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Abstract. This paper shows that the suitable orderings for proving in-
nermost termination are characterized by the innermost parallel mono-
tonicity , IP-monotonicity for short. This property may lead to several
innermost-specific orderings. Here, an IP-monotonic version of the Re-
cursive Path Ordering is presented. This variant can be used (directly
or as ingredient of the Dependency Pairs method) for proving innermost
termination of non-terminating term rewrite systems.

1 Introduction

Rewrite systems are sets of rules used to compute by replacing an instance of
the left-hand side of a rule (redex ) by the corresponding instance of the right-
hand side. The replacements are repeated until a term with no redex (normal
form) is eventually reached. Every replacement (rewriting step) involves a non-
deterministic choice of both, the redex and the rewriting rule to be applied.
Hence, in general one can produce an infinite number of rewriting step sequences
started on the same term. A term rewrite system (TRS) is terminating if it has
no infinite rewriting sequence.

A common way of restricting the number of rewriting sequences to be in-
spected when searching for a normal form is to use a rewriting strategy. A TRS
can be terminating under a specific strategy whereas not in general. The termi-
nation proof for a strategy may be easier and weaker conditions for modularity
can be applied. Moreover, for some classes of TRS, proving termination under a
particular rewriting strategy suffices for ensuring general termination. Therefore,
it turns out to be very important to develop techniques for proving termination
of rewriting under strategies.

One of the most commonly used rewriting strategies is the innermost one, in
which only innermost redexes are reduced. This strategy corresponds to the “call
by value” computation rule of programming languages and enjoys all the afore-
mentioned advantages. Therefore, studies on properties of innermost rewriting
are useful for program verification.

The first and most successful technique for proving innermost termination of
rewriting was the Dependency Pairs method (DP) [1]. In [20], the size-change
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principle for functional programming [14] was adapted in order to prove inner-
most termination of rewriting. Moreover, it was combined with DP, obtaining
the best of both methods. Other approaches are described in [19, 8, 4]. All these
methods are used with general purpose orderings as ingredient, like the Recur-
sive Path Ordering (RPO) [6, 12], the Knuth-Bendix Ordering and polynomial
interpretations over the reals [3, 15].

In this paper, we study the relationship between innermost termination and
well-founded orderings. Stability and monotonicity (which are always required
for termination proofs) can be relaxed for termination of this strategy. In in-
nermost rewriting only normalized substitutions are considered. Moreover, very
recently it was shown that for innermost termination some monotonicity require-
ments can be discarded for some function symbols [7]. Here we provide a different
approach for relaxing the monotonicity. Our approach was obtained by noting
that innermost normalization and termination of the innermost parallel rewrit-
ing strategy are equivalent [18]. The latter strategy reduces all innermost redexes
of a term at the same time. Therefore, for innermost termination we need to de-
mand monotonicity only after each maximal parallel innermost rewriting step.
We call this property IP-monotonicity and we show that the suitable orderings
for direct innermost termination proofs are IP-monotonic. Another characteriza-
tion for innermost termination is obtained by combining the innermost parallel
relation and DP. As consequence, an innermost termination criterion relying on
IP-monotonic quasi-orderings instead of IP-monotonic orderings is also obtained.

IP-monotonicity may lead to new, practical and innermost-specific orderings.
In particular, we present an IP-monotonic version of the RPO, called the inner-
most RPO (iRPO). Its practical application is shown by means of examples.
We also show that, for non-overlaying TRSs, the non-strict version of iRPO is
an IP-monotonic quasi-ordering. Thus, it can be used as ingredient of DP and
effectively combined with the argument filtering method [1, 13].

The rest of the paper is organized as follows. In Section 2 we introduce basic
notions and notations. In Section 3 we characterize innermost termination in
terms of IP-monotonic (quasi-) orderings. Section 4 is devoted to iRPO and the
stability issue.

2 Preliminaries

We assume familiarity with the basics of term rewriting termination (see e.g. [2]).
The set of terms over a signature F is denoted as T (F ,X ), where X repre-

sents a set of variables. Variables are denoted with the letters x, y, z while s, t, u
(possibly with subscripts and apostrophes) denote terms. The arity of a func-
tion symbol f is denoted as ar(f). The symbol labelling the root of a term t is
denoted as root(t). The notation t̄ will be ambiguously used to denote either the
tuple (t1, . . . , tn) or the multiset {t1, . . . , tn}.

We assume positions within terms represented by sequences of positive inte-
gers, ordered by the prefix ordering. Positions are denoted with the letters p, q
(possibly with apostrophes) while for integers we use i, j, k. The root position is



denoted by λ and p.q denotes the concatenation of p and q. The set of positions
of a term t is Pos(t). The subterm of t at position p is denoted as t|p. The sub-
term relation denoted as t� t|p in case of p > λ. The term t with the subterm at
position p replaced by s is denoted as t[s]p. Occasionally, we use t[s] to indicate
that s is subterm of t.

We say that binary relation � is compatible with another binary relation %
if e1 % e′1 � e′2 % e2 implies e1 � e2. We call (%,�) a compatible pair if �
is well-founded and % ◦ � ⊆ � or � ◦ % ⊆ � [13]. The syntactic equality is
denoted as ≡.

Let� be an ordering on terms and let≈ be an equivalence relation compatible
with �. The lexicographic extension �lex of � wrt. ≈ for n-tuples is defined as
(s1, . . . , sn) �lex (t1, . . . , tn) iff s1 ≈ t1, . . . , sk−1 ≈ tk−1 and sk � tk for some
k ∈ {1 . . . n}. The extension of ≈ to multisets, denoted as ≈mul, is the smallest
relation s.t. ∅ ≈mul ∅ and S ∪ {s} ≈mul S′ ∪ {t} if s ≈ t ∧ S ≈mul S′. The
extension of � to multisets w.r.t. ≈ is defined as the smallest ordering �mul s.t.
M ∪ {s} �mul N ∪ {t1, . . . , tn} if M ≈mul N and s � ti for all i ∈ {1 . . . n}.

A TRS over F is denoted as R. The defined symbols of R are D = {root(l) |
l → r ∈ R}. A rewriting step with R is written as s →R t. The notation →R,>λ

is used for a rewriting step at position p 6= λ. We omit the subscript R whenever
is clear from the context.

A TRS R is terminating if → is well-founded, i.e. there is no infinite sequence
s1 → s2 → . . . (sometimes denoted as s1 →∞). Alternatively, R is terminating
iff all its rules are included in a reduction ordering [16]. One of the most popular
reduction orderings for proving termination is the Recursive Path Ordering [6]
which is defined below. RPO uses a precedence and can be adapted for dealing
with statuses as proposed in [12].

Definition 1. A precedence �F is an ordering on F compatible with an equiv-
alence relation ≈F . Let {Lex,Mul} be a partition of F called statuses of F .
The precedence �F is compatible with the statuses of F if f ≈F g implies that
both f and g belong to the same part, either Lex or Mul.

Definition 2. Let �F be a precedence over F compatible with the statuses
{Lex,Mul}. Then s = f(s̄) �rpo t if one of the following conditions holds:

1. s′ �rpo t or s′ ≈rpo t, for some s′ ∈ s̄
2. t = g(t̄), f �F g and s �rpo t′ for all t′ ∈ t̄
3. t = g(t̄), f ≈F g, f ∈ FLex, s̄ (�rpo)lex t̄ and s � t′, for all t′ ∈ t̄,
4. t = g(t̄), f ≈F g, f ∈ FMul and s̄ (�rpo)mul t̄,

where s ≈rpo t iff s ≡ t or one of the following conditions holds:

(a) root(s) ≈F root(t), root(s) ∈ FLex and s1 ≈rpo t1, . . . , sn ≈rpo tn,
(b) root(s) ≈F root(t), root(s) ∈ FMul and s̄(≈rpo)mul t̄,

Theorem 1. [12] �rpo is a reduction ordering compatible with the congruence
relation ≈rpo.



Given a TRS R, f(t, . . . , tn) is said to be argument normalized w.r.t. R if for
all k = 1 . . . n, tk is in normal form w.r.t. R. A pair (s, t) is said to be argument
normalized if s is so. A normalized substitution σ is s.t. xσ is in normal form w.r.t.
R for all x ∈ Dom(σ). An innermost redex is an argument normalized redex. A
term s rewrites innermost to t w.r.t. R, written s →i t, iff s → t at position p
and s|p is an innermost redex. It is said that R is innermost terminating if →i

is well-founded.

Example 1. The system R = {g(x, y) → x, g(x, y) → y, f(0, 1, x) → f(x, x, x)}
was given by Toyama for proving that termination is not modular for disjoint
unions of TRS [21]. This illustrative example has the infinite rewriting sequence:
f(0, 1, g(0, 1)) → f(g(0, 1), g(0, 1), g(0, 1)) +→ f(0, 1, g(0, 1)) . . . However, every
innermost rewriting sequence is terminating.

A TRS R is innermost confluent if →i is confluent. We say that R is non-
overlaying if there are no two different rules (after renaming variables so that
both rules have distinct variables) having unifiable left-hand sides. If R is non-
overlaying, then it is innermost confluent.

3 Characterizing innermost termination of rewriting

In this section we focus on innermost termination, trying to characterize it by
means of orderings. The basic idea to achieve this is the fact that all innermost
redexes of a term t are in pairwise disjoint positions and moreover, all must be
rewritten before reaching a normal form. Hence, if t can be normalized using the
innermost strategy, all its innermost redexes can be reduced simultaneously by
the parallel innermost strategy [17].

Definition 3. A term s is reduced innermost in parallel to t w.r.t. R, written
s ‖−→i t, iff s

+→i t and either s →i t at position λ or s = f(s̄), t = f(t̄) and for
all k = 1 . . . |s̄| either sk ‖−→i tk or sk = tk is a normal form.

It is easy to see that when s ‖−→i t, t can be obtained by consecutive one-
step reductions of all innermost redexes in s. For instance, using the TRS of
Example 1 we have f(g(0, 1), g(0, 1), g(0, 1)) ‖−→i f(0, 1, 0). The innermost par-
allel rewrite relation is not only included in the transitive-closure of the inner-
most rewrite relation but it also characterizes innermost termination. The latter
follows from Krishna Rao’s contribution concerning the selection invariance for
innermost normalization [18]. That is, the choice of innermost redex to be re-
duced at any step is irrelevant for innermost termination. Thereby, if a TRS
is innermost normalizing under a particular strategy then it is innermost nor-
malizing under any other strategy. In order to prove this fact, an oracle based
reasoning was used. The following theorem provides a simpler proof for the same
result.

Theorem 2. A TRS R is innermost terminating iff ‖−→i is terminating.



Proof. The left-to-right implication is trivial. For the other direction, it is enough
to prove that, for any infinite rewriting sequence s →∞

i there exists an alternate
derivation s ‖−→i s′ →∞

i .
First, we show that given a derivation s

+→i t where t is argument normalized
there exists an alternate derivation s ‖−→i s′

∗→i t, and we do it by structural
induction. If the first rewrite step in s

+→i t is at position λ, then this derivation
is already of the form s ‖−→i s′

∗→i t. Otherwise, either there is no rewrite step
at λ or the first step at λ is on an argument normalized term obtained from
s by at least one rewriting step. In any case, the original derivation is of the
form s = f(s̄) +→i,>λ f(t̄) ∗→i t, where f(t̄) is argument normalized and every
sk ∈ s̄ is either a normal form and we call s′k = sk, or sk

+→i tk and by induction
hypothesis sk ‖−→i s′k

∗→i tk. Therefore, s = f(s̄) ‖−→i f(s̄′) ∗→i t, as desired.
Now, given a derivation s →∞

i , we show that there exists an alternate deriva-
tion s ‖−→i s′ →∞

i by structural induction. If the first rewrite step is at λ position,
the result trivially holds. Otherwise, if there is some rewrite step at λ, then this
derivation is of the form s

+→i t →∞
i where t is argument normalized, and by our

previous statement, there exists an alternate derivation s ‖−→i s′ →∗
i t →∞

i , and
the result holds. If there is no rewrite step at λ in s →∞

i , then s is of the form f(s̄)
and for some sk ∈ s̄, say s1, there exists an infinite rewriting sequence s1 →∞

i .
By induction hypothesis, there exists an alternate derivation s1 ‖−→i s′1 →∞

i .
For the rest of sk’s, either sk is a normal form and we call s′k = sk, or a par-
allel innermost rewriting step can be applied on sk, i.e. sk ‖−→i s′k for some s′k.
Therefore, there exists an alternate derivation s = f(s̄) ‖−→i f(s̄′) →∞

i , and the
result follows. ut

This theorem leads us to define the innermost parallel monotonicity , IP-
monotonicity for short, directly from ‖−→i .

Definition 4. A binary relation � is IP-monotonic w.r.t. a TRS R iff ‖−→i ⊆
�.

The IP-monotonicity hides a weak kind of stability and monotonicity. This
can be seen in the next lemma, which is a straightforward conclusion from Def-
inition 4.

Lemma 1. A binary relation � is IP-monotonic w.r.t. R iff

– lσ � rσ for all l → r ∈ R and substitution σ s.t. lσ is argument normalized
and

– s̄ ‖−→i t̄ implies f(s̄) � f(t̄) for all f ∈ F .

Using this lemma is easy to see that any transitive, monotonic and stable
binary relation including R is also in-monotonic w.r.t. R. Therefore, reduction
orderings suffices for innermost termination. However, termination of this strat-
egy is indeed characterized by IP-monotonic and well-founded orderings.

Theorem 3. A TRS R is innermost terminating iff there is a well-founded
relation � which is IP-monotonic w.r.t. R.



Proof. The left-to-right implication can be easily shown by taking
+

‖−→i . For
the converse, if R is not innermost terminating, by Theorem 2, there exists an
infinite rewriting sequence s1 ‖−→i s2 ‖−→i . . .. By IP-monotonicity of � w.r.t.
R, s1 � s2 � . . ., contradicting the well-foundedness of �. ut

In the context of DP, innermost termination was characterized through the
use of chains. Given a TRS R, 〈f(s̄), g(t̄)〉 is a dependency pair of R if f(s̄) →
u[g(t̄)] ∈ R and g ∈ D1. The set of all dependency pairs of R is denoted as
DP(R). A sequence of dependency pairs S = 〈s1, t1〉 〈s2, t2〉 〈s3, t3〉 . . . of R is
an innermostR-chain if there is a substitution σ s.t. for all j > 0, sjσ is argument
normalized and tjσ

∗→i sj+1σ holds. A TRS R is innermost terminating iff there
is no infinite innermost R-chain [1].

Since in every innermost R-chain sjσ is argument normalized , by the proof

of Theorem 2, we have tjσ
∗
‖−→i sj+1σ, for all j > 0. Therefore, the parallel

innermost relation can also be used for characterizing innermost termination by
means of chains. Furthermore, we can use a compatible pair (%,�) s.t. % is
IP-monotonic w.r.t. R.

Theorem 4. A TRS R is innermost terminating iff there is a compatible pair
(%,�) s.t. % is IP-monotonic w.r.t. R and sσ � rtσ for all 〈s, t〉 ∈ DP(R) and
substitution σ s.t. sσ is argument normalized.

Proof. For the right-to-left direction suppose R is not innermost terminating.
Then, there is an infinite innermost R-chain 〈s1, t1〉 〈s2, t2〉 〈s3, t3〉 . . . and a
substitution σ s.t. for all j > 0, sjσ is argument normalized and tjσ

∗→i sj+1σ.

Since tjσ
∗
‖−→i sj+1σ and % is IP-monotonic, we have tjσ (% ∪ ≡) sj+1σ.

Besides sjσ � tjσ holds by assumption. Hence, seeing that % ◦ � ⊆ � or
� ◦ % ⊆ �, we obtain the infinite sequence s1σ � s2σ � s3σ � . . . which
contradicts the well-foundedness of �.

For the left-to-right direction we take % = � = (→i ∪ �)+. Clearly, �
◦ � ⊆ �, � is IP-monotonic w.r.t. R and orients DP(R). Finally, when R is
innermost terminating, +→i is a monotonic and well-founded ordering and thereby
(→i ∪ �)+ is also well-founded. ut

4 An example of IP-monotonic ordering

Multiset extensions have been used for defining successful reduction orderings
like RPO and MSPO [5]. This is because they preserve suitable properties like
irreflexivity, transitivity, stability and well-foundedness. Besides, every ordering

1 The original notion of dependency pair is 〈 bf(s̄), bg(t̄)〉 where bf and bg are marked (or
tuple) symbols associated to f and g resp. This renaming allows to apply a different
treatment to function symbols when they appear on top of dependency pairs. We
have chosen the unmarked version for simplicity but using the marked version does
not affect our results.



� is monotonic on �mul in the sense that s � t implies {s1, . . . , s, . . . , sn} �mul

{s1, . . . , t, . . . , sn}. Once the terms of a multiset are rewritten with ‖−→i w.r.t.
a TRS R, all reducible terms decrease w.r.t. every IP-monotonic ordering �
whereas normal forms remain untouched. Therefore, the original multiset also
decreases w.r.t. �mul. Even more, the comparison with �mul still holds if we
remove all multiple occurrences from the original and the reduced multisets.

Based on this fact we adapt (actually extend) RPO for proving innermost ter-
mination. This is achieved just by adding a new status FSet which allows certain
terms to be compared using the set (instead of the multiset) of their arguments.
The new ordering is the first which is innermost-specific; therefore we call it the
innermost Recursive Path Ordering. Its definition can be formulated either by
cases like RPO or by transformation, i.e. first we eliminate repetitions and then
compare with RPO. The latter alternative provides an elegant definition and
straightforward proofs for iRPO’s properties.

Definition 5. Given FSet ⊆ F , the transformation φ over T (F ,X ) is defined
as

– φ(x) = x, if x ∈ X
– φ(f(s1, . . . , sn)) = f(φ(s1), . . . , φ(sn)), if f /∈ FSet

– otherwise φ(f(s1, . . . , sn)) = f(φ(sj1), . . . , φ(sjm)) where j1 < . . . < jm are
the j’s in {1 . . . n} s.t. sk 6≡ sj for all k < j. In other words, the tuple
(sj1 . . . sjm

) is just (s1 . . . sn) after removing repetitions from left to right.

Given an RPO ordering �rpo and FSet ⊆ FMul, the corresponding �irpo order-
ing is defined as s �irpo t iff φ(s) �rpo φ(t). If ≈rpo is the equivalence relation
corresponding to �rpo, then ≈irpo is defined as s ≈irpo t iff φ(s) ≈rpo φ(t). The
union of �irpo and ≈irpo is denoted as %irpo.

Note that after applying φ, some symbols in FSet may become varyadic. Be-
sides, repetitions are removed before applying φ, not later. For example, if FSet =
{h, g}, φ(h(g(a, b, b, a), g(a, b, c, b), g(a, b, b, c))) = h(g(a, b), g(a, b, c), g(a, b, c)).
Although φ removes repetitions from left to right, any other fixed order would
give the same definition of �irpo and ≈rpo above. Clearly, the transformed terms
might be different (for instance, choosing the right-to-left order φ(g(a, b, c, b)) =
g(a, c, b)). But this is irrelevant since the multiset comparison is used for com-
paring the affected arguments.

The following proposition is a direct consequence of the definition of ≈irpo,
�irpo and Theorem 1.

Proposition 1. �irpo is a well-founded ordering compatible with the equivalence
relation ≈irpo.

Now, we show that if the set of argument normalized instances of a TRS R
can be oriented using iRPO then the ordering is IP-monotonic w.r.t. R. There-
fore, by Theorem 3 and Proposition 1, it can be used for proving innermost
termination.



Theorem 5. �irpo is IP-monotonic w.r.t. a TRS R iff lσ �irpo rσ, for every
rule l → r ∈ R and substitution σ s.t. lσ is argument normalized.

Proof. The left-to-right implication follows by definition of IP-monotonicity. For
the other direction we need to show that s ‖−→i t implies s �irpo t. By assump-
tion, s �irpo t whenever s ‖−→i t at position λ. Otherwise s = f(s̄), t = f(t̄) and
for all k ∈ {1 . . . |s̄|} either sk = tk is a normal form, or sk ‖−→i tk and using
structural induction we have sj �irpo tj , and hence φ(sj) �rpo φ(tj). Moreover,
for some k ∈ {1 . . . |s̄|}, sk is not a normal form, and consequently sk �irpo tk
and φ(sk) �rpo φ(tk). Now, if f /∈ FSet, then s �irpo t by monotonicity and
transitivity of �rpo. Otherwise, let φ(s) = f(s′1, . . . , s

′
m), φ(t) = f(t′1, . . . , t

′
n).

Moreover, let S, T and S′ be the multisets {s′1, . . . , s′m}, {t′1, . . . , t′n} and S′ =
{φ(sk) | k ∈ {1 . . . |s̄|}, sk is a normal form w.r.t R}2 respectively. Then S′ ⊂ S,
S′ ⊆ T and for all v ∈ T − S′ there is some u ∈ S − S′ s.t. u �rpo v holds by
induction. Therefore, {s′1, . . . , s′m} �mul

rpo {t′1, . . . , t′n} by definition of the multiset
extension, and φ(s) �rpo φ(t) holds. ut

Example 2. Toyama’s TRS (see Example 1) can be shown innermost terminating
using iRPO. For the first two rules, g(x, y)σ �rpo xσ and g(x, y)σ �rpo yσ hold
by case 1 for every substitution σ. Moreover, every instance of the last rule can
be oriented by defining FSet = FMul = {f}. Note that depending on the value
of xσ we have the following situations, all of them holding by case 3.

1. if xσ = 0 then φ(f(0, 1, x)σ) = f(0, 1) �rpo f(0) = φ(f(x, x, x)σ),
2. if xσ = 1 then φ(f(0, 1, x)σ) = f(0, 1) �rpo f(1) = φ(f(x, x, x)σ),
3. otherwise φ(f(0, 1, x)σ) = f(0, 1, xσ) �rpo f(xσ) = φ(f(x, x, x)σ).

Since the transformation φ unites duplicated arguments, other Toyama-like
examples can be included in iRPO (e.g. [1, Examples 5.2.3,5.2.13,5.2.14]). When
such multiple occurrences appear at top level, the techniques for cancelling cycles
in the estimated innermost dependency graph [1, 4, 9] also handle many of these
systems. However, as the next example shows, the latter does not hold in general.

Example 3. The next TRS is a more complex variant of Toyama’s example.

R1 =


f(x, x, y) → h(y)

h(x) → x
h(f(x, y, z)) → f(z, z, y)
h(f(x, y, z)) → f(y, y, x)

c(f(0, 1, x), x) → c(f(x, x, x), h(x))

This system has the following infinite sequence (the redex used in each rewrit-
ing step appears underlined):

2 We construct S′ by selecting just one occurrence of every normal form in s̄. Note
that S, T and even S′ may have repeated elements, because φ is not injective.



c(f(0, 1, h(f(0, 1, 0))), h(f(0, 1, 0))) →
c(f(h(f(0, 1, 0)), h(f(0, 1, 0)), h(f(0, 1, 0))), h(h(f(0, 1, 0)))) →
c(f(f(1, 1, 0), h(f(0, 1, 0)), h(f(0, 1, 0))), h(h(f(0, 1, 0)))) →
c(f(f(1, 1, 0), f(0, 0, 1), h(f(0, 1, 0))), h(h(f(0, 1, 0)))) →
c(f(f(1, 1, 0), f(0, 0, 1), h(f(0, 1, 0))), h(f(0, 1, 0))) →
c(f(h(0), f(0, 0, 1), h(f(0, 1, 0))), h(f(0, 1, 0))) →
c(f(0, f(0, 0, 1), h(f(0, 1, 0))), h(f(0, 1, 0))) →
c(f(0, h(1), h(f(0, 1, 0))), h(f(0, 1, 0))) →
c(f(0, 1, h(f(0, 1, 0))), h(f(0, 1, 0))) → . . .

However, R1 is indeed innermost terminating. Proving this fact automatically
is hard to obtain with the existing methods. Obviously, no termination tech-
nique can be used in this case. Furthermore, the estimations for the innermost
dependency graph do not cancel the problematic cycle corresponding to the last
rule. The use of polynomials with negative coefficients has been proposed for
innermost termination proofs [1, 7]. But the practical results concerning the au-
tomated generation of such polynomials are still few, and for instance the method
described in [11] cannot be applied to this system.

Nevertheless, innermost termination of R1 can be proved using iRPO with
FSet = FMul = {f}, FLex = {c} and the precedence c �F h and f �F h. Every
instance of the first rule decreases by case 2. For the next three rules, lσ �irpo rσ
holds by case 1, for every substitution σ (note that f(x, y, z)σ %irpo f(z, z, y)σ).
Finally, considering the situations of the previous example the last rule is easily
oriented using case 4.

4.1 Innermost Stability for iRPO

Theorem 5 is not suitable for automation since one has to check infinitely many
instantiation of the rules. Hence, though stability is not necessary for innermost
termination, it is always a desirable property when proving termination.

Unlike RPO, iRPO is not stable. The problem comes from the fact that two
different terms can be equal after applying a substitution. Thereby, in general
φ(sσ) 6= φ(s)σ when s � t and root(t) ∈ FSet. For example, for FSet = {f}
and σ = {y 7→ x} we have φ(f(c(x), c(y))σ) = f(c(x)) 6= φ(f(c(x), c(y)))σ
f(c(x), c(x)). Due to this �irpo is not stable. For example, f(c(x), c(y)) �irpo

f(c(x), c(x)) and f(c(x), c(y)) �irpo f(x, c(x)) hold but do not after applying the
former substitution. Note that φ(f(c(x), c(y))σ) = f(c(x)) = φ(f(c(x), c(x))σ)
and φ(f(c(x), c(y))σ) = f(c(x)) �rpo f(x, c(x)) = φ(x, f(c(x))σ).

Definition 6. The problem of iRPO stability is defined as follows.

Instance: two terms s and t, a term rewrite system R, and an iRPO ordering
�irpo.
Question: Is sσ �irpo tσ for any substitution σ such that sσ is argument nor-
malized?



As we will see, this problem is co-NP-complete. The following algorithm non-
deterministically decides the complement of the iRPO stability problem, i.e., if
there exists a substitution σ such that sσ is argument normalized and sσ 6�irpo tσ
for given terms s and t.

Algorithm 1

1. Let Ep ⊆ {(i, j) | 1 ≤ i < j ≤ ar(root(s|p))} be an selection of pairs for
every position p ∈ PosFSet

(s).
2. Let σ be the m.g.u. of the set of equations {s|p.i = s|p.j | p ∈ PosFSet

(s), (i, j)
∈ Ep}. Check if sσ is argument normalized w.r.t. R and sσ 6�irpo tσ, and
give this result as output.

Lemma 2. The Algorithm 1 non-deterministically decides the complement of
the iRPO stability problem.

Before giving the proof of the previous lemma, we will need the following two
technical results.

Lemma 3. Let σ be the m.g.u. of a set of equations S. For every term s occur-
ring in S and for every position p ∈ PosF (sσ), there exists a term s′ occurring
in S and a position p′ ∈ PosF (s′) such that sσ|p ≡ s′σ|p′ .

Proof. This can easily be proved by induction on the number of steps of many
known unification algorithms. In those algorithms, the m.g.u. σ is incrementally
obtained by, first, making σ0 to be the identity substitution. Then, at some step,
it is modified by an assignment of the form σi+1 := σi{x 7→ tσi}, where t is a
term occurring in S, xσi = x, and any variable y occurring in tσi satisfies that
x does not occur in yσi. It is not difficult to see that, if σi satisfies the condition
of the lemma, then σi+1 does. ut

Lemma 4. For every term s and substitution σ we have φ(s)φ(σ) %rpo φ(sσ) 3.
Moreover, if for every pair of positions p.i and p.j of s with p ∈ PosFSet

(s) it
holds that (s|p.i ≡ s|p.j) ⇔ (s|p.iσ ≡ s|p.jσ), then φ(s)φ(σ) ≡ φ(sσ)

Proof. Clearly φ(s)φ(σ) %rpo φ(sσ) holds since φ(sσ) can be obtained from
φ(s)φ(σ) by eventually removing some subterms at positions below a symbol with
multiset status. Now, assume that for every pair of positions p.i and p.j of Pos(s),
it holds that (s|p.i ≡ s|p.j) ⇔ (s|p.iσ ≡ s|p.jσ). Proving φ(s)φ(σ) ≡ φ(sσ), is
equivalent to see that any position p.i with p ∈ PosFSet

(s) satisfies that for all
j in 1 . . . i− 1, s|p.j ≡ s|p.i if and only if s|p.jσ ≡ s|p.iσ (i.e. the removing action
of φ coincides on s and sσ at positions in Pos(s)). But this is trivial by our
assumption. ut

Now, we are ready to prove Lemma 2.

3 Here, φ is adapted to substitutions in a natural way, i.e. xφ(σ) = φ(xσ).



Proof. (Of Lemma 2) If the algorithm gives a positive answer, then it is clear
that there exists a substitution σ (the one obtained by the algorithm) satisfying
that sσ is argument normalized and sσ 6�irpo tσ.

Hence, it remains to see that, if for some substitution σ, sσ is argument
normalized and sσ 6�irpo tσ, then there is a selection Ep for every p ∈ PosFSet

(s)
that produces a positive answer. The selection we need for every of such p’s is
Ep = {(i, j) | sσ|p.i ≡ sσ|p.j}. Let σ′ be the m.g.u. of the corresponding set of
equations S in the algorithm. We have that σ = σ′σ′′ for some σ′′ (since σ is
an unifier of S), and that for all p ∈ PosFSet

(s), sσ′|p.i ≡ sσ′|p.j if and only if
sσ′|p.iσ

′′ ≡ sσ′|p.jσ
′′. Moreover, sσ′ is argument normalized since sσ′σ′′ = sσ

is. It remains to see that sσ′ 6�irpo tσ′, or, equivalently, that φ(sσ′) 6�rpo φ(tσ′).
We do it by contradiction, i.e. assume that φ(sσ′) �rpo φ(tσ′). By stability of
�rpo, it holds that φ(sσ′)φ(σ′′) �rpo φ(tσ′)φ(σ′′). By the first part of Lemma 4,
φ(tσ′)φ(σ′′) %rpo φ(tσ′σ′′) ≡ φ(tσ). If we could prove φ(sσ′)φ(σ′′) ≡ φ(sσ′σ′′)
then we would obtain φ(sσ) �rpo φ(tσ), and hence, sσ �irpo tσ, which is a
contradiction with our assumption.

In order to prove φ(sσ′)φ(σ′′) ≡ φ(sσ′σ′′), we want to apply the second part
of Lemma 4. We already know that for all p ∈ PosFSet

(s), sσ′|p.i ≡ sσ′|p.j if and
only if sσ′|p.iσ

′′ ≡ sσ′|p.jσ
′′. It remains to see that this property extends to sσ′,

i.e., for all p ∈ PosFSet
(sσ′), sσ′|p.i ≡ sσ′|p.j if and only if sσ′|p.iσ

′′ ≡ sσ′|p.jσ
′′.

For this goal, it is enough to see that for any position p ∈ PosFSet
(sσ′), there

exists a position p′ ∈ PosFSet
(s) such that sσ′|p ≡ sσ′|p′ . But this is easy by

means of Lemma 3 as follows. First, note that if instead of considering the set of
equations S we consider S ∪ {s = s}, then σ′ continues being the m.g.u. of this
set. Now, let p be a position in PosFSet

(sσ′). By Lemma 3, there exists a term
s′ in S ∪ {s = s} and a non-variable position p′ in s′ such that sσ′|p ≡ s′σ′|p′ .
But this term s′ can be considered to be s, since all terms occurring in S are
subterms of s. ut

Theorem 6. The iRPO stability problem is co-NP-complete

Proof. Since we have proved the correctness of the Algorithm 1, for seeing that
the complement of this problem belongs to NP, it only remains to see that
such an algorithm takes polynomial time. The selection Ep for every p and the
corresponding set of equations need polynomial time. A most general unifier σ
can be represented in polynomial space on the given set of equations by means
of DAG’s, and computed in polynomial time. Checking the irreducibility of sσ,
obtaining the DAG’s representing φ(sσ) and φ(tσ), and checking if φ(sσ) 6�rpo

φ(tσ) takes polynomial time as well.
For proving that the complement is an NP-hard problem we give a re-

duction from 3-SAT. Given an instance of 3-SAT with variables x1 . . . xn and
clauses c1 . . . cm, we construct the following terms s and t based on the signature
{h, f, g, g′, 0, 1} where h and f have lexicographic status and arity 2, g and g′

have set status and arities 4 and 5 respectively, and 0 and 1 are constants. In s
and t appear the (term) variables x1, . . . , xn, x1, . . . , xn.

s = h( f(v1, f(v2 . . . , f(vn−1, vn) . . .)) , f(u1, f(u2 . . . , f(um−1, um) . . .)) )



t = h( f(v′1, f(v′2 . . . , f(v′n−1, v
′
n) . . .)) , f(u′1, f(u′2 . . . , f(u′m−1, u

′
m) . . .)) )

where vi = g(xi, xi, 0, 1), v′i = g(xi, xi, xi, xi) and if ci is a clause with literals
lj , lk, lo, then ui = g′(lj , lk, lo, 0, 1) and u′i = g′(lj , lk, lo, 0, 0).

Regardless the precedence, it is easy to see that there exists σ satisfying
sσ 6�irpo tσ if and only if the original 3-SAT problem is satisfiable. Note that,
since g ∈ FSet, the term g(xi, xi, 0, 1)σ is not greater than g(xi, xi, xi, xi)σ only
if σ assigns 0 and 1, or 1 and 0, to the variables xi and xi, respectively. Besides,
the term g′(lj , lk, lo, 0, 1)σ is not not greater than g′(lj , lk, lo, 0, 0)σ only if σ
satisfies every clause ci with literals lj , lk and lo. By considering an empty R
the result follows. ut

4.2 Using iRPO for DP

In general, the compatible pair (%irpo,�irpo) cannot be used for proving inner-
most termination with DP. This is because %irpo is not IP-monotonic w.r.t. an
arbitrary TRS R. Unlike iRPO, the latter holds even if %irpo orients every rule
instance whose left-hand side is argument normalized. Note that after an inner-
most parallel step, it may happen that an occurrence of a duplicated argument of
a symbol in FSet decreases w.r.t. �irpo while another occurrence remains equal
w.r.t. ≈irpo. Hence, the corresponding set of arguments may neither decrease
w.r.t (�irpo)mul nor remain equal w.r.t. (≈irpo)mul.

As an alternative, we may combine the argument filtering technique [1, 13]
with �irpo in order to obtain a compatible pair. An argument filtering over
a signature F is a function π s.t. for all f ∈ F , either π(f) ∈ {1 . . . ar(f)} or
π(f) ⊆ {1 . . . ar(f)}. It induces a mapping from T (F ,X ) to T (Fπ,X ) as follows:π(x) = x if x ∈ X

π(f(t1, . . . , tn)) = π(ti) if π(f) = i,
π(f(t1, . . . , tn)) = f(π(ti1), . . . , π(tim

)) if π(f) = [i1, . . . , im],

where [i1, . . . , im] denotes an ordered set and Fπ consists of all symbols f s.t.
π(f) is a set (the arity of every f ∈ Fπ is |π(f)|). Given a set of pairs P, π(P)
denotes {(π(s), π(t)) | (s, t) ∈ P}.

Given a binary relation �, the relation �π is defined as s �π t iff π(s) � π(t).
It not difficult to see that when � is monotonic (resp. stable) we have that
s �π t implies u[s] �π u[t] (resp. sσ �π tσ). Therefore, this method has been
used for obtaining a monotonic quasi-ordering from a monotonic ordering while
preserving stability and well-foundedness.

The iRPO ordering is already defined via a transformation: s �irpo t iff
φ(s) �rpo φ(t). Hence, two possibilities seem natural to be considered for com-
bining it with an argument filtering π: we can compare two terms s and t by
either φ(π(s)) �rpo φ(π(t)) or π(φ(s)) �rpo π(φ(t)). Applying π before φ does
not work well. An argument filtering might transform a redex into a filtered nor-
mal form. Hence, since the transformation φ removes duplicated arguments, some
innermost parallel reductions might be lost, i.e. it might happen that s ‖−→i t
but π(s) � π(t). The next example illustrates this situation.



Example 4. The following non-overlapping system is not innermost terminating.

R2 =

 h(0) → 0
h(1) → 1

f(0, 1, h(2)) → f(h(0), h(1), h(2))

If we remove the argument of h then we obtain the ordering constraints
h � 0, h � 1, f(0, 1, h) � f(h, h, h). These constraints are satisfied by �irpo with
FSet = {f}, h �F 0 and h �F 1. Therefore, one could falsely prove (innermost)
termination of R2.

Note that f(h(0), h(1), h(2)) = s ‖−→i t = f(0, 1, h(2)) and even s �irpo t but
since {h} �mul

irpo {0, 1, h}, we have f(h, h, h) = π(s) �irpo π(t) = f(0, 1, h).

Hence, we consider the other possibility, i.e. to apply the transformation φ
before the filtering π. In this case, it is natural to demand that π does not
affect the symbols in FSet (i.e. π(f(t1, . . . , tn)) = f(π(t1), . . . , π(tn)), for all
f ∈ FSet), since some arguments might be previously removed by φ. In general,
this approach does not work either.

Example 5. The TRS R3 = {a → b, a → c, g(c) → d, f(g(b), d) → f(g(a), g(a))}
is not innermost terminating. But taking FSet = {f}, π(g) = ∅ and the prece-
dence a �F b, a �F c, g �F d, we have π(φ(R3)) ⊂ �rpo. Hence, one may
erroneously conclude R3 is innermost terminating.

Nevertheless, for non-overlaying TRSs this approach indeed yields the de-
sired result. Non-overlayingness is not a very restrictive condition for a TRS in
the context of innermost rewriting. This strategy corresponds to the usual be-
havior of programming languages, where arguments are fully evaluated before
applying a function. If a program is deterministic, which is the usual situation,
then it corresponds to a non-overlaying system. Besides, this family of TRSs
includes non-overlapping ones for which termination and innermost termination
coincide [10].

Definition 7. Let �rpo be an RPO ordering with FSet ⊆ FMul and π be an
argument filtering over F −FSet. The corresponding �irpo,π ordering is defined
as s �irpo,π t iff π(φ(s)) �rpo π(φ(t)). If ≈rpo is the equivalence relation corre-
sponding to �rpo, then ≈irpo,π is defined as s ≈irpo,π t iff π(φ(s)) ≈rpo π(φ(t)).
The union of �irpo,π and ≈irpo,π is denoted as %irpo,π.

The next proposition follows directly from Proposition 1 and Definition 7.

Proposition 2. �irpo,π is a well-founded ordering compatible with the equiva-
lence relation ≈irpo,π.

Now, we prove the IP-monotonicity of %irpo,π.

Theorem 7. Let R be a non-overlaying TRS. If lσ %irpo,π rσ, for every rule
l → r ∈ R and substitution σ s.t. lσ is argument normalized then %irpo,π is
IP-monotonic w.r.t. R.



Proof. We need to show that s ‖−→i t implies s %irpo,π t, and we prove it by
induction on the size of s. If this rewrite step is at position λ the result trivially
follows. Otherwise, s = f(s̄), t = f(t̄) and for all k = 1 . . . |s̄|, either sk is a normal
form and tk = sk, or sk ‖−→i tk and by induction hypothesis sk %irpo,π tk. Now,
when f /∈ FSet, if π(f) is either the empty set or a natural number the result is
trivial; otherwise s %irpo,π t is obtained using monotonicity and transitivity of
%rpo. In case of f ∈ FSet, first note that, by non-overlayingness, if si ≡ sj , then
ti ≡ tj . Therefore, if for some ti, all the tj ’s with j < i are different from ti (and
hence ti is not removed by the transformation φ) then, all the sj ’s with j < i are
different from si. As consequence, to every element in φ(t̄) we can associate a
distinct element in φ(s̄) that is greater w.r.t. %irpo,π, and hence, s %irpo,π t. ut

Combining Theorems 4, 7 and Proposition 5 we have that, for non-overlaying
TRSs, the compatible pair (%irpo,π,�irpo,π) can be effectively used for innermost
termination proofs with DP.

Corollary 1. A non-overlaying TRS R is innermost terminating if

– lσ %irpo,π rσ for all l → r ∈ R and substitution σ s.t. lσ is argument
normalized and

– sσ �irpo,π tσ for all 〈s, t〉 ∈ DP(R) and substitution σ s.t. sσ is argument
normalized.

Finally we point out that Algorithm 1 for the iRPO stability problem can
be easily adapted for checking if lσ %irpo,π rσ, for every substitution σ s.t. lσ is
argument normalized.

5 Conclusions

In this paper we introduce the first syntactical ordering which can be used for
proving innermost termination of non-terminating TRSs. The ordering is a vari-
ant of the most popular reduction ordering, RPO, and we call it the innermost
RPO. The iRPO was obtained by considering, for some function symbols, sets
instead of multisets of arguments. Hence, it is specially recommended for deal-
ing with duplicated arguments in right-hand sides. The use of sets entails non-
stability as drawback. However, for the (quasi-) orderings presented here, the
problem of checking stability is decidable and co-NP-complete. The algorithm
for doing this checking considers those m.g.u. which duplicate arguments in left-
hand sides. But usually there are not many of such arguments. Therefore, we
think that in many practical situations the stability of iRPO can be computed
efficiently.

The iRPO enjoys a property, called IP-monotonicity, which is essential for in-
nermost termination. This property demands monotonicity just after each (max-
imal) parallel innermost rewriting step. We believe that this weaker condition
might be useful for defining other innermost-specific orderings.
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