
Proving Non-termination Using Max-SMT?

Daniel Larraz1, Kaustubh Nimkar2, Albert Oliveras1,
Enric Rodrı́guez-Carbonell1, and Albert Rubio1

1 Universitat Politècnica de Catalunya, Barcelona
2 University College London

Abstract. We show how Max-SMT-based invariant generation can be exploited
for proving non-termination of programs. The construction of the proof of non-
termination is guided by the generation of quasi-invariants – properties such that
if they hold at a location during execution once, then they will continue to hold
at that location from then onwards. The check that quasi-invariants can indeed
be reached is then performed separately. Our technique considers strongly con-
nected subgraphs of a program’s control flow graph for analysis and thus pro-
duces more generic witnesses of non-termination than existing methods. More-
over, it can handle programs with unbounded non-determinism and is more likely
to converge than previous approaches.

1 Introduction

While the problem of proving program termination has now been extensively studied
[1–22], relatively less work has been done on proving non-termination of programs.

In this paper we present a new method for proving non-termination of sequential
non-deterministic programs that leverages Max-SMT-based invariant generation [23,
24]. Our method analyses each Strongly Connected SubGraph (SCSG) of a program’s
control flow graph and, by means of Max-SMT solving, tries to find a formula at every
node of the SCSG that satisfies certain properties. First, the formula has to be a quasi-
invariant, i.e, it must satisfy the consecution condition of inductive invariants, but not
necessarily the initiation condition. Hence, if it holds at the node during execution once,
then it continues to hold from then onwards. Second, the formula has to be edge-closing,
meaning that it forbids taking any of the outgoing edges from that node that exit the
SCSG. Now, once we have computed an edge-closing quasi-invariant for every node of
the SCSG, if a state is reached that satisfies one of them, then program execution will
remain within the SCSG from then onwards. The existence of such a state is tested with
an off-the-shelf reachability checker. If it succeeds, we have proved non-termination of
the original program, and the edge-closing quasi-invariants of the SCSG and the trace
given by the reachability checker form the witness of non-termination.

Our approach differs from previous methods in two major ways. First, edge-closing
quasi-invariants are more generic properties than non-termination witnesses produced
by other provers, and thus are likely to carry more information and be more useful in
bug finding. Second, our non-termination witnesses include SCSGs, which are larger
structures than, e.g., lassos. Note that the number of SCSGs present in any CFG is
finite, while the number of lassos is infinite. Because of these differences, our method
is more likely to converge. Moreover, lasso-based methods can only handle periodic
non-termination, while our approach can deal with aperiodic non-termination too.
? Partially supported by Spanish MEC/MICINN under grant TIN 2010-21062-C02-01.

`0: int i, j;
j := -1;

`1: while (i > 0 && j != 0)
i := i + j;
j := j + 2;

`2:

`0

`1 `2

τ1

τ2

τ3

τ5

τ4

Rτ1 : j′ = −1

Rτ2 : i ≥ 1 ∧ j ≤ −1 ∧
i′ = i + j ∧ j′ = j + 2

Rτ3 : i ≥ 1 ∧ j ≥ 1 ∧
i′ = i + j ∧ j′ = j + 2

Rτ4 : i ≤ 0 ∧ i′ = i ∧ j′ = j

Rτ5 : i ≥ 1 ∧ j = 0 ∧ i′ = i ∧ j′ = j

(a) (b)

`1τ2

τ3

τ4

τ5
`1τ2

τ4

τ5τ3

SCSG-1 SCSG-2

`1

τ3

τ4

τ5

τ2

SCSG-3

For SCSG-3 :

Iteration 1 :
Solution for M`1 : j ≥ 1
Disabled transitions : τ2, τ5

Quasi-invariant Q`1 : j ≥ 1

Iteration 2 :
Solution for M`1 : i ≥ 1
Disabled transitions : τ4

Quasi-invariant Q`1 : j ≥ 1 ∧ i ≥ 1

Reachable path : `0 → `1 → `1

(c) (d)

Fig. 1. Example program (a) together with its corresponding CFG (b), non-trivial SCSGs (c) and
non-termination analysis (d)

Our technique is based on constraint solving for invariant generation [25] and is
goal-directed. Before discussing it formally, we describe it with a simple example.
Consider the program in Fig. 1(a). The CFG for this program is shown in Fig. 1(b).
The edges of the CFG represent the transitions between the locations. For every tran-
sition τ, we denote the formula of its transition relation by Rτ(i, j, i′, j′). The unprimed
variables represent the values of the variables before the transition, and the primed ones
represent the values after the transition. By Rτ(i, j) we denote the conditional part of τ,

2

which only involves the pre-variables. Fig. 1(c) shows all non-trivial (i.e. with at least
one edge) SCSGs present in the CFG. For every SCSG, the dashed edges are those that
exit the SCSG and hence are not part of it. Note that SCSG-1 is a maximal strongly
connected subgraph, and thus is a strongly connected component of the CFG. Notice
also that τ3 is an additional exit edge for SCSG-2, and similarly τ2 is an exit edge for
SCSG-3. The non-termination of this example comes from SCSG-3.

Our approach considers every SCSG of the graph one by one. In every iteration of
our method, we try to find a formula at every node of the SCSG under consideration.
This formula is originally represented as a template with unknown coefficients. We
then form a system of constraints involving the template coefficients in the Max-SMT
framework. In a Max-SMT problem, some of the constraints are hard, meaning that any
solution to the system of constraints must satisfy them, and others are soft, which may
or may not be satisfied. Soft constraints carry a weight, and the goal of the Max-SMT
solver is to find a solution for the hard constraints such that the sum of the weights for
the soft constraints violated by the solution is minimized. In our method, essentially
the hard constraints encode that the formula should obey the consecution condition,
and every soft constraint encodes that the formula will disable an exit edge. A solution
to this system of constraints assigns values to template coefficients, thus giving us the
required formula at every node.

Consider the analysis of SCSG-3 (refer to Fig. 1(d)). Note that there is a single
node `1 and a single transition τ3 in SCSG-3. We denote by E = {τ2, τ4, τ5} the set of
exit edges for SCSG-3. By Q`1 (i, j) we denote the quasi-invariant at node `1. Initially
Q`1 (i, j) , true. In the first iteration, for node `1 we assign a template M`1 (i, j) : a.i +

b.j ≤ c.
We then form the Max-SMT problem consisting of the following system of hard

and soft constraints:
(Consecution) ∀ i, j, i′, j′. M`1 (i, j) ∧ Q`1 (i, j) ∧ Rτ3 (i, j, i′, j′)→ M`1 (i′, j′)

(Edge-Closing) For all τ ∈ E: ∀ i, j. M`1 (i, j) ∧ Q`1 (i, j)→ ¬Rτ(i, j)

The consecution constraint is hard, while the edge-closing constraints are soft (with
weight, say, 1). The edge-closing constraint for τ ∈ E encodes that, from any state
satisfying M`1 (i, j) ∧ Q`1 (i, j), the transition τ is disabled and cannot be executed.

In the first iteration, a solution for M`1 gives us the formula j ≥ 1. This formula
satisfies the edge-closing constraints for τ2 and τ5. We conjoin this formula to Q`1 ,
updating it to Q`1 (i, j) , j ≥ 1. We also update E = {τ4} by removing τ2 and τ5, as these
edges are now disabled.

In the second iteration, we again consider the same template M`1 (i, j) and try to solve
the Max-SMT problem above with updated Q`1 (i, j) and E. This time we get a solution
that gives us the formula i ≥ 1, which satisfies the edge-closing constraint for τ4. We
again update Q`1 (i, j) , j ≥ 1 ∧ i ≥ 1 by conjoining the new formula. We update E = ∅

by removing the disabled edge τ4. Now all exit edges have been disabled, and thus the
quasi-invariant Q`1 (i, j) is edge-closing.

In the final step of our method, we use a reachability checker to determine if any
state satisfying Q`1 (i, j) at location `1 is reachable. This test succeeds, and a path `0 →

`1 → `1 is obtained. Notice that the path goes through the loop once before we reach the
required state. At this point, we have proved non-termination of the original program.

3

2 Preliminaries

2.1 SMT and Max-SMT

Let P be a finite set of propositional variables. If p ∈ P, then p and ¬p are literals.
The negation of a literal l, written ¬l, denotes ¬p if l is p, and p if l is ¬p. A clause
is a disjunction of literals. A propositional formula is a conjunction of clauses. The
problem of propositional satisfiability (abbreviated as SAT) consists in, given a formula,
determining whether or not it is satisfiable, i.e., if it has a model: an assignment of
Boolean values to variables that satisfies the formula.

An extension of SAT is the satisfiability modulo theories (SMT) problem [26]: to
decide the satisfiability of a given quantifier-free first-order formula with respect to a
background theory. In this setting, a model (which we may also refer to as a solution)
is an assignment of values from the theory to variables that satisfies the formula. Here
we will consider the theories of linear real/integer arithmetic (LRA/LIA), where literals
are linear inequalities over real and integer variables respectively, and the more general
theories of non-linear real/integer arithmetic (NRA/NIA), where literals are polynomial
inequalities over real and integer variables, respectively.

Another generalization of SAT is the Max-SAT problem [26]: it consists in, given a
weighted formula where each clause has a weight (a positive number or infinity), finding
the assignment such that the cost, i.e., the sum of the weights of the falsified clauses, is
minimized. Clauses with infinite weight are called hard, while the rest are called soft.
Equivalently, the problem can be seen as finding the model of the hard clauses such that
the sum of the weights of the falsified soft clauses is minimized.

Finally, the problem of Max-SMT[27] merges Max-SAT and SMT, and is defined
from SMT analogously to how Max-SAT is derived from SAT. Namely, the Max-SMT
problem consists in, given a weighted formula, to find an assignment that minimizes the
sum of the weights of the falsified clauses in the background theory.

2.2 Transition Systems

Our technique is applicable to sequential non-deterministic programs with integer vari-
ables and commands whose transition relations can be expressed in linear (integer)
arithmetic. By v we represent the tuple of program variables. For the sake of presen-
tation, we assume that the non-determinism of programs can come only from non-
deterministic assignments of the form i := nondet(), where i ∈ v is a program vari-
able. Note that, however, this assumption still allows one to encode other kinds of non-
determinism. For instance, any non-deterministic branching of the form if(∗){} else{}
can be cast into this framework by introducing a new program variable k ∈ v and
rewriting into the form k := nondet(); if(k ≥ 0){} else{}.

We model programs with transition systems. A transition system S = (v, u,L, Θ,T)
consists of a tuple of program variables v, a tuple of non-deterministic variables u, a set
of locations L, a map Θ from locations to formulas characterizing the initial values of
the variables, and a set of transitionsT . Each transition τ ∈ T is a triple (`, `′,R), where
`, `′ ∈ L are the pre and post locations respectively, and R is the transition relation:
a formula over the non-deterministic variables u, the program variables v and their

4

primed versions v′, which represent the values of the variables after the transition. The
transition relation of a non-deterministic assignment of the form i := nondet(), where
i ∈ v, is represented by the formula i′ = u1, where u1 ∈ u is a fresh non-deterministic
variable. Note that u1 is not a program variable, i.e., u1 < v, and is added only to
model the non-deterministic assignment. Thus, without loss of generality on the kind of
non-deterministic programs we can model, we will assume that every non-deterministic
variable appears in at most one transition relation. A transition that includes a non-
deterministic variable in its transition relation is called non-deterministic (abbreviated
as nondet).

In what follows we will assume that transition relations are described as conjunc-
tions of linear inequalities over program variables and non-deterministic variables. Given
a transition relation R = R(v, u, v′), we will use R(v) to denote the conditional part of
R, i.e., the conjunction of linear inequalities in R containing only variables in v. For a
transition system modeling real programs, the following conditions are true:

For τ = (`, `′,R) ∈ T : ∀v, u∃v′. R(v)→ R(v, u, v′). (1)

For ` ∈ L :
∨

(`,`′,R)

R(v) , true. (2)

For τ1 = (`, `1,R1), τ2 = (`, `2,R2) ∈ T , τ1 , τ2 : R1(v) ∧ R2(v) , false. (3)

Condition (1) guarantees that next values for the program variables always exist if the
conditional part of the transition holds. Condition (2) expresses that, for any location, at
least one of the outgoing transitions from that location can always be executed. Finally,
condition (3) says that any two different transitions from the same location are mutually
exclusive, i.e., conditional branching is always deterministic.

Example 1. Let us consider the program shown in Figure 2. Note how the two non-
deterministic assignments have been replaced in the CFG by assignments to fresh non-
deterministic variables u1 and u2. Condition (2) is trivially satisfied for `0 and `2, since
the conditional part of their outgoing transition relations is empty. Regarding `1, clearly
the formula x ≥ y ∨ x < y is a tautology. Condition (3) is also easy to check: the
conditional parts of Rτ2 ,Rτ3 and Rτ4 are pairwise unsatisfiable. Finally, condition (1)
trivially holds since the primed parts of the transition relations consist of equalities
whose left-hand side is always a different variable. ut

A state is an assignment of a value to each of the variables in v and u. A config-
uration is a pair (`, σ) consisting of a location ` ∈ L and a state σ. For any pair of
configurations (`, σ) and (`′, σ′), if there is a transition τ = (`, `′,R) ∈ T such that
(σ,σ′) |= R, we write (`, σ)

τ
→ (`′, σ′). A computation is a sequence of configurations

(`0, σ0), (`1, σ1), ... such that σ0 |= Θ(`0), and for each pair of consecutive configu-
rations there exists τi ∈ T satisfying (`i, σi)

τi
→ (`i+1, σi+1). A configuration (`, σ) is

reachable if there exists a computation ending at (`, σ). A transition system is termi-
nating if all its computations are finite, and non-terminating otherwise. The goal of this
paper is, given a transition system, to prove that it is non-terminating.

5

`0: int x, y;
`1: while (x ≥ y)

if (x ≥ 0)
x := nondet();
y := y + 1;

else

y := nondet();
`2:

`0 `1 `2
τ1

τ2

τ3

τ4

Rτ1 : x′=x ∧ y′=y

Rτ2 : x ≥ y ∧ x ≥ 0 ∧
x′=u1 ∧ y′=y + 1

Rτ3 : x ≥ y ∧ x < 0 ∧
x′=x ∧ y′=u2

Rτ4 : x < y ∧ x′=x ∧
y′=y

Fig. 2. Program involving non-deterministic assignments, together with its CFG

3 Quasi-invariants and Non-termination

Here we will introduce the core concept of this work, that of a quasi-invariant: a prop-
erty such that, if it is satisfied at a location during execution once, then it continues to
hold at that location from then onwards. The importance of this notion resides in the
fact that it is a key ingredient in our witnesses of non-termination: if each location of an
SCSG can be mapped to a quasi-invariant that is edge-closing, i.e., that forbids execut-
ing any of the outgoing transitions that leave the SCSG, and the SCSG can be reached
at a configuration satisfying the corresponding quasi-invariant, then the program is non-
terminating (if nondet transitions are present, additional properties are required, as will
be seen below). A constructive proof of this claim is given at the end of this section.

First of all, let us define basic notation. For a strongly connected subgraph (SCSG)
C of a program’s CFG, we denote by LC the set of locations of C, and by T C the set of

edges of C. We define EC
def
= {τ = (`, `′,R) | ` ∈ LC, τ < T C} to be the set of exit edges

of C.
Consider a map Q that assigns a formula Q`(v) to each of the locations ` ∈ LC.

Consider also a mapU that assigns a formula Uτ(v, u) to each transition τ ∈ T C, which
represents the restriction that the non-deterministic variables must obey.3 The map Q is
a quasi-invariant map on C with restrictionU if:

(Consecution)

For τ = (`, `′,R) ∈ T C : ∀v, u, v′. Q`(v) ∧ R(v, u, v′) ∧ Uτ(v, u)→ Q`′ (v
′) (4)

Condition (4) says that, whenever a state at ` ∈ LC satisfying Q` is reached and a
transition from ` to `′ can be executed, then the resulting state satisfies Q`′ . This condi-
tion corresponds to the consecution condition for inductive invariants. Since inductive
invariants are additionally required to satisfy initiation conditions [25], we refer to prop-
erties satisfying condition (4) as quasi-invariants, hence the name for Q.

3 For the sake of presentation, we assume that Uτ is defined for all transitions, whether they are
deterministic or not. In the former case, by convention Uτ is true.

6

Example 2. In order to explain the roles of Q andU, consider the program in Figure 2.
It is easy to see that if x ≥ y were a quasi-invariant at `1, the program would be non-
terminating (provided `1 is reachable with a state such that x ≥ y). However, due to the
non-deterministic assignments, the property is not a quasi-invariant. On the other hand,
if we add the restrictions Uτ2 := u1 ≥ x + 1 and Uτ3 := u2 ≤ y, which constrain the non-
deterministic choices in the assignments, the quasi-invariant holds and non-termination
is proved. ut

Additionally, our method also needs that Q andU are reachable and unblocking:

(Reachability) ∃ ` ∈ LC. ∃ σ s.t. (`, σ) is reachable and σ |= Q`(v) (5)

(Unblocking) For τ = (`, `′,R) ∈ T C : ∀v∃u. Q`(v) ∧ R(v)→ Uτ(v, u) (6)

Condition (5) says that there exists a computation reaching a configuration (`, σ)
such that σ satisfies the quasi-invariant at location `.

As for condition (6), consider a state σ at some ` ∈ LC satisfying Q`(v). This condi-
tion says that, for any transition τ = (`, `′,R) ∈ T C from `, if σ satisfies the conditional
part R(v), then we can always make a choice for the non-deterministic assignment that
obeys the restriction Uτ(v, u).

The last property we require from quasi-invariants is that they are edge-closing. For-
mally, the quasi-invariant map Q on C is edge-closing if it satisfies all of the following
constraints:

(Edge-Closing) For τ = (`, `′,R) ∈ EC : ∀v. Q`(v)→ ¬R(v) (7)

Condition (7) says that, from any state at ` ∈ LC that satisfies Q`(v), all the exit transi-
tions are disabled and cannot be executed.

The following is the main result of this section:

Theorem 1. Q, U that satisfy (4), (5), (6) and (7) for a certain SCSG C of a CFG P
imply non-termination of P.

In order to prove Theorem 1, we need the following lemma:

Lemma 1. Let us assume that Q, U satisfy (4), (6) and (7) for a certain SCSG C.
Let (`, σ) be a configuration such that ` ∈ LC and σ |= Q`(v). Then there exists a
configuration (`′, σ′) such that `′ ∈ LC, σ′ |= Q`′ (v) and (`, σ)

τ
→ (`′, σ′) for a certain

τ ∈ T C.

Proof. By condition (2) (which is implicitly assumed to hold), there is a transition τ of
the form (`, `′,R) for a certain `′ ∈ L such that σ |= R(v). Now, by virtue of condition
(7), since σ |= Q`(v) we have that τ ∈ T C. Thus, `′ ∈ LC. Moreover, thanks to condition
(6) and σ |= Q`(v) and σ |= R(v), we deduce that there exist values ν for the non-
deterministic variables u such that (σ, ν) |= Uτ(v, u). Further, by condition (1) (which
is again implicitly assumed), we have that there exists a state σ′ such that (σ, ν, σ′) |=
R(v, u, v′). All in all, by condition (4) and the fact that σ |= Q`(v) and (σ, ν, σ′) |=
R(v, u, v′) and (σ, ν) |= Uτ(v, u), we get that σ′ |= Q`′ (v

′), or equivalently by renaming
variables, σ′ |= Q`′ (v). So (`′, σ′) satisfies the required properties. ut

7

Prove-NT (SCSG C, CFG P)
For ` ∈ LC, set Q`(v)← true
For τ ∈ T C, set Uτ(v, u)← true
EC ← EC

while EC , ∅ do
At ` ∈ LC, assign a template M`(v)
At τ ∈ T C, assign a template N`(v, u)
Solve Max-SMT problem with

hard constraints (8), (9), (10) and soft constraints (11)
if no model for hard clauses is found then return Unknown, ⊥ fi
For ` ∈ LC, let M̂`(v) = Solution for M`(v)
For τ ∈ T C, let N̂τ(v, u) = Solution for Nτ(v, u)
For ` ∈ LC, set Q`(v)← Q`(v) ∧ M̂`(v)
For τ ∈ T C set Uτ(v, u)← Uτ(v, u) ∧ N̂τ(v, u)
Remove from EC disabled edges

done
for all ` ∈ LC do

if Reachable (`, σ) in P s.t. σ |= Q`(v) then
let π = reachable path to (`, σ)
return Non-Terminating, (Q,U, π)

fi
done
return Unknown, ⊥

Fig. 3. Procedure Prove-NT for proving non-termination of a program P by analyzing SCSG C

Now we are ready to prove Theorem 1:

Proof (of Theorem 1). We will construct an infinite computation, which will serve as a
witness of non-termination. Thanks to condition (5), we know that there exist a location
` ∈ LC and a state σ such that (`, σ) is reachable and σ |= Q`(v). As (`, σ) is reachable,
there is a computation π whose last configuration is (`, σ). Now, since Q,U satisfy (4),
(6) and (7) for C, and ` ∈ LC and σ |= Q`(v), we can apply Lemma 1 to inductively
extend π to an infinite computation of P. ut

4 Computing Proofs of Non-termination

In this section we explain how proofs of non-termination are effectively computed. As
outlined in Section 1, first of all we exhaustively enumerate the SCSGs of the CFG.
For each SCSG C, our non-termination proving procedure Prove-NT, which will be
described below, is called. By means of Max-SMT solving, this procedure iteratively
computes an unblocking quasi-invariant map Q and a restriction map U for C. If the
construction is successful and eventually edge-closedness can be achieved, and more-
over the quasi-invariants of C can be reached, then the synthesized Q, U satisfy the
properties of Theorem 1, and therefore the program is guaranteed not to terminate.

8

In a nutshell, the enumeration of SCSGs considers a strongly connected component
(SCC) of the CFG at a time, and then generates all the SCSGs included in that SCC.
More precisely, first of all the SCCs are considered according to a topological ordering
in the CFG. Then, once an SCC S is fixed, the SCSGs included in S are heuristically
enumerated starting from S itself (since taking a strictly smaller subgraph would imply
discarding some transitions a priori arbitrarily), then simple cycles in S (as they are
easier to deal with), and then the rest of SCSGs included in S.

Then, once the SCSG C is fixed, our non-termination proving procedure Prove-NT
(Fig. 3) is called. The procedure takes as input an SCSG C of the program’s CFG,
and the CFG itself. For every location ` ∈ LC, we initially assign a quasi-invariant
Q`(v) , true. Similarly, for every transition τ ∈ T C, we initially assign a restriction
Uτ(v, u) , true. The set EC keeps track of the exit edges of C that have not been
discarded yet, and hence at the beginning we have EC = EC. Then we iterate in a loop
in order to strengthen the quasi-invariants and restrictions till EC = ∅, that is, all the exit
edges of C are disabled.

In every iteration we assign a template M`(v) ≡ m`,0 +
∑
3∈v m`,3 · 3 ≤ 0 to each

` ∈ LC. We also assign a template Nτ(v, u) ≡ nτ,0 +
∑
3∈v nτ,3 · 3 +

∑
u∈u nτ,u · u ≤ 0 to

each τ ∈ T C.4 Then we form the Max-SMT problem with the following constraints:5

• For τ = (`, `′,R) ∈ T C :

∀v, u, v′. Q`(v) ∧ M`(v) ∧ R(v, u, v′) ∧ Uτ(v, u) ∧ Nτ(v, u)→ M`′ (v
′) (8)

• For ` ∈ LC : ∃v. Q`(v) ∧ M`(v) ∧
∨

τ=(`,`′,R)∈T C
R(v) (9)

• For τ = (`, `′,R) ∈ T C :
∀v∃u. Q`(v) ∧ M`(v) ∧ R(v)→ Uτ(v, u) ∧ Nτ(v, u) (10)

• For τ = (`, `′,R) ∈ EC : ∀v. Q`(v) ∧ M`(v)→ ¬R(v) (11)

The constraints (8), (9) and (10) are hard, while the constraints (11) are soft.
The Max-SMT solver finds a solution M̂`(v) for every M`(v) for ` ∈ LC and a so-

lution N̂τ(v, u) for every N`(v, u) for τ ∈ T C. The solution satisfies the hard constraints
and as many soft constraints as possible. In other words, it is the best solution for hard
constraints that disables the maximum number of transitions. We then update Q`(v) for
every ` ∈ LC by strengthening it with M̂`(v), and update Uτ(v, u) for every τ ∈ T C

by strengthening it with N̂τ(v, u). We then remove all the disabled transitions from EC

and continue the iterations of the loop with updated Q, U and EC. Note that, even if
none of the exit edges is disabled in an iteration (i.e. no soft constraint is met), the
quasi-invariants found in that iteration may be helpful for disabling exit edges later.

When all exit transitions are disabled, we exit the loop with the unblocking edge-
closing quasi-invariant map Q and the restriction mapU.

Finally, we check whether there exists a reachable configuration (`, σ) such that
` ∈ LC and σ |= Q`(v) with an off-the-shelf reachability checker. If this test succeeds,

4 Actually templates Nτ(v, u) are only introduced for nondet transitions. To simplify the pre-
sentation, we assume that for other transitions, Nτ(v, u) is true.

5 For clarity, leftmost existential quantifiers over the unknowns of the templates are implicit.

9

we report non-termination along with Q,U and the path π reaching (`, σ) as a witness
of non-termination.

The next theorem formally states that Prove-NT proves non-termination:

Theorem 2. If procedure Prove-NT terminates on input SCSG C and CFG P with Non-
Terminating, (Q,U, π), then program P is non-terminating, and (Q,U, π) allow build-
ing an infinite computation of P.

Proof. Let us prove that, if Prove-NT terminates with Non-Terminating, then the con-
ditions of Theorem 1, i.e., conditions (4), (5), (6) and (7) are met.

First of all, let us prove by induction on the number of iterations of the while loop
that conditions (4) and (6) are satisfied, and also that for τ = (`, `′,R) ∈ EC − EC,

∀v. Q`(v)→ ¬R(v).

Before the loop is executed, for all locations ` ∈ LC we have that Q`(v) , true and
for all τ ∈ T C we have that Uτ(v, u) , true. Conditions (4) and (6) are trivially met.
The other remaining condition holds since initially EC = EC.

Now let us see that each iteration of the loop preserves the three conditions. Regard-
ing (4), by induction hypothesis we have that for τ = (`, `′,R) ∈ T C,

∀v, u, v′. Q`(v) ∧ R(v, u, v′) ∧ Uτ(v, u)→ Q`′ (v
′).

Moreover, the solution computed by the Max-SMT solver satisfies constraint (8), i.e.,
has the property that for τ = (`, `′,R) ∈ T C,

∀v, u, v′. Q`(v) ∧ M̂`(v) ∧ R(v, u, v′) ∧ Uτ(v, u) ∧ N̂τ(v, u)→ M̂`′ (v
′).

Altogether, we have that for τ = (`, `′,R) ∈ T C,

∀v, u, v′.(Q`(v) ∧ M̂`(v)) ∧ R(v, u, v′) ∧ (Uτ(v, u) ∧ N̂τ(v, u))→ (Q`′ (v
′) ∧ M̂`′ (v

′)).

Hence condition (4) is preserved.
As for condition (6), the solution computed by the Max-SMT solver satisfies con-

straint (10), i.e., has the property that for τ = (`, `′,R) ∈ T C,

∀v∃u. (Q`(v) ∧ M̂`(v)) ∧ R(v)→ (Uτ(v, u) ∧ N̂τ(v, u)).

Thus, condition (6) is preserved.
Regarding the last property, note that the transitions τ = (`, `′,R) ∈ EC that satisfy

the soft constraints (11), i.e., such that

∀v. (Q`(v) ∧ M̂`(v))→ ¬R(v)

are those removed from EC. Therefore, this preserves the property that for τ = (`, `′,R) ∈
EC − EC,

∀v. Q`(v)→ ¬R(v).

Now, if the while loop terminates, it must be the case that EC = ∅. Thus, on exit of the
loop, condition (7) is fulfilled.

10

Finally, if Non-Terminating is returned, then there is a location ` ∈ LC and a state
satisfying σ |= Q`(v) such that configuration (`, σ) is reachable. That is, condition (5)
is satisfied.

Hence, all conditions of Theorem 1 are fulfilled. Therefore, P does not terminate.
Moreover, the proof of Theorem 1 gives a constructive way of building an infinite com-
putation by means of Q,U and π. ut

Note that constraint (9):

For ` ∈ LC : ∃v. Q`(v) ∧ M`(v) ∧
∨

τ=(`,`′,R)∈T C
R(v)

is not actually used in the proof of Theorem 2, and thus is not needed for the correctness
of the approach. Its purpose is rather to help Prove-NT to avoid getting into dead-
ends unnecessarily. Namely, without (9) it could be the case that for some location
` ∈ LC, we computed a quasi-invariant that forbids all transitions τ ∈ T C from `. Since
Prove-NT only strengthens quasi-invariants and does not backtrack, if this situation
were reached the procedure would probably not succeed in proving non-termination.

Now let us describe how constraints are effectively solved. First of all, constraints
(8), (9), and (11) are universally quantified over integer variables. Following the same
ideas of constraint-based linear invariant generation [25], these constraints are soundly
transformed into an existentially quantified formula in NRA by abstracting program and
non-deterministic variables and considering them as reals, and then applying Farkas’
Lemma [28]. As regards constraint (10), the alternation of quantifiers in

∀v∃u. Q`(v) ∧ M`(v) ∧ R(v)→ Uτ(v, u) ∧ Nτ(v, u)

is dealt with by introducing a template Pu,τ(v) ≡ pu,τ,0 +
∑
3∈v pu,τ,3 · 3 for each u ∈ u and

skolemizing. This yields6 the formula

∀v. Q`(v) ∧ M`(v) ∧ R(v)→ Uτ(v, Pu,τ(v)) ∧ Nτ(v, Pu,τ(v)),

which implies constraint (10), and to which the above transformation into NRA can
be applied. Note that, since the Skolem function is not symbolic but an explicit linear
function of the program variables, potentially one might lose solutions.

Finally, once a weighted formula in NRA containing hard and soft clauses is ob-
tained, (some of the) existentially quantified variables are forced to take integer values,
and the resulting problem is handled by a Max-SMT(NIA) solver [27, 29]. In particu-
lar, the unknowns of the templates Pu,τ(v) introduced for skolemizing non-deterministic
variables are imposed to be integers. Since program variables have integer type, this
guarantees that only integer values are assigned in the non-deterministic assignments of
the infinite computation that proves non-termination.

There are some other issues about our implementation of the procedure that are
worth mentioning. Regarding how the weights of the soft clauses are determined, we
follow a heuristic aimed at discarding “difficult” transitions in EC as soon as possible.
Namely, the edge-closing constraint (11) of transition τ = (`, `′,R) ∈ EC is given a

6 Again, existential quantifiers over template unknowns are implicit.

11

weight which is inversely proportional to the number of literals in R(v). Thus, transi-
tions with few literals in their conditional part are associated with large weights, and
therefore the Max-SMT solver prefers to discard them over others. The rationale is
that for these transitions there may be more states that satisfy the conditional part, and
hence they may be more difficult to rule out. Altogether, it is convenient to get rid of
them before quasi-invariants become too constrained.

Finally, as regards condition (3), our implementation can actually handle transition
systems for which this condition does not hold. This may be interesting in situations
where, e.g., non-determinism is present in conditional statements, and one does not
want to introduce additional variables and locations as was done in Section 2.2 for
presentation purposes. The only implication of overriding condition (3) is that, in this
case, the properties that must be discarded in soft clauses of condition (11) are not
the transitions leaving the SCSG under consideration, but rather the negation of the
transitions staying within the SCSG.

5 Experiments

In this section we evaluate the performance of a prototype implementation of the tech-
niques proposed here in our termination analyzer CppInv, available at www.lsi.upc.
edu/˜albert/cppinv-CAV.tar.gz together with all of the benchmarks. This tool
admits code written in (a subset of) C++ as well as in the language of T2 [20]. The
system analyses programs with integer variables, linear expressions and function calls,
as well as array accesses to some extent. As a reachability checker we use CPA [30].

Altogether, we compare CppInv with the following tools:

– T2 [20] version CAV’13 (henceforth, T2-CAV), which implements an algorithm
that tightly integrates invariant generation and termination analysis [19].

– T2 [20] version TACAS’14 (henceforth, T2-TACAS), which reduces the problem
of proving non-termination to the search of an under-approximation of the program
guided by a safety prover [31].

– Julia [32], which implements a technique described by Payet and Spoto [33] that
reduces non-termination to constraint logic programming.

– AProVE [11] with the Java Bytecode front-end, which uses the SMT-based non-
termination analysis proposed in [34].

– A reimplementation of TNT [35] by the authors of [31] that uses Z3 [36] as an
SMT back-end.

Unfortunately, because of the unavailability of some of the tools (T2-TACAS, T2-CAV,
TNT) or the fact that they do not admit a common input language (Julia, AProVE), it
was not possible to run all these systems on the same benchmarks on the same com-
puter. For this reason, for each of the tables below we consider a different family of
benchmarks taken from the literature and provide the results of executing our tool (on
a 3.40 GHz Intel Core i7 with 16 GB of RAM) together with the data of competing
systems reported in the respective publications. Note that the results of third-party sys-
tems in those publications may have some inaccuracies, due to, e.g., the conversion

12

of benchmarks in different formats. However, in those cases the distances between the
tools seem to be significant enough to draw conclusions on their relative performance.

Table 1 shows comparative results on benchmarks taken from [31]. In that paper,
the tools T2-TACAS, AProVE, Julia and TNT are considered. The time limit is set to
60 seconds both in that work as well as in the executions of CppInv. The benchmarks
are classified according to three categories: (a) all the examples in the benchmark suite
known to be non-terminating previously to [31]; (b) all the examples in the benchmark
suite known to be terminating previously to [31]; and (c) the rest of instances. Rows
of the table correspond to non-termination provers. Columns are associated to each of
these three categories of problems. Each column is split into three subcolumns reporting
the number on “non-terminating” answers, the number of timed outs, and the number
of other answers (which includes “terminating” and “unknown” answers), respectively.
Even with the consideration that experiments were conducted on different machines,
the results in columns (a) and (c) of Table 1 show the power of the proposed approach
on these examples. As for column (b), we found out that instance 430.t2 was wrongly
classified as terminating. Our witness of non-termination has been manually verified.

Table 1. Experiments with benchmarks from [31]

(a) (b) (c)
Nonterm TO Other Nonterm TO Other Nonterm TO Other

CppInv 70 6 5 1 16 237 113 35 9
T2-TACAS 51 0 30 0 45 209 82 3 72

AProVE 0 61 20 0 142 112 0 139 18
Julia 3 8 70 0 40 214 0 91 66
TNT 19 3 59 0 48 206 32 12 113

Table 2 (a), which follows a similar format to Table 1, compares CppInv, T2-CAV
and AProVE on benchmarks from [19] (all with a time limit of 300 seconds). Note that,
in the results reported in [19], due to a wrong abstraction in the presence of division, T2
was giving two wrong non-termination answers (namely, for the instances rlft3.t2
and rlft3.c.i.rlft3.pl.t2.fixed.t2, for which the termination proofs produced
by CppInv[24] have been checked by hand). For this reason we have discarded those
two programs from the benchmark suite. In this case, the performance of our tool is
slightly worse than that of T2-CAV. However, it has to be taken into account that T2-
CAV was exploiting the cooperation between the termination and the non-termination
provers, while we still do not apply this kind of optimizations.

In Table 2 (b), CppInv is compared with the results of Julia and AProVE from
[34] on Java programs coming from [37]. CppInv was run on C++ versions of these
benchmarks, which admitted a direct translation from Java. The time limit was set to
60 seconds. Columns represent respectively the number of terminating instances (YES),
non-terminating instances (NO), instances for which the construction of the proof failed
before the time limit (MAYBE), and timeouts (TO). For these instances AProVE gets
slightly better results than CppInv. However, it should be taken into account that four
programs of this set of benchmarks include non-linear expressions, which we cannot

13

handle. Moreover, when compared on third-party benchmarks (see Tables 1 and 2 (a)),
our results are better.

Finally, Table 2 (c) shows the results of running our tool on programs from the on-
line programming learning environment Jutge.org [38] (see www.jutge.org), which
is currently being used in several programming courses in the Universitat Politècnica
de Catalunya. As a paradigmatic example in which it is easy to write wrong non-
terminating code, we have considered the exercise Binary Search. The programs in this
benchmark suite can be considered challenging since, having been written by students,
their structure is often more complicated than necessary. In this case the time limit was
60 seconds. As can be seen from the results, for a ratio of 89% of the cases, CppInv is
able to provably determine in less than one minute if the program is terminating or not.

Table 2. Experiments with benchmarks from [19] (a), from [37] (b) and from Jutge.org (c)

(a) (b)

Nonterm TO Other
CppInv 167 39 243

T2-CAV 172 14 263
AProVE 0 51 398

YES NO MAYBE TO
CppInv 1 44 9 1

AProVE 1 51 0 3
Julia 1 0 54 0

(c)

YES NO MAYBE TO
Binary search 2745 484 22 391

All in all, the experimental results show that our technique, although it is general
and is not tuned to particular problems, is competitive with the state of the art and
performs reasonably and uniformly well on a wide variety of benchmarks.

6 Related work

Several systems have been developed in recent years for proving non-termination. One
of these is, e.g., the tool TNT [35], which proceeds in two phases. The first phase ex-
haustively generates candidate lassos. The second one checks each lasso for possible
non-termination by seeking a recurrent set of states, i.e., a set of states that is visited in-
finitely often along the infinite path that results from unrolling the lasso. This is carried
out by means of constraint solving, as in our approach. But while there is an infinite
number of lassos in a program, our SCSGs can be finitely enumerated. Further, we can
handle unbounded non-determinism, whereas TNT is limited to deterministic programs.

Other methods for proving non-termination that use an off-the-shelf reachability
checker like our technique have also been proposed [39, 31]. In [39], the reachability
checker is used on instrumented code for inferring weakest preconditions, which give
the most general characterization of the inputs under which the original program is
non-terminating. While in [39] non-determinism can be dealt with in a very restricted
manner, the method in [31] can deal with unbounded non-determinism as we do. In the

14

case of [31], the reachability checker is iteratively called to eliminate every terminating
path through a loop by restricting the state space, and thus may diverge on many loops.
Our method does not suffer from this kind of drawbacks.

Some other approaches exploit theorem-proving techniques. For instance, the tool
Invel [37] analyzes non-termination of Java programs using a combination of theorem
proving and invariant generation. Invel is only applicable to deterministic programs.
Another tool for proving non-termination of Java programs is AProVE [11], which uses
SMT solving as an underlying reasoning engine. The main drawback of their method is
that it is required that either recurrent sets are singletons (after program slicing) or loop
conditions themselves are invariants. Our technique does not have such restrictions.

Finally, the tool TRex [40] integrates existing non-termination proving approaches
within a Terminator-like [41] iterative procedure. Unlike TRex, which is aimed at
sequential code, Atig et al. [42] focus on concurrent programs: they describe a non-
termination proving technique for multi-threaded programs, via a reduction to non-
termination reasoning for sequential programs. Our work should complement both of
these approaches, since we provide significant advantages over the underlying non-
termination proving tools that were previously used.

7 Conclusions and Future Work

In this paper we have presented a novel Max-SMT-based technique for proving that
programs do not terminate. The key notion of the approach is that of a quasi-invariant,
which is a property such that if it holds at a location during execution once, then it
continues to hold at that location from then onwards. The method considers an SCSG
of the control flow graph at a time, and thanks to Max-SMT solving generates a quasi-
invariant for each location. Weights of soft constraints guide the solver towards quasi-
invariants that are also edge-closing, i.e., that forbid any transition exiting the SCSG.
If an SCSG with edge-closing quasi-invariants is reachable, then the program is non-
terminating. This last check is performed with an off-the-shelf reachability checker.
We have reported experiments with encouraging results that show that a prototypical
implementation of the proposed approach has comparable and often better efficacy than
state-of-the-art non-termination provers.

As regards future research, a pending improvement is to couple the reachability
checker with the quasi-invariant generator, so that the invariants synthesized by the for-
mer in unsuccessful attempts are reused by the latter when producing quasi-invariants.
Another line for future work is to combine our termination [24] and non-termination
techniques. Following a similar approach to [19], if the termination analyzer fails, it
can communicate to the non-termination tool the transitions that were proved not to
belong to any infinite computation. Conversely, when a failed non-termination analysis
ends with an unsuccessful reachability check, one can pass the computed invariants to
the termination system, as done in [40]. Finally, we also plan to extend our program-
ming model to handle more general programs (procedure calls, non-linearities, etc.).

Acknowledgments. We thank the Jutge.org team for providing us with benchmarks.

15

References

1. Francez, N., Grumberg, O., Katz, S., Pnueli, A.: Proving Termination of Prolog Programs.
In Parikh, R., ed.: Logic of Programs. Volume 193 of Lecture Notes in Computer Science.,
Springer (1985) 89–105

2. Dams, D., Gerth, R., Grumberg, O.: A heuristic for the automatic generation of ranking
functions. In: Workshop on Advances in Verification. (2000) 1–8

3. Colón, M., Sipma, H.: Practical methods for proving program termination. In Brinksma, E.,
Larsen, K.G., eds.: Proc. CAV ’02. Volume 2404 of LNCS., Springer (2002) 442–454

4. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear ranking func-
tions. In Steffen, B., Levi, G., eds.: Proc. VMCAI ’04. Volume 2937 of LNCS., Venice, Italy,
Springer (2004) 239–251

5. Bradley, A.R., Manna, Z., Sipma, H.B.: Termination of polynomial programs. In Cousot,
R., ed.: Proc. VMCAI ’05. Volume 3385 of LNCS., Springer (2005) 113–129

6. Bradley, A.R., Manna, Z., Sipma, H.B.: The polyranking principle. In: Proc. ICALP ’05.
Volume 3580 of LNCS., Springer (2005) 1349–1361

7. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In Etessami, K.,
Rajamani, S.K., eds.: Proc. CAV ’05. Volume 3576 of LNCS., Springer (2005) 491–504

8. Bradley, A.R., Manna, Z., Sipma, H.B.: Termination analysis of integer linear loops. In
Abadi, M., de Alfaro, L., eds.: CONCUR. Volume 3653 of Lecture Notes in Computer Sci-
ence., Springer (2005) 488–502

9. Cousot, P.: Proving program invariance and termination by parametric abstraction, la-
grangian relaxation and semidefinite programming. In Cousot, R., ed.: VMCAI. Volume
3385 of Lecture Notes in Computer Science., Springer (2005) 1–24

10. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In: Proc.
PLDI ’06, ACM Press (2006) 415–426

11. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination proofs
in the dependency pair framework. In: Proc. IJCAR ’06. Volume 4130 of LNAI., Springer
(2006) 281–286

12. Podelski, A., Rybalchenko, A.: ARMC: the logical choice for software model checking
with abstraction refinement. In: Proc. PADL ’07. Volume 4354 of LNCS., Springer (2007)
245–259

13. Babic, D., Hu, A.J., Rakamaric, Z., Cook, B.: Proving termination by divergence. In: SEFM,
IEEE Computer Society (2007) 93–102

14. Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving conditional ter-
mination. In Gupta, A., Malik, S., eds.: Proc. CAV ’08. Volume 5123 of LNCS., Springer
(2008) 328–340

15. Cook, B., Podelski, A., Rybalchenko, A.: Summarization for termination: no return! Formal
Methods in System Design 35(3) (2009) 369–387

16. Otto, C., Brockschmidt, M., Essen, C.v., Giesl, J.: Automated termination analysis of Java
Bytecode by term rewriting. In: Proc. RTA ’10. Volume 6 of LIPIcs., Edinburgh, UK,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010) 259–276

17. Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.: Termination analysis with
compositional transition invariants. In: Proc. CAV ’10. Volume 6174 of LNCS., Springer
(2010) 89–103

18. Tsitovich, A., Sharygina, N., Wintersteiger, C.M., Kroening, D.: Loop summarization and
termination analysis. In: Proc. TACAS ’11. Volume 6605 of LNCS., Springer (2011) 81–95

19. Brockschmidt, M., Cook, B., Fuhs, C.: Better termination proving through cooperation. In:
Proc. CAV ’13. LNCS (2013)

16

20. Cook, B., See, A., Zuleger, F.: Ramsey vs. lexicographic termination proving. In: Proc.
TACAS ’13. Volume 7795 of LNCS., Springer (2013) 47–61

21. Babic, D., Cook, B., Hu, A.J., Rakamaric, Z.: Proving termination of nonlinear command
sequences. Formal Asp. Comput. 25(3) (2013) 389–403

22. Cook, B., Kroening, D., Rümmer, P., Wintersteiger, C.M.: Ranking function synthesis for
bit-vector relations. Formal Methods in System Design 43(1) (2013) 93–120

23. Larraz, D., Rodrı́guez-Carbonell, E., Rubio, A.: Smt-based array invariant generation. In
Giacobazzi, R., Berdine, J., Mastroeni, I., eds.: VMCAI. Volume 7737 of Lecture Notes in
Computer Science., Springer (2013) 169–188

24. Larraz, D., Oliveras, A., Rodrı́guez-Carbonell, E., Rubio, A.: Proving Termination of Imper-
ative Programs Using Max-SMT. In: Proc. FMCAD ’13. (2013)

25. Colón, M., Sankaranarayanan, S., Sipma, H.: Linear invariant generation using non-linear
constraint solving. In: Proc. CAV ’03. (2003) 420–432

26. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability. Volume
185 of Frontiers in Artificial Intelligence and Applications. IOS Press (February 2009)

27. Nieuwenhuis, R., Oliveras, A.: On SAT Modulo Theories and Optimization Problems. In
Biere, A., Gomes, C.P., eds.: SAT. Volume 4121 of Lecture Notes in Computer Science.,
Springer (2006) 156–169

28. Schrijver, A.: Theory of Linear and Integer Programming. Wiley (June 1998)
29. Larraz, D., Oliveras, A., Rodrı́guez-Carbonell, E., Rubio, A.: Minimal-Model-Guided Ap-

proaches to Solving Polynomial Constraints and Extensions. Submitted (2014)
30. Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software Verification.

In Gopalakrishnan, G., Qadeer, S., eds.: CAV. Volume 6806 of Lecture Notes in Computer
Science., Springer (2011) 184–190

31. Chen, H.Y., Cook, B., Fuhs, C., Nimkar, K., O’Hearn, P.: Proving nontermination via safety.
In: Proc. TACAS ’14. To appear. (2014)

32. Spoto, F., Mesnard, F., Payet, É.: A termination analyzer for Java bytecode based on path-
length. ACM TOPLAS 32(3) (2010)

33. Payet, É., Spoto, F.: Experiments with Non-Termination Analysis for Java Bytecode. Electr.
Notes Theor. Comput. Sci. 253(5) (2009) 83–96

34. Brockschmidt, M., Ströder, T., Otto, C., Giesl, J.: Automated detection of non-termination
and NullPointerExceptions for Java Bytecode. In: Proc. FoVeOOS ’11. Volume 7421
of LNCS., Turin, Italy, Springer (2012) 123–141

35. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.G.: Proving non-
termination. In Necula, G.C., Wadler, P., eds.: Proc. POPL ’08, ACM Press (2008) 147–158

36. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In Ramakrishnan, C.R., Rehof, J.,
eds.: Proc. TACAS ’08. Volume 4963 of LNCS., Springer (2008) 337–340

37. Velroyen, H., Rümmer, P.: Non-termination checking for imperative programs. In Beckert,
B., Hähnle, R., eds.: Proc. TAP ’08. Volume 4966 of LNCS., Springer (2008) 154–170

38. Petit, J., Giménez, O., Roura, S.: Jutge.org: an educational programming judge. In King,
L.A.S., Musicant, D.R., Camp, T., Tymann, P.T., eds.: SIGCSE, ACM (2012) 445–450

39. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving. In Gupta,
R., Amarasinghe, S.P., eds.: Proc. PLDI ’08, ACM Press (2008) 281–292

40. Harris, W.R., Lal, A., Nori, A.V., Rajamani, S.K.: Alternation for termination. In: Proc.
SAS ’10. Volume 6337 of LNCS., Springer (2010) 304–319

41. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: Beyond safety. In Ball, T., Jones, R.B.,
eds.: Proc. CAV ’06. Volume 4144 of LNCS., Seattle, WA, USA, Springer (2006) 415–418

42. Atig, M.F., Bouajjani, A., Emmi, M., Lal, A.: Detecting fair non-termination in multi-
threaded programs. In Madhusudan, P., Seshia, S.A., eds.: Proc. CAV ’12. Volume 7358
of LNCS., Springer (2012) 210–226

17

