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Abstract. Inthis paper, we first briefly survey automated termination proof meth-
ods for higher-order calculi. We then concentrate on the higher-order recursive
path ordering, for which we provide an improved definition, the Computability
Path Ordering. This new definition appears indeed to capture the essence of com-
putability arguments la Tait and Girard therefore explaining the name of the
improved ordering.

1 Introduction

This paper addresses the problem of automating termination proofs for
typed higher-order calculi.

The first attempt we know of goes back to Breazu-Tannen and Gal-
lier [24] and Okada [44]. Following up a pioneering work of Breazu-
Tannen who considered the confluence of such calculi [23], both groups
of authors showed independently that proving strong normalization of a
polymorphic lambda-calculus with first-order constants defined by first-
order rewrite rules was reducible to the termination proof of the set of
rewrite rules: beta-reduction need not be considered. Both works used
Girard's method based arducibility candidatesalso called sometimes
computability predicated hey then gave rise to a whole new area, by ex-
tending the type discipline, and by extending the kind of rules that could
be taken care of.

The type discipline was extended soon later independently by Bar-
banera and Dougerthy in order to cover the whole calculus of construc-
tions [3, 28].

Higher-order rewrite rules satisfying tlgeneral schemaa general-
ization of Gddel’s primitive recursion rules for higher types, were then
introduced by Jouannaud and Okada [34, 35] in the case of a polymor-
phic type discipline. The latter work was then extended first by Barbanera
and Fernandez [4, 5] and finally by Barbanera, Fernandez and Geuvers to
cover the whole calculus of constructions [6].



It turned out that recursors f@impleinductive types could be taken
care of by the general schema, but arbitrary strict inductive types could
not, prompting for an extension of the schema, which was reformulated
for that purpose by Blanqui, Jouannaud and Okada [16]. This new for-
mulation was based on the notionaafmputability closuref a termf (s)
headed by a higher-order constdgntdefined as a set containing the im-
mediate subterms of f(s) and closed under computability preserving
operations in the sense of Tait and Girard. Membership to the general
schema was then defined for an arbitrary rewrite rule as membership of
its right-hand side to the computability closure of its left-hand side.

Besides being elegant, this formulation was indeed much more flex-
ible and powerful. By allowing for more expressive rubgsthe object
level of the calculus of constructions, it could handle many more induc-
tive types than originally. The general schema was finally extended by
Blanqui in a series of papers by allowing fagcursive rules on types
in order to cover the entire calculus of inductive constructions including
strong elimination rules [13, 14].

The definition of the general schema used a precedence on higher-
order constants, as does Dershowitz recursive path ordering for first-
order terms [26]. This suggested generalizing this ordering to the higher-
order case, a work done by Jouannaud and Rubio in the case of a simple
type discipline under the name of HORPO [37]. Comparing two terms
with HORPO starts by comparing their types under a given well-founded
quasi-ordering on types before to proceed recursively on the structure of
the compared terms, comparing first in the precedence the higher-order
constants heading both terms. Following the recursive path ordering tra-
dition, a subterm of the left-hand side could also be compared with the
whole right-hand side, regardless of the precedence on their heads.

HORPO was then extended to cover the case of the calculus of con-
structions by Walukiewicz [51], and to use semantic interpretations of
terms instead of a precedence on function symbols by Borralleras and
Rubio [21]. HORPO was also improved by the two original authors in
two different ways: by comparing in the so-called subterm case an ar-
bitrary term belonging to the computability closure of the left-hand side
term with the right-hand side term, therefore generalizing both HORPO
and the general schema; and by allowing for a restricted polymorphic dis-
cipline [40]. An axiomatic presentation of the rules underlying HORPO
can be found in [31]. A more recent work in the same direction is [27].
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The ordering and the computability closure definitions turn out to
share many similar constructs, raising expectations for a simpler and yet
more expressive definition, instead of a pair of mutually inductive defini-
tions for the computability closure and the ordering itself, as advocated
in [17]. These expectations were partly met, on the one hand in [15] with
a single computability oriented definition, and on the other hand in [18]
where a new, syntax oriented recursive definition was given for HORPO.
In contrast with the previous definitions, bound variables were handled
explicitly by the ordering, allowing for arbitrary abstractions in the right-
hand sides.

A third, different line of work was started by van de Pol and Schwicht-
enberg, who aimed at (semi)-automating termination proofs of higher-
order rewrite rules based on higher-order pattern matching, a problem
generally considered as harder as the previous one [47,49, 48]. Related
attempts with more automation appear in [43, 38], but were rather uncon-
clusive for practical applications. The general schema was then adapted
by Blanqui to cover the case of higher-order pattern matching [11]. Fi-
nally, Jouannaud and Rubio showed how to turn any well-founded or-
dering on higher-order terms including beta and eta, into a well-founded
ordering for proving termination of such higher-order rules, and intro-
duced a very simple modification of HORPO as an application of this
result [36].

A fourth line of work was started by Borralleras and Rubio. Among
other material, Borralleras thesis [20] contained a constraint-based ap-
proach to the semantic path ordering [41] which was shown to encom-
pass the dependency pairs method of Arts and Giesl [2, 30] in all its vari-
ous aspects. Besides the thesis itself, the principles underlying this work
are also described in [21] and [22]. An interesting aspect is that they lift
to the higher-order case. Extending the dependency pairs method to the
higher-order case was also considered independently by 8e&H46,

45] and Blanqui [10].

Finally, a last line of work addresses the question of proving termi-
nation of higher-order programs. This is of course a slightly different
guestion, usually addressed by using abstract interpretations. These in-
terpretations may indeed use the general schema or HORPO as a basic
ingredient for comparing inputs of a recursive call to those of the call they
originate from. This line of work includes [32, 25, 8,52,1,7,12,29]. An
important related work, considering pure lambda terms, is [19].
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We believe that our quest shall be shown useful for all these lines of
work, either as a building block, or as a guiding principle.

In this paper, we first slightly improve the definition of HORPO in
the very basic case of a simple type discipline, and rename it as the
Computability Path Ordering. We then address the treatment of induc-
tive types which remainedd hocso far, therefore concluding our quest
thanks to the use of accessibility, a relationship which was shown to gen-
eralize the notion of inductive type by Blanqui [13, 14]. We finally list
which are the most important question to be addressed for those who
would like to start a new quest.

2 Higher-Order Algebras

Polymorphic higher-order algebras are introduced in [40]. Their purpose
is twofold: to define a simple framework in which many-sorted algebra
and typed lambda-calculus coexist; to allow for polymorphic types for
both algebraic constants and lambda-calculus expressions. For the sake
of simplicity, we will restrict ourselves to monomorphic types in this
presentation, but allow us for polymorphic examples. Carrying out the
polymorphic case is no more difficult, but surely more painful.
We give here the minimal set of notions to be reasonably self-contained.
Given a setS of sort symbol®f a fixed arity, denoted by : " — x,
the set ottypesis generated by the constructer for functional types

Ts == s(13") | (Ts — Ts)
fors:«" —x €8

Function symbols are meant to be algebraic operators equiped with
a fixed numberm of arguments (called tharity) of respective types
o1,...,0,, and anoutput typeo. Let F = ¥, ,. »Foix..xon—0- THE
membership of a given function symbpto F,, «. «»,— IS called aype
declarationand writtenf : 04 X ... X 0, — 0.

The set7 (F, X) of raw algebraic\-termsis generated from the sig-
natureF and a denumerable s&tof variables according to the grammar:

T =X |(\X:T:.7)| T, T)| F(T,....T).

The raw term\z : o.u is anabstractionand @(u, v) is an application.
We may omito in Az : o.u and write@(u, vy, ..., v,) Or u(vy, ..., v,),
n > 0, omitting applicationsVar(t) is the set of free variables of A
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raw termt¢ is groundif Var(t) = (). The notatiors shall be ambiguously
used for a list, a multiset, or a set of raw terms. . ., s,,.

Raw terms are identified with finite labeled trees by consideking
o.u, for each variable: and types, as a unary function symbol taking
as argument to construct the raw tekm : o.u. Positionsare strings of
positive integerst|, denotes theubternof ¢ at positionp. We use > ¢|,
for the subterm relationship. The result of replacifgat positionp in ¢
by u is writtent[u],,.

Typable raw terms are callddrms The typing judgements are stan-
dard. We categorize terms into three disjoint classes:

1. Abstractionsheaded bw\;

2. Prealgebraicterms headed by a function symbol, assuming (for the
moment) that the output type ¢gfe F is a base type;

3. Neutralterms are variables or headed by an application.

Substitutions, rewrite rules and higher-order reduction orderings are
as expected, see [40].

3 The Computability Path Ordering

CPO is generated from three basic ingredientypa ordering a prece-
denceon functions symbols; and statusfor the function symbols. Ac-
cessibility is an additionnal ingredient originating in inductive types,
while the other three were already needed for defining HORPO. We de-
scribe these ingredients before defining the computability path ordering.
We define the ordering in two steps, accessibility being used in the sec-
ond step only. The first ordering is therefore simpler, while the second is
more expressive.

3.1 Basicingredients

— aprecedence> r on symbols inFU{@}, with f > @forall f € F.

— a status for symbols if U {@} with @ € Mul.

— and a quasi-ordering on typesy, calledthe type orderingatisfying
the following properties, where-7, denotes its associated equiva-
lence relation>7, N <7, and>r, its strict part>7, \ <z.:

1. Well-foundedness-7. = >7; U >, is well-founded,
wheresc — 7 >_, 0;
2. Right arrow subtermo — 7 >, 7;

5



3. Arrow preservationT — o =z, aiff a =7 — o', 7" =7, 7 and
o =1, 0,
4. Arrow decreasingness — o >z, a implieso >z, a or else

a=717 —0o, 7 =7 Tando >7, 0';

Arrow preservation and decreasingness imply that the type ordering
doesnot, in general, have the left arrow subterm propesty- 77, o.
A first axiomatic definition of the type ordering was given in [39], which
did not need right arrow subterm. A new one, expected to be easier to
understand, was given in [40] based solely>n,, which uses another
axiom,arrow monotonicityto force the right arrow subterm property. As
pointed out to us recently, this set of axioms is unfortunately inconsistent
[50]. However, the restriction of the recursive path ordering proposed
there for a type ordering does not satisfy arrow monotonicity, but does
satisfy instead the corrected set of axioms given here.

We now give two important properties of the type ordering:

Lemma 1. [40] Assumingr =7, 7, o iS a data type iffr is a data type.
Lemma2.If« — o >7, 8 — 7theno >4, 7.

Proof. If « — o =7, § — 7 then, by arrow preservation, =7,
ando =7, 7. If @« — 0 >7, 8 — 7, then, by arrow decreasingness,
eithera =7, g ando >z, 7, or elsec >7, 8 — 7. In the latter case,
B — 1 >7, T by right arrow subterm and we conclude by transitivity.

3.2 Notations

Our ordering notations are as follows:

— s ="t for the main ordering, with a finite set of variablés c X
and the convention that is omitted when empty;

-5 0>§(—St -7 for s=Xtando >7. T,

—l:0>=7 r:7asinitial call foreach — r € R;

— s > tis a shorthand fog >  for all u € t;

— > is the reflexive closure of.

We can now introduce the definition of CPO.



3.3 Ordering definition

Definition 1. s : o =Xt : 7 iff either:

1. s = f(s) with f € F and either of
@teX
(b) t = g(t) with f = g € F, s =Xt ands(>r, )stat,
() t=gE)withf >rge FU{Q}ands =Xt
(d) t = Ny : Bw ands =X w{y — 2} for 2 : 3 fresh
(e) u =, tfor someu € 5
2. s = Q(u,v) and either of
(@teX
(b) t = @Q(u',v") and{u, v} (=75 Jmuit', v}
(€) t =Xy : Bwands =¥ w{y +— 2} for 2 : 3 fresh
(d) uéétorvtét
() u=\:awandw{zr — v} =¥t
3. s = Az : .u and either of
@teX
(b) t = \y : Bow, o = fandu{z+— 2} =X w{yr z} for z: 3 fresh
(€)t=M\y: B.w, a#r, Bands =~ w{y > 2} for z : 3 fresh
(d) u{z — 2z} =7, tfor z : o fresh
(€) u=Q(v,z), x & Var(v) andv =% ¢

Because function symbols, applications and abstractions do not be-
have exactly the same, we chosed to organize the definition according
to the left-hand side head symbol: a function symbol, an application, or
an abstraction successively. In all three cases, we first take care of the
case where the right-hand side is a bound variable -case naanable-

, then headed by a symbol which is the same as (or equivalent to) the
left-hand side head symbol -casetus, or headed by a symbol which

is strictly smaller in the precedence than the left-hand side head sym-
bol -caseprecedence before to go with the -cassubterm The prece-
dence case breaks into two sub-cases when the left-hand side is a func-
tion symbol, because abstractions, which can be seen as smaller than
other symbols, need renaming of their bound variable when pulled out,
which makes their treatment a little bit different formally from the stan-
dard precedence case. There are two specific caseppticationand
abstraction one for beta-reduction, and one for eta-reduction, which are
both built in the definition.

This new definition schema appeared first in [18] in a slightly dif-
ferent format. It incorporates two major innovations with respect to the
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version of HORPO defined in [40]. The first is that terms can be ordered
without requiring that their types are ordered accordingly. This will be
the case whenever we can conclude that some recursive call is terminat-
ing by using computability arguments rather than an induction on types.
Doing so, the ordering inherits directly much of the expressivity of the
computability closure schema used in [40]. The second is the annotation
of the ordering by the set of variables that were originally bound in
the right-hand side term, but have become free when taking some sub-
term. This allows rules 1d, 2c and 3c to pull out abstractions from the
right-hand side regardless of the left-hand side term, meaning that ab-
stractions are smallest in the precedence. Among the innovations with
respect to [18] are rules 3c, which compares abstractions whose bound
variables have non-equivalent types, and rule 2d, whose formulation is
now stronger.

This definition suffers some subtle limitations:

1. Case 1d uses recursively the comparison“{=} w{y s 2} for z
fresh, implying that the occurrencesoin w can be later taken care
of by Case 1a, 2a or 3a. This is no limitation.
Cases 2c and 3c use instead the recursive comparisdnu{y— z},
with z fresh, hence ¢ X. As a consequence, these recursive calls
cannot succeed i € Var(w). We could have added this redundant
condition for sake of clarity. We prefered to privilege uniformity and
locality of tests.
As a consequence, Cases 1d, 2c and 3c cannot be packed together as
it was unfortunately done in [18], where correct proofs were however
given which did of course not correspond to the given definition.

2. The subterm case 1e uses recursively the compauisof ¢ instead
of the expected comparism% t.
On the other hand, the other subterm definitions, Cases 2d and 3d
use the expected comparismn&%fS torv 55% t in the first case, and
u{z — z} =7 tin the second. This implies again that the various
subterm cases cannot be packed together.

3. Case 1b uses recursively the comparisbnfs)smtfi instead of the
stronger comparison( =% )sat, 1.

All our restrictions are justified by their use in the well-foundedness
proof of -,_. There is an even better argument: the ordering would not be
well-founded otherwise, as can be shown by means of counter-examples.
We give two below.



We start with an example of non-termination obtained when replacing
the recursive calb(>-7, ) sttt DY §(>‘%('S)statf% in Case 1b.

Example 1.Leta be atype, andf : a x a — a,g : (a — a) — a}
be the signature. Let us consider the following non-terminating rule (its
right-hand side beta-reduces to its left-hand side in one beta-step):

flo.f (2, 2)), g\ f(x, x))) — Qe f(x, x), g(Ae. f (2, 2)))

Let us assume that > g and thatf has a multiset status. We now
show that the ordering modified as suggested above succeeds with the
goal

1. flg(e.f(z,2)), g(Mo. f (2, 2))) =7y Q. f (2, 2), g( M. f (2, @))).

Since type checks are trivial, we will omit them, although the reader
will note that there are very few of them indeed. Our goal yields two
sub-goals by Case 1c:

2. flg(Me.f(x, ), g(Me.f(x,2))) = M. f (2, z) and
3. flga.fz,x)), g\ f(x,x))) = g( Mo f (2, 2)).

Sub-goal 2 yields by Case 1d

4. flg(Ae.f(x, x))
5. flg(he.f(x, )

6. {g(\.f(z,x)),9
twice.

g\ f(z, 7)) =1# f(z, z) which yields by Case 1b
g()\x f(z,7))) ={* 2 twice, solved by Case 1a and
(M. f(z, x))}(>%}){z, z} solved by Case 1a applied

We are left with sub-goal 3 which yields by Case 1c

7. flg\.f(z,2)), g(\e. f(z,x))) = Me. f(x, ), which happens to be
the already solved sub-goal 2, and we are done.

With the definition we gave, sub-goal 6 becomes:
{9 f(z,2)), g(Me. f (2, 2)) } (- 75 )mul 2, 2} @nd does not succeed since
the set of previously bound variables has been made empty.

The reader can check that chosing the precedencer f yields
exactly the same result in both cases. O

Next is an example of non-termination due to Cynthia Kop and Femke
van Raamsdong [50], obtained when replacing the recursive gallw{y —
2} by s =X = w{y s 2} in Case 2c.
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Example 2.Leto be atype, andf : 0 — 0,A:0,B: 0 — 0 — o} be
the signature. Let us consider the following non-terminating set of rules:

Q(@(B, A), A) — @Az : 0.f(2), A) (1)
f(A) = @(Q(B, A), 4) (2)

since
Q(Q(B,A),A) T@()‘Z c0.f(2),A) Tf(A) ?@(@(B,A),A)

Let us assume that >~ f >~ B and consider the goals:

1. Q@Q(B,A),A) :0=7,Q(A\z:0.f(2),A) : 0,and
2. f(A):0=,,@(Q(B,A),A):o.

Goal 1 yields two sub-goals by Case 2b:

3. A: o=y A: o, which succeeds trivially, and

4.Q(B,A):0— o=1, Az :0.f(2) : 0 — owhich yields by modified
Case 2c:

5. @Q(B, A) =1} f(z), which yields in turn by Case 2d

6. A:0 >§—Z} f(2) : owhich yields by Case 1c

7.A:0 >§§} z : o which succeeds by Case la.

Note that we have useB for its large type, and! for eliminating
f(2), exploiting a kind of divide and conquer ability of the ordering. We
are left with goal 2 which yields two subgoals by Case 1d

8. f(A) = A which succeeds by Case 1le, and
9. f(A) > Q(B, A), which yields by Case 1c:
10. f(A) >~ A, which succeeds by Case 1e, and
11. f(A) = B, which succeeds by Case 1c, therefore ending the compu-

tation. O

More examples justifying our claim that the quest has come to en end
are given in the full version of this paper.

We give now an example of use of the computability path ordering
with the inductive type of Brouwer’s ordinals, whose construciot
takes an infinite sequence of ordinals to build a new, limit ordinal, hence
admits a functional argument of type IN- O, in which O occurs posi-
tively. As a consequence, the recursor admits a more complex structure
than that of natural numbers, with an explicit abstraction in the right-hand
side of the rule fotim. The strong normalization proof of such recursors
is known to be hard.
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Example 3.Brouwer’s ordinals.

0:0 S:0—0 lim:(N—O)— O
rec:Oxax(0O—a—a)x((N—-0)—(N—-a)—a) >«
The rules defining the recursor on Brouwer’s ordinals are:

rec(0,U, X, W) — U
rec(S(n), U, X,W) — Q(X,n,rec(n,U, X, W))
rec(lim(F),U, X, W) — Q(W, F, \n.rec(Q(F,n), U, X,W))
Let us try to prove that the third rule is ia, .

=

s = rec(lim(F), U, X, W) =, Q(W, F, \n.rec(Q(F,n),U, X, W))
yields 4 sub-goals according to Case 1c:

. a >7, a which is trivially satisfied, and

. s ={W, F, \n.rec(Q(F,n),U, X, W)} which simplifies to:

. s> W which succeeds by Case le,

. s = F, which generates by Case le the compari§en(F) -, I’
which fails sincdim(F") has a type which is strictly smaller than the
type of F.

. s> An.rec(Q(F,n), U, X, W) which yields by Case 1d

. s ="t rec(@(F,n), U, X, W) which yields by Case 1b

Alim(F), U, X, W} (=1 ) mu{Q(F,n), U, X, W}, which reduces to

lim(F) =7, @Q(F,n), whose type comparison succeeds, yielding by
Case 1c

10. lim(F") = F which succeeds by Case 1e, and

11. lim(F) > n which fails because track of has been lost!

abhwiN

O 0o~NO

Solving this example requires therefore: first, to access directly the
subtermF of s in order to avoid the type comparison fiarm (F') and F’
when checking recursively whether the comparisen\n.rec(Q(F,n),

U, X, W) holds; and second, to keep trackroivhen comparingim (F')
andn.

3.4 Accessibility

While keeping the same type structure, we make use here of a fourth
ingredient, theccessibilityrelationship for data types introduced in [11].
This will allow us to solve Brouwer’s example, as well as other examples
of non-simple inductive types.

We say that a data type smpleis it is a type constant. We restrict
here our definition of accessibility to simple data types. To this end, we
assume that all type constructors are constants, that is, have arity zero.
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We can actually do a little bit more, assuming that simple data types are
not greater or equal (it>7,) to non-constant data types, allowing the
simple data types to live in a separate world.

The sets opositive and negative positiomsa typeo are inductively
defined as follows:

— Pos*t (o) = {e} if o is a simple data type
— Pos™ (o) = () if o is a simple data type
— Pos’(c — 1) =1-Pos™ (o) U2 Pos’(r)
whereo € {+, -}, —+ = — and—— = + (usual rules of signs)

Then we say that a simple data typeccurs (only)positivelyin a type
7 if it occurs only at positive positions?os(o,7) C Pos™(7), where
Pos(o, 1) is the set of positions of the occurrencesrah .

The setAcc( f) of accessible argument positionfa function symbol
f:o1...0, — o, Whereo is a simple data type, is the set of integers
i€ {l,...,n} such that:

— no simple data type greater tharoccurs ino;,
— simple data types equivalent4coccurs only positively in;.

Then a termy is accessiblen a termo, writtenv >,..u, iff v is a pre-
algebraic termf(s) and there exists € Acc(f) such that eithet = s;
or u is accessible in; (.. IS transitive).

A termu is accessible in a sequence of termiff it is accessible in
somev € 7, in which case we writer,..u. Note that the terms accessible
in a termo are strict subterms af.

We can now obtain a more elaborated ordering as follows:

Definition 2. s : o =Xt : 7 iff either:

1. s = f(35) with f € F and either of
@teX
(b) t = g(t) with f = g € F, s =Xt ands(>,, U =255 ) stat,
() t=g{)withf >rge FUu{Q}ands=*1
(d) t = Ny : B.w ands =X w{y — 2} for 2 : 3 fresh
(€) u=p, t for someu € 5
(f) u =1, t for someu such thats > u
2. s = Q(u,v) and either of
@teX
(b) t = @Q(u',v") and{u, v} (=75 Jmuit', v}
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(€)t= Xy : Bwands =X w{y+— z} for z : 3 fresh
(d) uiétorvt){st
() u=\r:awandw{r — v} =¥t
3. s = Az : a.u and either of
@teX
(b) t =Xy : Bw, a =1, Bandu{z— z} =~ w{y— 2} for z: 3 fresh
(€) t =My : B.w,a#r, Bands =~ w{y — 2z} for z : 3 fresh
(d) u{x — 2z} =7 tfor z : o fresh
(€) u=Q(v,z), x & Var(v) andv =X ¢
whereu : o =5t : 7iff o >7, 7,6 = Q(v, W), U Duev @ands =X w.

acc

The only differences with the previous definition are in Case 1b of
the main definition which uses an additional ordering}® based on the
accessibility relationship;... to compare subterms headed by equivalent
function symbols, and in Case 1f which uses the same relationghip
to reach deep subterms that could not be reached otherwise. Following
up a previous discussion, notice that we have kept the same formulation
in Cases 2c and 3c, rather than use the easier congitowar(w).

We could of course strengthen’; by giving additional cases, for
handling abstractions and function symbols on the right [11, 15]. We
could also think of improving Case 1e by replacig..u by the stronger
conditions =;* u. We have not tried these improvements yet.

We now revisit Brouwer’s example, whose strong normalization proof
is checked automatically by this new version of the ordering:

Example 4.Brouwer’s ordinals.
We skip goals 2,3,4 which do not differ from the previous attempt.

1. s = rec(lim(F),U, X, W) =, Q(W, F, A\n.rec(Q(F,n), U, X,W))
yields 4 sub-goals according to Case 1c:
. s> F, which succeeds now by Case 1f,
. s> An.rec(Q(F,n), U, X, W) which yields by Case 1d
. s =1 rec(@(F,n),U, X, W) which yields goals 8 and 12 by Case 1b
Alim(F), U, X, W} (-7, U=, {Q(F,n),U, X, W}, which re-
duces to
. lim(F) ="} @Q(F, n) which succeeds singe =7, O, F is accessi-
ble inlim(F) ands ={"} n by case Case 1a. Our remaining goal
10. s ={"H@(Fn), U, X, W}
decomposes into three goals trivially solved by Case 1le, that is
11. s ={"H{U, X, W}, and one additional goal

00 N O O

©
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12. s ="} @Q(F,n) which yields two goals by Case 1c
13. s ="} F', which succeeds by Case 1f, and
14. s ="} n which succeeds by Case 1a, thus ending the computation.

4 Conclusion

An implementation of CPO with examples is available from the web page
of the third author.

There is still a couple of possible improvements that deserve to be
explored thoroughly: change -if possible at all- the recursive calls of
Cases le, 2c and 3c of the definition of CPO as discussed in Section 3;
orderingF U {@} arbitrarily -this would be useful for some examples,
e.g., some versions of Jay’s pattern calculus [33]; increasing the set of
accessible terms; and improve the definition of the accessibility ordering
=X ., possibly by making it recursive.

A more challenging problem to be investigated then is the generaliza-
tion of this new definition to the calculus of constructions along the lines
of [51] and the suggestions made in [40], where an RPO-like ordering on
types was proposed which allowed to give a single definition for terms
and types. Starting this work with definition 1 is of course desirable.

Finally, it appears that the recursive path ordering and the computabil-
ity closure are kind of dual of each other: the definitions are quite similar,
the closure constructing a set of terms while the ordering deconstructs
terms to be compared, the basic case being the same: bound variables
and various kinds of subterms. Besides, the properties to be satisfied by
the type ordering, which were infered from the proof of the computability
predicates, almost characterize a recursive path ordering on the first-order
type structure. An intriguing, challenging question is therefore to under-
stand the precise relationship between computability predicates and path
orderings.

Acknowledgements:the second author wishes to point out the cru-
cial participation of Mitsuhiro Okada to the very beginning of this quest,
and to thank Makoto Tatsuta for inviting him in december 2007 at the
National Institute for Informatics in Tokyo, whose support provided him
with the ressources, peace and impetus to conclude this quest with his
coauthors. We are also in debt with Cynthia Kop and Femke van Raams-
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