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Outline

§ Weighted Automata and Functions Over Strings

§ A Spectral Method from Hankel Factorizations

§ Survey on Recent Applications to Learning Problems

§ Spectral Learning of Finite State Transducers



Precedents

§ Subspace methods for identification of linear dynamical systems
[Overschee–Moor ’94]

§ Results on identifiability and learning of HMM and phylogenetic trees
[Chang ’96, Mossel–Roch ’06]

§ Query learning algorithms for DFA and Multiplicity Automata
[Angluin ’87, Bergadano–Varrichio ’94]



Notation

§ Finite alphabet Σ “ tσ1,σ2, . . . ,σru

§ Free monoid Σ‹ “ tε,a,b,aa,ab,ba,bb,aaa, . . .u

§ Functions over strings f : Σ‹ Ñ R
§ Examples:

fpxq “ Prxs (probability of a string)

fpxq “ PrxΣ‹s (probability of a prefix)

fpxq “ Irx P Ls (characteristic function of language L)

fpxq “ |x|a (number of a’s in x)

fpxq “ Er|w|xs (expected number of substrings equal to x)



Weighted Automata

§ Class of WA parametrized by alphabet Σ and number of states n

A “ 〈α1,α8, tAσuσPΣ〉

α1 P Rn (initial weights)

α8 P Rn (terminal weights)

Aσ P Rnˆn (transition weights)

§ Computes a function fA : Σ‹ Ñ R

fApxq “ fApx1 ¨ ¨ ¨ xtq “ α
J
1Ax1 ¨ ¨ ¨Axtα8 “ α

J
1Axα8



Examples – Probabilistic Finite Automata

§ Compute / generate distributions over strings Prxs

αJ1 “ r0.3 0 0.7s

αJ8 “ r0.2 0 0.2s

Aa “

»

–

0 0 0.2
0 0.75 0
0 0.25 0

fi

fl

0.3 0.2

0

a, 0.2

a, 0.25 ∣ b, 0.15

a, 0.75

b, 0.25

b, 0.3

b, 0.4

b, 0.2

0.3 0.7



Examples – Hidden Markov Models

§ Generates infinite strings, computes probabilities of prefixes PrxΣ‹s
§ Emission and transition are conditionally independent given state

αJ1 “ r0.3 0.3 0.4s

αJ8 “ r1 1 1s

Aa “ Oa ¨ T

T “

»

–

0 0.7 0.3
0 0.75 0.25
0 0.4 0.6

fi

fl

Oa “

»

–

0.3 0 0
0 0.9 0
0 0 0.5

fi

fl

0.3

0.4

0.75

0.25

0.7

0.6 a, 0.5
b, 0.5

a, 0.3
b, 0.7

a, 0.9
b, 0.1



Examples – Probabilistic Finite State Transducers

§ Compute conditional probabilities Pry|xs “ αJ1A
y
xα8 for pairs

px,yq P pΣˆ ∆q‹, must have |x| “ |y|

§ Can also assume models factorized like in HMM

αJ1 “ r0.3 0 0.7s

αJ8 “ r1 1 1s

AbB “

»

–

0.2 0.4 0
0 0 1
0 0.75 0

fi

fl

A/a, 0.1 ∣ A/b, 0.9

B/a, 0.25 ∣ B/b, 0.75 ∣ A/b, 0.15

A/a, 0.75

A/b, 0.25 ∣ B/b, 1

B/b, 0.4 B/a, 0.4

A/b, 0.85
B/b, 0.2

0.3 0.7



WAs and Forward-Backward Recursions
Forward–Backward Factorization

§ A defines forward and backward maps fFA, fBA : Σ‹ Ñ Rn

§ Such that for any splitting x “ y ¨ z one has fApxq “ f
F
Apyq ¨ f

B
Apzq

fFApyq “ α
J
1Ay and fBApzq “ Azα8

Example

§ For a PFA A and i P rns, one has

§ rfFApyqsi “ rα
J
1Aysi “ Pry , h|y|`1 “ is

§ rfBApzqsi “ rAzα8si “ Prz |h “ is

Consequences

§ String structure has direct relation to computation structure

§ In particular, strings sharing prefixes or suffixes share computations

§ Information on Aa can be recovered from fApyazq, f
F
Apyq, and fBApzq:

fApyazq “ f
F
ApyqAaf

B
Apzq



The Hankel Matrix

§ The Hankel matrix of f : Σ‹ Ñ R is Hf P RΣ
‹ˆΣ‹

§ For y, z P Σ‹, entries are defined by Hfpy, zq “ fpy ¨ zq

§ Given P, S Ď Σ‹ will consider sub-blocks HfpP, Sq P RPˆS

§ Very redundant representation for f – fpxq appears |x| ` 1 times

»

—

—

—

—

—

—

—

—

—

–

ε a b aa ab ¨¨¨

ε
...

...

a ¨ ¨ ¨ ¨ ¨ ¨
... ¨ ¨ ¨ fpaabq

b
...

aa ¨ ¨ ¨ ¨ ¨ ¨ fpaabq

ab

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl



Schützenberger’s Theorem

Theorem: rankpHfq ď n if and only if f “ fA with |A| “ n
In particular, rankpHfq is size of smallest WA for f

Proof (ð)

§ Write F “ fFApΣ
‹q P RΣ‹ˆn and B “ fBApΣ

‹q P RnˆΣ‹

§ Note Hf “ F ¨ B

§ Then, rankpHfq ď n

Proof (ñ)

§ Assume rankpHfq “ n

§ Take rank factorization Hf “ F ¨ B with F P RΣ‹ˆn and B P RnˆΣ‹

§ Let αJ1 “ Fpε, rnsq and α8 “ Bprns, εq (note αJ1 α8 “ fpεq)

§ Let Aσ “ Bprns,σ ¨Σ
‹q ¨B` P Rnˆn (note Aσ ¨Bprns, xq “ Bprns,σ ¨xq)

§ By induction on |x| we get αJ1Axα8 “ fpxq
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The Spectral Method

Idea: Use SVD decomposition to obtain a factorization of H

§ Given H and Hσ over basis pP, Sq

§ Compute compact SVD as H “ USVJ with

U P RPˆn S P Rnˆn V P RSˆn

§ Let Aσ “ pHVq
`pHσVq – corresponds to rank factorization

H “ pHVqVJ

Properties

§ Easy to implement: just linear algebra

§ Fast to compute: Opmaxt|P|, |S|u3q

§ Noise tolerant: Ĥ « H and Ĥσ « Hσ implies Âσ « Aσ



Spetral Methods from the Automata-Theory Perspective

§ Algorithmic and Miscellaneous Problems
§ Interpretation as an optimization problem - from linear algebra to

convex optimization
§ Finding a basis via random sampling - knowing pP, Sq

§ Direct Applications
§ Learning stochastic rational languages - any probability distribution

computed by WA
§ Learning probabilistic finite state transducers
§ Learning tree distributions

§ Composition with Other Methods
§ Combination with matrix completion for learning non-stochastic

functions - when f : Σ˚ Ñ R is not related to a probability distribution



An Optimization Point of View

§ Idea: Replace linear algebra with optimization primitives - make it
possible to use the ML optimization toolkit.

§ Algorithms
§ Spectral optimization: mintAσu,VTnVn“I

ř

σPΣ ||HVnAσ ´HσVn||
2
F

§ Convex relaxation: minAΣ ||HAΣ ´HΣ||
2
F ` τ||AΣ||˚

§ Properties
§ Equivalent in some situations and choice of parameters
§ Experiments show convex relaxation can be better in cases known to

be difficult for the spectral method

§ Open problems/ Future Work
§ Design problem-specific optimization algorithms
§ Constrain learned models imposing further regularizations, e.g. sparsity



Learning Probabilistic Finite State Transducers [BQC’11]

Idea: Learn a function f : pΣˆ∆q‹ Ñ R computing Pry|xs Learning Model

§ Input is sample of aligned sequences pxi,yiq, |xi| “ |yi|

§ Drawn i.i.d. from distribution Prx,ys “ Pry|xsDpxq
§ Want to assume as little as possible on D

§ Performance measured against x generated from D

Properties

§ Assuming independece Aδσ “ Oδ ¨ Tσ, sample bound scales mildly
with input alphabet |Σ|

§ For applications, need to align sequences prior to learning – or use
iterative procedures

Open problems / Current Work

§ Deal with alignments inside the model



Learning PFST over very large input alphabets

§ Goal: Learn a function f : pΣˆ ∆q‹ Ñ R computing Prx,ys where ∆
can be arbritrarily large.

§ Idea: Transition function as a linear combination of basic transitions.
§ Model

§ Assume a set of feature functions Φpxq “ rφ1pxq, . . . ,φkpxqs

fpx,yq “ αT1Apφpx1q,y1q ¨ ¨ ¨ ,ApφpxT q,yT qα8

“ αT1

˜

k
ÿ

l“1

φlpx1qO
y1

l

¸

¨ ¨ ¨

˜

k
ÿ

l“1

φlpxT qO
yT
l

¸

α8



Learning FST: Handling Missing Alignments
§ Goal: Learn a function g : pΣ‹ ˆ ∆‹q Ñ R computing Prx,ys
§ Model:

Ppx,yq “
ÿ

zPZpx,yq

fpzq

§ Aligned Sequences:

z “
y1 y2 y3
x1 x2

„

y4
x3

 „

y5
x4



y6
„

y7
x5



corresponds to a sequence of symbol pairs:

px1, λqpx2, λqpλ,y1qpλ,y2qpλ,y3qpx3,y4qpx4,y5qpλ,y6qpx5,y7q

§ WA over aligned sequences:

fpzq “ αT1Ax1Ax2A
y1Ay2Ay3Ay4

x3
Ay5
x4
Ay6Ay7

x5
α8

§ Intuitively:
§ Aσ operators over Σ‹

§ Aδ operators over ∆‹

§ Aσδ operators over pΣˆ ∆q‹



Forward-Backward Maps

z “
y1 y2 y3
x1 x2

„

y4
x3



y5
„

y6
x4



fpzq “ αJ1Ax1:2A
y1:3Ay4

x3
Ay5Ay6

x4
α8

“ fF
ˆ

y1 y2 y3
x1 x2

„

y4
x3

˙

¨ fB
ˆ

y5
„

y6
x4

˙

“ fF
ˆ

y1 y2 y3
x1 x2

˙

¨Ay4
x3
¨ fB

ˆ

y5
„

y6
x4

˙



Fully Observed Hankels

§ Hankel over Aligned Sequences:

H
`

y1y2y3
x1x2

,y4
“

y5
x3

‰˘

“ f
`

y1y2y3y4
x1x2

“

y5
x3

‰˘

Hσ
`

y1y2y3
x1x2

,y4
“

y5
x3

‰˘

“ f
`

y1y2y3y4
x1x2σ

“

y5
x3

‰˘

Hδ
`

y1y2y3
x1x2

,y4
“

y5
x3

‰˘

“ f
`

y1y2y3δy4
x1x2

“

y5
x3

‰˘

Hδσ
`

y1y2y3
x1x2

,y4
“

y5
x3

‰˘

“ f
`

y1y2y3
x1x2

“

δ
σ

‰

y4
“

y5
x3

‰˘

§ Hankel Factorizations:
H “ FB

Hδσ “ FA
δ
σB



Hankel over Aligned Substrings

§ A Hankel over aligned substrings:

H‹
`

δ1
“

δ2
σ1

‰

, σ2

˘

“ H
´

∆‹δ1
Σ‹

“

δ2
σ1

‰

, ∆‹

σ2 Σ‹

¯

§ Problem: we do not observe aligned sequences!



Hankel over Aligned Substrings

§ A Hankel over aligned substrings:

H‹
`

δ1
“

δ2
σ1

‰

, σ2

˘

“ H
´

∆‹δ1
Σ‹

“

δ2
σ1

‰

, ∆‹

σ2 Σ‹

¯

§ Problem: we do not observe aligned sequences!



Observable Statistics

E
“

|x,y|δ1δ2σ1σ2

‰

“
ÿ

xs,xpPΣ
‹

ys,ypP∆
‹

Prxpσ1σ2xs,ypδ1δ2yss

“ ¨¨¨δ1δ2¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨
¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨σ1σ2¨¨

` . . .

` ¨¨¨¨¨¨δ1
¨¨¨¨¨¨¨¨

“

δ2
σ1

‰

¨¨¨¨¨¨¨¨¨
σ2¨¨¨¨¨

` ¨¨¨¨¨¨
¨¨¨¨¨¨

“

δ1
σ1

‰“

δ2
σ2

‰

¨¨¨¨¨¨
¨¨¨¨¨¨

` . . . ` ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨δ1δ2¨¨¨¨
¨¨¨σ1σ2¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨

where:

¨¨¨¨¨¨δ1
¨¨¨¨¨¨¨¨

“

δ2
σ1

‰

¨¨¨¨¨¨¨¨¨
σ2¨¨¨¨¨

“ H‹
`

δ1
“

δ2
σ1

‰

, σ2

˘



Guessing a good Hankel

§ Idea:
§ Guess the entries in the Hankel
§ Use rank constraints and observables to guide your guess

§ Observable Constraints:
§ Er|x,y|δ1δ2σ1σ2

s = sums of entries in H‹

§ Optimization:

min
H‹
||H‹||˚

subject to: linear constraints on observables

§ Number of Variables in H‹: C ¨ |Σˆ ∆|4



Conclusion

§ Summary:
§ Spectral algorithms follow directly from classical algebraic methods for

learning automata
§ Automata Theory Perspective in a Nutshell: the Hankel trick

§ Recipe to derive learning algorithms for many models.
§ Convex optimization + Hankel trick

§ Extensions: guess missing Hankel entries

§ Future Directions:
§ Can we learn subclasses of PCFG?

§ A reference:
§ R. Gavaldà and J. Castro, Learning Probability Distributions Generated

by Finite-State Machines, tutorial at ICGI-2012


