
Constrained Dynamic Partial Order Reduction ?

Elvira Albert1[0000−0003−0048−0705], Miguel
Gómez-Zamalloa1[0000−0003−1557−689X], Miguel Isabel1[0000−0002−5474−9258], and

Albert Rubio2[0000−0002−0501−9830]

1 Complutense University of Madrid, Spain
2 Universitat Politècnica de Catalunya, Spain

Abstract. The cornerstone of dynamic partial order reduction (DPOR)
is the notion of independence that is used to decide whether each pair of
concurrent events p and t are in a race and thus both p · t and t · p must
be explored. We present constrained dynamic partial order reduction
(CDPOR), an extension of the DPOR framework which is able to avoid
redundant explorations based on the notion of conditional independence
—the execution of p and t commutes only when certain independence
constraints (ICs) are satisfied. ICs can be declared by the programmer,
but importantly, we present a novel SMT-based approach to automat-
ically synthesize ICs in a static pre-analysis. A unique feature of our
approach is that we have succeeded to exploit ICs within the state-of-
the-art DPOR algorithm, achieving exponential reductions over existing
implementations.

1 Introduction

Partial Order Reduction (POR) is based on the idea that two interleavings can
be considered equivalent if one can be obtained from the other by swapping
adjacent, non-conflicting independent execution steps. Such equivalence class is
called a Mazurkiewicz trace, and POR guarantees that it is sufficient to explore
one interleaving per equivalence class. Early POR algorithms [9, 11, 20] relied
on static over-approximations to detect possible future conflicts. The Dynamic-
POR (DPOR) algorithm, introduced by Flanagan and Godefroid [10] in 2005,
was a breakthrough in the area because it does not need to look at the future.
It keeps track of the independence races witnessed along its execution and uses
them to decide the required exploration dynamically, without the need of static
approximation. DPOR is nowadays considered one of the most scalable tech-
niques for software verification. The key of DPOR algorithms is in the dynamic
construction of two types of sets at each scheduling point: the sleep set that con-
tains processes whose exploration has been proved to be redundant (and hence

? This work was funded partially by the Spanish MECD Salvador de Madariaga
Mobility Grants PRX17/00297 and PRX17/00303, the Spanish MINECO projects
TIN2015-69175-C4-2-R and TIN2015-69175-C4-3-R, and by the CM project
S2013/ICE-3006.

should not be selected), and the backtrack set that contains the processes that
have not been proved independent with previously explored steps (and hence
need to be explored). Source-DPOR (SDPOR) [1, 2] improves the precision to
compute backtrack sets (named source sets), proving optimality of the result-
ing algorithm for any number of processes w.r.t. an unconditional independence
relation.

Challenge. When considering (S)DPOR with unconditional independence, if a
pair of events is not independent in all possible executions, they are treated as
potentially dependent and their interleavings explored. Unnecessary exploration
can be avoided using conditional independence. E.g., two processes executing
respectively the atomic instructions if(z≥0)z=x; and x=x+1; would be con-
sidered dependent even if z≤-1 — this is indeed an independence constraint (IC)
for these two instructions. Conditional independence was early introduced in the
context of POR [12,16]. The first algorithm that has used notions of conditional
independence within the state-of-the-art DPOR algorithm is Context-Sensitive
DPOR (CSDPOR) [3]. However, CSDPOR does not use ICs (it rather checks
state equivalence dynamically during the exploration) and exploits conditional
(context-sensitive) independence only partially to extend the sleep sets. Our
challenge is twofold: (i) extend the DPOR framework to exploit ICs during the
exploration in order to both reduce the backtrack sets and expand the sleep sets
as much as possible, (ii) statically synthesize ICs in an automatic pre-analysis.

Contributions. The main contributions of this work can be summarized as:

1. We introduce sufficient conditions –that can be checked dynamically– to
soundly exploit ICs within the DPOR framework.

2. We extend the state-of-the-art DPOR algorithm with new forms of pruning
(by means of expanding sleep sets and reducing backtrack sets).

3. We present an SMT-based approach to automatically synthesize ICs for
atomic blocks, whose applicability goes beyond the DPOR context.

4. We experimentally show the exponential gains achieved by CDPOR on some
typical concurrency benchmarks used in the DPOR literature before.

2 Background

In this section we introduce some notations, the basic notions on the POR theory
and the state-of-the-art DPOR algorithm that we will extend in Sec. 3.

Our work is formalized for a general model of concurrent systems, in which
a program is composed of atomic blocks of code. An atomic block can contain
just one (global) statement that affects the global state, a sequence of local
statements (that only read and write the local state of the process) followed by
a global statement, or a block of code with possibly several global statements
but whose execution cannot interleave with other processes because it has been
implemented as atomic (e.g., using locks, semaphores, etc.). Each atomic block
in the program is given a unique block identifier. We use spawn(P [ini]) to create
a new process. Depending on the programming language, P can be the name of
a method and [ini] initial values for the parameters, or P can be the identifier of
the initial block to execute and [ini] the initialization instructions, etc., in every

2

case with mechanisms to continue the execution from one block to the following
one. Notice that the use of atomic blocks in our formalization generalizes the
particular case of considering atomicity at the level of single instructions.

As previous work on DPOR [1–3], we assume the state space does not contain
cycles, executions have finite unbounded length and processes are deterministic
(i.e., at a given time there is at most one event a process can execute). Let Σ
be the set of states of the system. There is a unique initial state s0 ∈ Σ. The
execution of a process p is represented as a partial function executep : Σ 7→ Σ
that moves the system from one state to a subsequent state. Each application
of the function executep represents the execution of an atomic block of the code
that p is running, denoted as event (or execution step) of process p. An execution
sequence E (also called derivation) of a system is a finite sequence of events of
its processes starting from s0, and it is uniquely characterized by the sequence
of processes that perform steps of E. For instance, p · q · q denotes the execution
sequence that first performs one step in p, followed by two steps in q. We use
ε to denote the empty sequence. The state of the system after E is denoted by
s[E]. The set of processes enabled in state s (i.e., that can perform an execution
step from s) is denoted by enabled(s).

2.1 Basics of partial order reduction

An event e of the form (p, i) denotes the i-th occurrence of process p in an
execution sequence, and ê denotes the process p of event e, which is extended to
sequences of events in the natural way. We write ē to refer to the identifier of
the atomic block of code the event e is executing. The set of events in execution
sequence E is denoted by dom(E). We use e <E e′ to denote that event e occurs
before event e′ in E, s.t. <E establishes a total order between events in E, and
E ≤ E′ to denote that sequence E is a prefix of sequence E′. Let dom[E](w)
denote the set of events in execution sequence E.w that are in sequence w, i.e.,
dom(E.w)\dom(E). If w is a single process p, we use next[E](p) to denote the
single event in dom[E](p). If P is a set of processes, next[E](P) denotes the set of
next[E](p) for all p ∈ P . The core concept in POR is that of the happens-before
partial order among the events in execution sequence E, denoted by →E . This
relation defines a subset of the <E total order, such that any two sequences with
the same happens-before order are equivalent. Any linearization E′ of →E on
dom(E) is an execution sequence with exactly the same happens-before relation
→E′ as →E . Thus, →E induces a set of equivalent execution sequences, all with
the same happens-before relation. We use E ' E′ to denote that E and E′ are
linearizations of the same happens-before relation. The happens-before partial
order has traditionally been defined in terms of a dependency relation between
the execution steps associated to those events [11]. Intuitively, two steps p and
q are dependent if there is at least one execution sequence E for which they
do not commute, either because (i) one enables the other (i.e., the execution
of p leads to introducing q, or viceversa), or because (ii) s[E.p.q] 6= s[E.q.p]. We
define dep(E, e, n) as the subsequence containing all events e′ in E that occur
after e and happen-before n in E.p (i.e., e<Ee

′ and e′→E.pn). The unconditional
dependency relation is used for defining the concept of a race between two events.

3

Algorithm 1 (Source+Context-sensitive)+Constrained DPOR algorithm

1: procedure explore(E)
2: if (∃p ∈ (enabled(s[E])\sleep(E))) then
3: back(E) := {p};
4: while (∃p ∈ (back(E)\sleep(E))) do
5: let n = next[E](p);
6: for all (e ∈ dom(E) such that e -E.p n) do
7: let E′ = pre(E, e);
8: let u = dep(E, e, n);
9: if (¬(U⇒(Iē,n̄, e, n, s[E′.û])) then

10: updateBack(E,E′, e, p);
11: if C(s[E′.û]) for some C ∈ Iē,n̄ then
12: add û.p.ê to sleep(E′);
13: else
14: updateSleepCS(E,E′, e, p);

15: sleep(E.p) := {x | x ∈ sleep(E), E |= p � x}
16: ∪ {x | p.x ∈ sleep(E)}
17: ∪ {x | x ∈ sleep(E), |x| = 1, m = next[E](x), U⇒(In̄,m̄, n,m, s[E]))};
18: explore(E.p);
19: sleep(E) := sleep(E) ∪ {p};

Event e is said to be in race with event e′ in execution E, if the events belong to
different processes, e happens-before e′ in E (e →E e′), and the two events are
“concurrent”, i.e. there exists an equivalent execution sequence E′ ' E where
the two events are adjacent. We write e -E e′ to denote that e is in race with
e′ and that the race can be reversed (i.e., the events can be executed in reverse
order). POR algorithms use this relation to reduce the number of equivalent
execution sequences explored, with SDPOR ensuring that only one execution
sequence in each equivalence class is explored.

2.2 State-of-the-art DPOR with unconditional independence

Algorithm 1 shows the state-of-the-art DPOR algorithm –based on the SDPOR
algorithm of [1, 2],3 which in turn is based on the original DPOR algorithm
of [10]. We refer to this algorithm as DPOR in what follows. The context-sensitive
extension of CSDPOR [3] (lines 14 and 16) and our extension highlighted in blue
(lines 8-9, 11-13 and 17) should be ignored by now and will be described in Sec. 3.

The algorithm carries out a depth-first exploration of the execution tree us-
ing POR receiving as parameter a derivation E (initially empty). Essentially, it
dynamically finds reversible races and is able to backtrack at the appropriate
scheduling points to reverse them. For this purpose, it keeps two sets at every
prefix E′ of E: back(E′) with the set of processes that must be explored from E′,
and, sleep(E′) with the set of sequences of processes that previous executions
have determined do not need to be explored from E′. Note that in the original

3 The extension to support wake-up trees [2] is deliberately not included to simplify
the presentation.

4

DPOR the sleep set contained only single processes, but in later improvements
sequences of processes are added, so our description considers this general case.
The algorithm starts by selecting any process p that is enabled by the state
reached after executing E and is not already in sleep(E). If it does not find
any such process p, it stops. Otherwise, after setting back(E) = {p} to start
the search, it explores every element in back(E) that is not in sleep(E). The
backtrack set of E might grow as the loop progresses (due to later executions of
line 10). For each such p, DPOR performs two phases: race detection (lines 6, 7
and 10) and state exploration (lines 15, 18 and 19). The race detection starts by
finding all events e in dom(E) such that e -E.p n, where n is the event being
selected (see line 5). For each such e, it sets E′ to pre(E, e), i.e., to be the prefix
of E up to, but not including e. Procedure updateBack modifies back(E′) in
order to ensure that the race between e and n is reversed. The source-set ex-
tension of [1,2] detects cases where there is no need to modify back(E′) –this is
done within procedure updateBack whose code is not shown because it is not
affected by our extension. After this, the algorithm continues with the state ex-
ploration phase for E.p, by retaining in its sleep set any element x in sleep(E)
whose events in E.p are independent of the next event of p in E (denoted as
E |= p � x), i.e., any x such that next[E](p) would not happen-before any event
in dom(E.p.x)\dom(E.p). Then, the algorithm explores E.p, and finally it adds
p to sleep(E) to ensure that, when backtracking on E, p is not selected un-
til a dependent event with it is selected. All versions of the DPOR algorithm
(except [3]) rely on the unconditional (or context-insensitive) dependency rela-
tion. This relation has to be over-approximated, usually by requiring that global
variables accessed by one execution step are not modified by the other.

Example 1. Consider the example in Fig. 1 with 3 processes p, q, r containing a
single atomic block. Since all processes have a single event, by abuse of notation,
we refer to events by their process name throughout all examples in the paper.
Relying on the usual over-approximation of dependency all three pairs of events
are dependent. Therefore, starting with one instance per process, the algorithm
has to explore 6 execution sequences, each with a different happens-before rela-
tion. The tree, including the dotted and dashed fragments, shows the exploration
from the initial state z=−2, x=−2. The value of variable z is shown in brackets
at each state. Essentially, in all states of the form E.e, the algorithm always
finds a reversible race between the next event of the current selected process (p,
q or r) and e, and adds it to back(E). Also, when backtracking on E, none of
the elements in sleep(E) is propagated down, since all events are considered de-
pendent. In the best case, considering an exact (yet unconditional) dependency
relation which realizes that events p and r are independent, the algorithm will
make the following reductions. In state 6, p and r will not be in race and hence
p will not be added to back(q). This avoids exploring the sequence p.r from 5.
When backtracking on state 0 with r, where sleep(ε)={p, q}, p will be propa-
gated down to sleep(r) since ε|=r�p, hence avoiding the exploration of p.q from
8. Thus, the algorithm will explore 4 sequences.

5

p: x = x+1;
q: if (z >= 0) z = x;
r: z = z+1; x = x+1;

Ip̄,q̄ = {z ≤ −1}
Ip̄,r̄ = {true}
Iq̄,r̄ = {(z ≥ 0), (z = x), (z ≤ −2)}

0
(-2)

p

ww
q �� r ''

1

(-2)

q ��
r

��

5
(-2)

r ��
p

��

8
(-1)

p �� q ��
2

(-2)

r ��

4
(-1)

q ��

6
(-1)

p ��

?

r ��

?

q ��

?

p ��
3

(-1)

? 7
(-1)

? ? ?

Fig. 1. Left: Code of working example (up) and ICs (down). Right: Execution tree
starting from z = −2, x = −2. Full tree computed by SDPOR, dotted fragment not
computed by CSDPOR, and, dashed+dotted fragment not computed by CDPOR.

3 DPOR with Conditional Independence

Our aim in CDPOR is twofold: (1) provide techniques to both infer and soundly
check conditional independence, and (2) be able to exploit them at all points of
the DPOR algorithm where dependencies are used. Sec. 3.1 reviews the notions
of conditional independence and ICs, and introduces a first type of check where
ICs can be directly used in the DPOR algorithm. Sec. 3.2 illustrates why ICs
cannot be used at the remaining independence check points in the algorithm, and
introduces sufficient conditions to soundly exploit them at those points. Finally,
Sec. 3.3 presents the CDPOR algorithm that includes all types of checks.

3.1 Using precomputed ICs directly within DPOR

Conditional independence consists in checking independence at the given state.

Definition 1 (conditional independence). Two events α and β are inde-
pendent in state S, written indep(α, β, S) if (i1) none of them enables the other

from S; and, (i2) if they are both enabled in S, then S
α·β−→ S′ and S

β·α−→ S′.

The use of conditional independence in the POR theory was firstly studied in [16],
and it has been partially applied within the DPOR algorithm in CSDPOR [3].
Function updateSleepCS at line 14 and the modification of sleep at 16 encapsulate
this partial application of CSDPOR (the code of updateSleepCS is not shown
because it is not affected by our extension). Intuitively, updateSleepCS works as
follows: when a reversible race is found in the current sequence being explored,
it builds an alternative sequence which corresponds to the reverse race, and then
checks whether the states reached after running the two sequences are the same.
If they are, it adds the alternative sequence to the corresponding sleep set so
that this sequence is not fully explored when backtracking. Therefore, sleep sets
can contain sequences of events which can be propagated down via the rule of
line 16 (i.e., if the event being explored is the head of a sequence in the sleep
set, then the tail of the sequence is propagated down). In essence, the technique
to check (i2) in Def. 1 in CSDPOR consists in checking state equivalence with
an alternative sequence in the current state (hence it is conditional) and, if the
check succeeds, it is exploited in the sleep set only (and not in the backtrack set).

Example 2. Let us explain the intuition behind the reductions that CSDPOR is
able to achieve w.r.t. unconditional independence-based DPOR on the example.

6

In state 1, when the algorithm selects q and detects the reversible race between
q and p, it computes the alternative sequence q.p and realizes that s[p.q] = s[q.p],
and hence adds p.q to sleep(ε). Similarly, in state 2, it computes p.r.q and re-
alizes that s[p.q.r] = s[p.r.q] adding r.q to sleep(p). Besides these two alternative
sequences, it computes two more. Overall, CSDPOR explores 2 complete se-
quences (p.q.r and q.r.p) and 13 states (the 9 states shown, plus 4 additional
states to compute the alternative sequences).

Instead of computing state equivalence to check (i2) as in [3], our approach as-
sumes precomputed independence constraints (ICs) for all pairs of atomic blocks
in the program. ICs will be evaluated at the appropriate state to determine the
independence between pairs of concurrent events executing such atomic blocks.

Definition 2 (ICs). Consider two events α and β that execute, respectively, the
atomic blocks ᾱ and β̄. The independence constraints Iᾱ,β̄ are a set of boolean
expressions (constraints) on the variables accessed by α and β (including local
and global variables) s.t., if some constraint C in Iᾱ,β̄ holds in state S, written
C(S), then condition (i2) of indep(α, β, S) holds.

Our first contribution is in lines 11-13 where ICs are used within DPOR as
follows. Before executing updateSleepCS at line 14, we check if some constraint
in Iē,n̄ holds in the state s[E′.û], by building the sequence E′.û, where u =
dep(E, e, n). Only if our check fails we proceed to execute updateSleepCS. The
advantages of our check w.r.t. updateSleepCS are: (1) the alternative execution
sequence built by updateSleepCS is strictly longer than ours and hence more
states will be explored, and (2) updateSleepCS must check state equivalence
while we evaluate boolean expressions. Yet, because our IC is an approximation,
if we fail to prove independence we can still use updateSleepCS.

Example 3. Consider the ICs in Fig. 1 (down left), which provide the constraints
ensuring the independence of each pair of atomic blocks, and whose synthesis
is explained in Sec. 4.1. In the exploration of the example, when the algorithm
detects the reversible race between q and p in state 1, instead of computing
q.p and then comparing s[p.q] = s[q.p] as in CSDPOR, we would just check the
constraint in Ip̄,q̄ at state ε, i.e., in z = −2 (line 11), and since it succeeds, q.p is
added to sleep(ε). The same happens at states 2, again at 1 (when backtracking
with r), and 5. This way we avoid the exploration of the additional 4 states due
to the computation of the alternative sequences in Ex. 2 (namely q.p, r.p and
r.q from state 0, and r.q from 1). The algorithm is however still exploring many
redundant derivations, namely states 4, 5, 6, 7 and 8.

3.2 Transitive uniformity: how to further exploit ICs within DPOR

The challenge now is to use ICs, and therefore conditional independence, at
the remaining dependency checks performed by the DPOR algorithm, and most
importantly, for the race detection (line 6). In the example, that would avoid
the addition of q and r to back(ε) and r to back(p), and hence would make the
algorithm only explore the sequence p.q.r. Although that can be done in our
example, it is unsound in general as the following counter-example illustrates.

7

Example 4. Consider the same example but starting from the initial state z=−1,
x=−2. During the exploration of the first sequence p.q.r, the algorithm will not
find any race since p and q are independent in z=−1, q and r are indepen-
dent in z=x=−1, and, p and r are always independent. Therefore, no more
sequences than p.q.r with final result z=0 will be explored. There is however a
non-equivalent sequence, r.q.p, which leads to a different final state z=−1.

The problem of using conditional independence within the POR theory was al-
ready identified by Katz and Peled [16]. Essentially, the main idea of POR is that
the different linearizations of a partial order yield equivalent executions that can
be obtained by swapping adjacent independent events. However, this is no longer
true with conditional dependency. In Ex. 4, using conditional independence, the
partial order of the explored derivation p.q.r would be empty, which means there
would be 6 possible linearizations. However r.q.p is not equivalent to p.q.r since
q and p are dependent in s[r], i.e., when z=0. An extra condition, called unifor-
mity, is proposed in [16] to allow using conditional independence within the POR
theory. Intuitively, uniform independence adds a condition to Def. 1 to ensure
that independence holds at all successor states for those events that are enabled
and are uniformly independent with the two events whose independence is being
proved. While this notion can be checked a posteriori in a given exploration,
it is unclear how it could be applied in a dynamic setting where decisions are
made a priori. Here we propose a weaker notion of uniformity, called transitive
uniformity, for which we have been able to prove that the dynamic-POR frame-
work is sound. The difference with [16] is that our extra condition ensures that
independence holds at all successor states for all events that are enabled, which
is thus a superset of the events considered in [16]. We notice that the general
happens-before definition of [1,2] does not capture our transitive uniform condi-
tional independence below (namely property seven of [1,2] does not hold), hence
CDPOR cannot be seen as an instance of SDPOR but rather as an extension.

Definition 3. The transitive uniform conditional independence relation, writ-
ten unif(α, β, S), fulfills (i1) and (i2) and, (i3) unif(α, β, Sγ) holds for all γ /∈
{α, β} enabled in S, where Sγ is defined by S

γ−→ Sγ .

During the exploration of the sequence p.q.r in Ex. 4, the algorithm will now
find a reversible race between p and q, since the independence is not transitively
uniform in z=−1, x=−2. Namely, (i3) does not hold since r is enabled and we
have x=−1 and z=0 in s[r], which implies ¬unif(p, q, s[r]) ((i2) does not hold).

We now introduce sufficient conditions for transitive uniformity that can be
precomputed statically, and efficiently checked, in our dynamic algorithm. Con-
dition (i1) is computed dynamically as usual during the exploration simply stor-
ing enabling dependencies. Condition (i2) is provided by the ICs. Our sufficient
conditions to ensure (i3) are as follows. For each atomic block b, we precompute
statically (before executing DPOR) the set W (b) of the global variables that can
be modified by the full execution of b, i.e., by an instruction in b or by any other
block called from, or enabled by, b (transitively). To this end, we do a simple
analysis which consists in: (1) First we build the call graph for the program to

8

establish the calling relationships between the blocks in the program. Note that
when we find a process creation instruction spawn(P [ini]) we have a calling
relationship between the block in which the spawn instruction appears and P .
(2) We obtain (by a fixed point computation) the largest relation fulfilling that
g belongs to W (b) if either g is modified by an instruction in b or g belongs to
W (c) for some block c called from b. This computation can be done with differ-
ent levels of precision, and it is well-studied in the static analysis field [18]. We
let G(C) be the set of global variables evaluated on constraint C in I.

Definition 4 (sufficient condition for transitive uniformity, U⇒). Let E
be a sequence, I a set of constraints, α and β be two events enabled in s[E],
and T = next[E](enabled(s[E])) \ {α, β}, we define U⇒(I, α, β, s[E]) ≡ ∃C ∈ I :
C(s[E]) ∧ ((G(C) ∩

⋃
t∈T W (t̄)) = ∅)

Intuitively, our sufficient condition ensures transitive uniformity by checking that
the global variables involved in the constraint C of the IC used to ensure the
uniformity condition are not modified by other enabled events in the state.

Theorem 1. Given a sequence E and two events α and β enabled in s[E], we
have that U⇒(Iᾱ,β̄ , α, β, s[E])⇒ unif(α, β, s[E]).

3.3 The Constrained DPOR algorithm

The code highlighted in blue in Algorithm 1 provides the extension to apply
conditional independence within DPOR. In addition to the pruning explained in
Sec. 3.1, it achieves two further types of pruning:

1. Back-set reduction. The race detection is strengthened with an extra condi-
tion (line 9) so that e and n (the next event of p) are in race only if they are
not conditionally independent in state s[E′.u] (using our sufficient condition
above). Here u is the sub-sequence of events of E that occur after e and
“happen-before” n. This way the conditional independence is evaluated in
the state after the shortest subsequence so that the events are adjacent in
an equivalent execution sequence.

2. Sleep-set extension. An extra condition to propagate down elements in the
sleep set is added (line 17) s.t. a sequence x, with just one process, is prop-
agated if its corresponding event is conditionally independent of n in s[E].

It is important to note also that the inferred conditional independencies are
recorded in the happens-before relation to be later re-used for subsequent com-
putations of the - and dep definitions.

Example 5. Let us describe the exploration for the example in Fig. 1 using
our CDPOR. At state 1, the algorithm checks whether p and q are in race.
U⇒(Ip̄,q̄, p, q, S) does not hold in z=−2 since, although (z≤−1) ∈ Ip̄,q̄ holds, we
have that G(z ≤ −1) ∩W (r) = {z} 6= ∅. Process q is hence added to back(ε).
On the other hand, since (z≤−1) ∈ Ip̄,q̄ holds in z=−2 (line 11), q.p is added to
sleep(ε) (line 12). At state 2 the algorithm checks the possible race between q
and r after executing p. This time the transitive uniformity of the independence

9

of q and r holds since (z≤−2) ∈ Iq̄,r̄ holds, and there are no enabled events out
of {q, r}. Our algorithm therefore avoids the addition of r to back(p) (pruning 1
above). The algorithm also checks the possible race between p and r in z=−2.
Again, true ∈ Ip̄,r̄ holds and is uniform since G(true) = ∅ (pruning 1). The al-
gorithm finishes the exploration of sequence p.q.r and then backtracks with q at
state 0. At state 5 the algorithm selects process r (p is in the sleep set of 5 since
it is propagated down from the q.p in sleep(ε)). It then checks the possible race
between q and r, which is again discarded (pruning 1), since transitive unifor-
mity of the independence of q and r can be proved: we have that (z≤−2) ∈ Iq̄,r̄
holds in z=−2 and W (p)∩G(z≤−2) = ∅, where p is the only enabled event out
of {q, r} and W (p) = {x}. This avoids adding r to back(ε). Finally, at state 5, p
is propagated down in the new sleep set (pruning 2), since as before true ∈ Ip̄,r̄
ensures transitive uniformity. The exploration therefore finishes at state 6.

Overall, on our working example, CDPOR has been able to explore only one
complete sequence p.q.r and the partial sequence q.r (a total of 6 states). The
latter one could be avoided if a more precise sufficient condition for uniformity
is provided which, in particular, is able to detect that the independence of p and
q in ε is transitive uniform, i.e., it still holds after r (even if r writes variable z).

Theorem 2 (soundness). For each Mazurkiewicz trace T defined by the hap-
pens before relation, Explore(ε, ∅) in Alg. 1 explores a complete execution sequence
T ′ that reaches the same final state as T .

4 Automatic generation of ICs using SMT

Generating ICs amounts to proving (conditional) program equivalence w.r.t. the
global memory. While the problem is very hard in general, proving equivalence
of smaller blocks of code becomes more tractable. This section introduces a
novel SMT-based approach to synthesize ICs between pairs of atomic blocks of
code. Our ICs can be used within any transformation or analysis tool –beyond
DPOR– which can gain accuracy or efficiency by knowing that fragments of
code (conditionally) commute. Sec. 4.1 first describes the inference for basic
blocks; Sec. 4.2 extends it to handle process creation and Sec. 4.3 outlines other
extensions, like loops, method invocations and data structures.

4.1 The basic inference

In this section we consider blocks of code containing conditional statements and
assignments using linear integer arithmetic (LIA) expressions. The first step to
carry out the inference is to transform q and r into two respective deterministic
Transition Systems (TSs), Tq and Tr (note that q and r are assumed to be deter-
ministic), and compose them in both reverse orders Tq·r and Tr·q. Consider r and
q in Fig. 1 whose associated TSs are (primed variables represent the final value

of the variables):
Tq: z ≥ 0→ z′ = x; Tr: true→ x′ = x + 1, z′ = z + 1;

z < 0→ z′ = z;

The code to be analyzed is the composition of Tq and Tr in both orders:

Tq·r: z ≥ 0 → x′ = x + 1, z′ = x + 1; Tr·q: z ≥ −1 → x′ = x + 1, z′ = x + 1;
z < 0 → x′ = x + 1, z′ = z + 1; z < −1 → x′ = x + 1, z′ = z + 1;

10

In what follows we denote by Ta·b the deterministic TS obtained from the con-
catenation of the blocks a and b, such that all variables are assigned in one in-
struction using parallel assignment. We let A |G be the restriction to the global
memory of the assignments in A (i.e., ignoring the effect on local variables).The
following definition provides an SMT formula over LIA (a boolean formula where
the atoms are equalities and inequalities over linear integer arithmetic expres-
sions) which encodes the independence between the two blocks.

Definition 5 (IC generation). Let us consider two atomic blocks q and r and
a global memory G and let Ci → Ai (resp. C ′j → A′j) be the transitions in Tq·r
(resp. Tr·q). We obtain Fq,r as the SMT formula:

∨
i,j(Ci ∧C ′j ∧Ai |G= A′j |G).

Intuitively, the SMT encoding in the above definition has as solutions all those
states where both a condition Ci of a transition in Tq·r and C ′j of a transition in
Tr·q hold (and hence are compatible) and the final global state after executing
all instructions in the two transitions (denoted Ai and A′j) remains the same.

Next, we generate the constraints of the independence condition Iq,r by ob-
taining a compact representation of all models over linear arithmetic atoms
(computed by an allSAT SMT solver) satisfying Fq,r. In particular, we add
a constraint in Iq,r for every obtained model.

Example 6. In the example, we have the TS with conditions and assignments:

Tq·r: C1:z ≥ 0 A1:x′ = x + 1, z′ = x + 1 Tr·q: C′1:z ≥ −1 A′1:x′ = x + 1, z′ = x + 1
C2:z < 0 A2:x′ = x + 1, z′ = z + 1 C′2:z < −1 A′2:x′ = x + 1, z′ = z + 1

and we obtain a set with three constraints Iq,r = {(z ≥ 0), (z = x), (z < −1)} by
computing all models satisfying the following resulting formula:

(z ≥ 0 ∧ z ≥ −1 ∧ x + 1 = x + 1 ∧ x + 1 = x + 1) ∨
(z ≥ 0 ∧ z < −1 ∧ x + 1 = x + 1 ∧ x + 1 = z + 1) ∨
(z < 0 ∧ z ≥ −1 ∧ x + 1 = x + 1 ∧ z + 1 = x + 1) ∨
(z < 0 ∧ z < −1 ∧ x + 1 = x + 1 ∧ z + 1 = z + 1)

The second conjunction is unsatisfiable since there is no model with both C1 and
C ′2. On the other hand, the equalities of the first and the last conjunctions always
hold, which give us the constraints z≥0 and z≤− 2. Finally, all equalities hold
when x=z, which give us the third constraint as a result for our SMT encoding.

Note that, as in this case Fq,r describes not only a sufficient but also a necessary
condition for independence, the obtained constraints IC are also a sufficient
and necessary conditions for independence. This allows removing line 14 in the
algorithm, since the context-sensitive check will fail if line 11 does. However, the
next extensions do not ensure that the generated ICs are necessary conditions.

4.2 IC for blocks with process creation

Consider the following two methods whose body constitutes an atomic block
(e.g., the lock is taken at the method start and released at the return). They
are inspired by a highly concurrent computation for the Fibonacci used in the
experiments. Variables nr and r are global to all processes:

11

fib(int v) {
if (v≤1) {spawn(res(v));}
else {spawn(fib(v-1));

spawn(fib(v-2));}
}

res(int v) {
if (nr>0) {nr=0; r=v; }
else {spawn(res(r+v));

r=0;nr=1;}
}

We now want to infer Ifib(v),fib(v1), Ifib(v),res(v1), Ires(v),res(v1). The first step is to ob-
tain, for each block r, a TS with uninterpreted functions, denoted TSur , in which
transitions are of the form C → (A,S) where A are the parallel assignments as
in Sec. 4.1, and S is a multiset containing calls to fresh uninterpreted functions
associated to the processes spawned within the transition (i.e., a process creation
spawn(P) is associated to an uninterpreted function spawn P).

Tu
fib: v ≤ 1→ (skip, {spawn res(v)})

v > 1→ (skip, {spawn fib(v − 1), spawn fib(v − 2)}
Tu

res: nr ≥ 0→ (nr′ = 0, r′ = v, {})
nr < 0→ (nr′ = 1, r′ = 0, {spawn res(r + v)}

The following definition extends Def. 5 to handle process creation. Intuitively,
it associates a fresh variable to each different element in the multisets (mapping
P ′ below) and enforces equality among the multisets.

Definition 6 (IC generation with process creation). Let us consider TSur·q
and TSuq·r. We define P = {∪s | s ∈ S, with C → (A,S) ∈ TSur·q ∪ TSuq·r}.
Let P ′ be a mapping from the elements in P to fresh variables, and P ′(S) be
the replacement of the elements in the multiset S applying the mapping P ′. Let
Ci → (Ai, Si) (resp. C ′j → (A′j , S

′
j)) be the transitions in TSuq·r (resp. TSur·q). We

obtain Fq,r as the SMT formula:
∨
i,j(Ci∧C ′j ∧Ai |G= A′j |G ∧P ′(Si) ≡ P ′(S′j))

For simplicity and efficiency, we consider that ≡ corresponds to the syntactic
equality of the multisets. However, in order to improve the precision of the encod-
ing we apply P ′ to Si and Sj replacing two process creations by the same variable
if they are equal modulo associativity and commutativity (AC) of arithmetic op-
erators and after substituting the equalities already imposed by Ai |G= A′j (see
example below). A more precise treatment can be achieved by using equality
with uninterpreted functions (EUF) to compare the multisets of processes.

Example 7. Let us show how we apply the above definition to infer Ires(v),res(v1).
We first build Tres(v)·res(v1) from Tres(v) by composing it with itself:

nr ≤ 0→ (nr′=0, r′=v1, {spawn res(r+v)})
nr > 0→ (nr′=1, r′=0, {spawn res(v+v1)})

and Tres(v1)·res(v) which is like the one above but exchanging v and v1. Next, we
define P ′ = {spawn res(r + v) 7→ x1, spawn res(v + v1) 7→ x2, spawn res(r + v1) 7→
x3, spawn res(v1 + v) 7→ x4} and apply it with the improvement described above

(nr ≤ 0 ∧ nr ≤ 0 ∧ 0 = 0 ∧ v = v1 ∧ {x1} = {x1}) ∨
(nr ≤ 0 ∧ nr > 0 ∧ 0 = 1 ∧ v1 = 0 ∧ {x1} = {x4}) ∨
(nr > 0 ∧ nr ≤ 0 ∧ 1 = 0 ∧ 0 = v ∧ {x2} = {x3}) ∨
(nr > 0 ∧ nr > 0 ∧ 1 = 1 ∧ 0 = 0 ∧ {x2} = {x2})

12

Note that the second and the third conjunction are unfeasible and hence can
be removed from the formula. In the first one spawn res(r + v1) is replaced by
x1 (instead of x3) since we can substitute v1 by v as v = v1 is imposed in the
conjunction and in the fourth one spawn res(v1 + v) is replaced by x2 (instead of
x4) since it is equal modulo AC to spawn res(v + v1). Then we finally have

(nr ≤ 0 ∧ nr ≤ 0 ∧ 0 = 0 ∧ v = v1) ∨ (nr > 0 ∧ nr > 0 ∧ 1 = 1 ∧ 0 = 0)

As before, Ires(v),res(v1) = {(nr > 0), (v = v1)} is then obtained by computing all
satisfying models. In the same way we obtain Ifib(v),res(v1)=Ifib(v),fib(v1) = {true}.

The following theorem states the soundness of the inference of ICs, that holds
by construction of the SMT formula.

Theorem 3 (soundness of independence conditions). Given the assump-

tions in Def. 6, if ∃C ∈ Ir,q s.t. C(S) holds, then S
r·q−→ S′ and S

q·r−→ S′.

We will also get a necessary condition in those instances where the use of syn-
tactic equality modulo AC on the multisets of created processes (as described
above) is not loosing precision. This can be checked when building the encoding.

4.3 Other extensions

We abstract loops from the code of the blocks so that we can handle them as
uninterpreted functions similarly to Def. 6. Basically, for each loop, we generate
as many uninterpreted functions as variables it modifies (excluding local vari-
ables of the loop) plus one to express all processes created inside the loop. The
functions have as arguments the variables accessed by the loop (again excluding
local variables). This transformation allows us to represent that each variable
might be affected by the execution of the loop over some parameters, and then
check in the reverse trace whether we get to the loop over the same parameters.

Definition 7 (loop extraction for IC generation). Let us consider a loop
L that accesses x1, . . . , xn variables and modifies y1, . . . , ym variables (excluding
local loop variables) and let l1, . . . , lm+1 be fresh function symbol names. We
replace L by the following code:

x′1 = x1; . . . ; x′n = xn; y1 = l1(x′1, ..., x
′
n); . . . ; ym = lm(x′1, ..., x

′
n);

spawn(fm+1(x′1, ..., x
′
n)); (only if there are spawn operations inside the loop)

Existing dependency analysis can be used to infer the subset of x1, . . . , xn that
affects each yi, achieving more precision with a small pre-computation overhead.

The treatment of method invocations (or function calls) to be executed atom-
ically within the considered blocks can be done analogously to loops by introduc-
ing one fresh function for every (non-local) variable that is modified within the
method call and one more for the result. The parameters of these new functions
are the original ones plus one for each accessed (non-local) variable. After the
transformations for both loops and calls described above, we have TSs with func-
tion calls that are treated as uninterpreted functions in a similar way to Def. 6.
However these functions can now occur in the conditions and the assignments of
the TS. To handle them, we use again a mapping P ′′ to remove all function calls
from the TS and replace them by fresh integer variables. After that the encoding

13

is like in Def. 6, and we obtain an SMT formula over LIA, which is again sent to
the allSAT SMT solver. Once we have obtained the models we replace back the
introduced fresh variables by the function calls using the mapping P ′′. Several
simplifications on equalities involving function calls can be done before and after
invoking the solver to improve the result. As a final remark, data structures like
lists or maps have been handled by expressing their uses as function calls, hence
obtaining constraints that include conditions on them.

5 Experiments

In this section we report on experimental results that compare the performance
of three DPOR algorithms: SDPOR [1, 2], CSDPOR [3] and our proposal CD-
POR. We have implemented and experimentally evaluated our method within
the SYCO tool [3], a systematic testing tool for message-passing concurrent
programs. SYCO can be used online through its web interface available at
http://costa.fdi.ucm.es/syco. To generate the ICs, SYCO calls a new
feature of the VeryMax program analyzer [7] which uses Barcelogic [6] as SMT
solver. As benchmarks, we have borrowed the examples from [3] (available online
from the previous url) that were used to compare SDPOR with CSDPOR. They
are classical concurrent applications: several concurrent sorting algorithms (QS,
MS, PS), concurrent Fibonacci Fib, distributed workers Pi, a concurrent regis-
tration system Reg and database DBP, and a consumer producer interaction BB.
These benchmarks feature the typical concurrent programming methodology in
which computations are split into smaller atomic subcomputations which con-
currently interleave their executions, and which work on the same shared data.
Therefore, the concurrent processes are highly interfering, and both inferring ICs
and applying DPOR algorithms on them becomes challenging.

We have executed each benchmark with size increasing input parameters.
A timeout of 60sec is used and, when reached, we write >X to indicate that
for the corresponding measure we encountered X units up to that point (i.e.,
it is at least X). Table 1 shows the results of the executions for 6 different
inputs. Column Tr shows the number of traces, S the number of states that the
algorithms explore, and T the time in sec it takes to compute them. For CDPOR,
we also show the time T smt of inferring the ICs (since the inference is performed
once for all executions, it is only shown in the first row). Times are obtained
on an Intel(R) Core(TM) i7 CPU at 2.5Ghz with 8GB of RAM (Linux Kernel
5.4.0). Columns Gs and Gcs show the time speedup of CDPOR over SDPOR
and CSDPOR, respectively, computed by dividing each respective T by the time
T of CDPOR. Column Gsmt shows the time speedup over CSDPOR including
T smt in the time of CDPOR. We can see from the speedups that the gains of
CDPOR increase exponentially in all examples with the size of the input. When
compared with CSDPOR, we achieve reductions up to 4 orders of magnitude for
the largest inputs on which CSDPOR terminates(e.g., Pi, QS). It is important
to highlight that the number of non-unitary sequences stored in sleep sets is 0
in every benchmark except in BB for which it remains quite low (namely for
BB(11) the peak is 22).

14

SDPOR CSDPOR CDPOR Speed-up

Bench. Tr S T Tr S T Tr S T Tsmt Gs Gcs Gsmt

Fib(6) 3k 26k 7.7 1 244 0.1 1 50 0.03 0.12 366 4 0.6
Fib(7) >13k >160k 60.0 1 551 0.3 1 82 0.05 >1364 6 1.4
Fib(8) >8k >101k 60.0 1 2k 0.7 1 134 0.12 >527 6 3.0
Fib(9) >4k >51k 60.0 1 3k 2.8 1 218 0.25 >242 12 7.5
Fib(10) >2k >27k 60.0 1 8k 11.5 1 354 0.69 >88 17 14.3
Fib(14) >10 >3k 60.0 >1 >4k 60.0 1 3k 42.67 >2 >2 >1.5
QS(10) 512 9k 2.6 1 4k 1.0 1 38 0.02 11.99 199 71 0.1
QS(13) 5k 91k 29.5 1 29k 7.9 1 50 0.03 1474 395 0.7
QS(15) >7k >157k 60.0 1 115k 42.6 1 58 0.05 >1500 1064 3.6
QS(20) >4k >98k 60.0 >1 >148k 60.0 1 78 0.04 >1539 >1539 >5.0
QS(25) >3k >96k 60.0 >1 >133k 60.0 1 98 0.06 >1017 >1017 >5.0
QS(200) >5 >2k 60.0 >1 >87k 60.0 1 798 4.45 >14 >14 >3.7
MS(10) 628 7k 2.9 1 187 0.1 1 42 0.02 0.12 175 6 0.7
MS(30) >6k >55k 60.0 1 974 1.0 1 118 0.13 >484 8 4.0
MS(65) >2k >16k 60.0 1 3k 3.5 1 258 0.47 >131 8 6.1
MS(100) >2k >15k 60.0 >1 >19k 60.0 1 398 0.97 >63 >63 >55.6
MS(150) >2k >21k 60.0 >1 >18k 60.0 1 598 2.21 >28 >28 >26.0
MS(220) >341 >6k 60.0 >1 >5k 60.0 1 878 4.49 >14 >14 >13.1
Pi(7) 6k 49k 16.2 74 2k 0.4 1 23 0.02 0.05 1243 27 5.6
Pi(8) >10k >105k 60.0 264 5k 1.7 1 26 0.02 >4616 128 26.9
Pi(9) >11k >120k 60.0 2k 19k 7.0 1 29 0.02 >4000 465 108.9
Pi(10) >10k >128k 60.0 6k 91k 45.2 1 32 0.02 >3530 2655 683.7
Pi(12) >9k >122k 60.0 >7k >128k 60.0 1 38 0.03 >2400 >2400 >810.9
Pi(20) >5k >101k 60.0 >5k >115k 60.0 1 62 0.09 >723 >723 >454.6
PS(4) 288 2k 0.4 2 41 0.1 1 16 0.01 0.59 72 2 0.1
PS(5) 35k 156k 43.2 8 142 0.1 1 22 0.01 5391 5 0.1
PS(6) >32k >141k 60.0 72 2k 0.4 1 29 0.02 >4286 28 0.7
PS(7) >29k >130k 60.0 2k 28k 7.5 1 37 0.03 >2858 357 12.3
PS(9) >25k >109k 60.0 >11k >165k 60.0 1 56 0.06 >1053 >1053 >92.9
PS(11) >23k >103k 60.0 >9k >132k 60.0 1 79 0.09 >690 >690 >88.8
DBP(5) 243 8k 2.0 133 4k 1.0 32 193 0.08 0.09 27 14 6.2
DBP(6) 729 33k 8.2 308 11k 3.2 64 386 0.16 53 21 13.3
DBP(7) 3k 134k 36.9 699 32k 10.8 128 771 0.33 113 33 26.2
DBP(8) >4k >157k 60.0 2k 91k 36.1 256 2k 0.79 >77 47 41.6
DBP(10) >6k >116k 60.0 >4k >125k 60.0 2k 7k 3.23 >19 >19 >18.2
DBP(12) >9k >79k 60.0 >8k >111k 60.0 5k 25k 15.79 >4 >4 >3.8
BB(6) 924 4k 1.3 215 2k 0.5 64 382 0.91 0.18 2 1 0.4
BB(7) 4k 13k 4.3 580 4k 1.2 128 830 1.49 3 1 0.8
BB(8) 13k 49k 17.2 2k 11k 3.3 256 2k 2.79 7 2 1.1
BB(9) >41k >156k 60.0 5k 30k 9.0 512 4k 6.15 >10 2 1.5
BB(10) >46k >176k 60.0 12k 81k 23.6 2k 9k 12.50 >5 2 1.9
BB(11) >44k >169k 60.0 >44k >169k 60.0 3k 18k 25.74 >3 >3 >2.4

Table 1. Experimental evaluation

W.r.t. SDPOR, we achieve reductions of 4 orders of magnitude even for
smaller inputs for which SDPOR terminates (e.g., PS). Note that since most
examples reach the timeout, the gains are at least the ones we show, thus the
concrete numbers shown should not be taken into account. In some examples
(e.g., BB, MS), though the gains are linear for the small inputs, when the size
of the problem increases both SDPOR and CSDPOR time out, while CDPOR
can still handle them efficiently.

Similar reductions are obtained for number of states explored. In this case,
the system times out when it has memory problems, and the computation stops
progressing (hence the number of explored states does not increase with the input
any more). As regards the time to infer the annotations T smt, we observe that in
most cases it is negligible compared to the exploration time of the other methods.
QS is the only example that needs some seconds to be solved and this is due to

15

the presence of several nested conditional statements combined with the use of
built-in functions for lists, which makes the generated SMT encoding harder for
the solver and the subsequent simplification step. Note that the inference is a
pre-process which does not add complexity to the actual DPOR algorithm.

6 Related work and conclusions

The notion of conditional independence in the context of POR was first intro-
duced in [12, 16]. Also [13] provides a similar strengthened dependency defini-
tion. CSDPOR was the first approach to exploit this notion within the state-of-
the-art DPOR algorithm. We advance this line of research by fully integrating
conditional independence within the DPOR framework by using independence
constraints (ICs) together with the notion of transitive uniform conditional in-
dependence –which ensures the ICs hold along the whole execution sequence.
Both ICs and transitive uniformity can be approximated statically and checked
dynamically, making them effectively applicable within the dynamic framework.
The work in [15, 21] generated for the first time ICs for processes with a single
instruction following some predefined patterns. This is a problem strictly sim-
pler than our inference of ICs both in the type of IC generated (restricted to the
patterns) and on the single-instruction blocks they consider. Furthermore, our
approach using an AllSAT SMT solver is different from the CEGAR approach
in [5]. The ICs are used in [15, 21] for SMT-based bounded model checking, an
approach to model checking fundamentally different from our stateless model
checking setting. As a consequence ICs are used in a different way, in our case
with no bounds on number of processes, nor derivation lengths, but requiring
a uniformity condition on independence in order to ensure soundness. Maximal
causality reduction [14] is technically quite different from CDPOR as it integrates
SMT solving within the dynamic algorithm.

Finally, data-centric DPOR (DCDPOR) [8] presents a new DPOR algorithm
based on a different notion of dependency according to which the equivalence
classes of derivations are based on the pairs read-write of variables. Consider the
following three simple processes {p, q, r} and the initial state x = 0:

p: write(x=5), q: write(x=5), r: read(x). In DCDPOR, we have only
three different observation functions: (r, x) (reading the initial value), (r, p)
(reading the value that p writes), (r, q) (reading the value that q writes). There-
fore, this notion of relational independence is finer grained than the traditional
one in DPOR. However, DCDPOR does not consider conditional dependency,
i.e., it does not realize that (r, p) and (r, q) are equivalent, and hence only two ex-
plorations are required (and explored by CDPOR). In conclusion, our approach
and DCDPOR can complement each other: our approach would benefit from
using a dependency based on the read-write pairs as proposed in DCDPOR, and
DCDPOR would benefit from using conditional independence as proposed in
our work. It remains as future work to study this integration. Related to DCD-
POR, [4] extends optimal DPOR with observers. For the previous example, [4]
needs to explore five executions: r.p.q and r.q.p, are equivalent because p and q
do not have any observer. Another improvement orthogonal to ours is to inspect
dependencies over chains of events, as in [17] and [19].

16

References

1. Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas.
Source sets: A foundation for optimal dynamic partial order reduction. J. ACM,
64(4):25:1–25:49, 2017.

2. Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos F. Sagonas.
Optimal Dynamic Partial Order Reduction. In POPL, pages 373–384, 2014.

3. Elvira Albert, Puri Arenas, Maria Garcia de la Banda, Miguel Gómez-Zamalloa,
and Peter J. Stuckey. Context-sensitive dynamic partial order reduction. In CAV,
pages 526–543, 2017.

4. Stavros Aronis, Bengt Jonsson, Magnus L̊ang, and Konstantinos Sagonas. Optimal
dynamic partial order reduction with observers. In TACAS. Part II, pages 229–248,
2018.

5. Kshitij Bansal, Eric Koskinen, and Omer Tripp. Commutativity condition refine-
ment, 2015.

6. Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodŕıguez-Carbonell,
and Albert Rubio. The barcelogic SMT solver. In CAV, pages 294–298, 2008.

7. Cristina Borralleras, Daniel Larraz, Albert Oliveras, José Miguel Rivero, Enric
Rodŕıguez-Carbonell, and Albert Rubio. VeryMax: Tool description for term-
COMP 2016. In WST, 2016.

8. Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Kapil Vaidya, and
Nishant Sinha. Data-centric dynamic partial order reduction. In POPL 2018, 2018.

9. Edmund M. Clarke, Orna Grumberg, Marius Minea, and Doron A. Peled. State
space reduction using partial order techniques. STTT, 2(3):279–287, 1999.

10. Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for
model checking software. In POPL, pages 110–121, 2005.

11. Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems - An Approach to the State-Explosion Problem, volume 1032 of LNCS.
Springer, 1996.

12. Patrice Godefroid and Didier Pirottin. Refining dependencies improves partial-
order verification methods (extended abstract). In CAV, pages 438–449, 1993.

13. Henning Günther, Alfons Laarman, Ana Sokolova, and Georg Weissenbacher. Dy-
namic reductions for model checking concurrent software. In VMCAI, pages 246–
265, 2017.

14. Shiyou Huang and Jeff Huang. Speeding up maximal causality reduction with
static dependency analysis. In ECOOP, pages 16:1–16:22, 2017.

15. Vineet Kahlon, Chao Wang, and Aarti Gupta. Monotonic partial order reduction:
An optimal symbolic partial order reduction technique. In CAV, pages 398–413,
2009.

16. Shmuel Katz and Doron A. Peled. Defining conditional independence using col-
lapses. TCS, 101(2):337–359, 1992.

17. Huyen T. T. Nguyen, César Rodŕıguez, Marcelo Sousa, Camille Coti, and Laure
Petrucci. Quasi-optimal partial order reduction. CoRR, abs/1802.03950, 2018.

18. Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program
Analysis. Springer, 1999.

19. César Rodŕıguez, Marcelo Sousa, Subodh Sharma, and Daniel Kroening.
Unfolding-based partial order reduction. In CONCUR, pages 456–469, 2015.

20. Antti Valmari. Stubborn Sets for Reduced State Space Generation. In Advances
in Petri Nets, pages 491–515, 1990.

21. Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta. Peephole partial order
reduction. In TACAS, pages 382–396, 2008.

17

