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Introduction

• Understanding the semantic relation between text and its
environmental visual context show promising result in image
information retrieval, such as object, location and logo retrieval

Images from Coco-text: Dataset and benchmark for text detection and recognition in natural images
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Related work

Work addresses scene understanding, and benefit from combining text cue
and visual context in image retrieval:

Text Detection
Zhu et al.(2016)

semantic segmentation of text background

Lexicon Generation
Patel et al.(2016)

generation of new lexicon with topic modeling

Logo Retrieval
Karaoglu et al.(2017)

learn textual information from logos

Image Retrieval
Bai X et al.(2017)

image retrieval with text cue

A.Sabir (UPC-TALP) Visual Re-ranking with NLU ACCV18 4 / 32



Related work

Work addresses scene understanding, and benefit from combining text cue
and visual context in text retrieval:

Lexicon Generation
Patel et al.(2016)

generation of new lexicon with topic modeling

Logo Retrieval
Karaoglu et al.(2017)

learn textual information from logos

Image Retrieval
Bai X et al.(2017)

image retrieval with text cue

Text Retrieval
This work (2018)

enhance text spotting with visual semantic
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What is Text Spotting?

End-to-End Text Recognition
• Text Detection: discover and locate the regions containing the text

form natural images.
• Text Recognition: converting the detection text regions into

computer readable material
• Text Spotting: an end-to-end text recognition system that

accomplishes both tasks

Text 
Detection

Text 
Recognition

Text Spotting System

Bounding box

tram
P(w|x)x
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Motivation

Goal
• Investigate the semantic relation between the text and the scene, and

its influence on the accuracy.
• Propose a general approach that aims to fill the gap between Natural

Language Understanding and vision in text spotting.

Text
bike
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Motivation

Approach
• We propose a post-processing approach that intend to learn the

semantic relation between the text and the scene.
• A simple scheme to improve the accuracy of any pre-trained text

spotting algorithms without any computational cost.

Text image

Visual 
information

Visual 
Context 

Re-rankerw1 exit

w2 bing
w3 bike

wc

Text
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Semantic Relatedness

street highway unicycle

bike

bing

exist

0.40

0.32

0.24
0.16
0.08
0.0

A.Sabir (UPC-TALP) Visual Re-ranking with NLU ACCV18 8 / 32



Outline

Introduction

Motivation

Proposed Architecture

Dataset

Experiment

Conclusion

A.Sabir (UPC-TALP) Visual Re-ranking with NLU ACCV18 9 / 32



Approach

Proposed Architecture
• Language Model (SLM, NLM)
• Semantic Relatedness Measure ( word-embedding, NN, etc)
• Visual Classifier
• Visual Context Re-ranker
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Text
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Word
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Unigram Language Model

• The ULM is trained on a combined corpus (Opensubtitle and
Google-book-ngram) (Lison and Tiedemann, 2016) 7M tokens

• The advantage of ULM is very simple to build, train and adapt to
new domains opening the possibility to improve baseline performance
for specific applications.

CNN
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Approach

Proposed Architecture
• Language Model
• Semantic Relatedness Measure
• Visual Classifier
• Visual Context Re-ranker
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Visual Classifier

• We consider four pre-trained object and scene classifiers to extract
visual context information
(Resnet152, Inception-v1, Inception-Resnet-v2, place365-resnet152)*

• The output of these classifier is a 1000 object instances.
• The output of the scene classifier is a 365 categories.
• We only consider the most likely objects-scene in the image by the

classifier (k=3) with threshold (β) to filter out the probabilities
prediction when the visual classifier not confident.

car
parking
street

snow
pol

0.345
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Object 
Classifiers  

Place
Classifier  

Visual 
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[*] please refer to the paper for all references
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Semantic Relatedness Measure I

• Word Embedding, skip-gram [1] trained on general text (SWE)

Cmax = ci∈Image
P(ci )≥β

sim(w , ci )

sim(w , c) = ~w · ~c
|~w | · |~c|

• We convert the semantic score to probability according to assumption
p(w |c) > p(w) [2]. Thus the visual context asset the language model

PSWE (w |cmax ) = P(ULM)α where α =
(

1−sim(w ,cmax )
1+sim(w ,cmax )

)1−P(cmax )

• If there is no visual context information, we back-off to α = 1 and
use the bare unigram probability.

[1] Mikolov, Tomas, et al. ”Distributed representations of words and phrases and their compositionality.”NIPS. 2013.
[2] Blok, Sergey, Douglas Medin, and Daniel Osherson. ”Probability from similarity.” AAAI. 2003.
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Semantic Relatedness Measure II

• Word Embedding, skip-gram [1] with negative sampling/NCE loss
[3], trained on the dataset from scratch (TWE)

Cmax = ci∈Image
P(ci )≥β

sim(w , ci )

sim(w , c) = ~w · ~c
|~w | · |~c|

• We convert the similarity to probability without the language model

PTWE (w |c) = tanh(sim(w , c)) + 1
2P(c)

[3] Mnih, Andriy, and Koray Kavukcuoglu. ”Learning word embeddings efficiently with NCE.” NIPS 2013.
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Semantic Relatedness Measure III

• Estimating Relatedness from Training Day Probabilities (TDP)

PTDP(w |c) = count(w , c)
count(c)

• To overcome the cases of words not found in the embedding lexicon
(e.g. commercial brands, quite common in images)
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Approach

Proposed Architecture
• Language Model
• Semantic Relatedness Measure
• Visual Classifier
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Visual Context Re-ranker

Reranking Text Hypotheses (cascade)
• Semantic Relatedness with Word Embedding (SWE)

P1(w , c) = PBL(w)× PSWE (w |c)

• Estimating Relatedness from Training (TDE)

P2(w , c) = PBL(w)× PTDP(w |c)

• Semantic Relatedness with Word Embedding Revisited (TWE)

P3(w , c) = PBL(w)× PTWE (w |c)
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Dataset

• All current state-of-the-art are trainded on synthetic word dataset
(Jaderberg et al. 2014)

RNN
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Dataset - COCO-text

• COCO-text (Veit et al., 2016) is based on the MS COCO dataset,
which contains images of complex everyday scenes (173,589 labeled
text regions in over 63,686 images)

• Our dataset contains 15K full image with the bounding box and
visual information (BBOx, wordgt , cplaces , cobjects)

• For evaluation, we use ICDAR2017 Robust Reading Challenge on
COCO-Text (end-to-end task).

COCO-text
Dataset

full-image

GT

Visual
Context 

Word

Objects 
Classifier 

Place 
Classifier  

car
parking
street
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pol

0.345
0.944
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0.012

Pay

pay, parking 
pay, car 
pay, street 

Training dataset I 

pay, parking, street  

Training dataset II 
(w, object, place)  

(w, visual) 

Dataset is publicly available https://github.com/ahmedssabir/dataset/
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Experiment

Baseline
• CNN with 90K dictionary (fixed lexicon)
• LSTM with attention model (lexicon free)
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Result

• We evaluate all dataset (including word less than 3 characters and
alphanumeric characters) unlike current protocol by state-of-the art.

• Simple example comparing all models :

Word Visual SWE TDP TWE TWE*
delta airliner 0.0028 0.0398 0.0003 0.00029
kt racket 0.0004 0.0187 0.0002 0.00006
plate moving 0.0129 0.00050 0.326 0.00098
way street 0.1740 0.02165 0.177 0.17493

A.Sabir (UPC-TALP) Visual Re-ranking with NLU ACCV18 26 / 32



Result

• We extract from k = 2 to 10 most likely words hypotheses –and their
probabilities– from the baselines and re-rank theme using the Visual

• We able to improve both baselines 2%
• In case of the CNN, Dictionary 5.4%
• With CNN we able Retrieve 82.6% of the correct labels
• With LSTM we able to Retrieve 68.3% Lexicon-Free recognition

Model CNN LSTM
full dict list k full list k

Baseline full: 21.1 dict: 58.6 full: 18.7
TWETDP 23.0 64.0 75.2 9 20.8 68.3 9

SWETDP+objects 23.0 64.0 82.6 5 20.6 69.1 8
SWETDP+places 22.8 68.4 81.9 5 20.4 68.2 8

TWETDP + SWETDP+places 22.8 63.4 82.1 5 20.3 72.9 5
TWETDP + SWETDP+object 22.9 63.6 81.9 5 20.4 66.8 9
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Result - Examples

Reranking list:

Reranking list:

Reranking list:

Reranking list:

w2: zara

w3: vara

w1: yard

Visual:

w1: kr
w2: kt

w3: rt

w3: pay

w1: posy
w2: spay

w1: convicting

w2: copyrighting

w3: cognizingly

Visual:

Visual:

   c1: parking c1: racket 

Visual:

c1: crosswalkc1: ski slop
c2: plaza

c2: grass

c2: snowfield

     c2: igloo 
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Conclusion

Contributions
• We proposed a general architecture that, can be used as a drop-in

replacement for any text-spotting algorithm that ranks the output
words, uses semantic association to improve text recognition in
images in the wild with low computational cost

• We re-defined the task of text spotting by exploring the semantic
relation between text and scene. Also, introducing a visual context
dataset for this problem.

Final thoughts
• Text in images is not always related to its visual environment, there

is only a fraction of cases this approach may help solving, but given
its low cost, it may be useful for domain adaptation of general text
spotting systems.
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Future work

• We plan to explore end-to-end fusion scheme that can automatically
discover more proper priors in on one shot deep model fusion
architecture.

• Add more visual context such as image description and sound
• Investigate the cases when visual context information is not useful for

text spotting even from human perceptive.
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Thank You
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Why post-processing ?

• Lack of public dataset (Most state-of-art deep models trained on
synthetic dataset).

• Fast and easy to re-train Statistical Language Modelling (LM) can
be trained on specific domain

• The system can be used as a drop-in replacement for any
text-spotting algorithm that ranks the output words

• This hybrid approach between deep learning and classical statistical
modelling opens the possibility to produce accurate results with very
simple models.
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LSTM and ULM

• Finding all possible combinations of all possible output words and
choose a word ( length 23 cha )

• Take the word with the highest probability (greedy)
• The highest probability goes to ULM
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Related work

• The work of karaoglu el al.(2017) perform cue encoding Bigram and
Trigram to propose the spatial pairwise reaction with the visual.

• Then, extracting visual cue for fine-grained classification.
• In short, this approach use textual information to distinguish between

objects and logos.

logo extraction
Pre-processing
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Detection & 
Recognition
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logo retrieval
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Related work

• The work of Patel el al.(2016) use visual prior information to generate
new lexicon.This approach use topic modelling (LDA) to learn the
relation between text and images.
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