An Automata Theory Perspective on Spectral Learning

Hankel Matrix Factorizations

Ariadna Quattoni
with R. Bailly, B. Balle, X. Carreras, F. Luque and A. Recasens

O

Universitat Politecnica de Catalunya

NIPS Workshop on Spectral Learning, 2012

Outline

v

Weighted Automata and Functions Over Strings

v

A Spectral Method from Hankel Factorizations

» Survey on Recent Applications to Learning Problems

v

Spectral Learning of Finite State Transducers

Precedents

» Subspace methods for identification of linear dynamical systems
[Overschee-Moor '94]

» Results on identifiability and learning of HMM and phylogenetic trees
[Chang '96, Mossel-Roch '06]

» Query learning algorithms for DFA and Multiplicity Automata
[Angluin '87, Bergadano—Varrichio '94]

Notation

» Finite alphabet X = {07, 09,..., or}

» Free monoid £* = {€, a, b, aq, ab, ba, bb, aaq, ...}

» Functions over strings f: Z* - R

» Examples:

(probability of a string

(probability of a prefix

(characteristic function of language L
(number of a's in x

(expected number of substrings equal to x

)
)
)
)
)

Weighted Automata

» Class of WA parametrized by alphabet X and number of states n

A = <O(1, Koo, {AG}GGZ>

x; € R™ (initial weights)
Xop € R™ (terminal weights)
Ay € R (transition weights)

» Computes a function fp : £* > R

fa(x) = fa(X1 - %Xt) = 6] Ay Ax, Oop = 6] Ax Ko

Examples — Probabilistic Finite Automata

» Compute / generate distributions over strings P[x]

«; =[0.3 0 0.7]
«l, =1[0.2 0 0.2]
0 0 02

Aqg=1]10 075 0
0 025 O

Examples — Hidden Markov Models

» Generates infinite strings, computes probabilities of prefixes P[xL*]

» Emission and transition are conditionally independent given state

«; =[0.3 0.3 0.4]
Io 11 1]
a=0q-T
[0 07 03
T=| 0 075 025
| 0 04 06
03 0 O
Ou=| 0 09 0
| 0 0 05

a,0.3
b,0.7

0.6

Examples — Probabilistic Finite State Transducers

» Compute conditional probabilities P[y|x] = a] AY a, for pairs
(x,y) € (X x A)*, must have |x| = |y|

» Can also assume models factorized like in HMM

A[b,0.85

>
s~ien
I
o
o
—_

WAs and Forward-Backward Recursions
Forward—Backward Factorization

» A defines forward and backward maps f};, fE X > R"

» Such that for any splitting x =y - z one has f5(x) = fi (y) - f8(z)

fi(y) = oclTAy and f2(z) = AL

Example

» For a PFA A and i€ [n], one has

[P = [Ayli = Py, hyyjp1 = 1]

> [fR(@)]i = [Azaw]i = Plz|h = i]
Consequences

» String structure has direct relation to computation structure

» In particular, strings sharing prefixes or suffixes share computations

> Information on A4 can be recovered from fa(yaz), f(y), and f§(2):

fa(yaz) = fx(y)Aafx(2)

The Hankel Matrix

The Hankel matrix of f: Z* — R is Hy € RE™*"
» For y,z € X*, entries are defined by H¢(y,z) = f(y - z)
» Given P, 8 < I* will consider sub-blocks H¢ (P, 8) € R¥*S

» Very redundant representation for f — f(x) appears |x| + 1 times

v

€ a b aa ab
€
a : .-+ f(aab)
b :
aa . e f(aab)
ab

Schitzenberger's Theorem

Theorem: rank(H¢) < n if and only if f = fp with |[A] =n
In particular, rank(Hg¢) is size of smallest WA for f

Schitzenberger's Theorem

Theorem: rank(H¢) < n if and only if f = fp with |[A] =n
In particular, rank(Hg¢) is size of smallest WA for f

Proof (<)
» Write F = f{(Z*) e RE"™*™ and B = fB(L*) e R
» Note Hf =F-B
» Then, rank(H¢) <n

Schitzenberger's Theorem

Theorem: rank(H¢) < n if and only if f = fp with |[A] =n
In particular, rank(Hg¢) is size of smallest WA for f

Proof (=)

» Assume rank(H¢) = n

» Take rank factorization H¢ = F- B with F € RE"™*™ and B e R"*%"
Let o] = F(e, [n]) and o = B([n], €) (note o ote, = f(€))
Let Ay = B([n], 0-Z*)- B+ € R™*™ (note Ao -B([n],x) = B([n], o-x))
By induction on |x| we get of Ay = f(x)

v

v

v

The Spectral Method

Idea: Use SVD decomposition to obtain a factorization of H

» Given H and Hg over basis (P, 8)
» Compute compact SVD as H = USVT with

UGRTXR S e RMXM VERSXH

» Let Ag = (HV)"(HsV) — corresponds to rank factorization
H=(HV)VT
Properties
» Easy to implement: just linear algebra
» Fast to compute: O(max{|P|,|8]}3)
» Noise tolerant: H ~ H and l:{(T ~ Hg implies AG ~ Ag

Spetral Methods from the Automata-Theory Perspective

» Algorithmic and Miscellaneous Problems

» Interpretation as an optimization problem - from linear algebra to
convex optimization
» Finding a basis via random sampling - knowing (P, 8)

» Direct Applications

» Learning stochastic rational languages - any probability distribution
computed by WA

» Learning probabilistic finite state transducers

» Learning tree distributions

» Composition with Other Methods

» Combination with matrix completion for learning non-stochastic
functions - when f: * — R is not related to a probability distribution

An Optimization Point of View

» ldea: Replace linear algebra with optimization primitives - make it
possible to use the ML optimization toolkit.

v

Algorithms
> Spectral optimization: Minga jviv, -1 2ees |[HVaAs — Ho Va2
» Convex relaxation: mina, |[HAs — Hx||2 + 7||Ax]|«

» Properties

» Equivalent in some situations and choice of parameters
» Experiments show convex relaxation can be better in cases known to
be difficult for the spectral method

» Open problems/ Future Work
» Design problem-specific optimization algorithms
» Constrain learned models imposing further regularizations, e.g. sparsity

Learning Probabilistic Finite State Transducers [BQC'11]

Idea: Learn a function f: (£ x A)* — R computing P[y|x] Learning Model

» Input is sample of aligned sequences (x',yt), |x| = [y}

» Drawn i.i.d. from distribution P[x, y] = P[y|x] D(x)

» Want to assume as little as possible on D

» Performance measured against x generated from D
Properties

» Assuming independece A% = Oj - T, sample bound scales mildly
with input alphabet |X|

» For applications, need to align sequences prior to learning — or use
iterative procedures

Open problems / Current Work

» Deal with alignments inside the model

Learning PFST over very large input alphabets

» Goal: Learn a function f: (X x A)* — R computing P[x, y] where A
can be arbritrarily large.

» Idea: Transition function as a linear combination of basic transitions.
» Model
» Assume a set of feature functions ®(x) = [$p1(x), ..., b (x)]

fy) = af A(d(xa).yn) - Ald(xr), 7)o

k k
o] (Z ¢1(X1>0?1> (Z ¢1(XT)O?T> ot
1=1

Learning FST: Handling Missing Alignments
» Goal: Learn a function g: (£* x A*) — R computing P[x, y]

» Model:
Pxy)= , f(2)
zeZ(x,y)

7 = Y1 Y2 Y3 |Ya| [Ys| Y6 (Y7
X1 X2 X3 | | Xa X5

corresponds to a sequence of symbol pairs:

(1, A) (2, A (A Y1) (A, y2) (A, y3) (x3, ya) (xa, Ys) (A, Ye) (X5, Y7)

» Aligned Sequences:

» WA over aligned sequences:
f(z) = o] Ay, Ay LAVIAYZAYI AT AT AV ADT

> Intuitively:
» A operators over L*
» A% operators over A*
» Ag operators over (£ x A)*

Forward-Backward Maps

Y1 Y2 Y3
X1 X2

z =

Ya
X3

[1]

f(z) = of A, AYBAYAYAY

- fF Y1 Y2 Y3
X1 X2

_ fF(yl Y2 Y3

X1 X2

Ya
X3

(]

Ye
Xq

_AYs B Ys |Ye
Jomsr (1

)

Fully Observed Hankels

» Hankel over Aligned Sequences:

H (91y293

X1X2

Y1Y2Yys3
HU (X1X2

5 (Y1Y2ys
H (X1X2

® (Y1y2ys
H (X1X2

» Hankel Factorizations:

Y1Y2Ysy4 [
X1X2

Y1Y2Y3ys [
X1X20

Y1Y2ys3dys

i[s o

Y1Y2yYys3
X1X2

H=FB
HS = FASB

]l

4)

1)
‘%

)

Hankel over Aligned Substrings

» A Hankel over aligned substrings:

H (O (2] o) =H (S0 3] &%)

Hankel over Aligned Substrings

» A Hankel over aligned substrings:
H (O (2] o) =H (S0 3] &%)

» Problem: we do not observe aligned sequences!

Observable Statistics

E [|X19|5162] IED[7(]3(:’_10_27‘&91961621;15]

0102 - Z
X5, XpEL™
Ys YpEA™
= ddeoe 4 .
RS o+]
+ —

where:

Guessing a good Hankel

» |dea:

» Guess the entries in the Hankel
» Use rank constraints and observables to guide your guess

» Observable Constraints:

» E[|x, y[5:%2] = sums of entries in H*

» Optimization:
min || H*||«
H*
subject to: linear constraints on observables

» Number of Variables in H% C-|Z x A[*

Conclusion

» Summary:

» Spectral algorithms follow directly from classical algebraic methods for
learning automata
» Automata Theory Perspective in a Nutshell: the Hankel trick

> Recipe to derive learning algorithms for many models.
» Convex optimization + Hankel trick

» Extensions: guess missing Hankel entries

» Future Directions:
» Can we learn subclasses of PCFG?

» A reference:

» R. Gavalda and J. Castro, Learning Probability Distributions Generated
by Finite-State Machines, tutorial at 1CGI-2012

