
Approximate formulae for a logic
that capture classes of computational
complexity

ARGIMIRO ARRATIA∗, Dpto. de Matemática Aplicada Facultad de
Ciencias Universidad de Valladolid Valladolid 47005, Spain
E-mail: arratia@mac.uva.es

CARLOS E. ORTIZ†, Department of Mathematics and Computer Science
Arcadia University 450 S. Easton Road, Glenside, PA 19038-3295, U.S.A.
E-mail: ortiz@arcadia.edu

Abstract
This paper presents a syntax of approximate formulae suited for the logic with counting quantifiers SOLP. This
logic was formalised by us in [1] where, among other properties, we showed the following facts: (i) In the presence
of a built–in (linear) order, SOLP can describe NP–complete problems and some of its fragments capture the
classes P and NL; (ii) weakening the ordering relation to an almost order we can separate meaningful fragments,
using a combinatorial tool adapted to these languages.
The purpose of our approximate formulae is to provide a syntactic approximation to the logic SOLP, enhanced

with a built-in order, that should be complementary of the semantic approximation based on almost orders, by
means of producing logics where problems are syntactically described within a small counting error. We introduce a
concept of strong expressibility based on approximate formulae, and show that for many fragments of SOLP with
built-in order, including ones that capture P and NL, expressibility and strong expressibility are equivalent. We
state and prove a Bridge Theorem that links expressibility in fragments of SOLP over almost-ordered structures to
strong expressibility with respect to approximate formulae for the corresponding fragments over ordered structures.
A consequence of these results is that proving inexpressibility over fragments of SOLP with built-in order could
be done by proving inexpressibility over the corresponding fragments with built-in almost order, where separation
proofs are allegedly easier.

Subject Classification: Logic in computer science; Descriptive Complexity.

Keywords: Proportional quantifiers, approximate formulae, almost order, expressiveness, computational complexity,
P, NL.

1 Introduction

Descriptive Complexity deals mainly with producing logics that define all problems of partic-
ular computational complexity, and adapting the classical tools for showing inexpressibility
of queries in logics to the context of finite models, in the hope to obtain worthy lower
bounds for computational classes such as P or NP. The limitations of this logical approach

∗Supported by grants Ramón y Cajal (MEC+FEDER-FSE); MOISES (TIN2005-08832-C03-02) and
SINGACOM (MTM2004-00958), MEC–Spain

†Supported by a Faculty Award Grant from the Christian R. & Mary F. Lindback Foundation, and a Visiting
Research Fellowship from University of Valladolid, Spain

Vol. 17 No. 1, © The Author 2009. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org
doi:10.1093/jigpal/jzn031

132 Approximate formulae for computational complexity

to showing computational complexity bounds for classes like say, P, NL (nondeterministic
logspace), and others within NP, boils down to the fact that, as of today, all known logics
that define problems in these classes need a relation of linear order built into their semantics;
and in the presence of a built–in linear order it has been shown that logical inexpressibility
tools such as Ehrenfeucht-Fraı̈ssé games have little power for telling structures apart (e.g.
see [6, § 6.6]). (The reader should be aware that this need of a built–in linear order and
the issues that its presence or absence produces, does not concerns the class NP or the
computational complexity classes above NP, since by the well known result of Fagin NP
can be described by sentences of Existential Second Order logic, and in this logic one can
express the existence of an arbitrary linear order.) On the other hand, in the absence of
a built–in linear order, logics loose significantly expressive power: for example, first order
logic (FO) extended with a least fixed point operator (LFP(FO)) with order captures all of
P (in the sense that it is capable of defining all polynomial time computable properties), but
without order can not express the parity of the size of a set. To overcome this difficulty, a
natural idea is to study approximations to logics with built–in order, where techniques like
Ehrenfeucht-Fraı̈ssé games become effective in showing separability results, and hopefully
these separations in the approximate setting will give a clue on how to go about separating
the associated logics with order.
There are two main approaches to define approximate logics in model theory. One is to play
with the semantics, where constructs such as built–in orders are weakened to almost–orders,
and, frequently, some counting operator is added to compensate for the loss of expressive
power. This has been the typical approach within the Descriptive Complexity community
(e.g. [3], [8] among others), and it has some severe limitations: for example, the paper by
Libkin and Wong [8] shows that a very powerful extension of first order logic with additional
counting quantifiers, known as L∗

∞ω(C), which subsumes various counting extensions of FO,
in the presence of almost–orders has the bounded number of degrees property (or BNDP) and
thus cannot express the transitive closure of a binary relation.
The other approach is syntactic and is found in classical model theory as in, for exam-
ple, Keisler's logic of probability quantifiers (see [7]), who conceived it as a logic appro-
priate for his investigations on probability hyperfinite spaces, or infinite structures suitable
for approximating large finite phenomena of applied mathematics. Under this approach, for
each formula ϕ of a logic and every real number ε one constructs an approximate formula
ϕε with the property that in every model A, if ε1<0<ε2 then ϕε1 →ϕ→ϕε2 , and as ε tends
to 0, the interpretation of ϕε should be closer to ϕ. This approach has been developed with
success in the theory of classical metric spaces but not, to our knowledge, in Computational
Complexity theory.

In this paper we develop a syntactic approach to the task of approximating logics with
built–in order based on the notion of approximate formulae à la Keisler, and show how
it relates to the semantic approach based on almost orders. This approach is potentially
relevant to the problem of separating logics with built-in order, since we obtain a result that
implies that separation of logics with built-in almost-order can be translated into separation
of corresponding approximate logics with built-in order.
The framework for our results is the second order logic of proportionality quantifiers,

SOLP, defined in [1]. The quantifiers for this logic are counting quantifiers acting upon
second order terms. When restricted to built-in almost orders, this logic avoids the bounded
number of degrees property, has non trivial expressive power, and general separations results

Approximate formulae for computational complexity 133

of combinatorial nature can be obtained. More specifically, SOLP consists of quantifiers of
the form (P(X)≥r) and (P(X)≤r) for rational 0<r<1, and whose meaning is that the
cardinality of the set X , say of arity k>0, is greater than or equal to (or less than or equal
to) r times the cardinality of the set of k–tuples in the model. Of particular interest will
be the Horn and Krom fragments of SOLP, which are defined after Gradel's Horn and
Krom fragments of Second Order logic [4], and consisting of formulae formed with a block
of our proportional quantifiers applied to formulae of type Horn with respect to the the
second order variables (the Horn fragment) or to a Krom (or 2-CNF) type formula (for the
Krom fragment). We review the definition of SOLP, and its Horn and Krom fragments, and
summarise facts found in [1] about their expressive power in the presence of almost orders
in section 2.
The proportional quantifiers (P(X)≥r) and (P(X)≤r) are suitable for allowing approx-

imations, which in the case of monadic second order variables, are defined in the following
way: For a formula ψ ∈SOLP and every ε>0, the approximate formula ψ+ε is obtained by
replacing every quantifier (P(X)≥r) by (P(X)≥r−ε), and every quantifier (P(X)≤r) by
(P(X)≤r+ε) (X is of arity 1). Our definition for any arity of X is more elaborate, but it is
the right one for establishing a correspondence between satisfaction of formulae in SOLP
in almost ordered structures and satisfaction of the corresponding approximate formulae in
ordered structures. This result we call Bridge Theorem (see section 3), and its contents is
illustrated by the following picture:

A |= θ−γ θ
�

�
���

�
��

θ−βA/∼g |= θ

θ+β
�

�
���

�
��

θ+γ (order)

(almost order)

What this says, for example, is that satisfaction in almost ordered structure A of θ−γ ,
a (negative) approximation of formula θ , implies satisfaction of θ in corresponding ordered
structure A/∼g ; and the latter implies satisfaction back in A of (positive) approximation θ+β .
Similar path of satisfaction goes through beginning in ordered structure A/∼g , as shown in
the picture above.
In section 4 we introduce the notion of the ε–approximate logic Lε , for every fragment

L of SOLP, which consists of all approximate formulae of formulae in L. This notion in
turn generates the notions of strong expressibility and ε–relaxed fragments. An ε–relaxed
fragment is one for which Lδ=L (in terms of expressive power) for every δ such that
−ε<δ<ε. Surprisingly, the Horn and Krom fragments of SOLP with built–in order, which
were shown in [1] to capture P and NL respectively, are ε–relaxed. A nice property of
ε–relaxed logics is that for them strong expressibility and expressibility are “almost”
equivalent (an idea that we will formalise). A consequence of this is Theorem 4.13 that shows
that to prove inexpressibility of problems in ε–relaxed logics with built–in order it is enough
to prove inexpressibility of the same problem in the δ-approximate logics (−ε<δ<ε) with
respect to almost ordered structures. Since proving inexpressibility for logics over almost
orders is, in practice, easier than the usual checking of satisfaction in ordered structures,
this last result has potential applicability for studying separation of well known logics with
built-in order, such as the ones mentioned that capture NL and P.

134 Approximate formulae for computational complexity

We end the paper arguing why strong inexpressibility should imply inexpressibility in
ε–relaxed logics, and in the presence of order. For if it is not the case then the behaviour of
the approximating formulae is very strange: their complexity (based on number of variables
and arity of second order variables) tend to infinity as their ε–error approaches 0, that is,
as the approximate formulae tend to the exact formula.

2 The second order logic of proportional quantifiers

Throughout this paper we use standard notation and concepts of Finite Model Theory as
presented in the books by Ebbinghaus and Flum [2] and by Immerman [6]. Our vocabularies
are finite and consist of relation symbols and constant symbols. Our structures are all finite,
and if A is a structure over vocabulary τ , or τ–structure, and A is its universe, we either
use |A| or |A| to denote its size, that is, the number of elements in A.

Definition 2.1 The Second Order Logic of Proportional quantifiers, denoted SOLP, is the
set of formulae of the form

Q1 ···Quθ(x1, ... ,xs,X1,...,Xr) (1)

where θ(x1, ... ,xs,X1, ... ,Xr) is a first order formula over some vocabulary τ with (free)
first order variables x1, ... ,xs and second order variables, X1,… ,Xr ; each Qj (j≤u) is either
(P(Xi)≥ ti) or (P(Xi)≤ ti), where ti is a rational such that 0< ti<1, for some i≤r. Whenever
we want to make the underlying vocabulary τ explicit we will write SOLP(τ).
We also define SOLP(τ)[r1, ... ,rk], for a given vocabulary τ and sequence r1, r2,…, rk of
distinct natural numbers, as the fragment of SOLP(τ) where the proportional quantifiers can
only be of the form (P(X)≤q/ri) or (P(X)≥q/ri), for i=1, ... ,k and q a natural number
such that 0≤q<ri .
Another fragment of SOLP which will be of interest for us is the Monadic Second Order
Logic of Proportional quantifiers, denoted MSOLP, which is SOLP with the arity of the
second order variables in (1) being all equal to 1.

The interpretation for the proportional quantifiers is very natural: Let X be a second order
variable of arity k, Y a vector of second order variables, x=x1, ... ,xm first order variables
and φ(x,Y ,X) a formula in SOLP(τ) over some (finite) vocabulary τ (which does not
contains X or any of the variables in Y as a relation symbol). Let r be a rational such that
0<r<1. Then the formula

(P(X)≥r)φ(x,Y ,X)

has the following semantics. For an appropriate finite τ–structureA, elements a=(a1, ... ,am)
in A and an appropriate vector of relations B over A, we have

A |=(P(X)≥r)φ(a,B,X)⇐⇒there exists S⊆Ak such that A |=φ(a,B,S) and
|S |≥r ·|A|k

Similarly for (P(X)≤r)φ(x,Y ,X), substituting in the above definition ≥ for ≤.

Approximate formulae for computational complexity 135

2.1 Summary of facts about a semantic approximation to SOLP
In [1] we study the expressive power of SOLP in the presence of a built–in order and when
this external predicate is weakened to an almost order (see [6] for the notion and use of
built–in numerical predicates in Descriptive Complexity). We summarise below the facts
from [1] that we need about what we view as “semantic approximations” to definability in
SOLP and some of its fragments. Besides those fragments mentioned in Definition 2.1 we
are interested in the logics SOLPHorn and SOLPKrom, which were defined in [1] after
Grädel's definitions of the Horn and Krom fragments of Second Order logic in [4].
A first order formula α over a vocabulary τ plus second order variables X1,… ,Xr of
arities k1,… , kr , respectively, plus possibly a binary relation symbol = (equality) and the
constant ⊥ (standing for false), is a universal Horn formula, if α is a universally quantified
conjunction of formulae over τ ∪{X1, ... ,Xr } of the form (ψ1∧ψ2∧ ...∧ψs)→ϕ, where ϕ is
either Xi(ui) (where ui denotes a ki-tuple of first order terms, i=1, ... ,r) or ⊥, and ψ1,… ,ψs
are atomic or negation of atomic (τ ∪{X1, ... ,Xr })-formulae except that any occurrence of
the variables Xi must be positive (there are no restrictions on the predicates in τ or =). The
logic SOLPHorn is the set of formulae of the form

(P(X1)≤ t1)···(P(Xr)≤ tr)α

where each ti is a rational in (0,1), and α is a universal Horn formula over some vocabulary
τ and second order variables X1,… ,Xr .

Example 2.2 We present a problem definable in SOLPHorn. Let τ={R,s,t} where R is a
ternary relation symbol, and s and t are constant symbols. Let r be a rational with 0<r<1.
We define

NOT-IN-CLOS≤r := {A=〈A,R,s,t〉 : A has a set containing s but not t,
closed under R, and of size at most a fraction r of |A| }.

Let βnclos(X) be the following formula

βnclos(X) := ∀x∀u∀v [X(s)∧¬X(t)
∧ (X(u)∧X(v)∧R(u,v,x)→X(x))]

Then

A∈NOT-IN-CLOS≤r ⇐⇒ A |=(P(X)≤r)βnclos(X)

In [1] it is shown that, for r=1/n, this problem is complete for P under first order reductions
with built–in successor.

Remark 2.3 The problem NOT-IN-CLOS is related to the complement of the Path System
Accessibility problem in the sense that one is reducible to the other via first order definable
reductions. We shall make this fact precise in the proof of Theorem 4.6, where we shall be
needing it. An instance of the Path System Accessibility problem (abbreviated in the literature
as PS, e.g. [9]) is a finite structure A=〈A,R,s,t〉 or a path system, where the universe A
consists of, say, n vertices, a relation R⊆A×A×A (the rules of the system), a source s∈A,
and a target t∈A such that s �= t. A positive instance of PS is a path system A where the
target is accessible from the source, where a vertex v is accessible if it is the source s or if

136 Approximate formulae for computational complexity

R(x,y,v) holds for some accessible vertices x and y, possibly equal. In [9] Stewart shows that
PS is complete for P via quantifier free first order reductions that include built-in successor
relation (see [9] for details). Since P is closed under complement and also closed under the
aforementioned first order reductions, it follows that the complement of PS is also complete
for P (and by the opening comments in this remark this also holds for NOT-IN-CLOS).

A first order formula α over τ ∪{X1, ... ,Xr }∪{=,⊥} is a universal Krom formula, if α is
a universally quantified conjunction of clauses, where each clause is a disjunction of literals
with at most two occurrences (positive or not) of the predicates X1, ... ,Xr , i.e. α is a 2-CNF
formula with respect to the variables X1, ... ,Xr . The logic SOLPKrom is the set of formulae
of the form

(P(X1)≥ t1)···(P(Xr)≥ tr)α

where each ti is a rational in (0,1), and α is a universal Krom formula over some vocabulary
τ and second order variables X1,… ,Xr .

Example 2.4 We now present a problem definable in SOLPKrom. Let τ={E,s} where E is
a binary relation symbol and s is a constant symbol. We think of τ -structures as graphs with
a specified vertex s (the source). Let r be a rational with 0<r<1. We define

NCON≥r := {A=〈A,E,s〉 : 〈A,E〉 is a digraph and at least a fraction r
of the vertices are not connected to s}

Let αncon(Y) be the following formula

αncon(Y) := ¬Y (s)∧∀x∀y(E(x,y)∧Y (x)→Y (y))
Then A∈NCON≥r ⇐⇒ A |=(P(Y)≥r)αncon(Y).
The problem NCON≥1/2 has been shown to be complete for NL under first order reductions

with built–in successor (see [1]).

Remark 2.5 The problem NCON is related to the complement of the Transitive Closure (or
TC) problem (see [6]) in the sense that one is reducible to the other via first order definable
reductions. We shall use this fact in the proof of Theorem 4.7. The problem TC is known
to be complete for NL via first order reductions [6]. On the other hand, NL is closed under
complement by a remarkable result of Immerman [5], and independently by Szelepcsényi [10],
and it is also closed under first order reductions. Then it follows that the complement of TC
and the problem NCON are complete for NL.

We have shown in [1] that:
(1) In the presence of order (at least a built–in successor), P⊆SOLP[2] (in the sense that
any class of structures decidable in P is definable by a sentence of SOLP[2]) and, fur-
thermore, it is captured by the fragment SOLPHorn[2], consisting of formulae of the form
(P(X1)≤1/2)···(P(Xr)≤1/2)α, where α is a universal Horn formula.
(2) In the presence of order, NL is captured by SOLPKrom[2], a fragment consisting of
formulae of the form (P(X1)≥1/2)···(P(Xr)≥1/2)α, where α is a universal Krom formula.
(This and the previous capturing of P by fragments of SOLP are inspired on Grädel's [4],
but taking into account the limitations in the cardinalities of second order variables imposed
by our counting quantifiers.)

Approximate formulae for computational complexity 137

(3) With respect to almost ordered structures we have a strict hierarchy within the monadic
fragmentMSOLP, namely,

MSOLP[2] ⊂
�− MSOLP[2,3] ⊂

�− MSOLP[2,3,5] ⊂
�− ...

(4) With respect to almost ordered structures and unbounded arity we have that

SOLPHorn[2] ⊂
�− SOLP[2,3].

The separation results listed in (3) and (4) were obtained with appropriate Ehrenfeucht–
Fraı̈ssé type of games.
The concept of almost order (inspired from [8]) constitute the core of our “semantic
approximations", around which we work our syntactic approximations.

Definition 2.6 (Almost order). Let g :N→R be a sublinear and non-decreasing function (that
is, for all n in N, g(n)<n and for all n,m in N, if n≤m then g(n)≤g(m)).
An almost order over a structure A induced by g is a binary relation ≤g over A such that
there is a partition of A into two sets B and C satisfying:

• The cardinality of B is at least n−g(n), where n is the size of A;
• The restriction of ≤g to B is a linear order;
• The restriction of ≤g to C is reflexive and transitive where every equivalence class of ∼g
has size at most 2 (we write x∼g y iff both x≤g y and y≤g x); and,
• for any b in B and any c in C , b≤g c holds and c≤g b does not.
Note that for any function g :N→R, the almost linear order ≤g over a set A induces an
equivalence relation ∼g in A defined by a∼g b iff a≤g b and b≤g a. For a∈A, let [a]g denote
its ∼g–equivalence class, and [A]g :={[a]g :a∈A}. Observe that if |A|=n then
|[A]g |=n−g(n)/2.
Definition 2.7 Fix a sublinear g :N→R and let R be a k-ary relation on a set A. Let ≤g be
an almost order determined by g in A. We say that R is consistent with ≤g if for every pair
of vectors (a1, ... ,ak) and (b1, ... ,bk) of elements in A with ai∼g bi for every i≤k, we have
that

R(a1, ... ,ak) holds if and only if R(b1, ... ,bk) holds.

Let A=〈A,RA
1 , ... ,RA

t ,CA
1 , ... ,CA

s 〉 be a τ -structure. We say that A is consistent with ≤g if
and only if for every i≤ t, RA

i is consistent with ≤g .
Let cons-ao(A,g) denotes the set of almost orders over A induced by the function g that
are consistent with A.
For a τ -structure A, consistent with ≤g , it makes sense to define the quotient structure A/∼g ,
as a τ -structure consisting of [A]g as its universe, and for a k-ary relation R∈τ ,

RA/∼g :={([a1]g, ... , [ak]g) :(a1, ... ,ak)∈RA}
Furthermore, for a subset B⊆A we define its ≤g-contraction as [B]g :={[b]g :b∈B}. All these
terms will play their role in a theorem below that bridges from satisfaction in almost ordered
structures to satisfaction in quotient structures, where the order turns linear.

138 Approximate formulae for computational complexity

By (SOLP+≤g), for a function g, we understand the logic where we consider models
A together with a built-in arbitrary almost order ≤g in cons-ao(A,g). Furthermore, for
the formulae of the form (P(X)≥r)φ(x,Y ,X) and (P(X)≤r)φ(x,Y ,X), we require the
following modification of the semantics: For an appropriate finite model A, for a sublinear
function g and an almost order ≤g in cons-ao(A,g), for elements a=(a1, ... ,am) in A and
an appropriate vector of relations B, consistent with ≤g , we should have

A |=(P(X)≥r)φ(a,B,X) ⇐⇒ there exists S⊆Ak , consistent with ≤g ,
such that A |=φ(a,B,S) and |S |≥r ·|A|k

Similarly for (P(X)≤r)φ(x,Y ,X), substituting in the above condition ≥ for ≤.
In general, given a logic L⊆SOLP, we use (L+≤g) to indicate that all possible (finite)
models of L have an almost order ≤g , determined by a sublinear function g. Also (L+≤)
indicates that the models have an additional linear order.

Remark 2.8 Our use of ≤g as a built-in construct may seem to differ from common knowledge
and usage of built-in relations (as numeric relations whose value only depends on the size of
the structure), for it seems tied up to the particular characteristics of the working structures
as it requires that every relation be consistent with ≤g (Definition 2.7). We argue here that
is not the case, and make some provisos that will clarify this matter. Indeed, any sentence
φ defining some relation is satisfied by an almost ordered structure (a structure with the
additional built-in ≤g), provided the truth of φ is conditioned to that part of the structure
consistent with ≤g . However, we can explicitly free our logic from this apparent dependency,
by noting that our logic (and all fragments we consider) is strong enough to express that the
almost order is consistent with respect to the input structure (this can be done within first
order logic); thus we can assume (and ask the reader to assume) that every sentence like φ
comes joint with a guard that says “the almost order is consistent”. In this way, our built-in
≤g has the numeric interpretation of any other built-in, depending only on the size of the
input structure.

Finally, for two logics L and L′, whenever we write the inclusion L⊆L′ this is meant in
terms of expressive power.

3 A syntax of approximate formulae

We now introduce the notion of approximate formulae for SOLP. The purpose of these for-
mulae is to provide a link between satisfaction in almost ordered structures and satisfaction
in their corresponding quotient structures. This we will make precise in the Bridge Theorem
(Theorem 3.6 below). The general conclusion will be that whatever we can say about a class
of almost ordered structures we can “approximately” say about a class of their quotient
structures (which are fully linearly ordered structures), and vice versa.

Definition 3.1 (Approximate Formulae). For every ε such that 0≤ε<1, and for every for-
mula θ(x,X)∈SOLP(τ), we define the (positive) ε-approximation of θ(x,X), denoted θ(x,X)+ε,
as follows:

First order formulae If θ(x,X) is a first order formula with free second order variables among
the X and free first order variables among the x, then θ(x,X)+ε :=θ(x,X).

Approximate formulae for computational complexity 139

Proportional quantifiers If θ(x,X) :=(Q1 ...Qu)ϕ(x,X), where ϕ(x,X) is a first–order
formula and Q1, …, Qu are proportional quantifiers, its ε-approximation is the SOLP-
formula (θ(x,X))+ε :=(Q ′

1 ...Q ′
u)ϕ(x,X), where, for each j, the proportional quantifier

Q ′
j is chosen as follows:
(a) If Qj is of the form (P(Y)≥r), where Y is of arity k≥1, then Q ′

j is of the form

(P(Y)≥(1−ε)k−1[r−kε]) if r−kε>0

(P(Y)≥0) otherwise

(b) If Qj is of the form (P(Y)≤r), then Q ′
j is of the form

(P(Y)≤(1+ε)k−1[r+kε]) if (1+ε)k−1(r+kε)<1

(P(Y)≤1) otherwise

(The 0–approximation of θ(x,X) is clearly itself. In this case we will always drop the 0 in
θ(x,X)0.)

Remark 3.2 We can (and will) always assume that ε is small enough so that the ε–approxi-
mation for formulae with proportional quantifiers is the first option in their definition, e.g.,
for (P(Y)≤r)ϕ(x,X ,Y) we have as its ε-approximation the formula (P(Y)≤(1+ε)k−1[r+
kε])ϕ (x,X ,Y)+ε.
The previous definition describes syntactic approximations “from the right” or “positive”.
We can also have approximations from the left or negative (our intended meaning for right
or left approximations will be formalised by Lemma 3.4 below). What we want for φ−ε to
have is the property that (φ−ε)ε :=φ. With this in mind we propose the following definition.
Definition 3.3 (Approximate Formulae for Negative Values). For every ε such that 0≤ε<1,
and for every formula θ(x,X)∈SOLP(τ), we define the −ε-approximation of θ(x,X) by
induction in the complexity of the formulae as follows:

First order formulae If θ(x,X) is a first order formula with free second order variables among
the X and free first order variables among the x, then θ(x,X)−ε :=θ(x,X).

Proportional quantifiers If θ(x,X) :=(Q1 ...Qu)ϕ(x,X), where ϕ(x,X) is a first–order for-
mula and Q1, …, Qu are proportional quantifiers, then θ(x,X)−ε :=(Q ′

1 ...Q ′
u)ϕ(x,X),

where, for each j, the proportional quantifier Q ′
j is chosen as follows:

(a) If Qj is of the form (P(Y)≥r), where Y is of arity k≥1, then Q ′
j is of the form

(P(Y)≥ 1

(1−ε)k−1 [r+kε(1−ε)k−1]) if r
(1−ε)k−1 +kε<1

(P(Y)≥1) otherwise

(b) If Qj is of the form (P(Y)≤r), then Q ′
j is of the form

(P(Y)≤ 1

(1+ε)k−1 [r−kε(1+ε)k−1]) if r
(1+ε)k−1 −kε>0

(P(Y)≤0) otherwise

140 Approximate formulae for computational complexity

Observe that when our proportional quantifiers are of monadic type, that is, they act upon
second order variables of arity 1 like, say, (P(Y)≥r), with arity of Y equal to 1, then its
ε-approximation, according to our definition, is what one would naturally expected to be,
namely, (P(Y)≥r−ε) (just set k=1 in the corresponding definition). Thus, our definition
just generalises this natural notion of approximation for monadic predicates to the general
case of quantifiers of any arity k. Furthermore, these definitions for syntactic approximations
are adequate for establishing a continuous process for syntactically approaching a formula
(a fact that we will formally state in the next lemma), and, as we shall see in Theorem 3.6,
constitute the right syntactic associate for the semantic notion of satisfaction over almost
ordered structures in SOLP.
Lemma 3.4 For every formula θ(x,X)∈SOLP(τ), for every finite τ–structure A, for every
interpretation A of relation symbols X in A, for every tuple of elements a in A and for ε
and δ such that 0<δ<ε<1, we have that:

A |=θ(a,A)−ε→θ(a,A)−δ→θ(a,A)→θ(a,A)+δ→θ(a,A)+ε .

Furthermore, for every formula θ(x,X)∈SOLP(τ), for every ε with 0<ε<1

(θ(x,X)−ε)+ε=θ(x,X)=(θ(x,X)+ε)−ε .
Proof: If θ :=(P(X)≥r)ψ(X), with X of arity k≥1, then the chain of implications hold
because, for 0<δ<ε<1,

P(X)≥ r
(1−ε)k−1 +εk> r

(1−δ)k−1 +δk>r>(1−δ)k−1(r−δk)>(1−ε)k−1(r−εk)

and, if θ :=(P(X)≤r)ψ(X),

P(X)≤ r
(1+ε)k−1 −εk< r

(1+δ)k−1 −δk<r<(1+δ)k−1(r+δk)<(1+ε)k−1(r+εk)

The second part follows by easy substitution.
We now want to show that it is possible to jump from satisfaction in almost order (respec-
tively, linearly ordered) structures to satisfaction of approximate formulae in linearly ordered
(respectively, almost ordered) structures. For that we need as a preliminary step to show
that, for a sublinear function g and a structure A, the property of being consistent for an
almost order ≤g holds for all the formulae in (SOLP+≤g).
Lemma 3.5 Let g be a sublinear function. Let A be a structure together with a built-in almost
order ≤g in cons-ao(A,g). Then, for every formula ψ(x) in (SOLP+≤g), the set ψA :={a∈
A :A |=ψ(a)} is consistent with ≤g .
Proof: The proof is an easy induction in formulae.

Theorem 3.6 (Bridge Theorem). Fix a sublinear function g. For every formula θ(x1, ... ,xk ,X)
∈SOLP(τ), for every τ -structure A of size m and for all almost order ≤g in cons-ao(A,g),
for every a=(a1, ... ,ak)∈Ak, for every predicate S of arity t≥1, the following holds:

(i) A |=θ(a,S) implies A/∼g |=θ([a]g,[S]g)+γ (m), where γ (m)=
g(m)

2m−g(m)

Approximate formulae for computational complexity 141

(ii) A/∼g |=θ([a]g,[S]g) implies A |=θ(a,S)+β(m), where β(m)= g(m)2m
(iii) A |=θ(a,S)−γ (m) implies A/∼g |=θ([a]g,[S]g)
(iv) A/∼g |=θ([a]g,[S]g)−β(m) implies A |=θ(a,S)

Proof: By induction in the syntactic complexity of the formula.

First order formulae The key tool is Lemma 3.5 which guarantees that it is indistinct which
representative of a ∼g-class we take as witnesses for the existentially or universally quan-
tified variables, together with the fact that, for any ε, the ε–approximation coincides
with the original formula.

Proportional quantifiers (i): Suppose that A satisfies the formula (P(Y)≥r)θ(a, S , Y) for
0<r<1 and Y of arity k≥1. Then, for some B⊆Ak , |B|≥rmk and A |=θ(a,S ,B). By
inductive hypothesis A/∼g |=θ([a]g,[S]g,[B]g)+γ (m), where γ (m)=g(m)/(2m−g(m)).
Recall that |[A]g |=m−g(m)/2, where m=|A|. Thus, we aim to prove that

|[B]g |≥

(
1−γ (m))k−1(r−kγ (m))

(
m− g(m)

2

)k
, when r>kγ (m)

0 , otherwise. (2)

Note that with the suitable choice of γ (m)= g(m)
2m−g(m) , the non trivial case of equation

(2) can be simplified as follows.

(
1−γ (m))k−1(r−kγ (m))

(
m− g(m)

2

)k

=
(
1− g(m)

2m−g(m)

)k−1(
r−k g(m)

2m−g(m)

)(
m− g(m)

2

)k

= 2k−1
(
m−g(m)

)k−1
(
2m−g(m)

)k−1
(
r−k g(m)

2m−g(m)

)(
2m−g(m)

)k
2k

= (
m−g(m))k−1

(
r−k g(m)

2m−g(m)

)(
2m−g(m)

)
2

= (
m−g(m))k−1

(
r 2m−g(m)

2 −k g(m)2
)

Thus, we need to prove that

|[B]g |≥

(
m−g(m))k−1

(
r 2m−g(m)

2 −k g(m)2
)
, when r>k g(m)

2m−g(m)
0 , otherwise.

(3)

142 Approximate formulae for computational complexity

In the worst case, B contains every two elements from every ∼g–class, and when passing
to its ≤g-contraction, all possible equivalent k–tuples determined by elements in the
same class are removed. There are at most k(g(m)/2)mk−1 of these tuples, and therefore
we have that

|[B]g |≥
{
mk−1

(
rm−k g(m)2

)
, when r>k g(m)2m

0 , otherwise.

This clearly implies (3). Thus,

A/∼g |=(P(Y)≥(1−γ (m))k−1[r−kγ (m)])θ([a]g,[S]g,Y)+γ (m)
which is the desired result.

Now, suppose that A satisfies the formula (P(Y)≤r)θ(a,S ,Y), with r and Y as above.
We argue inductively, as in the preceding case, but this time observe that the witness
set B is such that, in the worst case, |[B]g |≤rmk . Thus, for the non trivial case, the
proportion that this set represents, with respect to |[A]g |k=(m−g(m)/2)k is:

|[B]g |
|[A]g |k ≤

(
2m

2m−g(m)
)k−1[

r
(

2m
2m−g(m)

)]

= (1+γ (m))k−1r(1+γ (m))
≤ (1+γ (m))k−1[r+kγ (m)]

Thus,

A/∼g |=
(
P(Y)≤(1+γ (m))k−1[r+kγ (m)])θ([a]g,[S]g,Y)+γ (m)

(ii): Suppose that A/∼g satisfies the formula (P(Y)≤r)θ([a]g,[S]g,Y). By inductive
hypothesis A |=θ(a,S ,(C)g)+β(m), where (C)g is the expansion of C ⊆[A]kg . Our aim
now is to show that (in the non trivial case)

|(C)g |≤(1+β(m))k−1[r+kβ(m)]mk (4)

for β(m)=g(m)/2m. For this choice of β, equation (4) is equivalent to

|(C)g |≤
(
2m+g(m)
2m

)k−1[
r+k g(m)

2m

]
mk (5)

We note that |C |≤r(m−g(m)/2)k , and therefore when we expand to (C)g , in the worst
case, we throw in all possible k-tuples determined by elements in the same class, and
hence

|(C)g | ≤ r
(
m− g(m)

2

)k
+k g(m)

2
mk−1

=
(
2m−g(m)
2m

)k−1[
r
(
2m−g(m)
2m

)
+k g(m)
2m

]

Approximate formulae for computational complexity 143

which obviously imply (5) since (2m−g(m))/2m<1<(2m+g(m))/2m. Thus,

A |=(
P(Y)≤(1+β(m))k−1[r+kβ(m)])θ(a,S ,Y)+β(m)

which is the desired result.

Now suppose that A/∼g satisfies the formula (P(Y)≥r)θ([a]g,[S]g,Y) for 0<r<1 and
Y of arity k≥1. Then, for some set C of k–tuples of [A]g , |C |≥r(m−g(m)/2)k and
A/∼g |=θ([a]g,[S]g,C). By inductive hypothesis A |=θ(a,S ,(C)g)+β(m), where β(m)=
g(m)/2m, and in the worst case we add nothing new to the expansion of C , that is,
|(C)g |=|C |. The proportion of this set with respect to the set of k–tuples over A is

|(C)g |
mk

≥
(
2m−g(m)
2m

)k−1
r
(
2m−g(m)
2m

)

= (1−β(m))k−1r(1−β(m))
≥ (1−β(m))k−1[r−kβ(m)]

Thus,

A |=(
P(Y)≥(1−β(m))k−1[r−kβ(m)])θ(a,S ,Y)+β(m)

which is the desired result.

(iii) and (iv): Follow from parts (i) and (ii) and that (θ−ε)ε=θ . For example, if A/∼g �|=θ
then A/∼g �|=(θ−γ (m))+γ (m), and by part (i) we get A �|=θ−γ (m). This shows (iii).
The picture that we have relating satisfaction in the almost ordered world with satisfaction
in the ordered world is the following. (The arrows signify semantic implication; the horizontal
arrows are given by Lemma 3.4 and the diagonal arrows by the Bridge Theorem.)

A |= θ−γ � θ
�

�
���

�
��

θ−βA/∼g |= � θ

� θ+β
�

�
���

�
��

� θ+γ (order)

(almost order)

Now the ground is set. From previous experiences with weak forms of order (e.g. [1],
[3], [8], and many others) we learnt that inexpressibility results are easy to accomplish
in the presence of almost order, but to transfer these separations to the truly (linearly)
ordered world is hard. Our picture shows that, in fact, the passing from the almost ordered
world to a corresponding ordered world (or vice versa) changes the syntactic description
of some problem for an approximate description. Is this the best we can get? To put it
another way, is an approximate description as good as an exact description for determining
inexpressibility of a class of ordered structures? We feel that the answer to this last question
is “yes in almost all cases”, and in the remainder of this paper we give formal support to
this intuition.

144 Approximate formulae for computational complexity

4 Strong expressibility

Our idea of sentences that are strongly equivalent is that their respective approximation for
some small error should be equivalent. The consequence is that within an interval of radius
the given error, all approximations are equivalent, and so are the sentences. This will then
lead us to a stronger concept of expressibility, which we obviously call strong expressibility.

Definition 4.1 Let φ and ψ be two sentences of SOLP. We say that φ and ψ are strongly
equivalent (and we write φ⇔S ψ) if, and only if, there exists 0≤ε≤1 such that for every
0<η≤ε and for every finite structure A:

A |=φ+η→ψ−η and A |=ψ+η→φ−η.

We define similarly the strong equivalence between two approximate sentences in SOLP.
Observe that two sentences that are strongly equivalent can be syntactically approximate
among themselves as much as we like. Formally what this means is that, if φ⇔S ψ then
there exists an ε>0 such that for every β and γ , with −ε<β<ε and −ε<γ <ε, and for
any finite structure A, A |=φ+β ↔ψ+γ . This follows from φ⇔S ψ and Lemma 3.4 because,
for every model A:

A |=φ+β →φ+ε→ψ−ε→ψ+γ →ψ+ε→φ−ε→φ+β.

In particular (taking β=γ =0), if φ is strongly equivalent to ψ then for every model A,
A |=φ↔ψ , i.e. φ and ψ are equivalent. Put the other way around, if φ is not equivalent to
ψ then φ is not strongly equivalent to ψ .
Note also that it is not clear at all that φ⇔S φ. As a matter of fact, we next show that
our notion of strong equivalence can behave very badly.

Proposition 4.2 There is a sentence that is not strongly-equivalent to itself.

Proof: We prove that the sentence :=(P(X)≥1/2)(P(Y)≥1/2)ϕ(X ,Y), where
ϕ(X ,Y) :=∀x(X(x)∨Y (x))∧∀y(X(y)→¬Y (y))

is not strongly equivalent to itself. Observe that, for any finite structure A,

A |=⇐⇒ |A| is even
Now, note that since +ε always follows from −ε (by Lemma 3.4) we must prove that
for every 0<ε<1 there is a structure A such that A �|=+ε �⇒−ε .
For ε≥1/2, this is clearly the case since +ε is true on all finite structures but −ε is
false on all structures.
For ε<1/2, we choose some even sized structure for A. We have A |=+ε but A �|=−ε as

−ε is clearly false on all structures.

On the contrary, we can give an example of a formula which is strongly equivalent to
itself.

Example 4.3 Consider the following sentence ofMSOLP:

 :=(P(X)≥1/3)ξ(X ,x,y)

Approximate formulae for computational complexity 145

where

ξ(X ,x,y)=∀x∀y(¬E(x,y)∨X(x)∨X(y))∧(¬E(x,y)∨¬X(x)∨¬X(y)).
This sentence of Monadic SOLP captures 2-colourability in a graph.
Now observe that if we choose ε<1/3, then for all η≤ε, if A |=+η then A is a 2-colourable
graph with a colour X of size |X |≥1/3+η. Then, certainly,

A |=−η :=(P(X)≥(1/3−η))ξ(X ,x,y)
Thus |=+η→−η.

In view of the preceding example and proposition, we want to identify those fragments of
SOLP that behave “decently” for the notion of strong equivalence, i.e. where at least we
can ask that every formula φ in the logic is strongly equivalent to itself. This motivates our
definitions below of approximate logic and ε-relaxed fragments.

Definition 4.4 Fix a logic L⊆SOLP and an −1<ε<1. The ε-approximation of L, denoted
Lε, is the following fragment of SOLP:

{φ+ε,φ−ε :φ∈L}
By convention we define L0=L. Also we will distinguish the positive fragment, L+ε :={φ+ε :
φ∈L}, from the negative fragment, L−ε :={φ−ε :φ∈L}. The approximation of L (or the
approximate logic corresponding to L) is the set of formulae LA :=

⋃
−1<ε<1

Lε

Definition 4.5 We say that a fragment L of SOLP is ε-relaxed if, for every δ such that
−ε<δ<ε, Lδ=L (i.e., their expressive power is the same).
Two important examples of ε–relaxed logics are the languages (SOLPHorn[2]+≤) and

(SOLPKrom[2]+ ≤), which were defined and studied in [1] (see also section 2.1 above),
and which capture P and NL, respectively. In the following lines we give a summary of the
reasons why these languages are ε–relaxed, and afterwards we give more technical details.
The reader who feels that he does not need more arguments to believe these facts, may skip
to Lemma 4.9.
For many ε<1/2, the problem NOT-IN-CLOS≤1/2+ε (Example 2.2) is expressible in
(SOLPHorn[2]+≤)+ε , and it is complete for P via quantifier free first order reductions
(analogous proof as in [1]). Therefore, any problem in P has a definition in (SOLPHorn[2]+
≤)+ε . Conversely, the satisfaction of sentences in (SOLPHorn[2]+≤)+ε can be decided in
P by the algorithm described in [1] for (SOLPHorn[2]+≤). Thus, (SOLPHorn[2]+≤)+ε
= P = (SOLPHorn[2]+≤). The arguments for (SOLPKrom[2]+≤)+ε = NL = (SOLP
Krom[2]+≤) are similar.
Now follows some details of the preceding sketch.

Theorem 4.6 For all k≥4, (SOLPHorn[2]+≤) is 1/k-relaxed.
Proof:

• For all ε<1/2, NOT-IN-CLOS≤1/2+ε is expressible in (SOLPHorn[2]+≤)+ε by the sen-
tence (P(X)≤1/2+ε)βnclos(X), where βnclos(X) is the formula in Example 2.2.

146 Approximate formulae for computational complexity

• For all k≥4, if ε=1/k, then NOT-IN-CLOS≤1/2+ε is complete for P via quantifier free
first order reductions (with successor).
We will define a reduction from the complement of the problem PS or Path System
Accessibility (see Remark 2.3) to NOT-IN-CLOS≤1/2+1/k , using quantifier free first order
formulae. Recall that the signature for the problem NOT-IN-CLOS≤1/2+ε is exactly that
of PS, namely, τ={R,s,t}, consisting of a relation symbol of arity 3, and two constant
symbols, s (the source) and t (the sink). Using numeric constant symbols 0 and max,
we can define the numbers 0, 1,… , k-1. Given a τ -structure A, we define a τ -structure
A′ as follows: The universe of A′ consist of 2k disjoint copies of A,

A′ := A×{0}×{0}∪ ...∪A×{0}×{k−1}
∪ A×{max}×{0}∪ ...∪A×{max}×{k−1}

The constants are interpreted as sA
′ =(0,0,0) and tA′ =(max,max,k−1). The relation

RA′
consists of:

– a replica of RA in A×{0}×{0}, taking as source (0,0,0) and as sink (max,0,0);
– a replica of RA in A×{max}×{0}, taking as source (0,max,0) and as sink (max,max,0);
– the rule ((0,0,0),(0,0,0),(0,max,0));
– for each i∈{0,1, ... ,k−1} and each a∈A,
the rule ((0,0,0),(0,0,0),(a,0,i));
– for each i∈{0,1, ... ,k−1} and each a∈A,
the rule ((max,max,0),(max,max,0),(a,max,i)).
Given a τ -structure A and its associated structure A′ obtained by the above reduction,
we have:

A �∈PS⇐⇒ A′ ∈NOT-IN-CLOS≤1/2+1/k

Assume A �∈PS. Then (max,0,0) (and (max,max,0)) is not accessible from (0,0,0), and
hence tA

′ =(max,max,k−1) is not accessible from sA′
, and the subset of the RA′

-closure
that contains sA

′
has size <2|A|= 2

2k |A′|< 2+k2k |A′|. Hence, A′ ∈NOT-IN-CLOS≤1/2+1/k .
Conversely, if tA is accessible from sA, then (max,0,0) and (max,max,0) are accessible
from sA

′ =(0,0,0), and from these two vertices all other vertex (including tA′
) is accessi-

ble; so the RA′
-closure that contains sA

′
has size >(2k−2)|A|= k−1

k |A′|≥ 2+k
2k |A′|, when

k≥4. Hence, A′ �∈NOT-IN-CLOS≤1/2+1/k .
• (SOLPHorn[2]+≤) is closed under quantifier free projections [6, § 11.2], because it
captures P (as shown in [1]), and this class is closed under such reductions.

• For any k>1, the satisfaction of sentences in (SOLPHorn[2]+≤)1/k can be decided
in P by the algorithm described in [1] for deciding (SOLPHorn[2]+≤). This is so,
because the aforementioned algorithm works for all SOLPHorn formulae with propor-
tional quantifiers of the form (P(X)≤ t), with t any rational such that 0< t<1; hence,
in particular for t=1/2+1/k.

All four points together give that, for k≥4,

(SOLPHorn[2]+≤)1/k=P=(SOLPHorn[2]+≤) �

Theorem 4.7 For all k≥4, (SOLPKrom[2]+≤) is 1/k-relaxed.

Approximate formulae for computational complexity 147

Proof: This time we work with the problem NCON≥r of Example 2.4, whose underlying
signature is τ={E,s}.
• For all ε<1/2, NCON≥1/2−ε is expressible in (SOLPKrom[2]+≤)+ε by the sentence
(P(Y)≥1/2−ε)αncon(Y), where αncon(Y) is the formula in Example 2.4.

• For all k≥4, if ε=1/k, then NCON≥1/2−ε is complete for NL via quantifier free first
order reductions (with successor).
We define a reduction from the complement of the Transitive Closure (TC) problem
to NCON≥1/2−1/k , using quantifier free first order formulae. The construction is very
similar to the one above for NOT-IN-CLOS≤1/2+ε , but instead of joining vertices by the
3-ary relation R, we join them by the binary edge relation E .
Given a τ -structure A and its associated structure A′ obtained by the reduction, we
have:

A �∈TC⇐⇒ A′ ∈NCON≥1/2−1/k

• The remainder of the proof follows similarly as the proof of Theorem 4.6

We show below a useful property of approximate formulae: Given one, we can find another
that refines the approximation. This will allow us to define “good neighbourhoods” of
approximations around formulae, where we can equate equivalence of these formulae with
equivalence of the approximations within these neighbourhoods (this is the content of
Lemma 4.9).

Lemma 4.8 For every formula θ(x,X)∈SOLP(τ), for every γ and λ, with −1≤γ <λ≤1,
for every δ verifying γ <δ<λ, there exists a µ>0 such that:

• γ <δ−µ<δ+µ<λ, and
• for every τ–structure A and for every interpretation A of relation symbols X in A, and
elements a in A, we have that:

A |=θ(a,A)+γ →(θ(a,A)+δ)−µ→θ(a,A)+δ→(θ(a,A)+δ)µ→θ(a,A)+λ

Proof: The proof is by induction in formulae. The first order case is direct. We shall then
analyse formulae with proportional quantifiers.
Assume that the desired property holds for θ(x,X ,Y).
Case 1: Consider the formula �(x,X) :=(P(Y)≥r)θ(x,X ,Y). Let

f (r,ω) :=

1 if r
(1+ω)k−1 −kω≥1 and ω<0

r
(1+ω)k−1 −kω if r

(1+ω)k−1 −kω≤1 and ω<0
(1−ω)k−1[r−kω] if 0≤(1−ω)k−1[r−kω] and ω≥0

0 if (1−ω)k−1[r−kω]<0 and ω≥0

be a function from [0,1]×(−1,1) onto [0,1]. Note that this function is continuous and for
every r ∈[0,1] and ε∈(−1,1),

((P(Y)≥r)θ(x,X ,Y))+ε :=(P(Y)≥ f (r,ε))(θ(x,X ,Y))+ε .

148 Approximate formulae for computational complexity

Furthermore, for every r ∈[0,1], f (r,) is a decreasing function with the property that
f (r,0)=r . Fix then a nonempty interval (γ,λ)⊆(−1,1) and a δ, so that γ <δ<λ. By induc-
tion hypothesis there exists a µ1 with γ <δ−µ1<δ+µ1<λ, and such that for every model
A and for every interpretations A and B of relation symbols in A and elements a in A, we
have that:

A |=θ(a,A,B)+γ → (θ(a,A,B)+δ)−µ1 →θ(a,A,B)+δ
→ (θ(a,A,B)+δ)µ1 →θ(a,A,B)+λ.

Note that f (f (r,δ),0)= f (r,δ). Note also that f (r,λ)≤ f (r,γ). Then, since f is continuous,
there exists a µ2 such that, for all ε, −µ2≤ε≤µ2,

f (f (r,δ),ε)∈[f (r,λ),f (r,γ)]

Let µ=min{µ1,µ2}. From the previous remarks we know that (δ−µ,δ+µ)⊆(γ,λ) and that
for every model A and for every interpretations A in A and elements a in A, we have that:

A |=(P(Y)≥ f (r,γ))[θ(a,A,Y)]+γ →(P(Y)≥ f (f (r,δ),−µ))[θ(a,A,Y)+δ]−µ
→(P(Y)≥ f (f (r,δ),0))[θ(a,A,Y)]+δ→ (P(Y)≥ f (f (r,δ),µ))[θ(a,A,Y)+δ]µ

→(P(Y)≥ f (r,λ))[θ(a,A,Y)]+λ.
but this is exactly the desired result that for every model A and for every interpretation A
of relation symbols in A and elements a in A, we have that:

A |=�(a,A)+γ →(�(a,A)+δ)−µ→�(a,A)+δ→(�(a,A)+δ)µ→�(a,A)+λ

Case 2: Consider now the formula �(x,X) :=(P(Y)≤r)θ(x,X ,Y). Let

h(r,ω) :=

0 if r
(1−ω)k−1 +kω≤0 and ω<0

r
(1−ω)k−1 +kω if r

(1−ω)k−1 +kω>0 and ω<0
(1+ω)k−1[r+kω] if (1+ω)k−1[r+kω]≤1 and ω≥0

1 if (1+ω)k−1[r+kω]>1 and ω≥0

be a function from [0,1]×(−1,1) onto [0,1]. Note that this function is continuous and for
every r ∈[0,1], ε∈(−1,1),

((P(Y)≤r)θ(x,X ,Y))+ε :=(P(Y)≤h(r,ε))(+θ(x,X ,Y))+ε .

Furthermore, for every r ∈[0,1], h(r,) is an increasing function with the property that
h(r,0)=r .
Fix then a nonempty interval (γ,λ)⊆(−1,1) and a δ, so that γ <δ<λ. By induction
hypothesis there exists a µ1 with γ <δ−µ1<δ+µ1<λ, and such that for every model A
and for every interpretation A and B of relation symbols in A and elements a in A, we have
that:

A |=θ(a,A,B)+γ → (θ(a,A,B)+δ)−µ1 →θ(a,A,B)+δ
→ (θ(a,A,B)+δ)µ1 →θ(a,A,B)+λ.

Approximate formulae for computational complexity 149

Note that h(h(r,δ) ,0)=h(r,δ). Note also that h(r,γ)≤h(r,λ). Then, since h is continuous,
there exists a µ2 such that, for all ε, −µ2≤ε≤µ2,

h(h(r,δ) ,ε)∈[h(r,γ),h(r,λ)]

Let µ=min{µ1,µ2}. From the previous remarks we know that (δ−µ,δ+µ)⊆(γ,λ) and that
for every model A and for A in A and elements a in A, we have that:

A |=(P(Y)≤h(r,γ))[θ(a,A,Y)]+γ → (P(Y)≤h(h(r,δ),−µ))[θ(a,A,Y)+δ]−µ
→(P(Y)≤h(h(r,δ),0))[θ(a,A,Y)]+δ→ (P(Y)≤h(h(r,δ),µ))[θ(a,A,Y)+δ]µ

→(P(Y)≤h(r,λ))[θ(a,A,Y)]+λ.
but this is exactly the desired result that for every model A and for every interpretation A
of relation symbols in A and elements a in A, we have that:

A |=�(a,A)+γ →(�(a,A)+δ)−µ→�(a,A)+δ→(�(a,A)+δ)µ→�(a,A)+λ

This completes the proof of the lemma.
The main property of relaxed fragments is the following:

Lemma 4.9 Let L be a ε-relax fragment of SOLP. Then for every sentence φ∈L, there exists
a −ε<δ<ε and sentence θ ∈Lδ such that φ↔θ and θ⇔S θ .

Proof: Fix a sentence φ∈L. For every −ε<λ<ε there exists a sentence φ̃∈L such that
(φ̃)λ↔φ. The cardinality of all the sentences in L is countable. Hence by the pigeonhole
principle there exists a sentence θ ∈L and two real numbers γ and λ, with −ε<γ <λ<ε
such that θγ ↔φ↔θλ. By the properties of approximate formulae (Lemma 4.8) we know
that there exists δ and µ such that −ε<γ <δ<λ<ε and µ>0, and

φ→θγ →(θδ)−µ→θδ→(θδ)µ→θλ→φ.

hence θδ⇔S θδ↔φ.
The previous lemma motivates our notion of strong expressibility.

Definition 4.10 Let L⊆L′ ⊆SOLP and fix φ∈SOLP a sentence. We say that the fragment
L strongly expresses a sentence φ with respect to L′ iff there exists a formula ψ ∈L and a
formula θ ∈L′ such that θ⇔S ψ and θ↔φ.

Clearly, if a fragment L strongly expresses a sentence φ (with respect to any extension),
then L expresses the sentence φ (because θ⇔S ψ implies θ↔ψ). Conversely, if a fragment
L does not expresses φ then the fragment L does not strongly expresses φ.
When we are working with relaxed fragments, we get the following strengthening of the
above observations.

Theorem 4.11 Let L,L′ be ε-relaxed fragments of SOLP such that L⊆L′ and let φ be an
SOLP–sentence. Then the following statements are equivalent:
• φ is expressible in L;
• There exists a µ, with ε<µ<ε, such that φ is strongly expressible in Lµ with respect to

L′
µ, i.e. there exists sentences ρ∈L′,θ ∈Lµ such that φ↔ρµ and ρµ⇔S θ .

150 Approximate formulae for computational complexity

Proof: Suppose first that there exists a ε<µ<ε and sentences ρ∈L′,θ ∈Lµ such that φ↔ρµ
and ρµ⇔S θ . We can conclude then that φ↔θ . Since the expressive power of Lµ is the same
as the expressive power of L we can conclude that φ is expressible in L.
For the other direction, assume that φ is expressible in L. Note first that from Lemma

4.9, since L′ is an ε-relaxed fragment, we know that there exists a sentence ρ∈L′
λ for

some −ε<λ<ε such that φ↔ρ and ρ⇔S ρ. More specifically there exists γ such that
−ε<λ−γ <λ+γ <ε and ργ ↔ρ−γ .
From hypothesis we know that there exists θ̃ ∈Lλ such that θ̃↔φ↔ρ. Applying again

Lemma 4.9 to θ̃ and using the fact that Lλ is a γ -relaxed fragment, we know that there exists
a sentence θ ∈Lµ, for some λ−γ <µ<λ+γ , such that θ̃↔θ and θ⇔S θ . More specifically
there exists ω such that λ−γ <µ−ω<µ+ω<λ+γ and θω↔θ−ω.
We have then the following sequences of implications:

ργ →ρ−γ →ρ→ θ̃→θ→θω→θ−ω

and symmetrically,

θω→θ−ω→θ→ θ̃→ρ→ργ →ρ−γ

These two sequences of implications imply that ρµ⇔S θ , with ρµ∈L′
µ, θ ∈Lµ and φ↔ρµ.

The importance of this theorem is that it shows the equivalence of the notion of express-
ibility and strong expressibility in the context of ε-relaxed fragments. This suggest that any
tool that help us prove strong inexpressibility may be transformed into a tool that proves
inexpressibility. The rest of the paper is devoted to the exploration of this idea.
As a first approach to our challenging goal, we present a theorem that proves strong
inexpressibility, over ordered structures, albeit under somewhat strong hypothesis.

Theorem 4.12 Fix fragments (L+≤) ⊆ (L′+≤) of (SOLP+≤) and a sentence φ∈(L′+≤).
Suppose that (L+≤) and (L′+≤) are ε-relaxed, and moreover that for every formula
θ ∈(L+≤) and every ω, 0<ω<ε, there exists a sublinear function g and two models A,B in
(L+≤g) (i.e. almost ordered models), with the following properties:
• If A |=θ then B |=θ ;
• A/∼g |=φ and B/∼g �|=φ;
• if |A|=m1 and |B|=m2 then g(mi)/(2mi−g(mi))<ω, for i=1,2.
Then φ is not strongly expressible in (L+≤) with respect to (L′+≤).
Proof: In order to get a contradiction assume that φ is strongly expressible in (L+≤). Then
there exists sentences ρ∈(L′+≤), θ ∈ (L+≤) with ρ↔φ and θ⇔S ρ.
We know then that there exists an 0<ω<ε such that for every model C in (SOLP+≤)
the following property (∗) holds:
• C |=θω→ρ−ω,
• C |=ρω→θ−ω.

Consider then the two models A,B and the sublinear function g associated with φ,ε,θ,ω by
the hypothesis of the theorem. We consider two cases.

Approximate formulae for computational complexity 151

• If A |=θ then by hypothesis we have that B |=θ . Applying now the Bridge Theorem we
get that (B/∼g) |=θω. However, since (B/∼g) �|=φ and φ↔ρ, we get that (B/∼g) �|=ρ−ω,
but this contradicts property (∗).
• If A �|=θ then by the Bridge Theorem we have that (A/∼g) �|=θ−ω. But by hypothesis
(A/∼g) |=φ and φ↔ρ, hence we get that (A/∼g) |=ρω, which is a contradiction with
property (∗).
Observe that the previous theorem gives strong inexpressibility over ordered structures.
The last question, naturally, is to see when strong inexpressibility is the same as inexpress-
ibility. What we will do now is to use the previous theorem and Theorem 4.11 to produce
a result that shows inexpressibility in formulae with built-in order, based on separation of
almost orders.

Theorem 4.13 Fix fragments (L+≤) ⊆ (L′+≤) of (SOLP+≤) and a sentence φ∈(L′+≤).
Suppose that (L+≤) and (L′+≤) are ε-relaxed, and further that for every −ε<µ<ε, for
every ω>0 such that −ε<µ−ω<µ+ω<ε, for every formula θ ∈(Lµ+≤) there exists a
sublinear function g and two models A,B in (L+≤g) with the following properties:
• If A |=θ then B |=θ ;
• A/∼g |=φ and B/∼g �|=φ;
• if |A|=m1 and |B|=m2 then g(mi)/(2mi−g(mi))<ω, for i=1,2.
Then φ is not expressible in (L+≤).
Proof: Assume that φ is expressible in (L+≤). Since (L+≤) ⊆ (L′+≤) and (L+≤) and
(L′+≤) are ε-relaxed we can invoke Theorem 4.11 to obtain that there exists a µ, with
−ε<µ<ε, such that φ is strongly expressible in (Lµ+≤) with respect to (L′

µ+≤), i.e. there
exists sentences ρ∈(L′+≤), θ ∈(Lµ+≤) such that φ↔ρµ and ρµ⇔S θ .
We know then that there exists a 0<ω<1 such that for every model C of (SOLP+≤):
• C |=θω→(ρµ)−ω,
• C |=(ρµ)ω→θ−ω.

Note that we can select ω>0 such that −ε<µ−ω<µ+ω<ε.
Consider then the two models A,B and the sublinear function g associated to φ,ε,µ,θ by
the hypothesis of the theorem. We consider two cases.

• If A |=θ then by hypothesis we have that B |=θ . Applying now the Bridge Theorem we
get that (B/∼g) |=θω. However, since (B/∼g) �|=φ and φ↔ρµ, we get that (B/∼g) �|=ρµ,
but this contradicts the hypothesis that ρµ⇔S θ .

• If A �|=θ then by the Bridge Theorem we have that (A/∼g) �|=θ−ω. But by hypothesis
(A/∼g) |=φ and φ↔ρµ, hence we get that (A/∼g) |=(ρµ)ω, which is a contradiction with
the hypothesis that ψ⇔S θ .

Note that the result just developed works by checking properties ofmodels in (SOLP+≤g),
i.e. models with almost orders, where separation proofs have been shown in practice to be
easier. Note also that our prime examples of relaxed fragments where we could applied this
are the (SOLPKrom[2]+≤) and (SOLPHorn[2]+≤) that correspond to the classes NL
and P. Hence we have a result, based on almost orders and approximate formulae that tells
us that, in order to separate (SOLPKrom[2] +≤) from (SOLPHorn[2]+≤) with built-in
order (which is hard), we only need to separate related logics in the context of almost orders.

152 Approximate formulae for computational complexity

As we have seen from our previous work in almost orders we already have nice tools that do
that (although in some limited context).

5 Further remarks on the complexity of expressibiliy

In this section we consider the situation where we are able to strongly separate L from L′

by a sentence φ but φ is still expressible in L. How is the behavior of the approximations
of φ?
What we will present is a condition that says, basically, that if a sentence is not strongly
expressible in a fragment but is expressible, is because something very ugly occurs. In the
rest of the section we are going to formalise this idea.

Definition 5.1 A sentence in SOLP is equivalent to one of the form

φ :=Q1X1Q2X2 ...QrXrA1x1A2x2 ...Af xf
q∨
i=1

ti∧
j=1
θi,j(X ,x)

where the QsXs are proportionality quantifiers over the second order variable Xs and the Asxs
are either ∃xs or ∀xs with xs a first order variable, and θi,j(X ,x) is an atomic formula or
negation of atomic formula with its first order free variable being members of x=(x1, ... ,xf),
and its second order free variable (if any) being member of X=(X1, ... ,Xr). Let mφ be the
maximum arity of the second order variables X1, ... ,Xr. Then, the complexity of the sentence
φ is defined as the sum r+f +mφ.
Let us return again to the scenario where we consider two ε-relaxed fragments L⊆L′ and
a sentence φ∈L′ that is expressible in L. Let ψ be the sentence in L equivalent to φ. We
want to see which condition will ensure that φ is strongly expressible in L with respect to
L′, i.e. there exists θ ∈L′,ρ∈L such that for every model A, A |=φ↔θ and A |=θ⇔S ρ. We
know that for every δ, such that −ε<δ<ε there exists sentences θ (δ)∈L,ρ(δ)∈L′ such that

|=(θ (δ))δ↔φ↔ψ↔(ρ(δ))δ. (6)

Suppose that we select the sentences θ (δ) and ρ(δ) to have minimal complexity among all the
sentences in L satisfying (6), and furthermore, suppose that we have the following property
(**):

There exists a natural number M such that:
• ∀δ, with 0<δ<ε, there exists α,β with 0<α<δ and −δ<−β<0 such that the com-
plexity of the sentences θ (α) and θ (−β) is bounded by M .
• ∀δ, with 0<δ<ε, there exists α′,β ′ with 0<α′<δ and −δ<−β ′<0 such that the
complexity of the sentences ρ(α′) and ρ(−β ′) is bounded by M .

Then, the pigeon hole principle implies that there exists sentences ∈L′, �∈L such that:
• for every δ and ε, 0<δ<ε, there exists α,β with 0<α<δ and −δ<−β<0 with

|=↔(−β) and |=↔(α).
• for every δ and ε, 0<δ<ε, there exists α′,β ′ with 0<α′<δ and −δ<−β ′<0 with

|=�↔�(−β ′) and |=�↔�(α
′).

Approximate formulae for computational complexity 153

It follows then that there exists α1,β1<ε such that in every model A:

A |=α1 ↔φ↔ψ↔�−β1

Similarly we get that there exists α2,β2<ε such that in every model A:

A |=�α2 ↔ψ↔φ↔−β2

Let δ=min(α1,α2,β1,β2). We have then that in every model A:
A |=�δ→�α2 →−β2 →−δ,

and similarly we have that in every model A:

A |=δ→α1 →�−β1 →�−δ,

The two statements above imply that |=φ↔ and |=ψ↔� and �⇔S. In other words,
we have the following lemma.

Lemma 5.2 Consider two ε-relaxed fragments L⊆L′ and a sentence φ∈L′ that is expressible
in L. Let ψ be the sentence in L equivalent to φ. We know that for every δ, such that
−ε<δ<ε, there exists sentences θ (δ)∈L and ρ(δ)∈L′ such that |=(θ (δ))δ↔φ↔ψ↔(ρ(δ))δ.
Suppose, additionally, that there exists a natural number M such that:

• ∀δ(0<δ<ε) there exists α,β with 0<α<δ and −δ<−β<0 such that the minimal com-
plexity of the sentences θ (α) and θ (−β) is bounded by M.

• ∀δ(0<δ<ε) there exists α′,β ′ with 0<α′<δ and −δ<−β ′<0 such that the minimal
complexity of the sentences ρ(α′) and ρ(−β ′) is bounded by M.

Then φ is strongly expressible in L with respect to L′.

The counterpositive of the above lemma is actually the result we are interested in.

Corollary 5.3 Consider two ε-relaxed fragments L⊆L′ and a sentence φ∈L′ that is express-
ible in L. Let ψ be the sentence in L equivalent to φ. We know that for every δ, such that
−ε<δ<ε, there exists sentences θ (δ)∈L and ρ(δ)∈L′ such that |=(θ (δ))δ↔φ↔ψ↔(ρ(δ))δ.
Suppose that φ is not strongly expressible in L with respect to L′. Then, for every natural
number M,

• there exists δ, 0<δ<ε, such that for all α, 0<α<δ, the minimal complexity of
the formula θ (α) is bigger than M; or

• there exists δ, 0<δ<ε, such that for all α, −δ<α<0, the minimal complexity of the
formula θ (−α) is bigger than M; or

• there exists δ, 0<δ<ε, such that for all α′, 0<α′<δ, the minimal complexity of
the formula ρ(α′) is bigger than M; or

• there exists δ, 0<δ<ε, such that for all α′, −δ<α′<0, the minimal complexity of the
formula ρ(−α′) is bigger than M.

Here is a direct consequence of the above corollary. We know that (SOLPKrom[2]+ ≤)
⊆(SOLPHorn[2]+≤) are ε-relaxed fragments of SOLP that capture NL and P respec-
tively. Suppose that you can prove that a problem Q in P is not strongly expressible

154 Approximate formulae for computational complexity

in (SOLPKrom[2]+≤) with respect to (SOLPHorn[2]+≤) by using any of the tools at
our disposal. Then if still Q was expressible in (SOLPKrom[2]+≤) the previous corollary
implies that there exists a δ �=0, with −ε<δ<ε, such that the minimal complexity of the sen-
tences θω∈(SOLPKrom[2]+≤)ω that captureQ tends to infinity, or there exists a δ �=0, with
−ε<δ<ε, such that the minimal complexity of the sentences ρω∈(SOLPHorn[2]+≤)ω that
capture Q tends to infinity (for either 0<ω<δ or δ<ω<0). This is indeed a very strange
phenomena, which lead us to conjecture that expressibility implies strong expressibility, in
the context of ε-relaxed logics.

Acknowledgement

The authors are grateful to the anonymous referee for his/her thoroughly revision of the
original version of our paper, helping us improve it in form and contents.

References
[1] Arratia, A., and Ortiz, C., Expressive power and complexity of a logic with quantifiers
that count proportions of sets, J. of Logic and Computation, 16 (6): 817–840, 2006.

[2] Ebbinghaus, H.D., and Flum, J., Finite Model Theory (Springer-Verlag, 1995).
[3] Etessami, K., and Immerman, N., Reachability and the power of local ordering,
Theoretical Comp. Sci. 148, 2, 261–279, 1995.

[4] Grädel, E., Capturing complexity classes by fragments of second order logic, Theoretical
Comp. Sci. 101, 35–57, 1992.

[5] Immerman, N., Nondeterministic space is closed under complement. SIAM Journal on
Computing 17, 935–938, 1988.

[6] Immerman, N., Descriptive Complexity (Springer, 1998).
[7] Keisler, H.J., Hyperfinite model theory. In: R.C. Gandy and J.M. E. Hyland (eds) Logic
Colloquium 76 (North-Holland, 1977).

[8] Libkin, L., and Wong, L., Lower bounds for invariant queries in logics with counting.
Theoretical Comp. Sci. 288, 153–180, 2002.

[9] Stewart, I., Logical description of monotone NP problems, J. Logic and Computation. 4
(4), 337–357, 1994.

[10] Szelepcsényi, R., The method of forced enumeration for nondeterministic automata.
Acta Informatica 26, 279–284, 1988.

Received 21 May 2007

	Approximate formulae for computational complexity
	1 Introduction
	2 The second order logic of proportional quantifiers
	2.1 Summary of facts about a semantic approximation to SOLP

	3 A syntax of approximate formulae
	4 Strong expressibility
	5 Further remarks on the complexity of expressibiliy

