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1 Universitat Politècnica de Catalunya, Barcelona, Spain
2 Humboldt Universität zu Berlin, Berlin, Germany

Abstract. We define an abstract pebble game that provides game in-
terpretations for essentially all known consistency algorithms for con-
straint satisfaction problems including arc-consistency, (j, k)-consistency,
k-consistency, k-minimality, and refinements of arc-consistency such as
peek arc-consistency and singleton arc-consistency. Our main result is
that for any two instances of the abstract pebble game where the first
satisfies the additional condition of being stacked, there exists an al-
gorithm to decide whether consistency with respect to the first implies
consistency with respect to the second. In particular, there is a decid-
able criterion to tell whether singleton arc-consistency with respect to a
given constraint language implies k-consistency with respect to the same
constraint language, for any fixed k. We also offer a new decidable crite-
rion to tell whether arc-consistency implies satisfiability which pulls from
methods in Ramsey theory and looks more amenable to generalization.

1 Introduction

Comparing finite structures with respect to some partial order or equivalence
relation is a classic theme in logic and algorithms. Notable examples include
isomorphisms, embeddings, and homomorphisms, as well as preservation of for-
mulas in various logics, and (bi-)simulation relations of various types.

Let ≤ and ≤′ be partial orders on finite structures, where ≤ is a refinement
of ≤′ which is however harder than ≤′. More precisely, ≤ is a refinement of ≤′

in that the implication
A ≤ B =⇒ A ≤′ B (1)

holds true, but the reverse implication is not true in general. Also, ≤ is harder
than ≤′ in the sense that determining whether A is smaller than B is compu-
tationally harder for ≤ than for ≤′. A question of interest in this situation is
to characterize the structures A (resp. B) for which the implication in (1) is
actually an equivalence. Let us summarize a few known instances where this
equivalence holds.

1.1 Some examples

For a collection of first-order formulas L, we write A ≤L B if every sentence from
L that is true in A is also true in B. Clearly, ≤L defines a partial order, and if L



is closed under negation, it defines an equivalence relation ≡L. When L is FO,
the collection of all first-order formulas, it is well known that ≡L agrees with
isomorphism on finite structures. On the other hand, the k-variable fragment of
first-order logic FOk gives a coarsening of isomorphism which, for fixed k, can
be decided in polynomial time. Thus, we are asking for the finite structures A

for which the equivalence

A ≡FOk

B⇐⇒ A ∼= B (2)

holds for every finite B.
If A is a colored path (a word), then (2) holds for k ≥ 3 and every B [16].

More generally, for every colored tree A, equation (2) holds with k ≥ d+ 1 and
every B, where d is a bound on the degree of the tree. Other fascinating examples
arise for graphs embedded in surfaces: if A is a 3-connected planar graph, (2)
holds for every large constant k and every B, and indeed k ≥ 15 suffices [13,?].

When L is ∃FO+, the existential-positive fragment of FO, the partial order
A ≤L B coincides with the existence of a homomorphism from A into B. Also its
k-variable fragment ∃FOk,+ gives a coarsening that can be decided in polynomial
time. Thus, in this case we are asking for the finite structures A for which the
equivalence

A ≤∃FO+,k

B⇐⇒ A→ B (3)

holds true for every B, where A→ B denotes the existence of a homomorphism.
If A is a colored tree, it is easy to show that (3) holds for k ≥ 2 and every B.

More generally, if the treewidth of A is less than k, even if up to homomorphic
equivalence, then (3) holds for every B [8]. Interestingly, this result is tight: if
(3) holds for every B, then the treewidth of A is less than k, up to homomorphic
equivalence [2].

For equation (3), restrictions imposed on B have a different meaning than
restrictions imposed on A, and obtaining tight characterizations becomes much
harder. Still, some cases are known. For example, if B is a bipartite graph, then
(3) holds for k ≥ 3 and every A. And on restriction to graphs, this is one of the
few instances where we get a characterization: if B is a graph (with at least one
edge) for which (3) holds for every A, then k ≥ 3 and B is bipartite [20]. For
general relational structures, the state of affairs is much more complicated, as
discussed next.

1.2 On characterization results and CSPs

Unfortunately, full characterizations as those discussed in the previous section
may be hopeless even for natural instances of ≤ and ≤′. Consider for example
the problem that, given A, asks whether the equivalence in (2) holds for every
B. For k = 2, an algorithm follows from the fact that the finite satisfiability
problem for FO2 is decidable. But for k = 3, equivalence with respect to FOk is
able to encode Diophantine problems [14] and we quickly face undecidability.

For coarser partial orders, such as homomorphism, there is still some hope.
For example, the results mentioned above show that the equivalence in (3) holds
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for every B if and only if the treewidth of A is less than k up to homomor-
phic equivalence, which is a decidable criterion. On the other hand, the dual
question of characterizing the finite structures B for which (3) holds for every
A is one of the main questions in the seminal work by Feder and Vardi [10] on
constraint satisfaction problems. It corresponds to the question of characterizing
all constraint languages for which the so-called k-consistency algorithm solves
any instance. In symbols:

k-CON(B)
?
= CSP(B) (4)

where k-CON(B) denotes the collection of all instances that are k-consistent
with respect to B, and CSP(B) is the collection of all A such that A→ B.

1.3 New results

Motivated by question (4), we offer a unifying approach to the consistency algo-
rithms that were considered in the literature. These include arc-consistency, k, ℓ-
consistency, k-consistency, k-minimality, and refined versions of arc-consistency
such as peek arc-consistency and singleton arc-consistency. For pairs of these
algorithms, which we denote as partial orders ≤ and ≤′, we want to be able to
decide for which finite structures B the equivalence

A ≤ B⇐⇒ A ≤′ B (5)

holds true for every finite A. Along the lines of Kolaitis and Vardi [18], we phrase
each of these algorithms as an instance of a general pebble game. This abstract
setting allows us to prove that the equivalence in (5) is decidable for pairs of algo-
rithms including arc-consistency, peek arc-consistency, singleton arc-consistency,
and some others. The simple argument pivots around three components: the fact
that such games enjoy treewidth duality, the identification of a subclass of games
–called stacked– that have definitions in monadic second-order logic, and the de-
cidability of MSO on structures of bounded treewidth. It is worth pointing out,
as an interesting feature, that the MSO definitions of stacked games span differ-
ent levels of the so-called “closure of monadic NP” introduced by Ajtai, Fagin,
and Stockmeyer [1]. In particular, they seem to go beyond monadic NP.

One further consequence of these results is that, for a given finite structure
B, the equality SAC(B) = k-CON(B) is decidable, where SAC(B) denotes the
collection of all instances that are singleton arc-consistent with respect to B.
To our knowledge, this sort of result was unknown before. Another remarkable
consequence is that a solution to problem (4) automatically gives a solution to
problem SAC(B) = CSP(B), and similarly for other pairs of algorithms.

Finally, we close the paper by offering a new decidable criterion for the
problem AC(B) = CSP(B), where AC(B) denotes the instances that are arc-
consistent with respect to B. Our new proof pulls from ideas in Ramsey theory
and looks more amenable to generalization when compared to the previous direct
proof by Feder and Vardi [10]. Indeed, our method was introduced by Kolaitis
and Vardi [17] for solving a completely different problem related to the asymp-
totic probability of strict NP properties, which indicates its wider generality.
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2 Preliminaries

We use standard notation and terminology in finite model theory; see [9]. All our
vocabularies are finite and relational, perhaps with additional constant symbols.
Homomorphisms preserve tuples and constants, strong homomorphisms preserve
also non-tuples, embeddings are injective homomorphisms, and strong embed-
dings are injective strong homomorphisms. We write h : A→ B to denote that
h is a homomorphism from A to B. If h does not matter, we write A→ B to de-
note its existence. We use the convention that if A and B do not share the same
vocabulary, automatically A 6→ B. The same conventions apply to embeddings
e

→, strong embeddings
s

→, and isomorphisms ∼=.
The structure A is a substructure of B if A ⊆ B and the identity mapping

is an embedding. It is an induced substructure if the embedding is strong. In
this case, A is the substructure of B induced by A, and we denoted it by B ↾ A.
The union of A and B is the structure with universe A ∪ B where the relation
R is interpreted by RA ∪RB. The disjoint union of A and B is the union of two
copies of A and B with disjoint universes. If C = A ∩B and A and B agree on
C in the sense that A ↾ C = B ↾ C, the union of A and B is called the glued
union through C, where C = A ↾ C = B ↾ C.

For the definitions of treewidth and tree-decompositions of graphs and rela-
tional structures we refer the reader to, say, [11]. We write TW(k) for the class
of all finite structures of treewidth at most k.

For the definitions of first and second-order logic, MSO, least and greatest
fixed-point logic, and Datalog see [9]. Co-Datalog stands for the negations of
Datalog formulae. If k is an integer, k-ary Datalog has all recursive predicates
of arity at most k. An SNP formula is a formula of the form ∃X∀xϕ, where X is
a sequence of relation variables, x is a sequence of first-order variables, and ϕ is
a quantifier-free formula. A k-ary SNP formula has all relation variables of arity
at most k. The closure of monadic SNP stands for the collection of formulas of
the form ∃X1∀x1 · · · ∃Xm∀xmϕ, where all relation variables are unary and ϕ is
quantifier-free. The closure of monadic NP was introduced in [1]. It follows from
general theory that every formula of k-ary co-Datalog is equivalent to a k-ary
SNP formula, and that every formula of monadic universal greatest fixed-point
logic is equivalent to a formula in the closure of monadic SNP.

A consistency notion is just any reflexive transitive relation between struc-
tures, which is isomorphism invariant. Thus, →,

e

→,
s

→, and ∼= are consistency
notions. If L is a logic and ≤L denotes preservation of L-formulas, then ≤L is
also a consistency notion. Let ≤ and ≤′ be two consistency notions. We say that
≤ is a refinement of ≤′, or ≤′ a coarsening of ≤, if A ≤ B implies A ≤′ B.

3 Generalized pebble game

In this section we define the abstract pebble game for which we prove our results.
The methods would work for versions of the game that are even more general, but
as this is on the expense of intuition, we have made the definition only as general
as necessary to include the important consistency notions in the literature.
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Before we start, let us introduce some necessary notation and terminology.
Let {c1, c2, . . .} be a countable set of constant symbols. For a natural number k, a
k-numbered structure is a structure D for a vocabulary that contains {c1, . . . , ck}
such that D =

{

cD1 , . . . , c
D

k

}

. Observe, that this does not imply |D| = k. For
a structure D and d1, . . . , dk ∈ D, let (D, d1, . . . , dk) denote the k-numbered
structure, which is obtained from D ↾ {d1, . . . , dk} by interpreting ci by di for
all 1 ≤ i ≤ k. All k-numbered structures can be represented this way.

3.1 Definition of the game

The game comes parameterized by two sets G and S. The growing set G is a
collection of pairs (k,D), where k is a natural number and D is an ℓ-numbered
structure for some ℓ ≥ k. The shrinking set S is a collection of pairs (k,K), such
that k is a natural number and K ⊆ {1, . . . , k}. Further, we require G to be
closed under isomorphisms.

The game GG,S is played by two players, Spoiler and Duplicator, on a board
formed by two structures A and B. The positions of a play of the game are
sequences

((a1, b1), . . . , (ak, bk)), (6)

where ai ∈ A and bi ∈ B. The initial position is the empty sequence. From a
position p as in (6), Spoiler has a set of options:

1. Growing round: Spoiler may announce a growing round in which he picks
some ℓ ≥ k, some ak+1, . . . , aℓ from A, and an ℓ-numbered substructure
S of (A, a1, . . . , aℓ), provided that the pair (k,S) belongs to G. Then it is
Duplicator’s turn, who is required to pick some bk+1, . . . , bℓ from B such that
S→ (B, b1, . . . , bℓ). If she succeeds, the next position is ((a1, b1), . . . , (aℓ, bℓ));
if she does not, the game is over.

2. Shrinking round: For every (k,K) in S, Spoiler has the option to move to
((ai, bi) : i ∈ K), the subsequence of p induced by K.

Duplicator wins a play if she can play infinitely. We write A ≤G,S B if Duplicator
has a winning strategy to win every play of GG,S on the board formed by A and
B. If b is an integer, we say that the game GG,S is grow-bounded by b if every
pair (k,D) in G has k ≤ b. We say that it is fully-bounded by b if every pair
(k,D) in G has |D| ≤ b.

The first thing we need to observe is that our pebble games define relations
that are always coarser than homomorphisms:

Lemma 1. Let G an S define a pebble game. Then → is a refinement of ≤G,S,
and ≤G,S is reflexive.

Proof. If h : A → B, then Duplicator has a winning strategy by answering all
growing rounds with h. In other words, in position ((a1, h(a1)), . . . , (ak, h(ak))),
if Spoiler picked ak+1, . . . , aℓ and a substructure S of (A, a1, . . . , aℓ), Duplicator
replies with h(ak+1), . . . , h(aℓ). Then S→ (A, a1, . . . , aℓ)→ (B, h(a1), . . . , h(aℓ))
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so this is a valid move. In this way, Duplicator can play infinitely to win. The
second claim is immediate from considering the identity homomorphism from A

to A. ⊓⊔

On the other hand, not all ≤G,S are transitive, hence not all of them induce
proper consistency notions. All of our examples are transitive, though.

3.2 Examples

The k-consistency algorithm was studied by Freuder [12]. It can be defined as
follows. Let A and B be two structures. Let H be the collection of all partial
homomorphisms h from A to B such that |Dom(h)| ≤ k. For every h in H with
|Dom(h)| ≤ k and every a in A, if there does not exist any b in B such that
g := h∪{(a, b)} is a partial homomorphism from A to B, for which every f ⊆ g
with |Dom(f)| ≤ k belongs to H , remove h from H , and repeat. Whenever H
does not change anymore, stop. If H stabilizes to a non-empty set, we say that
A is k-consistent with respect to B. Otherwise we say that it is k-inconsistent.

The form we presented of the k-consistency algorithm is somewhat closer
to the game interpretation given by Kolaitis and Vardi [18]. Our framework, of
course, also captures it. We formulate a slightly more general version of it, called
k, ℓ-consistency, that appears in [10] and goes back to [12]:

Example 1. Let k and ℓ be natural numbers with 0 < k < ℓ. Define

G = {(i,D) : i ≤ k and D is j-numbered with i ≤ j ≤ ℓ}

S = {(i,K) : K ⊆ {1, . . . , i}, and |K| ≤ k},

Then ≤G,S is called k, ℓ-consistency and we denote it by ≤k,ℓ. This game is
grow-bounded by k and fully-bounded by ℓ. The special case ≤k,k+1 is called
k-consistency.

A variant of the k-consistency algorithm was introduced by Bulatov, who
called it k-minimality. Although the differences are minor, specially when the
vocabulary is finite, we show how to phrase it in our framework as the particular
case of 1-minimality is a very well-known algorithm called arc-consistency.

Before we phrase the k-minimality algorithm in game-theoretic terms, let us
present the algorithmic view of arc-consistency. Let A and B be two structures.
The algorithm maintains a set Sa ⊆ B for every a ∈ A, initially set to B. For
every a ∈ A, every b ∈ Sa, every relation symbol R, and every (a1, . . . , ar) ∈ RA,
if there does not exist any (b1, . . . , br) ∈ R

B such that, for every j ∈ {1, . . . , r},
it holds that bj ∈ Saj

, and bj = b whenever aj = a, remove b from Sa, and
repeat. Whenever the Sa’s do not change anymore, stop. If the Sa’s stabilize to
non-empty sets, we say that A is arc-consistent with respect to B. Otherwise
we say that it is arc-inconsistent. The algorithmic version of k-minimality is a
straightforward generalization of this algorithm that maintains relations of arity
at most k.
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In order to define k-minimality in game terms, we need the following addi-
tional concept. Let i ≤ j. An i, j-tuple structure is a j-numbered structure D

such that RD 6= ∅ holds for exactly one R in the vocabulary, such that RD has
exactly one tuple (d1, . . . , dr), and such that {d1, . . . , dr} =

{

cDi , . . . , c
D
j

}

.

Example 2. Let k be a natural number with k > 0. Define

G = {(i,D) : i ≤ k and D is j-numbered with i ≤ j ≤ k} ∪

{(k,D) : D is a 1, j-tuple structure with j ≥ k}

S = {(i,K) : K ⊆ {1, . . . , i} and |K| ≤ k},

Then ≤G,S is called k-minimality and we denote it by ≤k-MIN. This game is
grow-bounded by k, and fully-bounded by the maximum arity of the relation
symbols in the vocabulary. The particular case ≤1-MIN is called arc-consistency
and we denote it by ≤AC.

We discuss two more examples that will re-appear later in the paper. These
are refinements of arc-consistency that have been studied in the literature, some-
times interchangeably. The first refinement is called peek arc-consistency in [6].
In algorithmic form, this stands for the procedure that, for every a ∈ A, checks
if there exists some b ∈ B for which the arc-consistency algorithm started with
Sa = {b}, and Sa′ = B for a′ 6= a, stabilizes with non-empty sets. As a game,
this is phrased as follows:

Example 3. Define

G = {(i,D) : D is j-numbered with i ≤ j ≤ 2} ∪

{(2,D) : D is a 2, j-tuple structure with j ≥ 2}

S = {(i, {1, j}) : 2 ≤ j ≤ i},

Then ≤G,S is called peek arc-consistency and we denote it by ≤PAC. This game
is grow-bounded by 2 and fully-bounded by the maximum arity of the relation
symbols in the vocabulary plus one.

The last example is singleton arc-consistency [5]. Algorithmically, we main-
tain sets Ta ⊆ B, initially set to B, and for every a ∈ A and every b ∈ Ta

check whether arc-consistency started with Sa = {b}, and Sa′ = Ta′ for a′ 6= a,
stabilizes with non-empty sets. If it does not, we remove b from Ta, and repeat.
Game-theoretically, here is how this is defined:

Example 4. Define

G = {(i,D) : D is j-numbered with i ≤ j ≤ 2} ∪

{(2,D) : D is a 2, j-tuple structure with j ≥ 2}

S = {(i, {j}) : 1 ≤ j ≤ i} ∪ {(i, {1, j}) : 2 ≤ j ≤ i},

Then ≤G,S is called singleton-arc-consistency and we denote it by ≤SAC. Again,
this game is grow-bounded by 2 and fully-bounded by the maximum arity of the
relation symbols in the vocabulary plus one.
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3.3 Definability

We turn now to definability. We say that ≤ induces a consistency notion that is
definable in some logic if, for every finite structure B, there exists a formula ϕ
in the logic, such that for every finite structure A we have A ≤ B iff A |= ϕ.
We say that the definition is effective if furthermore such a ϕ can be computed
from B. The following is well-known:

Lemma 2. → induces a consistency notion that is is definable in monadic SNP.
Furthermore, the definition is effective.

For the general pebble game, it does not seem possible to stay within monadic
SNP, not even monadic second-order logic. However, standard methods give the
following:

Lemma 3. Let G and S define a pebble game that is grow-bounded by k and
fully-bounded. Then, ≤G,S induces a consistency notion that is definable in k-
ary co-Datalog and hence in k-ary SNP. Furthermore, if G and S are decidable,
the definition is effective.

Note, in particular, that ≤AC induces a consistency notion that is definable
in monadic co-Datalog and hence in monadic SNP. According to this lemma,
≤PAC and ≤SAC induce consistency notions that are definable in binary co-
Datalog and binary SNP, as they are both grow-bounded by 2. We will show
more as both notions are definable in a monadic fragment of second-order logic.
This will follow from a general condition on pebble games that we define next.

Let G and S define a pebble game. The game is called stacked if for ev-
ery (k,K) in S there exist 0 ≤ i, j ≤ k such that K \ {j} = {1, . . . , i}. Arc-
consistency, 1, ℓ-consistency, peek-arc-consistency, and singleton-arc-consistency
are all stacked. Note also that these examples are grow-bounded by 2 but, in
general, stacked pebble games need not be grow-bounded by any fixed k. Thus,
the following result, which is the main result of this section, gets interesting
when compared to Lemma 3.

Lemma 4. Let G and S define a fully-bounded stacked pebble game. Then, ≤G,S

induces a consistency notion that is definable in monadic universal greatest fixed-
point logic and hence in the closure of monadic SNP. Furthermore, if G and S
are decidable, the definition is effective.

Proof (rough sketch). The construction makes heavy use of nested and simul-
taneous fixed points. Intuitively, the nesting levels correspond to the different i
for shrinking sets of the form {1, . . . , i, j}. In this setting, only the j are able to
change entries in positions, which leads to monadic fixed points being sufficient.

The full proof is rather technical and can be found in Appendix A. ⊓⊔
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3.4 Treewidth duality

Let C be a class of structures. The binary relation ≤ has C-duality, if for every
pair of structures A and B such that A 6≤ B, there exists a C ∈ C such that
C ≤ A and C 6≤ B. We say that ≤ has treewidth-k-duality, if it has C-duality
for some C ⊆ TW(k).

Observe that this differs in formulation from the duality used in [10]. There,
it is established that for a certain ≤, namely k-consistency, A 6≤ B implies the
existence of C in TW(k), such that C → A and C 6→ B. As for this ≤ it
turns out that C ≤ D and C → D are equivalent for every C in TW(k) and
every structure D, the different formulations amount to the same. However, this
equivalence does not carry over to other ≤. In particular, the following result
does not follow directly from the fact that every bounded pebble game induces
a consistency notion that is definable in co-Datalog. It requires its own proof.

Lemma 5. Let G and S define a pebble game fully-bounded by k. Then ≤G,S

has treewidth-(k − 1)-duality.

Proof (rough sketch). For the structure C, we use an unravelling of A. The actual
notion of unravelling is game specific, but it coincides with the usual one for the
k-consistency game. In order to obtain a finite C, we truncate the unravelling
tree at a depth which is large enough to contain all relevant moves in a game
between A and B. The full proof can be found in Appendix B. ⊓⊔

4 Application: Decidable relative consistency results

The relative consistency problem for ≤ and ≤′ is the problem of, given some
finite structure B, deciding whether the implication

A ≤ B =⇒ A ≤′ B (7)

holds for every finite A. A simple application of the decidability of the satisfia-
bility problem for MSO on structures bounded treewidth (see [11]) gives:

Theorem 1. Let ≤ and ≤′ induce consistency notions such that:

1. both notions are effectively definable in MSO.
2. ≤′ has treewidth duality.
3. ≤′ is a refinement of ≤.

Then, the relative consistency problem for ≤ and ≤′ is decidable.

Proof. Let B be given and let k be such that ≤′ has TW(k) duality. Let ϕ be
an MSO definition of the consistency notion induced by ≤ and B, and let ϕ′ be
the one for ≤′ and B. We will show that the implication (7) fails if and only if
there exists some C in TW(k) such that C ≤ B and C 6≤′ B. This last condition
is equivalent to the satisfiability of ϕ ∧ ¬ϕ′ in TW(k), which is decidable.

The ‘if’ part of the claim is immediate. For the ‘only if’ part, let A be such
that A ≤ B and A 6≤′ B. Using duality, let C in TW(k) be such that C ≤′ A

and C 6≤′ B. From C ≤′ A we obtain C ≤ A because ≤′ is a refinement of ≤,
and then C ≤ B using transitivity. ⊓⊔
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Even though k-consistency induces a consistency notion that is probably not
definable in MSO when k > 1, we can still prove the following result:

Theorem 2. Let k ≥ ar(σ), and let ≤ induce a consistency notion such that:

1. the notion is effectively definable in MSO.
2. ≤k is a refinement of ≤.

Then, the relative consistency problem for ≤ and ≤k is decidable.

Proof. The proof follows the same lines as in Theorem 1, using TW(k) duality
of ≤k. It remains to replace MSO definability of ≤k. For this purpose, note that
the previous proof only needed the formula ϕ′ to describe whether A ≤k B for
A in TW(k), not for all finite structures. Recall that ≤k and → coincide on
TW(k) (see [8]), and that → is definable in MSO. This is all we need. ⊓⊔

It is also possible to generalize this result to any consistency notion defined
by a fully-bounded game replacing ≤k. This requires some additional techniques,
including a notion of game treewidth, which will appear in the full version of the
paper.

As a consequence of all the above, we have the following:

Corollary 1. The following relative consistency problems are decidable:

1. Arc-consistency and peek arc-consistency.
2. Peek arc-consistency and singleton arc-consistency.
3. Singleton arc-consistency and k-consistency for k ≥ ar(σ).
4. 1, ℓ-consistency and 1, ℓ′-consistency for ℓ ≤ ℓ′.
5. 1, ℓ-consistency and k-consistency for k ≥ max(ℓ− 1, ar(σ)).
6. Transitive combinations of the above.

As a side note we give a further result, which in particular implies that the
injective variant of the relative consistency problem for ≤k and → is decidable.

Theorem 3. Let ≤ induce a consistency notion such that:

1. ≤ is decidable.
2.

e

→ is a refinement of ≤.

Then, the relative consistency problem for ≤ and
e

→ is decidable.

Proof. Although a more elementary presentation would be possible, we proceed
along the lines of the previous proofs. First,

e

→ has size-plus-one duality: If
A 6

e

→ B, then there is some C such that C
e

→ A, C 6
e

→ B, and |C| ≤ |B|+ 1: If
|A| ≤ |B|+1, we let C := A. Otherwise, let C be any subset of A of size |B|+1
and let C = A ↾ C. Then id : C

e

→ A and C 6
e

→ B follows from injectivity.
Hence, we only need to decide whether A ≤ B implies A

e

→ B for all A with
|A| ≤ |B|+ 1. As ≤ is decidable, this can be solved by brute force. ⊓⊔
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5 Decidable criterion for arc-consistency

In this section we concentrate on arc-consistency. We want to be able to decide,
for a given B, whether A ≤AC B implies A→ B for every finite A. Put differ-
ently, we want to detect if there exists some counterexample: a finite A such that
A ≤AC B and yet A 6→ B. Since our goal is to build an arc-consistent instance,
we start by developing the closure properties of this class of structures.

For the rest of this section, we fix a finite structure B with vocabulary σ. For
every b in B, let Pb be a new unary relation symbol and let τ be σ∪{Pb : b ∈ B}.
For every A such that A ≤AC B, let W(A) be the collection of all τ -expansions
of A whose interpretations for {Pb : b ∈ B} satisfy the following conditions:

i. for every a ∈ A there exists some b ∈ B such that a ∈ PA

b ,
ii. for every a ∈ A, every b ∈ B such that a ∈ PA

b , every R ∈ σ, and every
(a1, . . . , ar) ∈ RA, there exists (b1, . . . , br) ∈ RB such that, for every j ∈
{1, . . . , r}, it holds that aj ∈ PA

bj
, and bj = b whenever aj = a.

The condition A ≤AC B is equivalent to the statement thatW(A) is non-empty.
Alternatively, we could have taken this as our definition of ≤AC. Let W denote
the union of allW(A) as A ranges over all finite structures such that A ≤AC B.

Lemma 6. W is closed under induced substructures and glued unions.

Proof. Closure under induced substructures is immediate since the conditions i.
and ii. defining W(A) are universal on A. We concentrate on glued unions. Let
A1 and A2 be two structures in W that agree on the common part: that is, for
A0 = A1 ∩ A2, we have A1 ↾ A0 = A2 ↾ A0. Let A3 be the glued union of A1

and A2, and let A be its σ-reduct. We claim that the sets {PA3

b : b ∈ B} satisfy
the conditions i. and ii. that define W(A). This will show that A ≤AC B and at
the same time put A3 in W(A) and W .

For condition i., fix an element a ∈ A3. If a ∈ Ak for k ∈ {1, 2}, then there
exists some b ∈ B such that a ∈ PAk

b and the same b serves for A3. The fact that
A1 and A2 agree on A0 guarantees that this is well-defined. For condition ii.,
fix a ∈ A3, b ∈ B, R ∈ σ, and (a1, . . . , ar) ∈ RA as in its statement. Since
(a1, . . . , ar) belongs to RA and A is also the glued union of the σ-reducts of
A1 and A2, it must necessarily be the case that either {a1, . . . , ar} ⊆ A1 or
{a1, . . . , ar} ⊆ A2. In case {a1, . . . , ar} ⊆ Ak for k ∈ {1, 2}, let b1, . . . , br ∈ B
be given by condition ii. on Ak. Again the fact that A1 and A2 agree on A0

guarantees that this choice is well-defined and valid for A3. ⊓⊔

It follows from the lemma that W is an amalgamation class and, by Fräıssé’s
construction (see [15]), there exists a countably infinite structure S+ satisfying
the following three properties:

1. every finite induced substructure of S+ is isomorphic to a structure in W ,
2. every structure in W is isomorphic to a finite induced substructure of S+,
3. for every two finite subsets S1 and S2 of S+, if S+ ↾ S1 and S+ ↾ S2 are

isomorphic, then there exists an automorphism of S+ that maps S1 to S2.

11



From now on, we write S for the σ-reduct of S+. Except for the fact that it
is infinite, S is the candidate counterexample we are looking for. To establish
this, the first and second properties of S+ will suffice; the third property will be
discussed later on. We start showing that S is arc-consistent:

Lemma 7. S ≤AC B

Proof. If we show that the sets {PS
+

b : b ∈ B} satisfy the conditions i. and
ii. that define W(S), it will follow that the duplicator has a winning strategy
witnessing that S ≤AC B. For condition i., fix an element a ∈ S+. Let A be the
finite substructure S+ ↾ {a}. By the first property of S+, the structure A belongs
to W . Let then b be the witness to condition i. for A. The same b works for S+.
For condition ii., fix an element a ∈ S+, b ∈ B, R ∈ σ, and (a1, . . . , ar) ∈ R

S as
in its statement. Let A be the finite substructure S+ ↾ {a1, . . . , ar}. By the first
property of S+, the structure A belongs to W . Let then b1, . . . , br ∈ B be the
witnesses to condition ii. for A. The same witnesses work for S+. ⊓⊔

Next we show that the existence of a homomorphism S → B determines if
arc-consistency solves CSP(B).

Lemma 8. The following are equivalent:

1. S→ B.
2. A ≤AC B implies A→ B for every finite A.

Proof. Assume S→ B and let A be a finite structure such that A ≤AC B. This
means that W(A) is not empty; let A+ be a member of W(A) and therefore of
W . By the second property of S+, the structure A+ embeds into S+, and hence
A also embeds into S. Since S→ B, also A→ B.

The converse is proved by a standard compactness argument. As we will not
really need this implication in what follows, we omit the standard proof. At any
rate, it will be a consequence of the results below (of course, without falling in
a circularity; see the proof of Theorem 5). ⊓⊔

Our next goal is to finitize S+. Since we cannot satisfy the three properties
of S+ in a finite structure, we relax them significantly. This will give us a very
naive first candidate to a finitized S+ which we will strengthen later on. Let
r be the maximum arity of the relations in σ. Let N+ be a finite τ -structure
satisfying the following two properties:

1. every induced substructure of N+ is isomorphic to some structure in W ,
2. every structure in W of cardinality at most r is isomorphic to some induced

substructure of N+.

Note that the disjoint union of all structures in W of cardinality at most r does
the job. We will take this canonical example as our N+. Note that N+ belongs
to W as W is closed under glued unions and hence under disjoint unions. From
now on, let N be the σ-reduct of N+.
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By itself, N is way too naive. If N is unsatisfiable, meaning that N 6→ B, we
are certainly done as we have a counterexample. But if it is satisfiable, there is
not much we can say. We will ask then for a stronger condition on N that comes
inspired by the third property of S+. We will say that N is strongly B-satisfiable
if there exists a homomorphism f : N → B such that f(a1) = f(a2) for every
pair of points a1 and a2 in N for which N+ ↾ {a1} and N+ ↾ {a2} are isomorphic.
The following lemma links our naive candidate N with our ideal candidate S, in
one direction:

Lemma 9. If N is strongly B-satisfiable, then S→ B.

Proof. Let f : N→ B be a homomorphism witnessing that N is strongly satis-
fiable. Let c1, c2, c3, . . . be a fixed enumeration of the universe of S. We define a
sequence of mappings h0, h1, h2, h3, . . . where hi has domain {c1, . . . , ci}, induc-
tively. Let h0 be the empty mapping. Let i > 0 and suppose that hi−1 is already
defined. Let ai be any element of N+ for which S+ ↾ {ci} and N+ ↾ {ai} are
isomorphic. Such an ai must exist by the first property of S+ and the definition
of N+. Let hi be the extension of hi−1 that sets hi(ci) = f(ai). From the fact
that N is strongly satisfied by f , this does not depend on the choice of ai.

We claim that the map h =
⋃

i hi is a homomorphism from S to B. Fix a tuple
(ci1 , . . . , cir

) in some relation RS. Let d1, . . . , dr be such that S+ ↾ {ci1 , . . . , cir
}

and N+ ↾ {d1, . . . , dr} are isomorphic with cij
mapped to dj . Such d1, . . . , dr

exist by the first property of S+ and the definition of N+. Since f is a homomor-
phism, we have (f(d1), . . . , f(dr)) ∈ RB. On the other hand, S+ ↾ {cij

} is isomor-
phic to both N+ ↾ {dj} and N+ ↾ {aij

}. It follows that f(dj) = f(aij
) = h(cij

),
and therefore also (h(ci1), . . . , h(cir

)) ∈ RB. Thus h is a homomorphism. ⊓⊔

Our next goal is to reverse the implication in Lemma 9. For this we need to
introduce some terminology from Ramsey theory.

Let C and D be structures and let p ≥ 1 and c ≥ 1 be integers. We write
D → (C)p

c if for every mapping f :
(

D

p

)

→ {1, . . . , c} there exists a strong

embedding e : C
s

→ D such that for every two sets A ⊆ C and B ⊆ D with
|A| = |B| = p and C ↾ A ∼= D ↾ B, it holds that f(e(A)) = f(e(B)). Here, the
notation

(

M

p

)

stands for the collection of all subsets of M of size p. A classic
result in Ramsey theory states that for every p and c and every finite structure
C, there exists a finite structure D such that D→ (C)p

c . See [19] for a beautiful
exposition and a discussion on the long history of this result.

On the one hand, we require the Ramsey result for the much simpler case of
p = 1. On the other, we require it relative to a particular class of finite structures.
If K is a class of finite structures and p ≥ 1, we say that K is a p-Ramsey class
if for every c ≥ 1 and every C in K, there exists a D in K such that D→ (C)p

c .
We say that K is a pigeonhole class if it is a 1-Ramsey class. Relativized Ramsey
theorems are also known and have an equally long history. The version stated
below seems not to appear in the literature but can be proved by standard
methods in the area. We note that the restriction to p = 1 is essential in all
known approaches. We provide details in Appendix C.
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Theorem 4. Let K be a class of finite structures that is closed under induced
substructures and glued unions. Then K is a pigeonhole class.

We see how this solves our problem by reversing the implication in Lemma 9.
First note that, by Lemma 6 and Theorem 4, the class W is a pigeonhole class.
Let M+ be the structure D given by the Theorem 4 with C = N+ and c = |B|.
Let M be the σ-reduct of M+. These two structures will be used in the following:

Lemma 10. If S→ B, then N is strongly B-satisfiable.

Proof. Let h : S → B. By the second property of S+, there exists f : M
e

→ S.
Composing we get h◦f : M→ B. As M+ → (N+)1|B|, there exists e : N+ s

→M+

such that if N+ ↾ {a1} ∼= N+ ↾ {a2}, then h(f(e(a1))) = h(f(e(a2))). Thus,
h ◦ f ◦ e is a homomorphism witnessing that N is strongly satisfiable. ⊓⊔

Finally, we obtain the characterization:

Theorem 5. The following conditions are equivalent:

1. S→ B,
2. M→ B,
3. N is strongly B-satisfiable,
4. A ≤AC B implies A→ B for every finite A.

Proof. Implication 1. to 2. follows from the second property of S+ and the fact
that M+ belongs to W . Implication 2. to 3. is in the proof of Lemma 10. Im-
plication 3. to 1. is Lemma 9. This shows that 1., 2., and 3. are equivalent. The
equivalence between 1. and 4. is Lemma 8. But since we proved only that 1.
implies 4. in that Lemma, let us note how 4. implies 2.: M+ belongs to W and
hence M ≤AC B, which means that if 4. holds, then 2. holds as well. ⊓⊔

Note that 3. is a perfectly decidable condition. Condition 2. is also decidable
as M+ and M are explicitely defined from N+. To see this last claim one needs
to look into the proof of Theorem 4 given in Appendix C.

6 Concluding remarks

Important progress on the analysis of the k-consistency algorithm was achieved
recently through the algebraic approach to CSPs. Complete decidable classifi-
cations are now known for digraphs without sources or sinks [4] and for special
triads [3]. Even for general structures a solution was announced recently. As soon
as this breakthrough is confirmed, our results give also decidability for SAC and
other stacked games. A natural next step would be understanding this decid-
ability proof through some explicit algebraic condition, or perhaps by showing
that k-consistency is no more powerful than SAC for solving CSPs. On a re-
lated note, we are not aware of algebraic conditions that allow comparing the
relative strength of two different algorithms as in Corollary 1. Again, this could
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be because different consistency algorithms collapse after all, or because some
refinement of the algebraic approach awaits for discovery.

Finally, the decidable criterion we gave for AC has an appealing combinato-
rial flavour that calls for generalization. An explicit question we were unable to
answer and that stopped our progress is this: Is the class of all instances that
are k-consistent with respect to a fixed B the collection of reducts of some amal-
gamation class? Results in the style of [7] indicate that this might be possible.

Acknowledgment We thank Elitza Maneva for useful insights and discussions.
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A Proof of Lemmata 3 and 4

Proof (of Lemma 3). Let B be given. We have to construct a boolean Datalog
query, which is satisfied for an input database A iff Spoiler wins the game be-
tween A and B. For convenience, we allow equality atoms in bodies of rules.
These can be eliminated with standard means.

For all 0 ≤ m ≤ k and all b1, . . . , bm ∈ B we use an intensional predicate
Xb1,...,bm

. The intended semantics is that Xb1,...,bm
contains those a1, . . . , am ∈ A

for which Spoiler can win from position ((a1, b1), . . . , (am, bm)). Accordingly, the
goal predicate is X().

We translate shrinking moves (m,M) ∈ S with m ≤ k into Datalog rules as
follows: Assume that M = {i1, . . . , im′} with 1 ≤ i1 < . . . < im′ ≤ m. Then we
add a rule

Xb1,...,bm
x1 . . . xm ← Xbi1

,...,bi
m′
xi1 . . . xim′

.

For growing moves (m,S) with S m′-numbered for some m′ ≤ k, let ϕ1, . . . , ϕn

be an enumeration of all atomic facts (including equalities) that hold in S, with
xi replaced for ci for all 1 ≤ i ≤ m′. Further, let b̄1, . . . , b̄n′ be an enumeration
of all m′-tuples b̄i = bi,1 . . . bi,m′ , such that bi,j = bj for all 1 ≤ j ≤ m and such
that S→ (B, bi,1, . . . , bi,m′). For each 1 ≤ i ≤ n′ let ψi = Xbi,1,...,bi,m′

x1 . . . xm′ .
Then we add a rule

Xb1,...,bm
x1 . . . xm ← ϕ1, . . . , ϕn, ψ1, . . . , ψn′ .

It remains to consider the moves which concern positions of length greater than
k. Let us call such positions long and other positions short. As k is a grow bound,
plays use long positions as follows: A growing move turns a short position into a
long position. Then, only shrinking moves are allowed until again some position
is short. If Spoiler wants to win, he has to reach a short position after a finite
sequence of shrinking moves.

Without loss of generality, the game already allows to combine subsequent
shrinking moves into a single shrinking move. Then, we may assume that on
long positions Spoiler only plays shrinking moves which immediately result in
a short position. Now let (m,S) ∈ G be such, that S is m′-numbered for some
m′ > k. Define ϕ1, . . . , ϕn and b̄1, . . . , b̄n′ as above. Now for every sequence
(m′,M1), . . . , (m

′,Mn′) from S such that |Mi| ≤ k for all 1 ≤ i ≤ n′, we add a
rule

Xb1,...,bm
x1 . . . xm ← ϕ1, . . . , ϕn, ψ

′
1, . . . , ψ

′
n′ ,

where ψ′
i is ψi combined with the move (m′,Mi), that is if Mi = {j1, . . . , jm′′}

with 1 ≤ j1 < . . . < jm′′ ≤ m′, then ψ′
i = Xbi,j1

,...,bi,j
m′′

xj1 . . . xjm′′
. ⊓⊔

Proof (of Lemma 4). As Duplicator’s winning condition is a co-reachability con-
dition, it is clear that it can be expressed by a greatest fixed point. It remains
to show, that the body of that fixed point is expressible by universal first-order
logic. It is well-known that simultaneous fixed points can be simulated by nested
fixed points and this simulation preserves monadicity and universal FO. Hence
we may make free use of simultaneous greatest fixed points.
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For convenience of presentation, we assume that K 6= ∅ for all (h,K) ∈ S.
This is without loss of generality: As Spoiler has to fulfill a reachability condition
and the game rules are positional, he does not need to repeat any position, in
particular not the initial one. Together with stackedness, we conclude that each
K as above has the form K = {1, . . . , i, j} for some 0 ≤ i < j ≤ h. Still, the
empty position may appear as a result of a growing round.

First, we will present the encoding of the winning region. Let k be a full
bound on the game. For each 1 ≤ ℓ ≤ k and all b1, . . . , bℓ ∈ B, we use a monadic
variable Xb1,...,bℓ

. It will always be used in a context, where first-order variables
x1, . . . xℓ−1 are available. The intended semantic of Xb1,...,bℓ

is as follows: Let
A be the background structure and let a1, . . . , aℓ−1 ∈ A be the interpretations
of x1, . . . , xℓ−1. Then aℓ ∈ A should belong to (the fixed-point of) Xb1,...,bℓ

, iff
((a1, b1), . . . , (aℓ, bℓ)) is a winning position for Duplicator. It remains to capture
the position which is the empty tuple. For this we use a nullary variable X()

which should contain the empty tuple iff it is winning for Duplicator.

For all 0 ≤ m ≤ ℓ ≤ k and all b1, . . . , bℓ ∈ B, we define a formula ϕm
b1,...,bℓ

with free variables x1, . . . , xℓ, which may contain X() and all Xb1,...,bi,b′ for all
0 ≤ i < m and all b′ ∈ B. We intend ϕm

b1,...,bℓ
to define the set of all (a1, . . . , aℓ)

such that from position ((a1, b1), . . . , (aℓ, bℓ)), Duplicator can force the play into
one of the following situations:

1. No shrinking round ever removes any of the first m pairs of this position and
ultimately, Duplicator wins.

2. At some point, some of these pairs are removed, and the succeeding position
is in some Xb′

1
,...,b′

ℓ′
. Observe, that this implies ℓ′ ≤ m and b′i = bi for all

i < ℓ′, because the game is stacked.

Our final formula is the greatest fixed point of ϕ0
().

We define the ϕm
b1,...,bℓ

by induction on k −m. So, assume that all ϕm′

b′
1
,...,b′

ℓ′

for m′ > m are already defined, and consider the cases ℓ = m + 1, ℓ > m + 1
and ℓ = m separately.

First the case ℓ = m + 1 ≤ k. For fixed b1, . . . , bm, we consider the simul-
taneous greatest fixed point of all ϕm+1

b1,...,bm,b′ for all b′. This simultaneous fixed
point binds the variables Xb1,...,bm,b′ , so its components are formulae which only
use Xb1,...,bi,b′′ with i < m. It also binds (and the reintroduces) xm+1 but not
x1, . . . , xm. We take these formulae as the various ϕm

b1,...,bm,b′ .

Next, for all ℓ ≤ k such that ℓ > m+ 1, we obtain ϕm
b1,...,bℓ

from ϕm+1
b1,...,bℓ

by
substituting all Xb1,...,bm,b′ by their respective ϕm

b1,...,bm,b′ just defined.

Finally for ℓ = m. First, for any ℓ′-numbered structure D, let ϕD(x1, . . . , xℓ′)
denote the conjunction of all atomic formulae on the variables x1, . . . , xℓ′ that
are satisfied on D by the mapping xi 7→ cDi . Evaluated on A with the assignment
xi 7→ ai, this formula states that D is a substructure of (A, a1, . . . , aℓ′). Finally
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we let

ϕm
b1,...,bm

:=
∧

(m,D)∈G
D is m-numbered

(

ϕD →

{

⊥ if D 6→ (B, b1, . . . , bm)

Xb1,...,bm
xm if D→ (B, b1, . . . , bm)

)

∧

∧

(m,D)∈G

D is ℓ′-numbered
ℓ′>m

∀xm+1 . . . ∀xℓ′









ϕD →
∨

bm+1,...,bℓ′∈B

D→(B,b1,...,bℓ′)

ϕm
b1,...,bℓ′









∧

∧

(m,M)∈S

M={1,...,i,j}

Xb1,...,bi,bj
xj

in case m > 0. For m = 0 we have to replace the unary atoms Xb1,...,bm
xm by

the nullary atom X(). Also, we can shorten the formula due to the absense of
shrinking moves (recall our convention that the empty position is not reachable
by shrinking moves), and the fact that ϕD is always true for an empty structure
D. Thus

ϕ0
() := X() ∧

∧

(0,D)∈G

D is ℓ′-numbered
ℓ′>0

∀x1 . . . ∀xℓ′









ϕD →
∨

b1,...,bℓ′∈B

D→(B,b1,...,bℓ′)

ϕ0
b1,...,bℓ′









.

⊓⊔
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B Proof of Lemma 5

Proof (of Lemma 5). To reduce notational clutter, we write ≤ for ≤G,S. Let
GA,B denote the game played on A and B. Now let A 6≤ B, where A and B are
σ-structures. We take C to be the unravelling of A, described next. Observe,
that the legal moves for Spoiler in G do not depend on B. Hence, let GA,−

denote Spoiler’s half of that game, that is for all positions ((a1, b1), . . . , (ak, bk))
of GA,B, the solitary game GA,− has a position (a1, . . . , ak) and GA,− contains
only Spoiler’s moves. Of course, there is no winning condition. Now, elements
of C are pairs (p, a), where p is a (finite) partial play of GA,−, which ends with
a growing round, and a was newly introduced into the position in this growing
round, which means that both, a was picked by Spoiler in this round, and that
a was not present previously. For c = (p, a) ∈ C and a partial play p′ of GA,−,
we say that p′ covers c, if p is a prefix of p′, and a occurs in all positions of p′

after p. Now, let π2 : C → A be the projection to the second component, and
for R ∈ σ let

RC :=
{(

c1, . . . , car(R)

)

∈ π−1
2

(

RA
) ∣

∣ some partial play p covers all ci
}

.

By definition of C, we have π2 : C → A, so C ≤ A. The same holds for all
(finite) substructures D of C instead of C.

For C 6≤ B, we describe a winning strategy for Spoiler in GC,B. For this,
Spoiler privately keeps a board of GA,B. On this board, he plays according to
his winning strategy. He will ensure the following invariants:

1. If ((c1, b1), . . . , (ck, bk)) is the current position in GC,B, then the one in GA,B

is ((π2(c1), b1), . . . , (π2(ck), bk)).
2. All elements from C in the current position in GC,B are covered by the

partial play of GA,−, which is obtained from the current partial play in GA,B

by forgetting all about B.

For this, he plays shrinking rounds in GC,B just as in GA,B, where he uses his
winning strategy. Note, that this preserves the invariants. For growing rounds,
say in GA,B he chooses ak+1, . . . , aℓ and a substructure S of

(A, π2(c1), . . . , π2(ck), ak+1, . . . , aℓ)

after a partial play p. Then, let p′ be the respective partial play of GA,−, with
this growing round already amended. In order to define p′, we do not need to
wait for Duplicator’s answer in any game. Let

(ck+1, . . . , cℓ) := ((p′, ak+1), . . . , (p
′, aℓ))

and let π be the restriction of π2 to c1, . . . , cℓ. Then c1, . . . , cℓ are all covered by
p′, so π : (C, c1, . . . , cℓ) ∼= (A, a1, . . . , aℓ). Hence S′ := π−1(S) is a substructure
of (C, c1, . . . , cℓ) and π : S′ ∼= S. As G is isomorphism invariant, (k,S′) ∈ G, so it
is legal for Spoiler to choose ck+1, . . . , cℓ and S′ in the respective growing round
in GC,B. Let bk+1, . . . , bℓ be Duplicator’s answer in GC,B. Spoiler uses this also as
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Duplicator’s answer in GA,B. Again, the invariants are preserved. Furthermore,
in case this choice from Duplicator does not terminate GC,B, that is if S′ →
(B, b1, . . . , bℓ), then isomorphism invariance of → implies S → (B, b1, . . . , bℓ),
that is the game GA,B also continues. In particular, as Spoiler’s strategy for
GA,B in winning, at some point Duplicator cannot choose in GA,B and thus also
not in GC,B.

Observe further that, as Duplicator can always repeat what she did in a
position already seen earlier in the game, we may assume that Spoiler’s winning
strategy in GA,B guarantees that no position is seen twice. Now, let k be a full
bound on the game. Then, in GA,B, there are at most

n := |A|k+1 · |B|k+1

positions. In a strategy where positions are not seen twice, Spoiler will win after
at most n rounds. So we do not need all of C: We can restrict the unravelling
accordingly, which leaves us with a finite substructure D of C, for which we also
have D 6≤ B.

The last thing we need to show is that C has a tree-decomposition of width
at most k − 1. This will imply that D ∈ TW(k − 1). Now consider the set V of
partial plays of GA,−. We turn it into a tree, by letting {p, p′} ∈ E, if p′ extends
p by exactly one position. For v ∈ V , we let Bv be the set of all c ∈ C which are
covered by v. We have |Bv| ≤ k, because if v covers (p, a), then a is part of the
sequence which is the last position of v, and for each such a in this sequence,
there is exactly one p, such that (p, a) is covered by v; namely the prefix of v
up to the last growing round that introduced a. Each (p, a) ∈ C is covered by p,
so it occurs in Bp. For each tuple (c1, . . . , cr) in C, by definition of C there is
some v ∈ V which covers all ci, so c1, . . . , cr ∈ Bv. For c = (p, a) ∈ C, the set of
v ∈ V such that c ∈ Bv is the set of all partial plays that extend p for which a

appears in its last position and was not deleted since the last position of p. This
set is clearly connected. Hence, the bags Bv form a tree decomposition of C of
width at most k − 1. ⊓⊔
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C Proof of Theorem 4

The proof we give can be considered standard. Moreover, as we are interested
only on pigeonhole classes, the arguments are way more elementary than the
general case of p-Ramsey classes for p > 1. The construction we give here is very
similar to the construction given in the proof in the book by Graham, Rothschild
and Spencer for 2-Ramsey classes of graphs.

A singleton structure is a structure whose universe is a singleton; has car-
dinality one. For a singleton structure T, we write D → (C)Tc if for every
f : D → {1, . . . , c} there exists a strong embedding e : C

s

→ D such that for
every a1 and a2 in C for which D ↾ {a1} and D ↾ {a2} are isomorphic to T, it
holds that f(e(a1)) = f(e(a2)). We say that f is T-homogeneous on the copy of
C given by the embedding e. We say that K is a T-pigeonhole class if for every
c ≥ 1 and every C in K, there exists D in K such that D → (C)Tc . First we
prove the following special case of what we want:

Lemma 11. Let K be a class of finite structures that is closed under induced
substructures and glued unions, and let T be a singleton structure. Then K is a
T-pigeonhole class.

Proof. Fix a structure C in K and an integer c ≥ 1. Let C = {a1, . . . , an} and
let m = n(c+1). We define a sequence of structures D0,D1, . . . ,Dm inductively.
The final D will be Dm. Each Di will consist of m parts, where each part will
form an independent set in the sense that no pair of distinct points from one
part will appear together in a tuple of a relation in Di.

The structure D0 consists of
(

m

n

)

disjoint copies of C, one for each choice of
n distinct parts

1 ≤ p1 < · · · < pn ≤ m,

in such a way that the copy of ai is placed in part pi of D0. Having defined
Di, we define Di+1. Let Ei+1 be the substructure induced by part i+ 1 of Di.
The construction guarantees that Ei+1 is an independent set. Let Fi+1 be the
disjoint union of c|Ei+1| copies of Ei+1. By mixing points from different copies
we may have many more copies of Ei+1 in Fi+1 than those that form Fi+1.
The structure Di+1 is formed by placing Fi+1 in part i+ 1 and gluing one copy
of Di through every induced copy of Ei+1 in Fi+1. All the copies of Di are
glued disjointly except possibly at the overlaps of the copies of Ei+1 in Fi+1.
For p ∈ {1, . . . ,m} − {i+ 1}, we place in part p of Di+1 all the points in part p
of each of the copies of Di. These are still independent sets.

This defines D. The first thing we need to check is that D is belongs to K.
For this we proceed inductively. For D0 this is direct because it is the disjoint
union of copies of C, and C belongs to K. And if it is true for Di, it also
true for Di+1 because it is obtained by gluing copies of Di through an induced
substructure of Fi+1, which is a disjoint union of copies of Ei+1, which is an
induced substructure of Di.

Let us now check that the required property D → (C)Tc is satisfied. Let
f : D → {1, . . . , c} be an arbitrary coloring of D = Dm. Looking at f on part
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m of Dm, we want to find a copy of Em on which f is T-homogeneous. This is
proved in the following claim:

Claim. There exists a copy of Em in Fm on which f is T-homogeneous.

Proof. Let S be the collection of all a in Em such that Em ↾ {a} ∼= T. If S is
empty, we are done; f is already T-homogeneous on every copy of Em in Fm.
If S is not empty, fix an element a ∈ S and note that there are at least c|Em|
copies of a in Fm. By the pigeonhole principle, there at least |Em| copies of a
that get the same color. As obviously |S| ≤ |Em|, we find our copy of Em by
choosing |S| copies of a that get the same color under f , and an arbitrary copy
of every other a′ in Em \ S. ⊓⊔

We continue now with the proof. By the construction of Dm, the copy of
Em in Fm can be extended to a copy of Dm−1 inside Dm. Now we proceed
inductively backwards. Looking at f on part m − 1 of this copy of Dm−1, we
find a copy of Em−1 on which f is T-homogeneous. Repeating, we end up finding
a copy of D0 inside D where f is T-homogeneous on every part. This gives a
well-defined coloring of the parts of D0 with c+ 1 colors: we color a part of D0

by f(e) if there exists some e in that part such that D0 ↾ {e} ∼= T, and we color
it by 0 otherwise. Since there are n(c+ 1) parts and only c+ 1 colors, some set
of n parts must be monochromatic. The monochromatic n parts in D0 give a
copy of C on which f is T-homogeneous. ⊓⊔

Now we can proceed with the proof of Theorem 4:

Proof. Fix a structure C in K. Let C = {a1, . . . , an}, let D0 = C, and define
Di+1 by applying Lemma 11 on Di and T = C ↾ {ai}. The final D is Dn. ⊓⊔
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