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1 IntroductionThere is a strong relationship between �nite model theory and computational com-plexity theory, the outstanding conduit probably being Fagin's Theorem [15] whichequates the complexity class NP, the class of problems solvable in non-deterministicpolynomial-time, with �11, the class of problems de�nable by the sentences of ex-istential second-order logic. This beautiful and succinct result lies at the root ofthe tree that has since grown linking �nite model theory and computational com-plexity, and there is a plethora of results detailing logical characterizations of nu-merous di�erent complexity classes ranging from AC0, the class of problems ac-cepted by constant-depth polynomial-size Boolean circuits, to PSPACE, the classof problems solvable in deterministic polynomial-space, and beyond (the references[1, 4, 12, 20, 28, 29, 33, 37, 41, 42, 44, 45, 49] include a selection of such characteriz-ations).It is all very well logically capturing complexity classes; but what can one do withthese characterizations? For on the face of it, they simply provide translations of(hard) complexity theoretic questions into �nite model theory. However, this logicalapproach to complexity theory is important for a number of reasons, including thefollowing. First, �nite model theory provides tools for proving logical inexpressibilityresults, and a logical inexpressibility result can often be translated into a complexity-theoretic lower bound result. For example, if we could show that the complementof, say, the 3-Colourability Problem (which consists of all those undirected graphswhose vertices can be coloured red, white or blue such that no vertex is joined toanother vertex of the same colour), an NP-complete problem, could not be de�nedby a sentence of �11 then, by Fagin's Theorem, NP would be di�erent from its com-plementary class co-NP; and consequently NP would be di�erent from P, the classof problems solvable in deterministic polynomial-time (whether NP is the same asco-NP or P are widely regarded as two of the most important and di�cult openproblems in computer science). Moreover, these tools from �nite model theory arenot usually available in the complexity-theoretic setting. Second, a logical character-ization of a complexity class usually yields new parameters, such as the number ofquanti�ers or the number of variables in a de�ning formula. One can restrict theseparameters and hope to gain some insight into the actual characterization. Again,the parameters arising are usually not available in the complexity-theoretic setting.Examples of tools from �nite model theory are the numerous variants of the well-known Ehrenfeucht-Fra��ss�e game, �rst shown by Barwise [5] and Immerman [27] tocharacterize de�nability in bounded variable in�nitary logic (and developed usingearlier results of Ehrenfeucht [14] and Fra��ss�e [17]); and an example of a new logicalparameter is the arity of the quanti�ed second-order relation symbols in a sentence of�11. As a matter of fact, combining a variant of the usual Ehrenfeucht-Fra��ss�e gamewith a consideration of the class of problems de�nable by the sentences of existentialsecond-order logic in which the quanti�ed relation symbols are necessarily unary, thatis, the class of problems known as monadicNP, enabled Fagin to prove that monadicNP is not closed under complementation [16]. Thus, whilst whether NP = co-NPremains unresolved, we do know that monadic NP 6= monadic co-NP.The complexity class NP can be regarded as a boundary point in the sense thatall logical characterizations of complexity classes contained in (but for which the2



expectation is that they are di�erent from)NP are not as satisfactory as that yieldedforNP from Fagin's Theorem; for these characterizations only hold in the presence ofsome built-in relation or relations (equivalently, on a speci�c class of �nite structures)such as a successor relation. For example, the characterization of P as the class ofproblems de�nable by the sentences of least �xed point logic, due to Immerman [28]and Vardi [49], no longer holds in the absence of a built-in successor relation. The samecan be said for many other logical characterizations of P such as alternating transitiveclosure logic [29] or path system logic [46]. Similarly, Immerman's characterization ofthe complexity class NL, the class of problems solvable in non-deterministic logspace,as the class of problems de�nable by the sentences of transitive closure logic [29] nolonger holds in the absence of a built-in successor relation.Of course, whilst we may lose a complexity-theoretic characterization in the ab-sence of built-in relations, this does provide additional motivation for the consider-ation of the `pure' logic (with any built-in relations removed) in the hope that theloss of the complexity-theoretic link might make the logic more amenable to non-expressibility results. One example of such a circumstance is Gr�adel and McColm'sresult [22] that there are problems de�nable in transitive closure logic which can notbe de�ned in deterministic transitive closure logic. In the presence of a built-in suc-cessor relation, these two logics capture NL and L (the class of problems solvable indeterministic logspace), respectively [29], and it is a longstanding open problem incomplexity theory as to whether L is equal to NL. However, the loss of a complexity-theoretic link does not always make life easier: witness Abiteboul and Vianu's result[2] that least �xed point logic has the same expressibility as partial �xed point logic(in the absence of any built-in relations) if, and only if, P equals PSPACE (in thepresence of a built-in successor relation, least �xed point logic captures P [28, 49] andpartial �xed point logic captures PSPACE [1]).It is the inexpressibility results within transitive closure logic (without a built-in successor relation) due to Gr�adel [21] and Gr�adel and McColm [22] that providesome motivation for the research presented here. In [21], it is shown that an in�nite(proper) hierarchy of logics, obtained by interleaving applications of the TC operatorand applications of the universal quanti�er, exists within (the positive fragment of)transitive closure logic. In [22], a powerful result is proven linking (in)expressibilityin certain fragments of transitive closure logic and bounded variable in�nitary logic,one corollary of which is that there is an in�nite (proper) hierarchy within transitiveclosure logic obtained by interleaving applications of the transitive closure operatorand negation. Gr�adel and McColm also solve a problem �rst posed by Immerman [29]and show that there are problems in transitive closure logic which are not de�nablein the positive fragment of transitive closure logic. All these inexpressibility resultsare proven by playing Ehrenfeucht-Fra��ss�e games speci�cally designed for transitiveclosure logic and bounded variable in�nitary logic (the whole issue of the existenceof Ehrenfeucht-Fra��ss�e games to capture de�nability in a variety of logics has beenconsidered in [34]). This is not unusual as almost all inexpressibility results in �nitemodel theory have been obtained by playing games of one sort or another, usuallyvariants of Ehrenfeucht-Fra��ss�e games.Having provided some (albeit spartan) background as to the results from �nitemodel theory which motivate us and the tools which have been used to establishthem, let us change tack slightly. We have seen how logics have been developed so as3



to capture complexity classes: let us now adopt a somewhat di�erent approach andinstead of developing logic to tie in with complexity theory, let us work with a modelof computation that is amenable to logical analysis yet is closer to the general notionof a program than a logical formula is. That is, we work with program schemes.Program schemes were extensively studied in the seventies (for example, see [6, 8,18, 40]), without much regard being paid to an analysis of resources, before a closercomplexity analysis was undertaken in, mainly, the eighties (for example, see [24,32, 47]). There are connections between program schemes and logics of programs,especially dynamic logic [11, 35]. Program schemes have since been further developedto work on �nite structures [43], mindful of advances in �nite model theory, and it iswith a generalization of a speci�c class of these program schemes that we begin ourstudies with here.We begin by de�ning an in�nite hierarchy of program schemes, NPS, whose �rstlevel is a class of non-deterministic while-programs where the tests within while in-structions are quanti�er-free �rst-order formulae (such program schemes originate in[43]). The next level consists of the closure of these program schemes under univer-sal quanti�cation; the subsequent level consists of non-deterministic while-programswhere the tests within while instructions are program schemes from the precedinglevel; and so on. We show that, in fact, the class of problems accepted by programschemes from the hierarchy is nothing more than the class of problems de�nableby the sentences of transitive closure logic; and so our seemingly disparate threads,those of de�nability in logics such as transitive closure logic and solvability by pro-gram schemes, begin to tie together. Whilst this �rst result is nothing startling (andindeed can easily be established), we then go on to show that our hierarchy of pro-gram schemes is proper by, essentially, considering program scheme computations onappropriately constructed structures. So it is that we re-create hierarchy results intransitive closure logic similar to those of Gr�adel [21].In fact, a result of Gr�adel and McColm in [22] can be used to obtain our hier-archy results; but only up to a point. Their result only yields hierarchies over a�xed signature when this signature contains 3 binary relation symbols and 2 constantsymbols. We prove that these hierarchies remain proper even when we only considerproblems involving undirected trees or problems involving out-trees. As well as ob-taining re�ned and more precise hierarchy results, in comparison with those obtainedby applying Gr�adel and McColm's result, what is important in our exposition is thatour results are all established not using (variants of the usual) Ehrenfeucht-Fra��ss�egames but by simply considering appropriate computations in program schemes. Webelieve our presentation to be much more straight-forward, concrete and clear thanthose in [21] and [22] (although, to be fair, there is more to these two papers than wehave mentioned here). For, as exponents of the art well know, it is often di�cult todevelop winning strategies in even the basic Ehrenfeucht-Fra��ss�e game, never mind in(generalized) Ehrenfeucht-Fra��ss�e games adapted to, for example, transitive closurelogic. Consequently, our proofs have a signi�cant pedagogic advantage.However, where we gain some real advantage is in our adoption of a high-levelprogramming formalism as our model, as such a stance enables us to extend our pro-gram schemes with a high-level programming construct, the stack (a simple extensionusing arrays was considered in [43] but only in the presence of a built-in successorrelation). Such an extension would not have been available had we remained within4



transitive closure logic (not without `behaving unnaturally' which we would neverhave been tempted to do). We show that extending the program schemes of NPSwith a stack in a natural fashion, to obtain the class of program schemes NPSS, is areal extension in the sense that there are (P-complete) problems accepted by programschemes of NPSS which are not accepted by any program scheme of NPS. Moreover,we show that the class of problems accepted by the program schemes of NPSS has anequivalent formulation as path system logic (�rst studied in [46], in the presence ofa built-in successor relation). We go on to show that there are proper in�nite hier-archies within NPSS and path system logic mirroring the in�nite hierarchies withinNPS and transitive closure logic established earlier; and which, again, remain propereven when we only consider problems involving undirected trees or problems involvingout-trees. The same comments can also be made about our hierarchies in NPSS andpath system logic as were made about the hierarchies in NPS and transitive closurelogic, with regard to the applicability of Gr�adel and McColm's result from [22] (seeabove). However, again crucially, we establish our results by considering the compu-tations of program schemes on appropriate structures, and without any mention ofEhrenfeucht-Fra��ss�e games.We have compared our computational approach with Ehrenfeucht-Fra��ss�e gamesabove, as (variants of) such games are the most commonly used means for estab-lishing inexpressibility results in �nite model theory (of course, other kinds of gameshave also been played in model theory: see, for example, [25]). However, an ap-proach not dissimilar to our own has previously been undertaken. In [38], McColmdevelops games for least �xed point logic by considering a sentence (of least �xedpoint logic) as a program (or, as he puts it, a rulebook) so that winning strategies inthe game correspond to particular structures satisfying the sentence (and vice versa,in an Ehrenfeucht-Fra��ss�e style). McColm uses these games to exhibit a proper in-�nite hierarchy within least �xed point logic, obtained by bounding the number ofquanti�er alternations. McColm's methodology sits somewhere between our `purelycomputational' approach and the usual Ehrenfeucht-Fra��ss�e style approach in thatprograms (similar to our program schemes) appear within his methodology but histechniques are still game-theoretic in nature and involve a characterization theoremrelating winning strategies in games and satis�ability of sentences. It would be in-teresting to examine a more precise combination of McColm's methodology and ourown.We have one important further remark to make. The lack of a `bona �de' logiccapturing any complexity class contained within NP, and especially P, has sparkedmuch research (see [39]). Here, by `bona �de' we mean that the logic should have arecursive syntax (again, see [39]). Our motivation for considering the class of problemsaccepted by the program schemes of NPS and NPSS is not to try and derive some`logical' characterization of P or to extend the class of problems within P capturedby a bona �de logic. We are interested in the classes of program schemes NPS andNPSS as resource-bounded models of computation in their own right. Of course,our interest has been further stimulated given the results in this paper establishing arelationship between these classes of program schemes and logics previously studiedin �nite model theory.This paper is organised as follows. In the next section, Section 2, we give de�n-itions of the fundamental concepts and logics from �nite model theory pertinent to5



this paper (a general reference is [13] within which the reader will �nd explicit de�n-itions of concepts which, although mentioned here, are not absolutely essential toour account). In Section 3, we introduce our class of program schemes NPS andtie together NPS and transitive closure logic. In Section 4, we detail the generalconstruction used to build the structures from which we obtain our inexpressibilityresults, with these basic inexpressibilty results proven in Section 5. Also in Section 5,we apply our inexpressibility results to the program schemes of NPS and other logicsto yield a number of hierarchy results. In Section 6, we explain how a stack can beadded to our program schemes to yield the class of program schemes NPSS, and wecharacterize NPSS as path system logic. In Section 7, after highlighting Gr�adel andMcColm's main result from [22] and how it can be applied (see above), we obtainproper hierarchies in NPSS and path system logic. Finally, in Section 8, we presentour conclusions and some directions for further research.2 PreliminariesThroughout, a signature � is a tuple hR1; : : : ; Rr; C1; : : : ; Cci, where each Ri is arelation symbol, of arity ai, and each Cj is a constant symbol: in the case that �consists only of relation symbols, we say that � is relational . If � and �0 are twosignatures having no symbol with the same name then �[�0 consists of the signaturewhose symbols are those of � in union with those of �0. First-order logic over somesignature �, FO(�), consists of those formulae built from atomic formulae over � using^, _, :, 8 and 9; and FO = [fFO(�) : � is some signatureg.A �nite structure A over the signature �, or �-structure, consists of a �nite uni-verse or domain jAj together with a relation Ri of arity ai for every relation symbolRi of �, and a constant Cj 2 jAj for every constant symbol Cj (by an abuse of nota-tion, we do not distinguish between constants or relations and constant or relationsymbols). A �nite structure A whose domain consists of n distinct elements has sizen, and we denote the size of A by jAj also (this does not cause confusion). We onlyever consider structures of size at least 2, and the class of all �nite structures over thesignature � of size at least 2 is denoted STRUCT(�). A problem over some signature� consists of a subset of STRUCT(�) which is closed under isomorphism; that is,if A is in the problem then so is every isomorphic copy of A. Throughout, all ourstructures will be �nite. If A and B are two structures over the same signature � suchthat jAj � jBj and such that the restriction of B to jAj is isomorphic to A (and so,for one thing, every constant of B is in jAj) then we write A � B.We are now in a position to consider the class of problems de�ned by the sentencesof FO: we denote this class of problems by FO also, and do likewise for other logics.It is widely acknowledged that as a means for de�ning problems, �rst-order logicleaves a lot to be desired especially when we have in mind developing a relationshipbetween computational complexity and logical de�nability (see, for example, [13]).Consequently, we now give one way of increasing the expressibility of FO: augmentingFO with (uniform or vectorized sequences of) Lindstr�om quanti�ers. There are, ofcourse, other ways to increase the expressibility of FO: we have already mentionedsecond-order logic, least �xed point logic and bounded variable in�nitary logic. Whilstwe shall (briey) meet bounded variable in�nitary logic later, we concentrate here onhow we extend FO using Lindstr�om quanti�ers (and refer the reader to [13] for details6



regarding the other logics).De�ne the signature �2++ = hE;C;Di, where E is a binary relation symbol andC and D are constant symbols, and de�ne the problem TC asTC = fA 2 STRUCT(�2++) : the digraph with vertex set jAj and edgeset given by the relation E contains a path from vertex C tovertex Dg:Corresponding to the problem TC is an operator of the same name; more precisely,an in�nite uniform, or vectorized, sequence of Lindstr�om quanti�ers (whilst we donot de�ne here explicitly what a Lindstr�om quanti�er is, we hope that the essenceof Lindstr�om quanti�ers is gleaned from what follows: again, see [13]). The logic(�TC)�[FO], or transitive closure logic, is the closure of FO under the usual �rst-order connectives and quanti�ers, and also the operator TC, with TC applied asfollows.Given a formula '(x;y) 2 (�TC)�[FO], where the variables of the k-tuples x andy, for some k, are all distinct and free in ', the formula � de�ned as TC[�x;y'](u;v),where u and v are k-tuples of (not necessarily distinct) constant symbols and vari-ables, is also a formula of (�TC)�[FO], with the free variables of � being those vari-ables in u and v, as well as the free variables of ' di�erent from those in the tuplesx and y. If � is a sentence then it is interpreted in a structure A 2 STRUCT(�),where � is the underlying signature, as follows. We build a digraph with vertex setjAjk and edge set f(a;b) 2 jAjk � jAjk : '(a;b) holds in Ag;and say that A j= � if, and only if, there is a path in this digraph from vertex u tovertex v (the semantics can easily be extended to arbitrary formulae of (�TC)�[FO]:see, for example, [13] for a more detailed semantic de�nition).We occasionally focus on some fragments of (�TC)�[FO].� TC�[FO] consists of all those formulae where applications of TC do not appearwithin the scope of a negation sign.� (�TC)i[FO] consists of all those formulae where at most i applications of TCmay be nested.� TCi[FO] consists of all those formulae where applications of TC do not appearwithin the scope of a negation sign and where at most i applications of TC maybe nested.We reiterate that TC is essentially an in�nite sequence of Lindstr�om quanti�ers fTCkgwhere TCk is the corresponding quanti�er which binds 2k free variables in the for-mula to which it is applied. In a celebrated result, Immerman [29, 30] captured thecomplexity class NL by the logic (�TC)�[FO], but only in the presence of a built-insuccessor relation (more later), thus obtaining as a corollary that NL = co-NL.One can augment FO with an operator (or operators) such as TC correspondingto any problem (or problems) and examine the class of problems so captured. Avariety of such logics have been formed and many well-known complexity classes7



subsequently captured (see, for example, the presentation and references in [46]). Ofparticular interest to us in this paper is the logic formed by extending FO using anoperator corresponding to the problem PS de�ned below.A path system is a set of vertices and a set of rules of the form (x; y) 7! z, where x,y and z are vertices, together with a distinguished source vertex and a distinguishedsink vertex. The set of accessible vertices is built by initially assuming the sourcevertex to be accessible and then continually applying the rules until the current set ofaccessible vertices can be made no bigger, via: `if the vertices x and y have been shownto be accessible and (x; y) 7! z then z is accessible' (x and y need not be distinct). Let�3++ = hR;C;Di, where R is a relation symbol of arity 3 and C and D are constantsymbols. Any �3++-structure can clearly be considered as a path system with C thesource and D the sink and where the rules are given by f(x; y) 7! z : R(x; y; z) holdsg.De�nePS = fA 2 STRUCT(�3++) : the path system with vertex set given byjAj and accessibility rules given by the relation R is such thatthe vertex D is accessible from the vertex Cg:The problem PS has long been known to be complete for P via logspace reductions[10], and in [46] the logic (�PS)�[FO], in the presence of a built-in successor relation,was shown to capture P.3 Program SchemesIn this section we introduce our notion of a program scheme.De�nition 1 A program scheme � 2 NPS(1) involves a �nite set fx1; x2; : : : ; xkg ofvariables, for some k � 1, and is over a signature �. It consists of a �nite sequenceof instructions where each instruction, apart from the �rst and the last, is one of thefollowing:� an assignment instruction of the form `xi := y', where i 2 f1; 2; : : :; kg andwhere y is either a variable from fx1; x2; : : : ; xkg, a constant symbol of � orone of the special constant symbols 0 and max which do not appear in anysignature;� a guess instruction of the form `GUESS xi', where i 2 f1; 2; : : :; kg; or� a while instruction of the form `WHILE t DO �1;�2; : : : ;�q OD', where t isa quanti�er-free formula of FO(� [ f0;maxg) whose free variables are fromfx1; x2; : : : ; xkg and where each of �1; �2; : : : ; �q is another instruction of oneof the three forms given here (note that there may be nested while instructions).The �rst instruction of � is `INPUT(x1; x2; : : : ; xl)' and the last instruction is`OUTPUT(x1; x2; : : : ; xl)', for some l where 1 � l � k. The variables x1; x2; : : : ; xlare the input-output variables of �, the variables xl+1; xl+2; : : : ; xk are the free vari-ables of � and, further, any free variable of � never appears on the left-hand side8



of an assignment instruction nor in a guess instruction. Essentially, free variablesappear in � as if they were constant symbols. (As we soon see, other types of pro-gram scheme might have bound variables: however, no program scheme of NPS(1)has bound variables.)A program scheme � 2 NPS(1) over � with s free variables, say, takes a �-structureA and s additional values from jAj, one for each free variable of �, as input; that is,an expansion A0 of A by adjoining s additional constants. The program scheme �computes on A0 in the obvious way except that:� execution of the instruction `GUESS xi' non-deterministically assigns an elementof jAj to the variable xi;� the constants 0 and max are interpreted as two arbitrary but distinct elementsof jAj; and� initially, every input-output variable is assumed to have the value 0.Note that throughout a computation of �, the value of any free variable does notchange. The expansion A0 of the structure A is accepted by �, and we write A0 j= �,if, and only if, there exists a computation of � on this expansion such that the output-instruction is reached with all input-output variables having the value max.We want the sets of structures accepted by our program schemes to be problems,i.e., closed under isomorphisms, and so we only ever consider program schemes �(including those de�ned in De�nition 1 and in future) where a structure is acceptedby � when 0 and max are given two distinct values from the universe of the structureif, and only if, it is accepted no matter which pair of distinct values is chosen for 0and max. Let us reiterate: when we say that � is a program scheme of, for example,NPS(1) we mean that � accepts a problem and the acceptance of any input structuredoes not depend upon the pair of distinct values we give to 0 and max.Compare the above stipulation with the usual situation in logic. It is generallyaccepted that the syntax of any logic should be recursive; that is, the set of well-formedformulae should be recursive (see [39]). Analogously, we might expect that a class ofprogram schemes should be recursively enumerable. Trakhtenbrot's Theorem ([48]:see also [13, Theorem 6.2.1]) tells us that it is undecidable as to whether an arbitrary�rst-order sentence holds in every (appropriate) �nite structure. It is conceivable that(but, as far as we know, unknown) whether a program scheme satis�es our criterion(above, regarding 0 and max) is undecidable too. Hence, if we follow the acceptedpractice in logic then we may have some di�culties with whether our class of programschemes is `bona �de' or not. However, we could easily circumvent this (possibly non-existent) di�culty by, for example, insisting that our input-output variables are of adi�erent, Boolean type, only taking the values `true' or `false', and use these variablesto signal acceptance or rejection (we do not go into details). Consequently, we leavethe de�nition of our program schemes as it stands (safe in the knowledge that wecould force it to conform to standard practice if required). We return to 0 and maxlater when they appear in logics in an analogous fashion.Remark 2 (a) We can easily build the usual `if' and `if-then-else' instructions usingwhile instructions (see, for example, [43]).9



(b) Our program schemes (including those de�ned above and in future) may besuch that certain computations do not terminate.Example 3 Let the program scheme � 2 NPS(1) over �2++ be de�ned as follows.1. INPUT(x1; x2)2. x1 := C3. WHILE x1 6= D DO4. GUESS x25. WHILE :E(x1; x2) DO6. GUESS x2 OD7. x1 := x2 OD8. x1 := max9. x2 := max10. OUTPUT(x1; x2)(We present program schemes in an indented style to aid readability.) Then � doesindeed accept a problem, and the problem accepted by � is TC.Example 4 The signature �2;2 = hP;N i, where P andN are binary relation symbols.We think of a �2;2-structure of size n as a conjunction of clauses of Boolean literalsas follows. For convenience, rename the elements of the domain as 0; 1; : : :; n � 1.There are n clauses C0; C1; : : : ; Cn�1 (some of which might be empty) and there aren Boolean variables X0; X1; : : : ; Xn�1. The literal Xi is in clause Cj if, and only if,P (i; j) holds, and the literal :Xi is in clause Cj if, and only if, N (i; j) holds. Emptyclauses are satis�able by de�nition. The problem SAT is de�ned asfA 2 STRUCT(�2;2) : the set of clauses A is satis�ableg:In [31], the following result was proven.Proposition 5 Let C be some set of clauses, over the set of Boolean variables B,containing 0 or 2 distinct literals. Let G be the digraph whose vertex set is the set ofliterals over B and whose edge set isf(l;:l0) : there is a clause fl _ l0g in C where l and l0 are literalsg(::l is identi�ed with l). Then the set of clauses C is not satis�able if, and only if,there is a path in the digraph G from l to :l and also one from :l to l, for some literall. Consider the following program scheme � 2 NPS(1) over �2;2 when we only allowinputs A where A is such that every clause has 0 or 2 distinct literals. Then � acceptsthose structures of this type that are not satis�able.1. INPUT(x1; x2; x3; x4; x5; x6)2. GUESS x13. (x2; x3) := (0; x1)4. WHILE :(x2 = max ^ x3 = x1) DO5. GUESS x4; x5 10



6. GUESS x67. IF (x2 6= x4 _ x3 6= x5) ^ ((x2 = 0 ^ P (x3; x6)) _ (x2 = max ^N (x3; x6))^((x4 = 0 ^ P (x5; x6)) _ (x4 = max ^N (x5; x6)) THEN8. x3 := x59. IF x4 = 0 THEN10. x2 := max ELSE11. x2 := 0 FI OD12. (x2; x3) := (max; x1)13. WHILE :(x2 = 0 ^ x3 = x1) DO14. GUESS x4; x515. GUESS x616. IF (x2 6= x4 _ x3 6= x5) ^ ((x2 = 0 ^ P (x3; x6)) _ (x2 = max ^N (x3; x6))^((x4 = 0 ^ P (x5; x6)) _ (x4 = max ^N (x5; x6)) THEN17. x3 := x518. IF x4 = 0 THEN19. x2 := max ELSE20. x2 := 0 FI OD21. (x1; x2; x3; x4; x5; x6) := (max;max;max;max;max;max)22. OUTPUT(x1; x2; x3; x4; x5; x6)(The shorthand used above should be obvious.) Essentially, we guess a Boolean literalXx1 , the �rst while loop checks to see whether there is a path in G fromXx1 to :Xx1 ,and the second while loop checks to see whether there is a path in G from :Xx1 toXx1 (where G is the digraph as in Proposition 5). The current vertex in G, a literal,is encoded as (x2; x3) where if x2 = 0 then the literal is Xx3 and if x2 = max thenthe literal is :Xx3 .The class of program schemes NPS(1) can be regarded as a very basic class of non-deterministic program schemes based on while loops. An important point to note isthat whereas the usual existential quanti�er is catered for via the guess instruction(intuitively speaking), there is no such analogous modelling of the universal quanti-�er. Consequently, we extend these basic program schemes by introducing universalquanti�cation in the following manner.De�nition 6 Let � be some signature. For some m � 1, let the program scheme� 2 NPS(2m � 1) be over the signature � and involve the variables x1; x2; : : : ; xk.Suppose that the variables x1; x2; : : : ; xl are the input-output variables of �, that thevariables xl+1; xl+2; : : : ; xl+s are the free variables and that the remaining variablesare the bound variables. Let xi1 ; xi2; : : : ; xip be free variables of �, for some p suchthat 1 � p � s. Then 8xi18xi2 : : :8xip�is a program scheme of NPS(2m), which we denote by �0, with no input-outputvariables, with free variables those of fxl+1; xl+2; : : : ; xl+sg n fxi1 ; xi2; : : : ; xipg andwith the remaining variables of fx1; x2; : : : ; xkg as its bound variables.A program scheme such as �0 takes expansions A0 of �-structures A by adjoinings�p constants as input (one for each free variable), and �0 accepts such an expansionA0 if, and only if, for every expansion A00 of A0 by p additional constants (one foreach variable xij ), A00 j= �. 11



De�nition 7 Let � be some signature. A program scheme �0 2 NPS(2m � 1), forsome m � 2, over the signature � and involving the variables of fx1; x2; : : : ; xkg, isformed exactly as are the program schemes of NPS(1), with the input-output andfree variables de�ned accordingly, except that the test in some while instruction isa program scheme � 2 NPS(2m � 2) whose free and bound variables are all fromfx1; x2; : : : ; xkg (note that � has no input-output variables). However, there arefurther stipulations:� all free variables in any test � 2 NPS(2m � 2) in any while instruction areinput-output or free variables of �0;� the bound variables of �0 consist of all bound variables of any test � 2 NPS(2m�2) in any while instruction (and no bound variable is ever an input-output orfree variable of �); and� this accounts for all variables of fx1; x2; : : : ; xkg.Of course, any free variable of �0 never appears on the left-hand side of an assignmentinstruction or in a guess instruction.A program scheme �0 2 NPS(2m � 1) takes expansions A0 of �-structures A byadjoining s constants as input, where s is the number of free variables, and computeson A0 in the obvious way except that when some while instruction is encountered,the test, which is a program scheme � 2 NPS(2m � 2), is evaluated according to theexpansion of A0 by the current values of any relevant input-output variables of �0(which may be free in �).Remark 8 A simple analysis yields that we can build the usual `if' and `if-then-else'instructions in the program schemes of NPS(m), for all oddm � 1. Indeed, henceforthwe assume that these instructions are at our disposal.Example 9 Let � = hE;U i, where E is a binary relation symbol and U is a unaryrelation symbol. A �-structure can be envisaged as a digraph, whose edge relation isgiven by E, with a speci�ed set of vertices, given by U , called roots. The followingprogram scheme �0 2 NPS(3) accepts the problem consisting of those rooted digraphsfor which at least one of the roots is such that there are paths from the root to everyother vertex.1. INPUT(x1)2. GUESS x13. WHILE :U (x1) DO4. GUESS x1 OD5. IF 8x2�(x1; x2) THEN6. x1 := max ELSE7. x1 := 0 FI8. OUTPUT(x1)where the program scheme � 2 NPS(1) is de�ned as1. INPUT(x3; x4)2. x3 := x1 12



3. WHILE x3 6= x2 DO4. GUESS x45. IF E(x3; x4) THEN6. x3 := x4 FI OD7. (x3; x4) := (max;max)8. OUTPUT(x3; x4)(The input-output variables of � are x3 and x4, the free variables are x1 and x2 andthere are no bound variables. The input-output variable of �0 is x1, there are no freevariables and the bound variables are x2, x3 and x4.)In order to facilitate our understanding of program schemes and their computa-tions, we shall henceforth abuse De�nition 1 as follows. Whereas, in De�nition 1, wetalked of an instruction of the form `WHILE t DO �1;�2; : : : ;�q OD', throughout therest of this paper we shall think of such an instruction as a sequence of instructions,the �rst of which is an evaluation of t, the second of which is �1 (or possible a sequenceof instructions corresponding to �1 if �1 is of the form `WHILE : : : DO : : : OD'), thethird of which is �2, and so on. That is, we shall think of every program scheme asbeing written in the (programming language) style of the preceding examples, withcomputations de�ned accordingly (another abuse is that we sometimes group assign-ments together to form one instruction, as in instruction 7 of the program scheme� in Example 9). Thus, in future when we say `instruction' we mean assignments,guesses and the evaluation of tests (where the test itself might possibly involve an-other program scheme), and we label these instructions as we have done in previousexamples. In consequence, we envisage computations of program schemes of NPS(1)as being sequences of tuples consisting of: (a) values of the input-output variables;and (b) an integer denoting the label of the next instruction to be executed. We shallexpand upon this point later.As the reader might have guessed, there is a close relationship between our classesof program schemes and transitive closure logic.De�nition 10 De�ne:� �TC(1) to be the set of formulae of the formTC[�x;y ](u;v);where  is quanti�er-free �rst-order and where u and v are tuples of constantsymbols or variables;� �TC(m + 1), for odd m � 1, to be the universal closure of TC(m), i.e., the setof formulae of the form 8z1 : : :8zk , where  is a formula of TC(m); and� �TC(m + 1), for even m � 2, to be the set of formulae of the formTC[�x;y( 1 _ : 2)](u;v);where  1;  2 2 �TC(m) and where u and v are tuples of constant symbols orvariables (not necessarily distinct). 13



Note that in order to form (non-trivial) sentences in �TC(m), for m odd, and soconsider �TC(m) as a class of (non-trivial) problems, we need at least two distinctconstant symbols. Consequently, when we talk about �TC(m), we assume that thereare always two (distinct) built-in constants available, 0 andmax, and we only considersentences ' of �TC(m) for which the following is true: for any (appropriate) structureA, A j= ' with 0 and max given distinct values if, and only if, A j= ' no matterwhich pair of distinct values are taken for 0 and max. That is, we proceed as we didfor 0 and max in our program schemes.An alternative would be to only consider signatures containing the constant sym-bols 0 and max and structures for which 0 and max are interpreted di�erently, asis done in [13, 21, 22], for example. However, we prefer to work with built-in con-stant symbols for two reasons. First, it may be the case that the natural encodingof a problem (involving, for example, graphs) as a set of structures does not involveany constant symbols. We feel that including constant symbols in a signature unne-cessarily and treating the corresponding constants in a structure as essential to theproblem instance is unsatisfactory (see Garey and Johnson's discussion on reason-able complexity-theoretic encoding schemes in [19]). Second, including 0 and max asbuilt-in constant symbols is in keeping with how one generally introduces an orderinginto structures in descriptive complexity theory: see, for example, [13, Section 6.5]where a built-in successor relation is introduced into a logic in the same way thatour built-in constants have been introduced (the phraseology in [13] is actually thatordered representations of structures are considered but this amounts to the samething as saying that there is a built-in successor relation available). However, be thisas it may, the results in [13, 21, 22] and in this paper hold whether we assume the ex-istence of built-in constants or we only work with signatures containing the constantsymbols 0 and max (and where these symbols are always interpreted di�erently).A simple induction (similar to those in [43], for example) yields the following resultin which we identify, as we do throughout, a class of program schemes (resp. a logic)with the problems accepted by the program schemes (resp. de�ned by the sentencesof the logic). We write NPS = [fNPS(m) : m � 1g.Theorem 11 In the presence of two built-in constants, NPS(m) = �TC(m), forevery m � 1: consequently, NPS = (�TC)�[FO]:Note that NPS = (�TC)�[FO] even in the absence of two built-in constants intransitive closure logic as we can `build two distinct constants' by existential quanti-�cation.In the presence of a built-in successor relation and two built-in constants, 0 andmax, denoting the minimumand the maximumwith respect to the successor relation,i.e., a binary relation f(a0; a1); (a1; a2); : : : ; (an�2; an�1)g in a structure of size n whereall the ai's are distinct and a0 = 0 and an�1 = max, it is well-known that everythingcollapses; and that this collapse is to NL.Theorem 12 [29, 30, 43] In the presence of a built-in successor relation,NPS = NPS(1) = (�TC)�[FO] = TC1[FO] =NL:14



4 Constructing suitable structuresWe now detail a general construction which yields structures suitable for proving hier-archy results in classes of program schemes and logics. This construction is essentiallya generalization of that in [21] (a similar construction is also given in [13]), which inturn is derived from a construction in [7].Let � be some relational signature containing the unary relation symbol U0 andlet A0 � B0 be �-structures such thatjfu 2 jA0j : U0(u) holds in A0gj = jfu 2 jB0j : U0(u) holds in B0gj = 1:Fix m � 1 and let U1; U2; : : : ; Um be unary relation symbols not in �. If there isa binary relation symbol E in � then de�ne the signature �m = � [ fU1; : : : ; Umg;otherwise de�ne the signature �m = � [ fE;U1; : : : ; Umg.For any k � 1, the �1-structure A1k is built from A0 and B0 as follows.� Take k+ 1 copies of B0 and 1 copy of A0 (all copies are disjoint) and introducea new element v; hence, the size of the universe of A1k is jA0j+ (k+ 1)jB0j+ 1.� For any relation symbol R of � n fEg, the relation R of A1k is the union of therelations R of the copies of A0 and B0.� The relation U1 of A1k is fvg.� The relation E of A1k is the union of the relations E of the copies of A0 and B0,in union with f(v; u); (u; v) : U1(v) and U0(u) hold in A1kg:The �1-structure B1k is built as is A1k except that the copy of A0 is replaced withanother copy of B0. The structures A1k and B1k can be visualized as in Fig. 1. Notethat A1k � B1k via a natural embedding � (indeed, there are numerous such naturalembeddings).
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� The relation Um of Bmk is fvg.� The relation E of Bmk is the union of the relations E of the copies of Am�1k andBm�1k , in union with f(v; u); (u; v) : Um(v) and Um�1(u) hold in Bmk g:The �m-structure Amk is built as is Bmk except that the copy of Bm�1k is replaced withanother copy of Am�1k . The structures Amk and Bmk can be visualized similarly to thosein Figs. 2 and 3 (where Amk and Bmk , for m odd, are depicted). Note that Amk � Bmkvia a natural embedding � (again, there are numerous such natural embeddings).For k � 1 and m � 3 odd, the �m-structure Amk is built as follows.� Take k + 1 copies of Bm�1k and 1 copy of Am�1k (all copies are disjoint) andintroduce a new element v; and so the size of the universe of Amk is jAm�1k j +(k + 1)jBm�1k j+ 1.� For any relation symbol R of �m�1 n fEg, the relation R of Amk is the union ofthe relations R of the copies of Am�1k and Bm�1k .� The relation Um of Amk is fvg.� The relation E of Amk is the union of the relations E of the copies of Am�1k andBm�1k , in union with f(v; u); (u; v) : Um(v) and Um�1(u) hold in Amk g:The �m-structure Bmk is built as is Amk except that the copy of Am�1k is replaced withanother copy of Bm�1k . The structures Amk and Bmk can be visualized as in Figs. 2 and3. Note that Amk � Bmk via a natural embedding �.
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Figure 2. The structure Amk when m is odd.5 Some hierarchy resultsWe can now use the structures constructed in the previous section to obtain somehierarchy results in our class of program schemes NPS, and also in some related16



logics. For notational convenience, throughout the statement of Theorem 13 and itsproof, by A0k and B0k we really mean A0 and B0, respectively.
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Figure 3. The structure Bmk when m is odd.Theorem 13 Let � be some relational signature containing the unary relation sym-bol U0 and let A0 and B0 be �-structures such that:� A0 � B0; and� jfu 2 jA0j : U0(u) holds in A0gj = jfu 2 jB0j : U0(u) holds in B0gj = 1.Fix m � 1, k � 1 and r � 0, and:� let � 2 NPS(m) be over the signature �m+r and involve k variables, s of whichare free; and� let ~Am+rk and ~Bm+rk be expansions of the �m+r -structures Am+rk and Bm+rk byadjoining s constants (one for each free variable of �) so that:{ ~Am+rk � ~Bm+rk via a natural embedding � which embeds the left-most copyof Am�1k on layer m� 1 of ~Am+rk into the left-most copy of Bm�1k on layerm � 1 of ~Bm+rk (see Figs. 2 and 3); but{ none of the adjoined constants lie in the left-most copy of Am�1k on layerm� 1 of ~Am+rk nor in the left-most copy of Bm�1k on layer m� 1 of ~Bm+rk .Then ~Am+rk j= � if, and only if, ~Bm+rk j= �:Proof In the following proof, it is probably bene�cial to visualize a variable of someprogram scheme taking a value from the domain of some structure as the placing of a17



pebble, corresponding to the variable, on the domain element in question. Throughoutthe proof we adopt the nomenclature of the statement of the theorem.We begin with two lemmas. In both of these lemmas, we think of the computa-tions of the program scheme � 2 NPSS(m), for m odd (on some input structure),so that tests in while instructions (which may themselves be program schemes ofNPSS(m� 1)) are simply evaluated as either true or false. That is, we only considersuch computations at the `top level' and think of the computations as consisting of se-quences of tuples of values of the input-output variables of �, together with some owcontrol, i.e., the number of the instruction about to be executed. Statements such as`no input-output variable of � ever takes a value from the left-most copy of Am�2k onlayer m� 2 of ~Am+rk ' are intended to apply to this `top-level' view of computations.Lemma 14 If m � 3 is odd and ~Am+rk j= � then there is an accepting computationof � on ~Am+rk such that:� 0 and max are taken as elements u and v such that Um+r (u) and Um+r�1(v)hold in ~Am+rk , with v in the right-most copy of Am+r�1k or Bm+r�1k on layerm + r � 1 of ~Am+rk ;� no input-output variable of � ever takes a value from the left-most copy of Am�2kon layer m � 2 of ~Am+rk .Proof We shall simulate an accepting computation of � on ~Am+rk with an acceptingcomputation satisfying the statement of the lemma. Choose 0 and max as in thestatement of the lemma, and denote the expansion of ~Am+rk with the constants 0 andmax as ( ~Am+rk ; 0;max) (and similarly for other tuples of values).As stated prior to this lemma: � is essentially considered as a program schemeof NPSS(1) where tests in while instructions are simply evaluated as true or false;and computations are considered as sequences of tuples of values of the input-outputvariables, together with some ow control. Suppose that our original computationis the sequence f(�i; Ii)gci=1, where each �i is a tuple of values for the input-outputvariables and each Ii is the instruction about to be executed: so, �1 = (0; 0; : : : ; 0) andI1 = 2 (to denote the second instruction). What we do is to construct a new sequencef(�i; Ii)gci=1 so that this sequence corresponds to a proper computation of � on ~Am+rkand so that the two structures obtained as expansions of ( ~Am+rk ; 0;max) by adjoiningconstants corresponding to the values of �i and �i are isomorphic. Moreover, we shallensure that no value of any �i comes from the left-most copy of Am�2k on layer m� 2of ~Am+rk .Our construction of �i proceeds by induction (the base case is when �1 = (0; 0; : : : ;0) = �1). Suppose that ( ~Am+rk ; 0;max; �i) is isomorphic to ( ~Am+rk ; 0;max; �i) viathe isomorphism �i. If instruction Ii is an assignment or a test evaluation then weare done (because whether any test is true or false is invariant under isomorphism,and none of the s adjoined constants, as in the statement of the main theorem, liein the left-most copy of Am�1k on layer m � 1 of ~Am+rk ). If instruction Ii is a guessinstruction then there are two possibilities: the `natural simulating guess', accordingto �i, is not in the left-most copy of Am�2k on layer m � 2 of ~Am+rk , or it is. In the�rst case, we are done. Alternatively, we can make our guess in a `free copy' of Am�2k ,i.e., a copy in which no variable currently has a value, from amongst the k+ 1 copies18



of Am�2k on layer m� 2 of ~Am+rk adjacent to the left-most copy (at least one of thesek + 1 copies is `free'). Of course, the resulting structures ( ~Am+rk ; 0;max; �i+1) and( ~Am+rk ; 0;max; �i+1) are no longer isomorphic via �i but we can always ensure thatthey remain isomorphic via another isomorphism �i+1. The result follows.Lemma 15 If m � 1 is odd and ~Bm+rk j= � then there is an accepting computationof � on ~Bm+rk such that:� 0 and max are taken as elements u and v such that Um+r (u) and Um+r�1(v)hold in ~Bm+rk , with v in the right-most copy of Am+r�1k or Bm+r�1k on layerm + r � 1 of ~Bm+rk ;� if m = 1 then no input-output variable of � ever takes a value from the left-mostcopy of B0 on layer 0 of ~Bm+rk ; and� if m � 3 then no input-output variable of � ever takes a value from the left-mostcopy of Bm�1k on layer m� 1 of ~Bm+rk .Proof Follows immediately if we argue as we did in the proof of Lemma 14.We now proceed by induction on m.Base Case Fix m = 1.Suppose that ~A1+rk j= �. Let 0 and max be elements u and v such that U1+r(u)and Ur(v) hold in ~A1+rk , with v in the right-most copy of Ark or Brk on layer r of~A1+rk . As ~A1+rk � ~B1+rk via �, we can mirror an accepting computation of � on ~A1+rkin a computation of � on ~B1+rk (with 0 and max in the computation of � on ~B1+rktaken as the images of 0 and max in the computation of � on ~A1+rk under �) untilwe encounter a test evaluation. Let �A1+rk and �B1+rk be the expansions of ~A1+rk and~B1+rk , respectively, by adjoining additional constants whose values are the values ofthe input-output variables of � in the two computations. As we have been following �in our computation of � on ~B1+rk , �A1+rk � �B1+rk via �. As any test is a quanti�er-free�rst-order formula ', either ' is true in both �A1+rk and �B1+rk or ' is false in both�A1+rk and �B1+rk . Thus, the ow of control in both computations of � is identical. Bycontinuing the computation of � in ~B1+rk as dictated by � and arguing as above, weobtain that ~B1+rk j= �.Conversely, suppose that ~B1+rk j= �. By Lemma 15, we can assume that in theaccepting computation of � on ~B1+rk : 0 and max are taken as elements u and v suchthat U1+r(u) and Ur(v) hold in ~B1+rk , with v in the right-most copy of Ark or Brk onlayer r of ~B1+rk ; and no input-output variable ever takes a value from the left-mostcopy of B0 on layer 0 of ~B1+rk . Given this fact, we can clearly mirror our acceptingcomputation of � on ~B1+rk in a computation of � on ~A1+rk until we encounter a testevaluation for which the test is a quanti�er-free �rst-order formula '. Let �A1+rk and�B1+rk be the expansions of ~A1+rk and ~B1+rk , respectively, by adjoining constants whosevalues are the values of the input-output variables of � immediately prior to the testevaluation encountered in both computations. Clearly, �A1+rk � �B1+rk via �, and soeither ' is true in both �A1+rk and �B1+rk or ' is false in both �A1+rk and �B1+rk . Hence,as above, ~A1+rk j= �. 19



Induction Step (a) The result holds for all m0 such that m0 < m, where m � 3 is oddand for all r � 0.Suppose that ~Am+rk j= �. By Lemma 14, we can assume that in the accepting com-putation of � on ~Am+rk : 0 and max are taken as elements u and v such that Um+r (u)and Um+r�1(v) hold in ~Am+rk , with v in the right-most copy of Am+r�1k or Bm+r�1kon layer m+ r� 1 of ~Am+rk ; and no input-output variable ever takes a value from theleft-most copy of Am�2k on layer m � 2 of ~Am+rk . As ~Am+rk � ~Bm+rk via �, we canmirror our accepting computation of � on ~Am+rk in a computation of � on ~Bm+rk byusing � until we encounter a test evaluation for which the test is a program scheme�0 2 NPS(m � 1). Note that this program scheme �0 might have additional free vari-ables to the free variables of �. Let �Am+rk and �Bm+rk be the expansions of ~Am+rk and~Bm+rk , respectively, by adjoining constants whose values are the values of the addi-tional free variables of �0 immediately prior to the test evaluation encountered in bothcomputations. As our computation of � on ~Bm+rk has been proceeding according to �,we have that: �Am+rk � �Bm+rk via a natural embedding � which embeds the left-mostcopy of Am�2k on layer m�2 of ~Am+rk into the left-most copy of Bm�2k on layer m�2of ~Bm+rk ; but where no constants lie in the left-most copy of Am�2k on layer m � 2of ~Am+rk nor in the left-most copy of Bm�2k on layer m � 2 of ~Bm+rk . Hence, by theinduction hypothesis (with m+ r rewritten as (m � 1) + (r + 1)), �Am+rk j= �0 if, andonly if, �Bm+rk j= �0. Thus, either the test evaluation is true in both computationsof � or false in both computations of �. Clearly, by continuing in this manner, thecomputation of � on ~Bm+rk is accepting.Conversely, suppose that ~Bm+rk j= �. By Lemma 15, we can assume that in theaccepting computation of � on ~Bm+rk : 0 and max are taken as elements u and vsuch that Um+r (u) and Um+r�1(v) hold in ~Bm+rk , with v in the right-most copy ofAm+r�1k or Bm+r�1k on layer m + r � 1 of ~Bm+rk ; and no input-output variable evertakes a value from the left-most copy of Bm�1k on layer m � 1 of ~Bm+rk . Given thisfact, we can clearly mirror our accepting computation of � on ~Bm+rk in a computationof � on ~Am+rk until we encounter a test evaluation for which the test is a programscheme �0 2 NPS(m�1). Let �Am+rk and �Bm+rk be the expansions of ~Am+rk and ~Bm+rk ,respectively, by adjoining constants whose values are the values of the free variablesof �0 immediately prior to the test evaluation encountered in both computations.Clearly: ~Am+rk � ~Bm+rk via a natural embedding � which embeds the left-most copyof Am�2k on layer m � 2 of ~Am+rk into the left-most copy of Bm�2k on layer m � 2of ~Bm+rk ; but where no constants lie in the left-most copy of Am�2k on layer m � 2of ~Am+rk nor in the left-most copy of Bm�2k on layer m � 2 of ~Bm+rk . Hence, by theinduction hypothesis (with m+ r rewritten as (m � 1) + (r + 1)), �Am+rk j= �0 if, andonly if, �Bm+rk j= �0. Consequently, as above, ~Am+rk j= �.Induction Step (b) The result holds for all m0 such that m0 < m where m � 2 is even,and for all r � 0.The program scheme � is of the form 8x18x2 : : :8xp�0, for some p and for some�0 2 NPS(m�1). Suppose that ~Am+rk j= 8x18x2 : : :8xp�0. Let �Bm+rk be an expansionof ~Bm+rk by adjoining p additional constants. We may assume that none of theseadditional p constants lie in the left-most copy of Bm�2k on layer m� 2 of �Bm+rk (the20



program scheme only involves k variables and so there will always be a `free copy' ofBm�2k on layer m � 2 of �Bm+rk which we may assume to be the left-most one). Let�Am+rk be the expansion of ~Am+rk with p additional constants such that �Am+rk � �Bm+rkvia �. Note that no constant lies in the left-most copy of Am�2k on layer m � 2 of�Am+rk . As above, by the induction hypothesis, �Am+rk j= �0 if, and only if, �Bm+rk j= �0.Thus, ~Bm+rk j= 8x18x2 : : :8xp�0.Conversely, suppose that ~Bm+rk j= 8x18x2 : : :8xp�0. Let �Am+rk be an expansionof ~Am+rk by adjoining p additional constants. We may assume that none of theseadditional p constants lie in the left-most copy of Am�1k on layer m� 1 of �Am+rk . Let�Bm+rk be the expansion of ~Bm+rk with p additional constants such that �Am+rk � �Bm+rkvia �. Note that no constant lies in the left-most copy of Bm�1k on layer m � 1 of�Bm+rk . As above, by the induction hypothesis, �Am+rk j= �0 if, and only if, �Bm+rk j= �0.Thus, ~Am+rk j= 8x18x2 : : :8xp�0.The result follows.It is appropriate that we make a few remarks about the proof of Theorem 13. Wegive the proof in considerable detail for two reasons. First, our proof is for classesof program schemes as opposed to logics and is very di�erent in nature to those in[13, 21] and [22] where the essential tools are Ehrenfeucht-Fra��ss�e games for transitiveclosure logic and bounded variable in�nitary logic, respectively. As we soon see,hierarchy results similar to those from [13, 21, 22] follow as easy corollaries from ourresults. We make no mention whatsoever of any sort of games: we merely considercomputations in program schemes. Second, we shall require our detailed proof laterwhen we consider extended classes of program schemes.Theorem 13 is the mechanism by which we tie the structures Amk and Bmk together;the following proposition is used to pull them apart.Proposition 16 Let A0 and B0 be hE;U0i-structures, where E is a binary relationsymbol and U0 is a unary relation symbol, such that:� jA0j = 1 and jB0j = 2;� the unique element of A0 is in U0 and one of the two elements of B0 is in U0;and� E = f(y; z); (z; y)g in B0, where y and z are the two distinct elements.For every m � 1, there exists a �rst-order sentence 	m of the form8xm�19xm�2 : : :9x18x09y ; if m is odd;and 9xm�18xm�2 : : :9x18x09y ; if m is even,where  is quanti�er-free �rst-order, such that for every k � 1,Bmk j= 	m and Amk 6j= 	m:21



Proof In the following, `x is an E-neighbour of y' means that both E(x; y) andE(y; x) hold.Let m � 1 be odd. Consider the following �rst-order sentence 	m, de�ned as:\For every xm�1 2 Um�1, there exists an E-neighbour xm�2 2 Um�2 of xm�1 suchthat for every E-neighbour xm�3 2 Um�3 of xm�2, there exists : : : such that for everyE-neighbour x0 2 U0 of x1, there exists an E-neighbour y of x0 that is not in U1."Let m � 2 be even. Consider the following �rst-order sentence 	m, de�ned as:\There exists xm�1 2 Um�1 such that for every E-neighbour xm�2 2 Um�2 of xm�1,there exists an E-neighbour xm�3 2 Um�3 of xm�2 such that for every : : : such thatfor every E-neighbour x0 2 U0 of x1, there exists an E-neighbour y of x0 that is notin U1."Clearly, 	m is of the required form, and Bmk j= 	m and Amk 6j= 	m.Let �0 = �0 be the set of quanti�er-free �rst-order formulae, and for each m � 1,let �m (resp. �m) be the set of �rst-order formulae of the form9x1 : : :9xk' (resp. 8x1 : : :8xk');where ' 2 �m�1 (resp. ' 2 �m�1). We can now obtain our basic hierarchy theoremfor the class of program schemes NPS.Corollary 17 For every m � 1, there is a problem in �m+1, if m is odd, and �m+1,if m is even, which is not in NPS(m). Consequently,NPS(1) � : : : � NPS(m) � NPS(m + 1) � : : :Proof Let A0 and B0 be the structures over the signature � = hE;U0i as in thestatement of Proposition 16. Fix m � 1 and let � 2 NPS(m) be over the signature�m and involve k variables, none of which are free. By Theorem 13, Amk j= � if,and only if, Bmk j= �. However, the problem 
m de�ned by the sentence 	m in thestatement of Proposition 16, which clearly can be accepted by some program schemeof NPS(m + 1), is such that Bmk 2 
m and Amk 62 
m.Note from the proof of Corollary 17 that the problem separating NPS(m) fromNPS(m+1) is over a signature determined bym. One might ask whether the hierarchyin Corollary 17 remains strict when we restrict ourselves to problems over some speci�csignature. In order to answer this question, let us focus on the proofs of Theorem 13and Proposition 16, the essential results used to yield Corollary 17. The purpose ofthe relations U0; U1; : : : ; Um in the structures Amk and Bmk is really just to add clarityand they can actually be dispensed with. Certainly, the proof of Theorem 13 goesthrough if we remove these relations from our structures. Now instantiate A0 andB0 as the graphs de�ned in Proposition 16. For every m � 1, we can easily build asentence of the same quanti�er structure as the sentence 	m of Proposition 16 (callit 	m also) and which tells the structures Amk and Bmk apart when Amk and Bmk areregarded as undirected trees in which the element v for which Um(v) formerly heldis a distinguished root. Note that the root v is the middle vertex on a path in bothAmk and Bmk of length 2m + 2; and, indeed, it is the middle vertex in every path oflength 2m+2 in both Amk and Bmk . We can thus de�ne the root v (without regardingit as distinguished) in both Amk and Bmk using either a purely existential �rst-order22



formula or a purely universal �rst-order formula (which is independent of k). By`attaching' this universal or existential formula on to the front of our new sentence	m, if m is odd or even, respectively, we obtain a �rst-order sentence with the samequanti�er-alternation pattern as the sentence 	m in Proposition 16, and with thesame properties. Also, by slightly amending the de�nition of the relation E in thestructures Amk and Bmk in the previous section, we can also consider Amk and Bmk tobe out-trees, i.e., trees where every edge is directed away from the root, and arriveat a similar conclusion. Hence, by arguing as in the proof of Corollary 17, we obtainthe following result.Corollary 18 For every m � 1, there is a problem in �m+1, if m is odd, and �m+1,if m is even, which is not in NPS(m). Consequently,NPS(1) � : : : � NPS(m) � NPS(m + 1) � : : :Moreover, the above results hold even when we only consider problems involvingundirected trees or problems involving out-trees.By a `problem involving undirected trees' we mean that we restrict our domainof allowable structures just to �2-structures where the relation E is symmetric andwhere, when visualised as an undirected graph, these structures are of the form of atree; and we de�ne our problems to be (isomorphism-closed) subclasses of this domain.A `problem involving out-trees' is de�ned similarly.We can now use Theorem 13 and Proposition 16 to obtain some hierarchy resultsconcerning di�erent logics, similar or identical to already established results from theliterature. There are also other immediate applications of Theorem 13 and Proposi-tion 16: the results highlighted below merely serve to illustrate this fact. We reiteratethat the proofs of the corollaries below do not involve Ehrenfeucht-Fra��ss�e games,unlike the proofs of these results from the literature.In [7], Chandra and Harel showed (amongst other things) that the classes of prob-lems de�ned by restricting the quanti�er pre�xes of �rst-order sentences in prenexnormal form according to the number of alternations between universal and existen-tial quanti�ers form a proper hierarchy. This result is stated precisely below and itsproof follows identically to those of Corollaries 17 and 18.Corollary 19 [7] �1 � �2 � �3 � : : : ;even when we only consider problems involving undirected trees or problems involvingout-trees.De�nition 20 De�ne:� TC(1) to be the set of formulae of the formTC[�x;y ](u;v);where  is quanti�er-free �rst-order and where u and v are tuples of constantsymbols or variables; 23



� TC(m+1), for odd m � 1, to be the universal closure of TC(m), i.e., the set offormulae of the form 8z1 : : :8zk , where  is a formula of TC(m); and� TC(m + 1), for even m � 2, to be the set of formulae of the formTC[�x;y ](u;v);where  2 TC(m) and where u and v are tuples of constant symbols or variables(not necessarily distinct).It is not di�cult to show that TC(m) is closed under _ and ^, for each m � 1, andthat [fTC(m) : m � 1g = TC�[FO]. (These fragments of transitive closure logicare very similar to those of the same name de�ned in [21]. Where Gr�adel's hierarchydi�ers from ours is that Gr�adel's base logic, which he called TC(0) but we call TC(1),was de�ned as ours is except that  was allowed to be any �rst-order formula andnot just a quanti�er-free one.)The proof of the following is immediate from Theorems 11 and 13 and Proposi-tion 16.Corollary 21 In the presence of two built-in constants, for every m � 1, there is aproblem in �m+1, if m is odd, and �m+1, if m is even, which can not be de�ned byany sentence of �TC(m). In particular,TC(1) � : : : � TC(m) � TC(m + 1) � : : :: : : � [fTC(m) : m � 1g = TC�[FO]and �TC(1) � : : : � �TC(m) � �TC(m + 1) � : : :: : : � [f�TC(m) : m � 1g = (�TC)�[FO]:Moreover, the above results hold even when we only consider problems involvingundirected trees or problems involving out-trees.Let us take a diversion from our main path for a moment. Obviously, the reasonthat TC(m), for m � 1, is de�ned as it is, stems from the analogous de�nitionof �TC(m) given earlier; and the reason that �TC(m) is de�ned as it is, stemsfrom the alternative realisation of �TC(m) as NPS(m) (see Theorem 11). We couldhave allowed the class of program schemes NPS(1) to have �rst-order tests in theirwhile instructions, and then built NPS(2), NPS(3), and so on, as before: the derivedfragments of transitive closure logic corresponding to these new classes would then beidentical to the fragments de�ned by Gr�adel in [21]. We could then have proven anamended version of Theorem 13 with extra stipulations on the structures A0 and B0that they could not be distinguished by an appropriate �rst-order Ehrenfeucht-Fra��ss�egame; and used an amended version of Proposition 16 where A0 (resp. B0) is takento consist of an appropriately large cycle (resp. a disjoint pair of appropriately largecycles) together with a disjoint vertex, the vertex of U0, joined by an edge to everyvertex of the cycle (resp. cycles) (these are the graphs used in [21]). Consequently, wecan also obtain Gr�adel's exact hierarchy result (in fact, from our earlier discussion, we24



can actually obtain Gr�adel's hierarchy result even on the class of undirected graphs;though not, of course, on the class of undirected trees).Let us compare our hierarchy result with that of Gr�adel. Our hierarchy result ismore re�ned (and we believe more interesting) than Gr�adel's for the following reason:we provide in�nite hierarchies within (�TC)�[FO] and TC�[FO] with the propertythat given any level of either of the hierarchies, there are �rst-order de�nable problemswhich are not in the given level, yet the union of all levels of the hierarchies gives(�TC)�[FO] or TC�[FO], respectively. Also, in order for us to establish Gr�adel'shierarchy result, we would have had to play an Ehrenfeucht-Fra��ss�e game (albeit a�rst-order game and not a transitive closure game, as Gr�adel played) which is, insome sense, against the spirit of this paper. So ends our diversion (although we shallreturn to the possibility of establishing our hierarchy results using a result due toGr�adel and McColm [22] later).Our consideration of classes of program schemes as opposed to logics obviatesthe need to formalize and play games on structures: we simply mimic computationtraces, and this is pedagogically clearer than using Ehrenfeucht-Fra��ss�e games. Also,focussing on program schemes as opposed to transitive closure logic (and its associatedgames) encourages us to develop other applications of our general approach, as weshow now and, more importantly, in the next section.For any problem 
 and for any m � 1, let the fragments 
(m) and �
(m) of thelogic (�
)�[FO] be de�ned analogously to TC(m) and �TC(m), respectively.Let the problem CYC, over the signature �2, be de�ned asfA 2 STRUCT(�2) : the graph A is cyclicg:It is easy to show that CYC 2 NPS(1).Corollary 22 For each m � 1, there are problems in �m+1, if m is odd, and �m+1,if m is even, which can not be de�ned by any sentence of �CYC(m). In particular,CYC(1) � : : : � CYC(m) � CYC(m + 1) � : : :: : : � [fCYC(m) : m � 1g = CYC�[FO]and �CYC(1) � : : : � �CYC(m) � �CYC(m + 1) � : : :: : : � [f�CYC(m) : m � 1g = (�CYC)�[FO]:Moreover, the above results hold even when we only consider problems involvingundirected trees or problems involving out-trees.Proof Consider the sentence 9x�(x), where �(x) 2 (�CYC)�[FO]. De�ne the for-mula  (x1; x2; x3; y1; y2; y3) as(x1 = y2 6= y1 = x2 ^ x3 = y3 ^ �(x3)) _ (x1 = x2 = y1 6= x3 = y2)_(x1 = x2 = y3 6= x3 = y1 = y2):When we interpret  in some appropriate structure A (of size at least 2), we obtaina graph G whose vertex set is jAj3 and whose edge set isf(u;v) 2 jAj3 :  (u;v) or  (v;u) holds in Ag:25



De�ne Vu;v = Vv;u = f(u; v; w); (v; u; w); (u; u; v); (v; v; u) : w 2 jAjg, for distinct uand v in jAj. These sets of vertices are disjoint. Then every edge of G has both itsendpoints in some Vu;v; and so G has a cycle if, and only if, the subgraph of G inducedby the vertices of some Vu;v has a cycle. But, all Vu;v's are isomorphic and any Vu;vhas a cycle if, and only if, A j= 9x�(x). Hence, for every m � 1, it is not di�cultto see that the sentence 	m of Proposition 16 is logically equivalent to a sentence ofCYC(m + 1).Clearly, CYC 2 NPS(1); and so every problem of �CYC(m) is accepted by someprogram scheme of NPS(m), for each m � 1. Thus, as a simple induction yields that[fCYC(m) : m � 1g = CYC�[FO] and [f�CYC(m) : m � 1g = (�CYC)�[FO], theresult follows from Theorem 13 and Proposition 16.Note that we used the fact that CYC is in NPS(1) to obtain Corollary 22. Weneed not be so severe (although the resulting hierarchy results are not as satisfactoryas those just mentioned). Let ROOT be the problem detailed in Example 9; thatis, ROOT consists of all those structures over the signature � = hE;U i, where Eis a binary relation symbol and U is a unary relation symbol, such that when thesestructures are considered as rooted digraphs (with the roots given by U ), at least oneof the roots is such that there are paths from this root to every other vertex.Corollary 23 In the presence of two built-in constants, for each even m � 1, thereare problems in �m+1 which can not be de�ned by any sentence of �ROOT(m).Hence, the hierarchiesROOT(1) � : : : � ROOT(m) � ROOT(m + 1) � : : :and �ROOT(1) � : : : � �ROOT(m) � �ROOT(m+ 1) � : : :do not collapse. Moreover, the above results hold even when we only consider problemsinvolving undirected trees or problems involving out-trees.Proof Consider the formula 9x�(x), where � 2 (�ROOT)�[FO]. Then 9x�(x) isequivalent to the formulaROOT[�(x1; x2)(x1 = 0 ^ x2 = 0); (y1; y2); (z1; z2)((y1 = 0 ^ y2 = 0^(z1 6= 0 _ z2 6= max)) _ (y1 = max ^ �(y2) ^ z1 = 0 ^ z2 = max))];where x1, x2, y1, y2, z1 and z2 are new variables. Hence, for every m � 1, it is notdi�cult to see that the sentence 	m of Proposition 16 is logically equivalent to asentence of ROOT(m + 1).By Example 9, the problem ROOT is accepted by some program scheme ofNPS(3). Thus, a simple induction yields that the problem accepted by a sentenceof �ROOT(m) can be accepted by a program scheme of NPS(2m), if m � 2 is even,and NPS(2m + 1), if m � 1 is odd. Let m � 2 be even. By Theorem 13 and Propos-ition 16, there are problems de�nable in ROOT(2m + 1) which are not de�nable in�ROOT(m), and the result follows.Let co-2SAT be the problem over �2;2 de�ned as all those �2;2-structures suchthat when considered as a collection of clauses, they form an unsatis�able collectionin which every clause has 0 or 2 distinct literals.26



Corollary 24 For each even m � 1, there are problems in �m+1 which can not bede�ned by any sentence of �co-2SAT(m). Hence, the hierarchiesco-2SAT(1) � : : : � co-2SAT(m) � co-2SAT(m + 1) � : : :and �co-2SAT(1) � : : : � �co-2SAT(m) � �co-2SAT(m + 1) � : : :do not collapse. Moreover, the above results hold even when we only consider problemsinvolving undirected trees or problems involving out-trees.Proof Consider the formula 9x�(x), where �(x) 2 (�co-2SAT)�[FO]. Then 9x�(x)is logically equivalent to the formulaco-2SAT[�(x1; y1); (x2; y2)(�(x1) ^ x1 = y1 = x2 = y2);(x1; y1); (x2; y2)(�(x1) ^ x1 = y1 ^ x2 6= y2)];where x1, y1, x2 and y2 are new variables. Hence, for every m � 1, it is not di�cultto see that the sentence 	m of Proposition 16 is logically equivalent to a sentence ofco-2SAT(m + 1).By Example 4, the problem co-2SAT is accepted by some program scheme ofNPS(3) (as checking to see that every clause has 0 or 2 distinct literals can be doneby a program scheme of NPS(3)). The result follows similarly to as in Corollary 23.6 Extending program schemes with a stackClearly, many other hierarchies similar to those in Corollaries 21, 22 and 23 can beobtained by proceeding as we did in the proofs of these corollaries; and it is well worthattempting to establish necessary and su�cient conditions on problems, such as TC,CYC and ROOT, for such hierarchies to exist. What is apparent is that if we are toobtain logical hierarchies by proceeding in this way then a necessary condition on anycorresponding problem (such as TC, CYC or ROOT) is that it is in the complexityclass NL (by Theorem 12). One of the main contributions in this paper is a meansby which we can establish such logical hierarchies where the corresponding problemis probably not in NL (following some widely accepted complexity-theoretic beliefs),and it is here that we turn now.So far, we have, essentially, replicated and re�ned some results from the literaturewhich had hitherto been proven using Ehrenfeucht-Fra��ss�e games, and not by con-sidering program scheme computations as we do here. Our shift in focus from logicsand games to program schemes and computations enables us to enhance our programschemes by a means not available to us in the logical setting; namely, we can add astack to our program schemes.De�nition 25 For any m � 1, a program scheme of NPSS(m) is de�ned exactly aswas a program scheme of NPS(m) except that there are two additional instructions:� xi := POP; and� PUSH xi. 27



The new instructions provide access to a stack in the usual way. That is: whenthe instruction `PUSH xi' is encountered in some program scheme, the value of thevariable xi is placed on the top of the stack (so increasing the height of the stack by 1)but so that xi retains its value; and when the instruction `xi := POP' is encountered,the value on the top of the stack is removed (so decreasing the height of the stack by1) and the variable xi assumes this value. Note that there is no test to see whetherthe stack is empty. However, extra clari�cation is in order.Let � be a program scheme of NPSS(m), for some odd m � 1. A computationon some input structure proceeds as usual, starting with an empty stack, until a testevaluation is encountered (note that if ever an instruction `xi := POP' is encounteredin some computation when the stack is empty then the computation `hangs', i.e.,does not terminate). The test involves a program scheme of NPSS(m�1) of the form8x18x2 : : :8xp�0, for some program scheme �0 of NPSS(m � 2). Upon encounteringthis test evaluation, the stack of � remains �xed until the truth or falsity of the testhas been established. In order to establish the truth or falsity of the test, as before weconsider computations of the program scheme �0, one for each possible valuation of thevariables x1; x2; : : :xp. In each of these computations, �0 starts with an empty stack.Hence, any computation of a program scheme has its own associated stack. Havingestablished whether the test evaluation results in true or false, the computation of �resumes accordingly. Computations of program schemes of NPSS(m) for even m � 2are de�ned similarly.Remark 26 Even though we have no test to see whether a stack is empty or not, wecan always assume that an input is accepted by some program scheme of NPSS(m) if,and only if, it is accepted such that on termination the stack is empty. We do this bysimulating our original program scheme, with another program scheme of NPSS(m),as follows. We simulate a push in our original program scheme by pushing �rst 0and then the element in question onto the stack in our simulating program scheme,with a pop simulated by popping two elements from the stack. This allows us to havea unique `bottom element', the pair of elements max and max, in our simulatingprogram scheme which we initially push onto the stack. If ever the simulation is suchthat max and max are popped then:� if the original program scheme has accepted at this point then we accept in oursimulation (with an empty stack); and� if the original program scheme has not accepted at this point (and so is tryingto pop from an empty stack) then we reject in our simulation.Also, if our original program scheme has accepted then in our simulation we popeverything o� the stack (that is, until we have popped the pair max and max) andaccept.Example 27 Consider the following program scheme of NPSS(1) over the signature�3++.1. INPUT(x1; x2; x3; x4; x5)2. PUSH C3. PUSH C 28



4. WHILE x1 = 0 DO5. GUESS x26. x3 := POP7. x4 := POP8. GUESS x59. IF x5 = 0 THEN10. PUSH x3 FI11. GUESS x512. IF x5 = 0 THEN13. PUSH x4 FI14. IF R(C; x3; x2) _R(x3; C; x2) _R(C; x4; x2) _R(x4; C; x2)_R(x3; x4; x2) _R(x4; x3; x2) _R(C;C; x2) _R(x3; x3; x2)_R(x4; x4; x2) _ x2 = C THEN15. GUESS x516. IF x5 = 0 THEN17. PUSH x2 FI18. IF x2 = D THEN19. (x1; x2; x3; x4; x5) := (max;max;max;max;max) FI FI OD20. OUTPUT(x1; x2; x3; x4; x5)Suppose that the �3++-structure A is in PS; that is, the vertex D is accessiblefrom the vertex C. Let the vertices of fC = C0; C1; : : : ; Ca = Dg be accessible wherefor every j � 1, Cj can be shown to be accessible by applying a rule (Cj1 ; Cj2) 7! Cjwhere both j1 and j2 are less than j. Let the following be our induction hypothesisIH(i), where i < a:� for any two elements of fC0; C1; : : : ; Cig, there exists a computation of � on Asuch that both these elements are on the stack at the same time and at thistime the ow of control in � is ready to execute the while instruction.Trivially, IH(0) and IH(1) hold.Suppose that IH(i) holds for some i < a� 1, as does the rule (Cj1; Cj2) 7! Ci+1,where both j1 and j2 are at most i. By IH(i), there exists a computation of � on A,call it comp(j1; j2), resulting in a con�guration such that both Cj1 and Cj2 are onthe stack and the ow of control in � is at the while instruction. Clearly, there is anextension of this computation comp(j1; j2) so that Cj1 and Cj2 are the top two itemsof the stack and the ow of control is at the while instruction (simply perform somemore iterations of the while loop so that stack elements, apart from Cj1 and Cj2, are`thrown away').Consider the subsequent computation which:� guesses the value Ci+1 for x2 and then pushes Ci+1 onto the stack, beforereturning the ow of control to the while instruction;� guesses the value C for x2 and then pushes C onto the stack, before returningthe ow of control to the while instruction;� guesses the value C for x2 and then pushes C onto the stack, before returningthe ow of control to the while instruction (so now the top two elements of thestack are C); and 29



� repeats the computation comp(j1; j2), for any chosen j1 and j2 that are bothat most i, before returning ow of control to the while instruction.Note that Ci+1, Cj1 and Cj2 are now all on the stack. Hence, IH(i + 1) now holds.So, by induction, IH(i) holds for all i < a. In particular, IH(a � 1) holds, andsimilar reasoning yields that there is a subsequent computation which pushes D ontothe stack before forcing the while loop to terminate and thus causing A to be acceptedby �.Conversely, suppose that A is accepted by �. In order for a computation to beaccepting, the variable x2 must assume the value D and D must be yielded via a ruleof the form (x; y) 7! D where the elements x and y were previously (and might stillbe) on the stack. But only accessible vertices of A are ever placed on the stack, andso A 2 PS. Consequently, the problem PS is in NPSS(1).Example 27 shows that PS 2 NPSS(1). In fact, there is an even closer relationshipbetween PS and the program schemes of NPSS(1), as we now demonstrate. But �rst,we need to introduce some terminology. This terminology is strongly inuenced by [9]where it was shown that a non-deterministic pushdown automaton can be simulatedby a deterministic pushdown automaton, and the class of languages (i.e., sets of stringsover f0; 1g) accepted by non-deterministic pushdown automata is P.De�nition 28 An instantaneous description (ID) of a k-variable program scheme� 2 NPSS(1) on some input structure consists of the label of the instruction of �about to be executed in the computation together with either a (k+1)-tuple detailingthe values of the variables and the element on the top of the stack at that time or ak-tuple detailing the values of the variables if the stack is empty. The values of anID are the values appearing in this tuple. If � and � are IDs then we write � = �to denote the facts that the instruction of � associated with � is identical to thatassociated with � and that the values of � and � are identical (as tuples).Note that an ID does not necessarily describe the whole of the stack at some pointin a computation of � on some input, just the top element, if it exists. Alternatively,we refer to a description of: the instruction about to be executed; the values of thevariables; and the whole of the stack, at some point in a computation of � on thisinput, as a con�guration. We can regard an ID � as a con�guration �� by takingthe stack to consist solely of the stack element of the ID, if there is one; and we cande�ne ID of a con�guration as the ID obtained from the con�guration by ignoringeverything below the top element of the stack, if there is one.When we talk about some computation of some program scheme of NPSS(1) onsome input structure A, we assume that the constant symbols 0 and max have been�xed as some pair of distinct elements of jAj.De�nition 29 Let (�1; �1) and (�2; �2) be two pairs of IDs of some program scheme� 2 NPSS(1) on some input structure. Then (�1; �1) and (�2; �2) yield the pair ofIDs (�3; �3) if �1 = �3 and one of the following holds:(a) either �3 and �3 have the same stack element or neither has a stack element;starting in con�guration ��1, it is possible for � to execute a push instructionand thus be in a con�guration whose ID is �2; and starting in con�guration ��2,30



it is possible for � to execute a pop instruction and thus be in a con�gurationwhose ID is the �rst k components of �3 (that is, minus �3's stack element, ifit has one); or(b) �1 = �2 and either �2 = �3 or starting in con�guration ��2, it is possible for � toexecute an instruction which is neither a push nor a pop instruction and thusbe in the con�guration ��3.If a pair of IDs (�; �) is eventually obtained by starting from a set � of pairs ofIDs and continually applying the above yield rules then we say that (�; �) has beenobtained by applying the yield rules to �.De�nition 30 Let (�; �) be a pair of IDs of some program scheme � 2 NPSS(1) onsome input structure. Then (�; �) is realizable if:� there is a (partial) computation of � on the input structure starting from thecon�guration �� and ending in the con�guration �� such that throughout thiscomputation, the initial bottom stack element (that is, the stack element of �),if there is one, is never popped; and� the ID � has a stack element if, and only if, the ID � has a stack element.We can now prove our �rst property of accepting computations of program schemesof NPSS(1). Again, we are strongly inuenced by [9].Proposition 31 Every realizable pair (�; �) of IDs of some program scheme � ofNPSS(1) where the input structure is A can be obtained from the set of all pairs ofIDs of the form (; ) by applying the yield rules.Proof Suppose that the pair of IDs (�; �) is realizable. Then there is a computationof � on input A starting from the con�guration �� and ending in the con�guration ��,and so that this computation is as detailed in De�nition 30. Let the length of thiscomputation be t; that is, t is the number of instruction executions, or moves, to getfrom the con�guration �� to the con�guration ��. We shall prove by induction on tthat (�; �) is as stated in the proposition. Let � denote the set of all pairs of IDs ofthe form (; ).If t = 1 then as (�; �) is realizable, the move taking the con�guration �� to thecon�guration �� can not be via a pop or a push instruction. So, we have that (�; �)and (�; �) yield (�; �). Suppose that the result holds for all computations of lengtht, and that there is a computation of length t + 1 taking the con�guration �� tothe con�guration ��; moreover, suppose that this computation satis�es the conditionsof De�nition 30. Denote this computation by ��; c1; c2; : : : ; ct; �� (note that this isa sequence of con�gurations, not IDs). There are two cases: the move taking thecon�guration ct to �� is via neither a pop nor a push instruction, or it is.In the �rst case, the con�guration ct is of the form �, for some ID ; and the pairsof IDs (�; ) and (; �) are realizable. So, the induction hypothesis yields that (�; )and (; �) can be obtained from � by applying the yield rules. As (�; ) and (; �)yield (�; �), we are done.In the second case, the move taking the con�guration ct to �� must be via a popinstruction; so, let a be the element at the top of the stack in the con�guration ct.31



Let i be such that: the element at the top of the stack of ci is a; the height of thestack of ci is one more than the height of the stack of ��; the heights of the stacks ofci+1; ci+2; : : : ; ct are all at least the height of the stack of ci; and the height of thestack of ci�1 is equal to the height of the stack of ��. That is, ci is where the element ahas been pushed onto the stack before it is popped o� at ct. Clearly, such an i existsand 1 � i � t. Let , 0 and 00 be the IDs obtained from the con�gurations ci�1,ci and ct, respectively, by ignoring all elements of the stack except the top element,if there is one. Both pairs of IDs (�; ) and (0; 00) are realizable, and so by theinduction hypothesis they can be obtained from � by applying the yield rules. But(�; ) and (0; 00) yield (�; �), and so (�; �) can be obtained from � by applying theyield rules. The result follows by induction.We can now use Proposition 31 to tie together the logic (�PS)�[FO] and the classof program schemes [fNPSS(m) : m � 1g, which we denote by NPSS.Theorem 32 In the presence of two built-in constant symbols, for each m � 1,�PS(m) = NPSS(m); and consequently (�PS)�[FO] = NPSS (even in the absence ofthe two built-in constants).Proof First, it is easy to show that any problem in (�PS)�[FO] must be in �PS(m),for some m � 1. By Example 27, the problem PS is in NPSS(1), and consequently�PS(m) � NPSS(m), for each m � 1.Conversely, suppose that the problem 
 is accepted by some program scheme� 2 NPSS(1) involving k variables. Let the structure A be accepted by �. ByRemark 26, we may assume that the accepting computation of � on A is such thatthe �nal con�guration has an empty stack. Hence, if �0 is the unique initial ID and�0 is the unique accepting ID then an input is accepted by � if, and only if, the pairof IDs (�0; �0) is realizable.Any ID � of � on input A can be encoded by a tuple �(�) of length k+ l+2, wherel is the number of instructions in �. If the instruction of � associated with � is the ith,say, then each of the �rst l components of the tuple �(�) are 0 except the ith whichis max; the next k components of �(�) consist of the values of the variables of �; andthe last 2 components encode the stack element, if there is one, or the fact that thereis no stack element. Hence, a pair of IDs (�; �) can be encoded by the concatenation(�(�); �(�)) of the two corresponding tuples. Also, there is clearly a quanti�er-free�rst-order formula which ascertains whether a 2(k + l + 2)-tuple encodes a pair ofIDs, and so there is a quanti�er-free �rst-order formula which ascertains whether a6(k + l + 2)-tuple encodes three pairs of IDs (�1; �1), (�2; �2) and (�3; �3) such that(�1; �1) and (�2; �2) yield (�3; �3). Hence, by Proposition 31, 
 can be de�ned by asentence of the form PS[�x;y; z;  (x;y; z)](0;max);where jxj = jyj = jzj = 2(k+ l+2),  is quanti�er-free �rst-order and 0 (resp. max)is the constant symbol 0 (resp. max) repeated 2(k + l + 2) times. Thus, in thepresence of two built-in constants, PS(1) = NPSS(1).By proceeding by induction onm and using essentially the above construction, themain result follows. We remark that when we proceed as above for a program schemeof NPSS(3), say, and use the fact that PS(1) = NPSS(1), we may need to replace a pos-itive Boolean combination, i.e., just involving _ and ^, of atomic and negated atomic32



formulae and formulae of the form (resp. :) 8w18w2 : : :8wpPS[�x;y; z ](u;v), withone formula of this form. That this can always be done is straightforward. Finally,by `building our built-in constants from within', using existential quanti�cation, weobtain the �nal parenthetic extension.So, the class of problems NPSS has an equivalent formulation as the extension of�rst-order logic by the path system operator PS. It is known that in the presence ofa built-in successor relation, (�PS)�[FO] = P, and that any problem in P can bedescribed by a sentence of (�PS)�[FO] of the formPS[�x;y; z (x;y; z)](0;max);where  is quanti�er-free �rst-order (involving the built-in successor relation) [46].Consequently, we obtain the following result.Theorem 33 In the presence of a built-in successor relation,NPSS = NPSS(1) = (�PS)�[FO] = PS1[FO] = P:Theorem 33 provides strong evidence that the problem PS is not in transitiveclosure logic, given Theorem 12 (or, equivalently, that PS is not in NPS, given The-orem 11); but as yet, we have not established whether this is true or not. In fact,it is the case that PS 62 (�TC)�[FO], and this fact can be established from existingresults. The class of problems de�nable by the sentences of existential �xed point logic(that is, the fragment of LFP�[FO] de�ned by forbidding the universal quanti�er andonly allowing : to negate atomic formulae) and the class of problems de�nable by thesentences of the existential fragment (de�ned in the same way) of PS�[FO] are oneand the same [36]. Moreover, in the presence of two built-in constants, every problemin the existential fragment of PS�[FO] can be de�ned by a sentence of the formPS[�x;y; z ](0;max);where  is quanti�er-free �rst order [23, 36]. Also, there are problems in existentialleast �xed point logic that are not in transitive closure logic [23, 26] (in fact, problemsinvolving rooted undirected trees). Hence, the problem PS is not in transitive closurelogic. By Theorems 11 and 32, we obtain the following.Theorem 34 (�TC)�[FO] = NPS � NPSS = (�PS)�[FO];even when we only consider problems involving rooted undirected trees.7 More hierarchy resultsWe now return to establishing a hierarchy theorem for the class of program schemesNPSS, analogous to that in NPS. We can, in fact, obtain such a theorem using apowerful existing result (obtained by playing games!) due to Gr�adel and McColm[22]. However, their result does not yield a hierarchy result holding on undirectedtrees or on out-trees: we need to consider computations in our program schemes ofNPSS, as we did before for NPS, to obtain such a re�ned result. But �rst, we giveGr�adel and McColm's result and show how it can be applied.33



De�nition 35 Let w be a word over f9; 8; T;Ng, with � the empty word. Then:� TC(�) consists of all quanti�er-free �rst-order formulae;� for Q 2 f9; 8g, the class of formulae TC(Qw) � (�TC)�[FO] is the closureunder conjunctions and disjunctions of TC(w) [ f(Qxi)' : ' 2 TC(w)g;� the class of formulae TC(Tw) � (�TC)�[FO] is the closure under conjunctionsand disjunctions of the class of formulae of the form TC[�x;y'](u;v), where' 2 TC(w); and� the class of formulae TC(Nw) � (�TC)�[FO] is the closure under conjunctionsand disjunctions of the class of formulae of the form :TC[�x;y:'](u;v), where' 2 TC(w).Clearly, [fTC(w) : w 2 f9; 8; T;Ng�g = (�TC)�[FO].For any w 2 f9; 8; T;Ng�, let ~w be the word over f9; 8; 9�; 8�g obtained by re-placing T by 9� and N by 8�. Such a word ~w also denotes the set of words obtainedfrom ~w by replacing any occurrence of 9� (resp. 8�) with any word from f9g� (resp.f8g�); that is, ~w also denotes the set of words over f9; 8g denoted by the `regularexpression' ~w. For any w 2 f9; 8g�, let �w be obtained from w by replacing every 9with 8 and vice versa.De�nition 36 The logic L1! is formed using the usual operations of �rst-orderlogic except that conjunctions and disjunctions of arbitrary, not just �nite, sets offormulae are allowed. The fragment Lk1! consists of all formulae of L1! in which atmost k distinct variables appear; and bounded variable in�nitary logic L!1! is de�nedas f 2 Lk1! : k � 0g.De�nition 37 Every formula  of bounded variable in�nitary logic L!1! has a cer-tain quanti�er structure P ( ) � f9; 8g�, de�ned as follows:� if  is quanti�er-free then P ( ) = f�g;� if  is of the form :' then P ( ) = f �w : w 2 P (')g;� if  is of the form 9x' then P ( ) = f9w : w 2 P (')g, and similarly when  isof the form 8x' then P ( ) = f8w : w 2 P (')g; and� if  is of the form _f'i : i 2 Ig or ^f'i : i 2 Ig, for some index set I, thenP ( ) = [fP ('i) : i 2 Ig.For each k � 1, a set P � f9; 8g� yields the class of formulae Lk1!(P ) de�ned asf 2 Lk1! : for every w 2 P ( ) there exists a word w0 2 P such that wcan be obtained by deleting some of the symbols of w0g;with L!1!(P ) = f 2 Lk1!(P ) : k � 0g. Let Pi consist of all those strings of f9; 8g� inwhich there are exactly i 8 symbols. Then the set of in�nitary formulae with boundednumber of universal quanti�ers, L!1!(BU), is de�ned as f 2 L!1!(Pi) : i � 0g:Now for Gr�adel and McColm's result.34



Theorem 38 [22](a) The problem consisting of all those structures over �2++ for which the vertexD is not reachable from the vertex C via a path in the undirected graph whoseedge relation is given by E is not de�nable in L!1!(BU).(b) Let w be obtained from a word of f9; 8; T;Ng� by continually replacing 9T , T9and TT by T , and 8N , N8 and NN by N until no more reductions can bemade, i.e., w is reduced; and let w0 2 f9; 8; 9�; 8�g�. Then:the class of problems TC(w) contains a formula  w which is equivalent toa formula of L!1!(w0)if, and only if,every word in ~w can be obtained from some word of w0 by deleting somesymbols.Now we can apply Theorem 38. From above, the problem PS is in existential least�xed point logic, which in turn is a fragment of existential bounded variable in�nitarylogic (de�ned from L!1! as was existential least �xed point logic from LFP�[FO]: see[23]). For m � 1, let w0m be a word over f9; 8; 9�; 8�g denoting the set of words overf9; 8g consisting of at most m � 1 alternations of blocks of 8 and 9 and whose �rstsymbol is 9, if m is odd, and 8 if m is even. A simple induction yields that everyproblem in �PS(m), for m � 1, can be de�ned by a sentence of L!1!(w0m). For eachm � 1, letwm be the string 9898 : : :9 of lengthm, ifm is odd, and letwm be the string8989 : : :9 of length m, if m is even. Theorem 38 yields that TC(wm+1) 6� L!1!(w0m),for any m � 1. But TC(wm+1) � PS(m + 1), for m � 1, and so, by Theorem 32, weobtain the following result.Corollary 39 In the presence of two built-in constants,NPSS(1) � : : : � NPSS(m) � NPSS(m + 1) � : : :: : : � [fNPSS(m) : m � 1g = NPSS;�PS(1) � : : :� �PS(m) � �PS(m+ 1) � : : :: : : � [f�PS(m) : m � 1g = (�PS)�[FO]and PS(1) � : : : � PS(m) � PS(m + 1) � : : :: : : � [fPS(m) : m � 1g = PS�[FO]:Moreover, for every m � 1, there is a problem of �m+1, if m is even, and �m, if mis odd, in the (m+ 1)th level of any of these hierarchies which is not de�nable in themth level.We have two remarks, one negative, one positive. First, from [22], Corollary 39holds when we consider problems over a �xed signature but only when this signature35



contains 3 binary relation symbols and 2 constant symbols: Theorem 38 can not beused to show that Corollary 39 holds on graphs or digraphs. Second, Theorem 38does clearly su�ce to show that the hierarchy within path system logic obtained byinterleaving applications of the operator PS and negations is proper, and that theproblem co-PS is not de�nable in PS�[FO] (we leave these applications as exercises).Given the drawback as regards Corollary 39, we now seek to improve it. Ideally,we would like Theorem 13 to hold for the program schemes of NPSS. Let us lookat the proof of this theorem for program schemes of NPS(1) and see what happenswhen we have a stack present. Adopting the nomenclature of Theorem 13, clearlywe still have that ~A1+rk j= � ) ~B1+rk j= � as we simply `mirror' any computationof � on ~A1+rk by a computation of � on ~B1+rk . Suppose that ~B1+rk j= �. The cruxof the proof of Theorem 13 is that in an accepting computation of � on ~B1+rk wecan `avoid' the left-most copy of B0 on layer 0 of ~B1+rk ; and so obtain an acceptingcomputation of � on ~A1+rk . The question is: `Can we do likewise in the presenceof a stack?'. On the face of it, the answer is `no'. Simply proceeding as we do inTheorem 13 might leave the two stacks (in the two di�erent computations of � on~A1+rk and ~B1+rk ) consisting of di�erent elements; and so we lose the property thatour two computations proceed in tandem, so to speak. However, whilst we can notapply the proof of Theorem 13 exactly in the presence of a stack, we can use certainproperties of accepting computations of program schemes of NPSS(1) to achieve aresult very similar to Theorem 13.Adopt the assumptions of the statement of Theorem 13 except assume � to bein NPSS(m) and not NPS(m) and consider � on structures ~Bm+r3k+2 and ~Am+r3k+2. Withregard to De�nitions 28, 29 and 30, note that they are only given for program schemesof NPSS(1). However, we can de�ne the notions in these de�nitions relative to aprogram scheme � 2 NPSS(m), for any odd m > 1, simply by taking a `top-level' viewof � (as we described immediately prior to Lemma 14). Consequently, Proposition 31holds when � 2 NPSS(m), for any odd m � 1 (as the original proof works for thegeneral case).Lemma 40 Set m � 3 to be odd and �x 0 and max as the elements u and v of ~Am+r3k+2such that Um+r (u) holds, Um+r�1(v) holds and v is in the right-most copy of Am+r�13k+2or Bm+r�13k+2 on layer m+ r� 1 of ~Am+r3k+2. Let (�; �) be a realizable pair of IDs of � oninput ~Am+r3k+2 such that no value of � or � lies in the left-most copy of Am�23k+2 on layerm� 2 of ~Am+r3k+2. Then there is a computation of � on input ~Am+r3k+2 from con�guration�� to con�guration �� such that throughout this computation:� no input-output variable ever takes a value from the left-most copy of Am�23k+2 onlayer m� 2 of ~Am+r3k+2; and� the height of the stack does not decrease.Proof By Proposition 31, (�; �) can be obtained from the set � of all pairs of IDsof the form (; ) by applying the yield rules. Hence, we proceed by induction on thenumber t of yield rules applied to obtain (�; �). Note that a simple induction yieldsthat any pair of IDs obtained from � by applying the yield rules is realizable.The base case of the induction is when t = 1. There are two ways in which (�; �)could have been obtained: via rule (a) or via rule (b) of De�nition 29. If rule (a) was36



applied then there is a computation of length 2 from con�guration �� to con�guration�� which consists of a push followed by a pop. If rule (b) was applied then there is acomputation of length 1 from con�guration �� to con�guration �� where the move isneither a pop nor a push. In either case, the computation is as required.Suppose, as our induction hypothesis, that the result holds for all realizable pairsof IDs that can be obtained from � by applying less than t yield rules. Let (�; �) bea realizable pair of IDs that can be obtained from � by applying t yield rules. Again,there are two ways in which (�; �) could have been obtained: via rule (a) or via rule(b) of De�nition 29.Suppose that (�1; �1) and (�2; �2) yield (�; �) by applying rule (a), where (�1; �1)and (�2; �2) can be obtained from � by applying less than t yield rules. In order toimmediately apply the induction hypothesis, we need that no value of �1, �2 or �2lies in the left-most copy of Am�23k+2 on layer m�2 of ~Am+r3k+2: however, this may not bethe case. Consider the number of di�erent values from amongst the IDs �1, �1, �2,�2 and �. There are: at most k+ 1 di�erent values of �1; at most another k di�erentvalues of �1 (note that the stack elements of �1 and �1, if they exist, are identical);every value of �2 has already been accounted for (as a value of �1); at most anotherk di�erent values of �2 (note that the stack elements of �2 and �2 are identical); andevery value of � has already been accounted for (as a value of �2). Hence, the set ofdi�erent values, V , say, from the IDs �1, �1, �2, �2 and � has size at most 3k + 1.If some of the values from V lie in the left-most copy of Am�23k+2 on layer m � 2 of~Am+r3k+2 then let � be the automorphism of ~Am+r3k+2 obtained:� by mapping every element in the left-most copy of Am�23k+2 on layer m � 2 to itscorresponding element in a `free copy' of Am�23k+2 on layer m� 2 from the 3k+ 2copies adjacent to the left-most copy, and vice versa; and� by �xing every other element(note that such a `free copy' exists). If no value from V lies in the left-most copy ofAm�23k+2 on layer m � 2 of ~Am+r3k+2 then let � be the identity automorphism.As (�1; �1) is realizable, there is a computation of � on input ~Am+r3k+2 from con-�guration ��1 to con�guration ��1 such that throughout the computation, the stackheight does not decrease. By mirroring this computation using the automorphism �,the pair of IDs (�1; �(�1)) is realizable (note that �(�1) = �1); and similarly, the pairof IDs (�(�2); �(�2)) is realizable. Also, (�1; �(�1)) and (�(�2); �(�2)) can be obtainedfrom � by applying less than t yield rules (simply use � to mirror the yield rules usedto obtain (�1; �1) and (�2; �2)). Finally, (�1; �(�1)) and (�(�2); �(�2)) yield (�; �)(as �(�) = �). Consequently, applying the induction hypothesis yields that there is acomputation of � on input ~Am+r3k+2 from con�guration �� to con�guration �� such thatthroughout this computation: no input-output variable ever takes a value from theleft-most copy of Am�23k+2 on layer m�2 of ~Am+r3k+2; and the height of the stack does notdecrease (note that all stack elements of the IDs �1, �1, �2, �2 and � are �xed by �).Suppose that (�1; �1) and (�2; �2) yield (�; �) by applying rule (b), where (�1; �1)and (�2; �2) can be obtained from � by applying less than t yield rules. A simplecount yields that the set of di�erent values from the IDs �1, �1, �2, �2 and � has sizeat most 3k + 2. Proceeding similarly to above gives the result.37



Lemma 41 Set m � 1 to be odd and �x 0 and max as the elements u and v of ~Bm+r3k+3such that Um+r (u) holds, Um+r�1(v) holds and v is in the right-most copy of Am+r�13k+3or Bm+r�13k+3 on layer m+ r� 1 of ~Bm+r3k+3. Let (�; �) be a realizable pair of IDs of � oninput ~Bm+r3k+3 such that no value of � or � lies in the left-most copy of Bm�13k+3 on layerm� 1 of ~Bm+r3k+3. Then there is a computation of � on input ~Bm+r3k+3 from con�guration�� to con�guration �� such that throughout this computation:� no input-output variable ever takes a value from the left-most copy of Bm�13k+3 onlayer m� 1 of ~Bm+r3k+3; and� the height of the stack does not decrease.Proof The result follows by proceeding similarly to the proof of Lemma 40. Theonly additional remark to make is that we need ~Bm+r3k+3 in the statement of the lemma,as opposed to ~Bm+r3k+2, because the constant max might interfere when m = 1.Armed with Lemmas 40 and 41, we can obtain the following result.Theorem 42 Let � be some relational signature containing the unary relation sym-bol U0 and let A0 and B0 be �-structures such that:� A0 � B0; and� jfu 2 jA0j : U0(u) holds in A0gj = jfu 2 jB0j : U0(u) holds in B0gj = 1.Fix m � 1, k � 1 and r � 0, and:� let � 2 NPSS(m) be over the signature �m+r and involve k variables, s of whichare free; and� let ~Am+r3k+3 and ~Bm+r3k+3 be expansions of the �m+r -structures Am+r3k+3 and Bm+r3k+3 byadjoining s constants (one for each free variable of �) so that:{ ~Am+r3k+3 � ~Bm+r3k+3 via a natural embedding � which embeds the left-mostcopy of Am�13k+3 on layer m� 1 of ~Am+r3k+3 into the left-most copy of Bm�13k+3 onlayer m � 1 of ~Bm+r3k+3; but{ none of the adjoined constants lie in the left-most copy of Am�13k+3 on layerm�1 of ~Am+r3k+3 nor in the left-most copy of Bm�13k+3 on layer m�1 of ~Bm+r3k+3.Then ~Am+r3k+3 j= � if, and only if, ~Bm+r3k+3 j= �:Proof The proof of Theorem 13 goes through with Lemmas 40 and 41 playing theroles of Lemmas 14 and 15. Our only additional comment is that, by Remark 26,~Am+r3k+3 j= � if, and only if, (�0; �0) is realizable, where �0 and �0 are the unique initialand accepting IDs, respectively (there is an analogous statement concerning ~Bm+r3k+3).We can now obtain our basic hierarchy theorem for NPSS. The proof of this resultproceeds exactly as do those of Corollaries 17 and 18 except that we use Theorem 42in place of Theorem 13. 38



Corollary 43 If m � 2 is even then there are problems in �m which are not inNPSS(m � 1), and if m � 3 is odd then there are problems in �m which are not inNPSS(m � 1). In particular,NPSS(1) � : : : � NPSS(m) � NPSS(m + 1) � : : :Moreover, the above results hold even when we only consider problems involvingundirected trees or problems involving out-trees.Also, Theorem 32 and Corollary 43 yield the following result.Corollary 44 In the presence of two built-in constants, if m � 2 is even then thereare problems in �m which are not in �PS(m� 1), and if m � 3 is odd then there areproblems in �m which are not in �PS(m � 1). In particular,PS(1) � : : : � PS(m) � PS(m + 1) � : : :: : : � [fPS(m) : m � 1g = PS�[FO]and �PS(1) � : : :� �PS(m) � �PS(m+ 1) � : : :: : : � [f�PS(m) : m � 1g = (�PS)�[FO]Moreover, the above results hold even when we only consider problems involvingundirected trees or problems involving out-trees.8 ConclusionWe begin our conclusion by returning to the question of whether there is a logic forP, as mentioned in the Introduction. As we said there, our purpose in considering theprogram schemes of NPS and NPSS here is not really to try and concoct some class ofprogram schemes (without built-in relations) to capture P or to increase the class ofproblems captured in comparison with other previously proposed logical characteriz-ations of P. It is to: �rst, examine the classes of problems NPS and NPSS as problemclasses in their own right, given that the two formalizations are, to our minds, quitenatural (recall Cook's result [9] that non-deterministic pushdown automata recognizeexactly the polynomial-time recognizable languages over f0; 1g); and, second, to lookfor equivalent, logical characterizations of NPS and NPSS, and apply these charac-terizations to obtain new logical results. We feel we have been quite successful in thisregard, especially given that all our results have been obtained without recourse toEhrenfeucht-Fra��ss�e games. However, we are also conscious of the fact that we shouldinvestigate the relationship between NPSS and some other previously proposed logicalcharacterizations of P. We do that here, and show that there are problems in bothLFP1[FO] and ATC1[FO] (which are fragments of least �xed point logic and altern-ating transitive closure logic, respectively [13]) which are not de�nable in NPSS. Weuse the fact that LFP1[FO] = ATC1[FO] (see [13, Theorem 8.4.8]) and only exhibit aproblem from LFP1[FO] that is not in NPSS.39



Proposition 45 Adopt the nomenclature of Proposition 16. For every vertex x ofAmk and Bmk for which Ui(x) holds, for i < m even, place a new vertex on the edgejoining x with the vertex y for which Ui+1(y) holds. Now regard (these amended)Amk and Bmk simply as out-trees with edges directed away from the vertex z for whichUm(z) formerly held (i.e., the reducts of the original structures to �2). Then thereare sentences �e and �o of LFP1[FO(�2)] such that for any k � 1,Amk j= �e and Bmk 6j= �e when m is evenand Amk j= �o and Bmk 6j= �o when m is odd:Proof De�ne the following predicates:� d0o(x) to be 8y:E(x; y) (`x has out-degree 0');� d0i (x) to be 8y:E(y; x) (`x has in-degree 0'); and� d1o(x) to be 9y(E(x; y) ^ 8z(E(x; z)) y = z)) (`x has out-degree 1').Let R be a new relation symbol of arity 1. If m � 2 is even then de�ne 'e asd0o(x) _ (9y(d1o(y) ^E(y; x)) ^ 8z(E(x; z)) R(z)))_ (:d0i (x) ^ 8y(d1o(y)) :E(y; x)) ^ 8y(E(x; y) ) :d0o(y))^9z(E(x; z) ^R(z)))_ (d0i (x) ^ 8y(E(x; y) ) R(y)))and if m � 1 is odd then de�ne 'o asd0o(x) _ (9y(d1o(y) ^E(y; x)) ^ 8z(E(x; z)) R(z)))_ (:d0i (x) ^ 8y(do(1)(y) ) :E(y; x)) ^ 8y(E(x; y) ) :d0o(y))^9z(E(x; z) ^R(z)))_ (d0i (x) ^ 9y(E(x; y) ^R(y))):Essentially, the �rst lines of 'e and 'o set the leaves of the out-trees Amk and Bmk tobe in the relation R and give the rules for adding a vertex x to R when x was formerlya vertex for which Ui(x) held, for some even i < m. The second lines give the rulesfor adding a vertex x for which Ui(x) held, for some odd i < m, to R and also therules for adding the `new' vertices of Amk and Bmk to R. Finally, the �nal lines givethe rules for adding the root to R.If we de�ne the sentences �e and �o as8x(d0i (x)) LFP[�x;R; 'e(x)](x))and 8x(d0i (x)) LFP[�x;R; 'o(x)](x));respectively, the result follows. 40



With regard to the discussion following Corollary 17, we could easily prove asimilar result to Proposition 45 for undirected trees Amk and Bmk . By applying The-orems 32 and 42, the following is immediate.Corollary 46 NPSS = (�PS)�[FO] � LFP1[FO] = ATC1[FO];even when we only consider problems involving undirected trees or problems involvingout-trees.Let us draw to a close by pulling together the contributions in this paper. We havedeveloped an alternative to de�ning classes of problems using logic by consideringprogram schemes; which are, essentially, high-level models of computation taking�nite structures as their inputs. We have shown that the class of problems acceptedby the program schemes of NPS coincides with the class of problems de�nable by thesentences of transitive closure logic, and we have used this identi�cation to exhibitproper in�nite hierarchies within transitive closure logic. Importantly, we did thiswithout recourse to any sort of Ehrenfeucht-Fra��ss�e games (the tools previously usedto establish many hierarchy results), and we simply considered computations of ourprogram schemes on speci�c �nite structures.Our consideration of computational devices, as opposed to logical formulae, en-abled us to increase the power of the program schemes of NPS by adding in a stack;an option not really available in the logical setting. We showed that the class of prob-lems accepted by the program schemes of NPSS has an equivalent formulation as theclass of problems de�ned by the sentences of path system logic: this characterizationwas not previously known. Furthermore, we established the (hitherto unknown) factthat there are proper in�nite hierarchies within path system logic. Again, our logicalhierarchy results for path system logic have been established without playing any sortof Ehrenfeucht-Fra��ss�e game. We feel that the general approach of equating classesof problems accepted by appropriate computational devices with those de�ned by theformulae of logics has a rosy future; and we hope that such characterizations will yieldnew logical inexpressibility results, obtained by considering computations as opposedto playing games.Finally, we mention some directions for further research. We would like to consideradding other high-level programming language constructs, such as an array or arrays,to the program schemes of NPS and NPSS. It is to be hoped that doing so mightyield proper in�nite hierarchies within a logic (�
)�[FO] where 
 is, for example, anoperator corresponding to a PSPACE-complete problem (the only result known inthis context regarding the expressive power of a logic formed by extending �rst-orderlogic with an operator corresponding to a PSPACE-complete problems is a minorinexpressibility result in [3]). We would also like to consider adding new constructsto NPSS so as to increase computing power yet stay within P.All of our hierarchy results hold over the signature �2. This leaves open thestatus of these results when we restrict our signatures to only contain unary relationsymbols. Gr�adel and McColm [22] remark that over signatures containing only unaryrelation symbols, all �rst-order formulae are logically equivalent to formulae in �2,i.e., �2 \�2. This result may be of some help.41
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