↔ ϕ∗(x)).
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Then Ĉ ∈ Y and (M,Y) satisfies ∀y⩽a(y ∈ Ĉ ↔ ϕ(y)) by (15). ⊣
By the Claim and Lemma 44, it suffices to show that (M,Y) has ∃2Πb

1(α)-comprehension.
Let ψ(x) be a ∃2Πb

1(α)-formula with parameters from (M,Y), and let a ∈ M . Then ψ∗(x)
is a ∃2Πb

1(α)-formula without set parameters. We already noted that (M,Y) ⊧ βcM0
. Hence,

by the Claim, Lemma 43 applies and gives C ∈M such that

(M,Y) ⊧ ∀x⩽a (C(x)=1↔ ψ∗(x)).

Then Ĉ ∈ Y and (M,Y) satisfies ∀x⩽a (x∈Ĉ ↔ ψ(x)) by (15).

As announced in Section 1.3 this lemma implies Theorems 10 and 11.

Proof of Theorem 10. Assume that T is inconsistent with “NEXP /⊆ P/poly”. By compact-
ness, T proves βcM0

for some c ∈ N. Let ψ be a number sort consequence of V1
2 and (M,X) a

model of T. We have to show that M ⊧ ψ. But by Lemma 45 there exists Y ⊆ X such that
(M,Y) ⊧ V1

2, so (M,Y) ⊧ ψ, and M ⊧ ψ.

Proof of Theorem 11. Assume S1
2(α) does not prove “NEXP /⊆ P/poly”, say, it does not prove

¬βcM0
. Then there is a model (M,X) of S1

2(α) + βcM0
. By Lemma 45 there exists Y ⊆ X such

that (M,Y) ⊧ V1
2. Since βcM0

is a Π1,b
1 -formula, we have (M,Y) ⊧ βcM0

. Thus, V1
2 does not

prove “NEXP /⊆ P/poly”.

Remark 46. The introduction mentioned that Theorem 11 might raise hopes to complete
Razborov’s program by construcing a model of S1

2(α) satisfying some βcM0
. There are good

general methods to construct models even of certain extensions of T1
2(α) based on forcing (see

[35] and [25] for an extension). However, these methods are tailored for Σ̂1,b
1 (α)-statements,

not Π1,b
1 like βcM0

. By the method of feasible interpolation and assuming the existence of
suitable pseudorandom generators, Razborov [33] proved that for every Σb

∞
-definable t(n) =

nω(1) and every Σb
∞

-formula ϕ(x) there exists a model (M,X) of S2
2(α) that for some n ∈M

contains a set C ∈ X coding a size-t(n) circuit that computes ϕ(x); i.e., for every a < 2n

there is Xa ∈ X coding a computation of C on a of the truth value of ϕ(a). Getting a circuit
(and computations) coded by a number seems to require new ideas.

The best currently known unprovability result is due to Pich [29, Corollary 6.2] and
is conditional: a theory formalizing NC1-reasoning does not prove almost everywhere su-
perpolynomial lower bounds for SAT unless subexponential-size formulas can approximate
polynomial-size circuits. Reaching S1

2 seems to require new ideas.
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A. Woods, Exponential lower bounds for the pigeonhole principle, in Proceedings of
the 24th Annual ACM Symposium on Theory of Computing, 1992, pp. 200–220. 1.3,
5.3

[5] A. Beckmann and S. R. Buss, Improved witnessing and local improvement principles
for second-order bounded arithmetic, ACM Transactions on Computational Logic, 15
(2014). Article 2, 35 pages. 3

[6] S. R. Buss, Bounded Arithmetic, Bibliopolis, Naples, Italy, 1986. Revision of 1985
Princeton University Ph.D. thesis. 1, 1.1, 2.1

[7] S. R. Buss, L. A. Ko lodziejczyk, and K. Zdanowski, Collapsing modular count-
ing in bounded arithmetic and constant depth propositional proofs, Transactions of the
AMS, 367 (2015), pp. 7517–7563. 1
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