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Abstract It is shown in this paper how a solution for a combinatorial problem ob-
tained from applying the greedy algorithm is guaranteed to be optimal for those
instances of the problem that, under an appropriate algebraic representation, satisfy
the Cohen-Macaulay property known for rings and modules in Commutative Alge-
bra. The choice of representation for the instances of a given combinatorial problem
is fundamental for recognizing the Cohen-Macaulay property. Departing from an
exposition of the general framework of simplicial complexes and their associated
Stanley-Reisner ideals, wherein the Cohen-Macaulay property is formally defined,
a review of other equivalent frameworks more suitable for graphs or arithmetical
problems will follow. In the case of graph problems a better framework to use is
the edge ideal of Rafael Villarreal. For arithmetic problems it is appropriate to work
within the semigroup viewpoint of toric geometry developed by Antonio Campillo
and collaborators.

1 Introduction

A greedy algorithm is one of the simplest strategies to solve an optimization prob-
lem. It is based on a step-by-step selection of a candidate solution that seems best at
the moment, that is a local optimal solution, in the hope that in the end this process
leads to a global optimal solution. Greedy algorithms do not always output (global)
optimal solutions, but for many optimization problems they do.
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A seminal result of Jack Edmonds [Edmonds, 1971], states that for a greedy al-
gorithm to output optimal solutions it is necessary and sufficient that the input is a
matroid, regardless of the weight function associated to the optimization problem.
A matroid is a simplicial complex with the additional exchange property. Korte
and Lovazs have extended Edmonds result to cover other type of weight functions
and weaker combinatorial objects as input. Specifically they have slimmed the ma-
troid by removing the subclusiveness property and named the new object a greedoid
[Korte & Lovász, 1984].

The intuition behind Edmonds result is to view the problem of determining the
correctness of the greedy algorithm as a localization problem: in order to know if
greedy works for some set H, it suffices to look at some discrete partition of H
and check if greedy works for each of the parts then it should work for H. This is
a classical working paradigm for the algebraic geometer (see, e.g., [Kunz, 1985]),
namely to solve problems locally and translate solutions globally, and vice versa.
Matroids fit in very well this local–global pattern, which is best viewed in the realm
of Commutative Algebra as follows:

As a simplicial complex ∆ over some ground set S, a matroid is such that for
every subset W of S, the induced subcomplex ∆W := {F ∈ ∆ : F ⊆W} has an
associated ideal in some ring of polynomials which is Cohen-Macaulay. By
extension we say then that each ∆W is Cohen-Macaulay [Stanley, 1996].

This suggests that in order to guarantee optimal solutions from the greedy algorithm
we should start with those instances of the input that are Cohen-Macaulay or piece–
wise Cohen-Macaulay (as matroids).

Now, a related question is how to recognize those Cohen-Macaulay instances for
a given combinatorial problem. This is a question about the choice of representation,
since there is more than one way to associate to a simplicial complex some module
that encodes its algebraic properties, like being Cohen-Macaulay. It also has to do
with the chosen ground set of the simplicial complexes. The selection of the type
of simplicial complex and associated module should be determined by the type of
combinatorial problem to which we apply some form of greedy algorithm.

For a general ground set S identified with an initial segment of the natural
numbers, the standard module to associate is the Stanley-Reisner ring over some
ring of polynomials [Stanley, 1996]. However, for problems on graphs there is a
natural ideal to associate, which is the edge ideal [Villarreal, 1990], equivalent to
a Stanley-Reisner ideal over a particular simplicial complex whose faces corres-
pond to the independent sets of the graph. For arithmetic problems, an alterna-
tive framework is given by the numeric semigroups viewpoint of Toric Geometry
[Campillo & Pisón, 2001, Campillo & Gimenez, 2000], which serves as a bridge
between affine and projective toric varieties to and from polytopes and simplicial
complexes. We will illustrate in the following sections the usefulness of these alge-
braic ideas for ascertaining the correctness of greedy algorithms.
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2 Greedy algorithms and simplicial complexes

Let S be a finite set and ∆ a collection of subsets of S. We say that (S,∆) is a
simplicial complex if it verifies the following two conditions:

(S1) For all s ∈ S, {s} ∈ ∆ .
(S2) F ⊆ G ∈ ∆ implies F ∈ ∆ .

S is called the ground set and is usually identified with [n] := {1, . . . ,n}, in which
case one refers to the simplicial complex as ∆ . The elements of ∆ are called faces,
and the maximal elements of ∆ , with respect to ⊆, are called facets (or ∆ -maximal
sets). The dimension of the simplicial complex ∆ , denoted dim(∆), is the maximum
dimension of its faces, where the dimension of face F is dim(F) = |F |− 1, where
|F | denotes the cardinality of F .

Given a simplicial complex ∆ over the ground set S, and given a linear weight
function f : S→R≥0, we can extend f to 2S (the set of subsets of S) by defining for
each A⊆ S, f (A) = ∑

a∈A
f (a). We state the general form of an optimization problem

as a maximization problem.

Definition 1. The Optimization Problem for (S,∆) and weight function
f : S→ R≥0, denoted f -OPT(∆ ), is the following:

To find a set A ∈ ∆ with maximum f -weight.

Observe that if f is linear, or at least monotone (i.e. A⊆ B implies f (A)≤ f (B)),
then the optimization problem f -OPT(∆ ) reads:

To find a facet of ∆ with maximum f -weight.

From now on we assume that f is linear.

Definition 2. The greedy algorithm associated to Optimization Problem for (S,∆)
and weight f , denoted GREEDY, is presented in Figure 1.

GREEDY
Input: (S,∆) and f : S→ R≥0
1. A← /0
2. sort S in nonincreasing order by weight f
3. while S 6= /0 do
4. choose a ∈ S in the nonincreasing order by f
5. S← S−{a}
6. if A∪{a} ∈ ∆ then A← A∪{a}
7. end while
8. end
Output: A.

Fig. 1 Algorithm GREEDY.



4 Argimiro Arratia

Remark 1. Monotonicity (or positive linearity) of f is needed for inducing a partial
order in S and sorting makes sense. The algorithm always terminates because S is
finite, and it will always output a non empty set A which is contained in a facet. The
complexity of GREEDY will mostly depend on the membership test in line 6. Note
that f can be a positive constant function. In this case we can select the elements
in S in any order, and the correctness of GREEDY have to be determined for any of
the possible orders of selecting the equally weighted elements. Apart from this dif-
ficulty, the consideration of constant f is useful to treat under the GREEDY scheme
optimization problems where instances are not explicitly weighted and we turn them
into weighted problems by assigning equal constant weight to every element. This
we will do in Section 4.

Definition 3. We say that the algorithm GREEDY for (S,∆) and f correctly solves
the associated optimization problem if it gives as output a set A such that: (i) A is
∆ -maximal (a facet) and (ii) for all B ∈ ∆ ( f (A)≥ f (B)).

We begin by showing that we need no extra assumptions about ∆ (other than to
be a simplicial complex) to guarantee that the output of GREEDY is a ∆ -maximal
set.

Proposition 1. The output of GREEDY is a ∆ -maximal set.

Proof. Let A be the output and suppose A is not maximal. Then there is a C ∈ ∆

such that A⊂C. Let x ∈C−A, then A∪{x} ⊆C ∈ ∆ , and hence A∪{x} ∈ ∆ . But
this x must have been considered at some step in the algorithm and should have been
placed in A, so x ∈ A, a contradiction. ut

Since the previous result holds regardless of the weight function f , what then we
really need to guarantee is that

GREEDY outputs an A of maximum f -weight

For some weight functions (e.g., constant functions), one way to achieve this is
to impose on ∆ the stronger condition of being pure, that is

all ∆ -maximal elements have same dimension

For a more ample spectrum of weight functions (e.g. linear), GREEDY achieves
optimal solutions for inputs where the pureness condition can be localized. This is
the point of matroids, and by extension of Cohen-Macaulay complexes.

3 Matroids and Cohen-Macaulay complexes

A matroid is a simplicial complex (S,∆) which, in addition, verifies the following
principle:
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Principle of Exchange (PE): If A,B ∈ ∆ and |A|< |B|
then there exists x ∈ B−A such that A∪{x} ∈ ∆ .

The Principle of Exchange is equivalent to a localization of the property of being
pure1:

PE ⇐⇒ ∀W ⊆ S, ∆W := {F ∈ ∆ : F ⊆W} is pure

Moreover, the Principle of Exchange is equivalent to the correctness of GREEDY.
This is Edmond’s result on matroids and the greedy algorithm [Edmonds, 1971],
but see [Papadimitriou & Steiglitz, 1998, Theorem 12.5, p. 285] for a textbook ex-
position of this important result in optimization. We collect all these facts in the
following theorem (and using an updated notation and terminology from Commu-
tative Algebra).

Theorem 1 ([Edmonds, 1971]). Given a simplicial complex ∆ over a ground set S,
the following statements are equivalent:

(i) GREEDY correctly solves the optimization problem for (S,∆) and any (linear)
weight function.

(ii) The Principle of Exchange (i.e. (S,∆) is a matroid).
(iii) ∀W ⊆ S, the induced subcomplex ∆W is pure. ut

We shall see next that the localization of pureness is equivalent to a localiza-
tion of the Cohen-Macaulay property. Thus, matroids are locally Cohen-Macaulay
complexes, and we can view the correctness of GREEDY in the world of Cohen-
Macaulay rings, and extensions, which we argue here to be an appropriate algebraic
framework (if not the correct one) to understand the workings of GREEDY.

3.1 Greedy on locally Cohen-Macaulay complexes

Given a simplicial complex ∆ over the ground set [n] := {1, . . . ,n}, and given
K := k[x1, . . . ,xn], the polynomial ring in n variables over some field k, the Stanley–
Reisner ideal of ∆ is the square free monomial ideal I∆ = 〈xA : A 6∈ ∆〉 ⊆K , where
xA := xi1xi2 · · ·xir with A = {i1, . . . , ir} ⊆ [n]. The Stanley-Reisner ring (or face ring)
is the quotient R∆ = K /I∆ . From the correspondence between ∆ and I∆ , the latter
can be characterized as

I∆ =
⋂
F∈∆

F a facet

MFc
(1)

where MFc
is the monomial prime ideal corresponding to the non-face Fc = [n]\F ;

in other words, MFc
= 〈xi : i 6∈ F〉. Equation (1) gives an irreducible decomposition

of I∆ ; as MFc
, for F a facet (a maximal face), is an irreducible component provided

it is not redundant (i.e. cannot be deleted).

1 The reader is encouraged to prove this equivalence.
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The dimension of the face ring, dim(R∆ ), can be defined as dim(R∆ ) = dim(∆)+
1, and therefore2

dim(R∆ ) = max[|F | : F ∈ ∆ ] (2)

The codimension of R∆ , codim(R∆ ), can be defined as the smallest number of ge-
nerators of any irreducible component of I∆ (see [Miller & Sturmfels, 2005, §5.5]).
Other two useful measures of dimension are: 1) the projective dimension of R∆ ,
pd(R∆ ), as the length of a minimal resolution of R∆ ; and 2) the depth of R∆ ,
depth(R∆ ), as the maximal length of a regular sequence on R∆ . All these forms
of dimension are related as follows:

pd(R∆ )≥ codim(R∆ ) and dim(R∆ )≥ depth(R∆ ).

Now, the ideal I∆ (or equivalently the ring R∆ ) is Cohen-Macaulay if and only if
pd(R∆ ) = codim(R∆ ) if and only if depth(R∆ ) = dim(R∆ ).

The simplicial complex ∆ is Cohen-Macaulay if its face ring R∆ is Cohen-
Macaulay.

Remark 2. Technically the Cohen-Macaulay property depends on the choice of the
field k, because computing regular sequences involves finding non zero divisors of
certain quotient modules, and being a divisor or not depends on the characteristic
of the field. Hence, we will always assume that our field k is of characteristic 0. For
further simplicity the reader can assume that k is the field of real numbers.

A consequence of the above definitions and facts about the Stanley-Reisner
ring R∆ is the following result (cf. [Bruns & Herzog, 1993, Corollary 5.1.5] or
[Miller & Sturmfels, 2005, p. 114]):

Proposition 2. If the face ring K /I∆ is Cohen-Macaulay then all irreducible com-
ponents of I∆ have equal cardinality. ut

It follows from the above result that a Cohen-Macaulay simplicial complex is
pure. The converse is true locally, that is, a locally pure complex (i.e. a matroid) is
locally Cohen-Macaulay [Stanley, 1996, Proposition 3.1].

We then have the following characterization of the correctness of the greedy al-
gorithm in terms of the Cohen-Macaulay property:

Theorem 2. Given a simplicial complex ∆ over a ground set S, the following state-
ments are equivalent:

(i) GREEDY correctly solves the optimization problem for (S,∆) and any (linear)
weight function.

(ii) ∀W ⊆ S, ∆W is pure (i.e. (S,∆) is a matroid).
(iii) ∀W ⊆ S, ∆W is Cohen-Macaulay.

Proof. The equivalence of (i) and (ii) is Theorem 1, and the equivalence of (ii) and
(iii) is Proposition 3.1 of [Stanley, 1996]. ut
2 The dimension of a finitely generated ring is the maximum cardinality of an algebraically inde-
pendent set. This is equivalent in R∆ to dim(∆)+1 and Eq. (2).
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4 Maximum Independent Set and Cohen-Macaulay graphs

The Maximum Independent Set problem (or MIS) is the optimization problem that
asks for a largest subset of vertices in a graph which are pairwise non-adjacent.
A dual problem to MIS is the Minimum Vertex Cover (or MVC), which asks for
the smallest subset of vertices in a graph where all the edges have at least one
endpoint. Both problems are related to each other by the following equivalence:
a set of vertices is a vertex cover if, and only if, its complement is an independent
set. The MIS (and the MVC) problem is NP-complete [Garey & Johnson, 1979],
and in view of its general intractability various greedy algorithms have been pro-
posed for obtaining approximate solutions. A common feature of many of these
greedy strategies for finding solutions to the MIS is to select vertices in some order
with respect to their degrees (i.e. number of incident edges) and remove them and
their adjacent vertices at each step. Although, in general, these strategies based on
vertex selection have a poor approximation ratio under a worst case analysis (cf.
[Papadimitriou & Steiglitz, 1998, §17.1] or [Dinur & Safra, 2005]), some of these
work for some classes of graphs, meaning that they do provide us with the optimal
solution (an independent set of maximum possible cardinality). We shall see that
these vertex selection greedy strategies (dependable on the order of selecting the
vertices) work in general for Cohen-Macaulay graphs.

First we shall fix some notation and terminology on graphs.

Definition 4. We denote graphs as G = 〈V (G), E(G)〉 or 〈[n], E(G)〉, where the
vertex set V (G) of cardinality n is identified with the labelling set [n] := {1,2, . . . ,n},
and E(G)⊆ {{i, j} : i, j ∈V (G)} is the set of edges. The complement of G, denoted
Gc, is a graph with same set of vertices as G and edge set E(Gc) := {{i, j} : {i, j} 6∈
E(G)}. Given a vertex a ∈ V (G), the neighbourhood of a is the set NG(a) = {b :
{a,b} ∈E(G)}, and its degree is denoted deg(a). For a subset of vertices W ⊆V (G),
the graph induced by W has as vertices the set W and as edges all those in E(G)
among pairs of vertices in W . The graph induced by W is formally denoted GW .

All throughout this paper a graph is always simple and undirected. Given a graph
G, a subset C of V (G) is a clique if for all distinct pairs i, j ∈C, {i, j} ∈ E(G). An
independent set of G is a subset M ⊆V (G) such that for all i, j ∈M, {i, j} 6∈ E(G).
The independent set M is maximal if no extension of M is an independent set. A
maximum independent set (MIS) is a (maximal) independent set of greatest possible
cardinality. A vertex cover of G is a subset C⊆V (G) such that for all {i, j} ∈ E(G),
C∩{i, j} 6= /0. C is minimal if no proper subset of C is a vertex cover of G, and is
a minimum vertex cover (MVC) if it has smallest possible cardinality. It is usually
said that G is unmixed if all of its minimal vertex covers have the same size.

Next, we shall denote the vertex selection strategy following the rule ω for se-
lecting vertices as VERTEXSELECT[ω], and which proceeds as follows:

VERTEXSELECT[ω] : select a vertex in the order established by the rule ω , re-
move its neighbours and repeat the selection procedure in the reduced graph.
The output is the set of selected vertices.
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By construction the output of VERTEXSELECT[ω] is a maximal independent set.
We shall first deal with two simple rules for selecting vertices:

ωL: choose the vertex with largest degree first;
ωS: choose the vertex with smallest degree first.

Note that for both rules, selection of vertices is always possible, so both variants of
the VERTEXSELECT[ω] algorithm terminate. Also, under these rules, vertices are
sorted in the order given by their degrees, breaking ties at each step of the algorithm
by using the implicit order given initially by the numeric labelling of the vertices.

An example where the algorithm VERTEXSELECT[ω] outputs an optimal solu-
tion, regardless of ω , is the graph in Figure 2. For this graph an optimal output
obtained using the rule ωS of the smallest degree first is the pair {5,1} but it could
also be: {2,5}, or {3,4}, where the last two pairs can also be obtained with the rule
ωL of the largest degree first.

Fig. 2 A graph for which VERTEXSELECT[ω] gives optimal solution for ω ∈ {ωS,ωL}.
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On the other hand, Figure 3 shows a graph where VERTEXSELECT[ωS] gives the
optimal solution {1,4,6}, whilst VERTEXSELECT[ωL] gives {3,4}, an independent
set which is not maximum.

Fig. 3 A graph for which VERTEXSELECT[ωS] gives optimal solution, but VERTEXSELECT[ωL]
does not.
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We will see next how to associate a suitable simplicial complex to a graph in
order to analyze the correctness of VERTEXSELECT[ω] through the lens of Com-
mutative Algebra.
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4.1 The Edge Ideal and correctness of VERTEXSELECT

Let G be a graph on [n] and edge set E(G); let K = k[x1, . . . ,xn], with k a field. To
G one can associate the edge ideal I(G)⊆K , which is generated by all square–free
monomials xix j with (i, j) ∈ E(G). This edge ideal seems to have been first defined
by Rafael Villarreal in [Villarreal, 1990].

To the complementary graph of G, Gc, one can associate the clique complex
κ(Gc) where a face of dimension d is a clique of Gc of size d+1; that is, any subset
A⊆ [n] is in κ(Gc) iff ∀i∀ j(i, j ∈ A→ (i, j) ∈ E(Gc)).

Hence, the Stanley–Reisner monomial ideal associated to κ(Gc), namely Iκ(Gc),
is exactly the edge ideal I(G), and the following definition is sound:

Definition 5. A graph G = 〈[n],E(G)〉 is Cohen-Macaulay over a field k, if the
edge ideal I(G) = 〈xix j : (i, j) ∈ E(G)〉 (and equivalently, the ideal Iκ(Gc)) is
Cohen-Macaulay over K = k[x1, . . . ,xn], that is, K /I(G) (or K /Iκ(Gc)) is Cohen-
Macaulay ring.

Cohen-Macaulay graphs are extensively studied in [Villarreal, 1990]. For example,
the only cycles that are Cohen-Macaulay are those of three or five vertices.

Now, if F ⊂ [n] is a maximal clique in Gc then F is a maximal independent set
in G and Fc := [n]\F is a minimal vertex cover in G of cardinality n−|F |, and vice
versa. From this combinatorial equivalence we can derive the following facts:

Fact 1: Given a graph G, another simplicial complex often associated to G is ∆(G)
consisting of all independent sets of G. By the previous equivalence one sees that
∆(G) = κ(Gc). Thus, the edge ideal I(G) = I∆(G).

Fact 2: By Equation (1) the irreducible components of the edge ideal I(G) are
obtained from the intersection of monomial prime ideals of the form 〈xi : i ∈C〉
such that C is a minimal vertex cover of G.

Fact 3: Using Equation (2), we get that the dimension of the face ring of ∆(G),
dim(R∆(G)) = dim(K /I(G)), is equal to the maximum cardinality of a clique
in the complementary graph Gc, or equivalently, the maximum cardinality of an
independent set in G. On the other hand, codim(R∆(G)) is equal to the minimum
cardinality of a vertex cover in G. This is by definition of codimension and simply
noting that (max. cardinality of independent set in G) + (min. cardinality of vertex
cover in G) = n.

Theorem 3. If the graph G is Cohen-Macaulay then, for any of the degree-based
rules ω ∈ {ωS,ωL}, the algorithm VERTEXSELECT[ω] outputs an optimal solution
on input G.

Proof. By Proposition 3 all irreducible components of I(G) = I∆(G) have same car-
dinality, which by Fact 2 means that G is unmixed, and since VERTEXSELECT[ω]
always output a maximal solution, this solution is optimal. ut
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The converse of Theorem 3 is not true. We have seen that for the graph G in
Figure 2 the algorithm VERTEXSELECT[ω] outputs an optimal solution, for ei-
ther rule ωS or ωL, because G is unmixed. However, this graph G is not Cohen-
Macaulay: the dimension of its face ring, dim(k[x1, . . . ,x5]/I(G)) = 2, but its depth
is depth(k[x1, . . . ,x5]/I(G)) = 1.

We can use Theorem 3 to produce a polynomial-time deterministic test for the
failure of the Cohen-Macaulay property in graphs.

An algorithmic criterion for showing that a graph is not Cohen-Macaulay.
Given a graph G as input, run VERTEXSELECT[ω] for both rules ωS and ωL,
and check that the outputs are of different cardinalities.

By this criterion the graph shown in Figure 3 is not Cohen-Macaulay.
Moreover, it is instructive to see how VERTEXSELECT[ω] fits in the general

greedy scheme (Definition 2). Take as weights on the set of vertices a counting
function, i.e. f : V (G)→ R given by f (v) = 1. Then VERTEXSELECT[ω] is the
GREEDY algorithm with this counting function, and ωS and ωL give particular or-
derings for selecting the vertices (cf. Remark 1). In fact, for the graph in Figure 2
it does not matter in which order the vertices are taken, GREEDY will always give
the optimal independent set (of size 2) for this particular weight function. However,
GREEDY will fail to give the maximum weighted, and maximum independent, set
of vertices if the weights are given by f (v) = deg(v) and now we select vertices
ordered from highest to lowest degree (breaking ties by using the order given by
their labelling). For this weight f , in the graph of Figure 2, we get as solution {1,5}
whose deg-weight is 3+ 2 = 5, whilst the MIS of maximum weight of 6 is {3,4}.
For the graph in Figure 3 and f (v) = deg(v), the greedy solution is {3,4}, which
has maximum weight of 6, but is not a MIS. The MIS of maximum weight in this
case is {1,4,6}. By Theorem 2, it follows that neither of these graphs is a matroid.
This can also be seen by observing that the subgraph induced by W = {3,4,5} has
as set of facets {{3,4},{5}}, so it is not pure.

5 Chordal graphs and Shellable simplicial complexes

A special subclass of Cohen-Macaulay complexes are the shellable simplicial com-
plexes [Stanley, 1996]. The associated edge ideal allows to refine our analysis of
correctness of greedy algorithms for the MIS problem for more interesting classes
of graphs, like the chordal graphs.

Definition 6 (Shellable simplicial complex). A simplicial complex ∆ is called
shellable if the facets of ∆ can be arranged in a linear order F1, . . . , Fm such that for
each pair i, j, 1≤ i < j ≤ m, there exists some v ∈ Fj \Fi and some k < j such that
Fj \Fk = {v}. Such an ordering of the facets is called a shelling order.

A pure shellable simplicial complex is Cohen-Macaulay [Bruns & Herzog, 1993,
Theorem 5.1.13]. The notion of shellability (as in the previous definition) can also
be applied to non pure complexes, as it is done in [Björner & Wachs, 1996].
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A graph G is shellable if the simplicial complex ∆(G) is shellable (in the
non pure sense). The notion of shellable graph was introduced and studied in
[van Tuyl & Villarreal, 2008], and the remarkable main result contained in that pa-
per is that chordal graphs are shellable.

Theorem 4 ([van Tuyl & Villarreal, 2008]). If G is a chordal graph then G is
shellable. ut

Recall that a graph is chordal if every cycle in it of length > 3 has a chord, where
a chord is an edge between two non-consecutive vertices. As an example, drawing
an edge among vertices 3 and 4 in the graph of Figure 3 makes that graph chordal.
Observe that with that extra edge, applying VERTEXSELECT[ωS] to the extended
graph still gives the optimal solution {1,4,6}, whilst VERTEXSELECT[ωL] gives
{3}, so by our Theorem 3 this chordal graph is not Cohen-Macaulay.

We seek to answer the following two questions for chordal graphs:

1. What version of our VERTEXSELECT[ω] algorithm may work correctly for
chordal graphs?

2. How to algebraically characterize the correctness of VERTEXSELECT[ω]?

The answer to question 1 is found implicitly in a combinatorial characterization
of chordality due to Fulkerson and Gross [Fulkerson & Gross, 1965]:

Fulkerson-Gross criterion: Given a graph G, to know if it is chordal, it is
necessary and sufficient that the following procedure eliminates all the vertices
of G: search for a simplicial vertex in G, and if one is found, suppress it and
repeat the procedure in the reduced graph.

Recall that a vertex v is simplicial if the subgraph induced by v and its neighbours,
{v}∪N(v), form a clique. Observe that the Fulkerson-Gross simplicial vertices se-
lection procedure establishes an ordering of the vertices, which has been named a
perfect elimination ordering. A perfect elimination ordering of a graph is an order-
ing of its vertices such that each vertex in the ordering and its neighbours following
it in the order form a clique. The Fulkerson-Gross criterion translates then to the
following statement:

A graph G is chordal iff G has a perfect elimination ordering

Now, let us denote by ωpe a perfect elimination ordering v1, . . . , vn of the ver-
tices, and let VERTEXSELECT[ωpe] be VERTEXSELECT with the Fulkerson-Gross
selection strategy consisting in selecting a simplicial vertex (if it exists), remove its
neighbours and repeat the procedure in the reduced graph, until no simplicial vertex
is found or there are no more vertices to select. The collected vertices this way form
an independent set, but observe that a priori there is no guarantee that it will be a
maximal independent set because the algorithm may stop at some step where it does
not finds any more simplicial vertices. Of course it will be guaranteed to end with a
solution to MIS if the input graph is chordal. Thus we have an answer to question 1
in the following theorem.
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Theorem 5. VERTEXSELECT[ωpe] correctly solves the MIS problem for input graph
G if and only if G is chordal. ut

Back to our graph in Figure 3 with the extra edge {3,4} to turn it chordal,
VERTEXSELECT[ωpe] on input this graph will output the maximum independent
set {1,4,6}.

There is more to say about chordal graphs in Commutative Algebra. A celebrated
theorem by Fröberg [Fröberg, 1990] states that:

The edge ideal I(G) of a graph G has a linear resolution if and only if its
complementary graph Gc is chordal.

On the other hand, the following is known (cf. [Miller & Sturmfels, 2005]):

If an edge ideal I(G) of a graph G has linear quotients, then I(G) has a linear
resolution.

The missing ingredient to answer question 2 was found in the recent work
[Guo, Shen & Wu, 2016, Guo, Shen & Wu, 2017], where the new notion of strongly
shellable is introduced.

Definition 7 (Strongly shellable [Guo, Shen & Wu, 2017]). A simplicial complex
∆ is called strongly shellable if its facets can be arranged in a linear order F1, . . . , Fm
in such a way that for each pair i < j, there exists k < j, such that |Fj \Fk|= 1 and
Fi∩Fj ⊆ Fk ⊆ Fi∪Fj. Such an ordering of facets is called a strong shelling order.

By definition strongly shellable simplicial complexes are shellable. Less obvious is
the fact that matroids are (pure) strongly shellable [Guo, Shen & Wu, 2016].

Now, for a finite simple graph G, with vertex set V (G) and edge set E(G), a strong
shelling order � on the edge set E(G) (corresponding to a strong shelling order of
the edge ideal I(G)), means that whenever we have two disjoint edges Ei � E j, then
we can find some Ek � E j that intersects both Ei and E j non-trivially. If such strong
shelling order on E(G) exists, one says that G is edgewise strongly shellable.

Putting together the known facts on chordal graphs, linear quotients and lin-
ear resolutions of edge ideals, with this new combinatorial property of strongly
shellable, Guo, Shen and Wu have shown the following beautiful result:

Theorem 6 ([Guo, Shen & Wu, 2017]). Let G be a finite simple graph. Then the
following conditions are equivalent:

(i) G is edgewise strongly shellable.
(ii) The edge ideal I(G) has linear quotients.

(iii) The edge ideal I(G) has a linear resolution.
(iv) The complement graph Gc is chordal.
(v) The complement graph Gc has a perfect elimination ordering. ut

Turning this around our greedy (algorithmic) interests, we obtain the following
answer to question 2:
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Theorem 7. Let G be a finite simple graph. Then the following conditions are equi-
valent:

(i) VERTEXSELECT[ωpe] is correct on G.
(ii) G is chordal.

(iii) G has a perfect elimination ordering.
(iv) The complement graph Gc is edgewise strongly shellable.
(v) The edge ideal of the complement graph I(Gc) has linear quotients.

(vi) The edge ideal of the complement graph I(Gc) has a linear resolution. ut

There is certainly much more to research on the correctness of greedy algorithms
for the MIS problem on other classes of graphs. Take for example the Petersen
graph. This graph is not chordal; VERTEXSELECT[ω] with ordering by degrees
gives different sizes of independent sets; hence it is not Cohen-Macaulay.

6 Coin-Exchange problems and Cohen-Macaulay Toric
Projective Curves

Given a set of coin values M = {e1, . . . ,eh} and a target value B > 0, the Coin-
Exchange problem asks for the minimum number of coins whose values sum up
to B. We will always assume that e1 = 1 so that all values can be attained, and
that e1 < e2 < .. . < eh. Thus, formally, the Coin-Exchange problem (a.k.a. optimal
representation problem) reads:

Input: Integers 1 = e1 < e2 < .. . < eh, and B > 0

Output: h-tuple of non negative integers (a1,a2, . . . ,ah) such that

B =
h

∑
i=1

aiei and ∑
h
i=1 ai is minimized.

The h-tuple (a1,a2, . . . ,ah) is called a representation of B, and the one that mini-
mizes ∑

h
i=1 ai is called an optimal representation, and we write opt(B;e1,e2, . . . ,eh)

for the minimum value ∑
h
i=1 ai. If the coin system is clear from the context we might

just write opt(B).
The Coin-Exchange problem is a form of the Knapsack problem, and so it is

in general NP-complete (cf. Integer Knapsack in [Garey & Johnson, 1979]). This
justifies the design of heuristics for obtaining approximate solutions, that for some
cases may find the optimal. One such heuristics is the following greedy algorithm.

Greedy strategy for optimal Coin-Exchange. A greedy strategy to solve
the optimal representation problem (or Coin-Exchange) works as follows:
Initially consider an empty h-tuple α . Then, repeat the following steps un-
til B = 0: find the largest index i such that coin ei ≤ B, add 1 in the ith entry
of α , and replace B by B− ei.
The output α := (a1,a2, . . . ,ah) obtained with this greedy strategy will be
called the greedy representation of B, and write greed(B;e1,e2, . . . ,eh), or
simply greed(B), for the value ∑

h
i=1 ai obtained by this algorithm.
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Throughout the rest of this section the “greedy algorithm” refers to the above greedy
strategy for the optimal Coin-Exchange problem.

Here is a list of some obvious facts that will be useful later:

(i) For a set of two coins {1,e2}, greed(B) = opt(B) for all B.
(ii) For any coin value e j ∈ {e1,e2, . . . ,eh} and for every B≥ e j,

opt(B)≤ opt(B− e j)+1, (3)

with equality if coin e j is used in a minimal representation of B. (Since B =
B− e j + e j, an optimal representation of B− e j gives a representation of B
adding 1 to the jth term.)

(iii) The value of the greedy representation bounds the optimal value for the Coin-
Exchange:

greed(B;e1,e2, . . . ,eh)≥ opt(B;e1,e2, . . . ,eh) (4)

We can assume we have the following implementation of the greedy algorithm:
for each i = h,h−1, . . . ,2,1, let ai = bB/eic, and set B to be B−eiai. This produces
the greedy representation in time O(h logeh). This is polynomial in h. (Observe that
we could have eh = 2h.)

An example for which the greedy algorithm fails to output an optimal represen-
tation of the Coin-Exchange problem is given by the system {1,3,4} and the target
B = 6. The greedy representation for this value is (2,0,1) of size greed(6) = 3,
while the optimal representation is (0,2,0) of size opt(6) = 2. On the other hand,
for the US coin system (of cents) {1,5,10,25,50,100} or the Eurozone coin system
{1,2,5,10,20,50,100,200}, the greedy algorithm will always produce an optimal
representation for any given value. A formal proof of these facts will be possible
after we endowed this numerical problem with the algebraic structure appropriate
for applying the theory of Cohen-Macaulay rings to the analysis of correctness of
the greedy algorithm.

6.1 The algebraic framework

We will now go through the work in [Campillo & Revilla, 2001] for the necessary
background on toric projective curves and their Cohen-Macaulay characterization.

Given a finite set of integers Mh = {1 = e1 < e2 < .. . < eh}, consider the sub-
semigroup S of N2 generated by (0,eh), (e1,eh− e1), . . . , (eh,eh− eh), that is,

S = 〈(0,eh),(e j,eh− e j) : j = 1,2, . . . ,h〉

and consider its projection on the second coordinate of N2:

S′ = 〈eh,eh− e1,eh− e2, . . . ,eh− eh−1,0〉
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For each i = 1,2, . . . ,eh, let ci be the smallest integer in S′ such that ci = eh− i(
mod eh), i.e. ci = (eh− i)+ t · eh for some t ≥ 0. For completeness, set c0 = 0, and
observe that cei = eh− ei. Next, fix a field k and consider the semigroup algebra
k[S] :=

⊕
α∈S

kχ
α , with product given by χα ·χβ = χα+β for α,β ∈ S. The N-grading

on k[S] given by deg(χα) = |α|, where |α| = b+ c if α = (b,c), makes k[S] the
homogeneous coordinate algebra of a toric projective curve Ch. The curve Ch is
arithmetically Cohen-Macaulay if the following property holds:

If α ∈ Z2, α +(eh,0) ∈ S, α +(0,eh) ∈ S, then α ∈ S. (5)

Within this algebraic framework, Campillo and Revilla [Campillo & Revilla, 2001]
have shown the following results that lead to a nice characterization of the correct-
ness of the greedy strategy for the Coin-Exchange problem.

Proposition 3. The toric projective curve Ch is arithmetically Cohen-Macaulay if
and only if for all i : 0≤ i < eh, (i,ci) ∈ S, where ci is as defined above. ut

Proposition 4. Ch is arithmetically Cohen-Macaulay if and only if for all B ≥ eh,
opt(B) = opt(B− eh)+1. ut

Theorem 8. For each j≤ h, set M j = {1 = e1, . . . ,e j} and let C j be the correspond-
ing toric projective curve.

(i) If the greedy algorithm correctly solves the Coin-Exchange problem for the
coin system M j, then C j is arithmetically Cohen-Macaulay.

(ii) If C1, C2, . . . , C j are arithmetically Cohen-Macaulay, then the greedy algorithm
correctly solves the Coin-Exchange problem for M j. ut

Additionally the following characterization of opt(B) in terms of the subsemi-
group S = 〈(0,eh),(e j,eh− e j) : j = 1,2, . . . ,h〉 will be useful (this was originally
established in [Campillo & Gimenez, 2000]).

Proposition 5. For all B ≥ 0, if c is the least integer such that (B,c) ∈ S then
opt(B) = (B+ c)/eh. ut

6.2 Finding an optimal solution for Coin-Exchange effectively
within the algebraic framework

Theorem 8 give us a way of showing the correctness of the greedy algorithm for a
given coin system Mh: one has to check that all the local toric projective curves C3,
C4, . . . , Ch are Cohen-Macaulay (where each curve C j is associated to the system
M j = {e1, . . . ,e j}). However, checking that each curve C j is Cohen-Macaulay goes
through checking membership in the associated semigroup S (Proposition 3), and
this latter check depends on the universal property (5) to hold. So this strategy seems
hard, in principle.
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To find an effective way for checking that the greedy algorithm outputs an opti-
mal solution for any given coin system, the idea is to actually check for those values
where the greedy algorithm does not give optimal solutions, for it happens that the
set of witness where greedy fails for a given coin system is finite. This remarkable
and useful result was obtained by Kozen and Zaks in [Kozen & Zaks, 1994] through
combinatorial arguments, but we shall derive it using the algebraic tools of Campillo
and Revilla laid out in the previous section.

Theorem 9 ([Kozen & Zaks, 1994]). Given a system of coins
Mh = {1 = e1 < e2 < .. . < eh}. If for some B, greed(B)> opt(B), then the smallest
such B satisfies

e3 +1 < B < eh + eh−1.

Proof. If B < e3, we only need the subset {1,e2} of the coin system and for this
greed(B) = opt(B). For B = e3,e3 +1, greed(B) = opt(B) = 1,2.

For the other bound, let B≥ eh +eh−1, and assume that for all x < B, greed(x) =
opt(x). Let i < eh such that B = teh + i, for some integer t (i.e. B ≡ i mod eh).
Let ci be the least integer in S′ such that ci ≡ eh− i mod eh. Then (i,ci) ∈ S and
opt(i) = (i+ ci)/eh. Also (B,ci) ∈ S and

opt(B) · eh = B+ ci = teh + i+ ci,

hence
opt(B) = t +

i+ ci

eh
= t +opt(i)

Now, by assumption and the fact that i < eh we conclude that

opt(B) = t +opt(i) = t +greed(i) = greed(teh + i) = greed(B). �

Next, in order to avoid computing opt(B), Kozen and Zaks use the previous theo-
rem to characterize greedy optimally solely in terms of greed(x). Again we give a
proof of this fact using the algebraic setting for the Coin-Exchange problem:

Corollary 1 ([Kozen & Zaks, 1994]). Given a system of coins
Mh = {1 = e1 < e2 < .. . < eh}, the greedy algorithm is correct for Mh if and only if
∀B∈ (e3+1,eh+eh−1), ∀c∈{e3, . . . ,eh} (c<B −→ greed(B)≤ greed(B−c)+1).

Proof. (⇒) Consider B ∈ (e3 + 1,eh + eh−1) and e j, for j ∈ {3, . . . ,h}, such that
e j < B. By hypothesis, Theorem 8 (i), Proposition 4 and Equation (4),

greed(B) = opt(B) = opt(B− e j)+1≤ greed(B− e j)+1

(⇐) If there is a B such that greed(B)> opt(B), by Theorem 9 the smallest such B
lies in (e3 +1,eh + eh−1). Let e j be a coin used in the minimal representation of B.
Then

opt(B− e j) = opt(B)−1 < greed(B)−1≤ greed(B− e j)

contradicting that B is smallest witness of the failure of the greedy algorithm. ut
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Using Corollary 1 one can effectively check that for the following coin systems
the greedy algorithm always output optimal solutions:

1. US coin system.
2. Eurozone coin system.
3. Fibonacci coin system {1,2,3,5,8,13,21,44}.

On the other hand, the toric projective curves associated to each of these systems
are examples of Cohen-Macaulay curves.
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