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Abstract

Modern organizations produce and collect large volumes of data, that need
to be processed repeatedly and quickly for gaining business insights. For
such processing, typically, Data-intensive Flows (DIFs) are deployed on dis-
tributed processing frameworks. The DIFs of different users have many com-
putation overlaps (i.e., parts of the processing are duplicated), thus wasting
computational resources and increasing the overall cost. The output of these
computation overlaps (known as intermediate results) can be materialized for
reuse, which helps in reducing the cost and saves computational resources if
properly done. Furthermore, the way such outputs are materialized must be
considered, as different storage layouts (i.e., horizontal, vertical, and hybrid)
can be used to reduce the I/O cost.

In this PhD work, we first propose a novel approach for automatically
materializing the intermediate results of DIFs through a multi-objective opti-
mization method, which can tackle multiple and conflicting quality metrics.
Next, we study the behavior of different operators of DIFs that are the first
to process the loaded materialized results. Based on this study, we devise
a rule-based approach, that decides the storage layout for materialized re-
sults based on the subsequent operation types. Despite improving the cost
in general, the heuristic rules do not consider the amount of data read while
making the choice, which could lead to a wrong decision. Thus, we design
a cost model that is capable of finding the right storage layout for every sce-
nario. The cost model uses data and workload characteristics to estimate the
I/O cost of a materialized intermediate results with different storage layouts
and chooses the one which has minimum cost. The results show that storage
layouts help to reduce the loading time of materialized results and overall,
they improve the performance of DIFs.

The thesis also focuses on the optimization of the configurable parameters
of hybrid layouts. We propose ATUN-HL (Auto TUNing Hybrid Layouts),
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which based on the same cost model and given the workload and character-
istics of data, finds the optimal values for configurable parameters in hybrid
layouts (i.e., Parquet).

Finally, the thesis also studies the impact of parallelism in DIFs and hybrid
layouts. Our proposed cost model helps to devise an approach for fine-tuning
the parallelism by deciding the number of tasks and machines to process the
data. Thus, the cost model proposed in this thesis, enables in choosing the
best possible storage layout for materialized intermediate results, tuning the
configurable parameters of hybrid layouts, and estimating the number of
tasks and machines for the execution of DIFs.

Keywords

data-intensive flows; storage layouts; big data; parallelism; data management



Resumen

Las organizaciones producen y recopilan grandes volúmenes de datos, que
deben procesarse de forma repetitiva y rápida para obtener información rel-
evante para la empresa. Para tal procesamiento, por lo general, se emplean
flujos intensivos de datos (DIFs por sussiglas en inglés) en entornos de proce-
samiento distribuido. Los DIFs de diferentes usuarios tienen elementos co-
munes (es decir, se duplican partes del procesamiento, lo que desperdicia
recursos computacionales y aumenta el coste en general). Los resultados
intermedios de varios DIFs pueden pues coincidir y se pueden por tanto
materializar para facilitar su reutilización, lo que ayuda a reducir el coste y
ahorrar recursos si se realiza correctamente. Además, la forma en qué se
materializan dichos resultados debe ser considerada. Por ejemplo, diferentes
tipos de diseño lógico de los datos (es decir, horizontal, vertical o híbrido) se
pueden utilizar para reducir el coste de E/S.

En esta tesis doctoral, primero proponemos un enfoque novedoso para
materializar automáticamente los resultados intermedios de los DIFs a través
de un método de optimización multi-objetivo, que puede considerar múlti-
ples y contradictorias métricas de calidad. A continuación, estudiamos el
comportamiento de diferentes operadores de DIF que acceden directamente
a los resultados materializados. Sobre la base de este estudio, ideamos un
enfoque basado en reglas, que decide el diseño del almacenamiento para
los resultados materializados en función de los tipos de operaciones que los
utilizan directamente. A pesar de mejorar el coste en general, las reglas
heurísticas no consideran estadísticas sobre la cantidad de datos leídos al
hacer la elección, lo que podría llevar a una decisión errónea. Consecuente-
mente, diseñamos un modelo de costos que es capaz de encontrar el diseño
de almacenamiento adecuado para cada escenario dependiendo de las carac-
terísticas de los datos almacenados. El modelo de costes usa estadísticas y
características de acceso para estimar el coste de E/S de un resultado inter-
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medio materializado con diferentes diseños de almacenamiento y elige el de
menor coste. Los resultados muestran que los diseños de almacenamiento
ayudan a reducir el tiempo de carga de los resultados materializados y, en
general, mejoran el rendimiento de los DIF.

La tesis también presta atención a la optimización de los parámetros con-
figurables de diseños híbridos. Proponemos así ATUN-HL (Auto TUNing
Hybrid Layouts), que, basado en el mismo modelo de costes, las caracterís-
ticas de los datos y el tipo de acceso que se está haciendo, encuentra los
valores óptimos para los parámetros de configuración en disponibles Par-
quet (una implementación de diseños híbridos para Hadoop Distributed File
System).

Finalmente, esta tesis estudia el impacto del paralelismo en DIF y diseños
híbridos. El modelo de coste propuesto ayuda a idear un enfoque para ajus-
tar el paralelismo al decidir la cantidad de tareas y máquinas para procesar
los datos. En resumen, el modelo de costes propuesto permite elegir el mejor
diseño de almacenamiento posible para los resultados intermedios material-
izados, ajustar los parámetros configurables de diseños híbridos y estimar el
número de tareas y máquinas para la ejecución de DIF.

Palabras Clave

flujos intensivos de datos; diseños de almacenamiento; grandes datos; par-
alelismo; gestión de datos



Abstrakt

Moderne Unternehmen produzieren und sammeln große Datenmengen, die
wiederholt und schnell verarbeitet werden müssen, um geschäftliche Erken-
ntnisse zu gewinnen. Für die Verarbeitung dieser Daten werden typischer-
weise Datenintensive Prozesse (DIFs) auf verteilten Systemen wie z.B. MapRe-
duce bereitgestellt. Dabei ist festzustellen, dass die DIFs verschiedener Nutzer
sich in großen Teilen überschneiden, wodurch viel Arbeit mehrfach geleistet,
Ressourcen verschwendet und damit die Gesamtkosten erhöht werden. Um
diesen Effekt entgegenzuwirken, können die Zwischenergebnisse der DIFs
für spätere Wiederverwendungen materialisiert werden. Hierbei müssen vor
allem die unterschiedlichen Speicherlayouts (horizontal, vertikal und hybrid)
berücksichtigt werden.

In dieser Doktorarbeit wird ein neuartiger Ansatz zur automatischen Ma-
terialisierung der Zwischenergebnisse von DIFs durch eine mehrkriterielle
Optimierungsmethode vorgeschlagen, der in der Lage ist widersprüchliche
Qualitätsmetriken zu behandeln. Des Weiteren wird untersucht die Wech-
selwirkung zwischen verschiedenen Operatortypen und unterschiedlichen
Speicherlayouts untersucht. Basierend auf dieser Untersuchung wird ein
regelbasierter Ansatz vorgeschlagen, der das Speicherlayout für material-
isierte Ergebnisse, basierend auf den nachfolgenden Operationstypen, fes-
tlegt. Obwohl sich die Gesamtkosten für die Ausführung der DIFs im All-
gemeinen verbessern, ist der heuristische Ansatz nicht in der Lage die gele-
sene Datenmenge bei der Auswahl des Speicherlayouts zu berücksichtigen.
Dies kann in einigen Fällen zu falschen Entscheidung führen. Aus diesem
Grund wird ein Kostenmodell entwickelt, mit dem für jedes Szenario das
richtige Speicherlayout gefunden werden kann. Das Kostenmodell schätzt
anhand von Daten und Auslastungsmerkmalen die E/A-Kosten eines mate-
rialisierten Zwischenergebnisses mit unterschiedlichen Speicherlayouts und
wählt das kostenminimale aus. Die Ergebnisse zeigen, dass Speicherlayouts
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die Ladezeit materialisierter Ergebnisse verkürzen und insgesamt die Leis-
tung von DIFs verbessern.

Die Arbeit befasst sich auch mit der Optimierung der konfigurierbaren
Parameter von hybriden Layouts. Konkret wird der sogenannte ATUN-HL-
Ansatz (Auto TUNing Hybrid Layouts) entwickelt, der auf der Grundlage
des gleichen Kostenmodells und unter Berücksichtigung der Auslastung und
der Merkmale der Daten die optimalen Werte für konfigurierbare Parameter
in Parquet, d.h. eine Implementierung von hybrider Layouts.

Schließlich werden in dieser Arbeit auch die Auswirkungen von Paral-
lelität in DIFs und hybriden Layouts untersucht. Dazu wird ein Ansatz en-
twickelt, der in der Lage ist die Anzahl der Aufgaben und dafür notwendigen
Maschinen automatisch zu bestimmen. Zusammengefasst lässt sich festhal-
ten, dass das in dieser Arbeit vorgeschlagene Kostenmodell es ermöglicht,
das bestmögliche Speicherlayout für materialisierte Zwischenergebnisse zu
ermitteln, die konfigurierbaren Parameter hybrider Layouts festzulegen und
die Anzahl der Aufgaben und Maschinen für die Ausführung von DIFs zu
schätzen.

Schlüsselwörter

datenintensive Flüsse; Speicherlayouts; Große Daten; Parallelität; Datenman-
agement
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1
Introduction

1.1 Background and Motivation

We are living in an era, where data is a valuable asset. Its size is exponen-
tially growing from petabytes to zettabytes [71]. For instance, data globally
generated in two days is larger than what we have generated from the dawn
of civilization up until 20031. Such large volume of data cannot be handled in
a single machine, due to the limitation in computing power. Thus, the avail-
ability of data has imposed a shift in the hardware, from single machines to
large scale computer clusters. Researchers have proposed many distributed
processing systems (such as Hadoop2, Spark3, etc.) to facilitate storing and
processing of such large volume of data.

The Hadoop ecosystem is a pioneer large-scale distributed system, that
consists of a storage layer namely, Hadoop Distributed File System (HDFS)4

and a processing layer namely, MapReduce [18]. The former allows to keep
data in raw format without any normalization or pre-processing. The lat-
ter allows parallel processing of the data. Hadoop follows a master-slave

1https://techcrunch.com/2010/08/04/schmidt-data
2https://hadoop.apache.org
3https://spark.apache.org
4https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

1



Chapter 1. Introduction

Fig. 1.1: High-level architecture of Hadoop

architecture, where one node is a master and all the others act as slaves.
HDFS master node (also known as NameNode) is responsible for storing
meta-data about data stored on each slave machine (also known as DataN-
ode). Whereas, MapReduce has a master node (known as JobTracker), which
is responsible of executing jobs on different slave machines (known as Task-
Tracker). Figure 1.1 shows the high-level architecture of a Hadoop cluster.

Many enterprises already have their own Hadoop clusters and motivate
their employees to utilize the cluster for their analysis. However, it is dif-
ficult to write an analytical job in pure MapReduce programming model.
Researchers have proposed many high-level languages (Pig 5, Hive 6, Drill 7,
etc.) to facilitate writing analytical jobs. These languages hide the complexity
from end-user and facilitate exploring the data on ad-hoc basis. They trans-
late the code into a Directed Acyclic Graph (DAG) of multiple MapReduce
jobs, which is also known as Data-Intensive Flows (DIFs). Each node of a
DAG takes an input data and produces an output after performing certain
processing. Figure 1.2a shows an example of two DIFs.

These DIFs process a large volume of data and take a lot of time to pro-
duce the desired outputs. The competition in businesses also demands quick
business-insights, which make it always desirable to optimize the execution
of DIFs. The goal of optimization is to reduce the execution time and also
save computational resources, which indirectly save energy and money. This
thesis focuses specifically on optimizing the execution of DIFs.

5https://pig.apache.org
6https://hive.apache.org
7https://drill.apache.org
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1.1. Background and Motivation

Fig. 1.2: Benefits of Materialization

As mentioned previously, modern organizations have their own Hadoop
cluster, which is shared and used by multiple users of the same organiza-
tion. They deploy their DIFs on the cluster to store and process the data.
They work for the same objectives and thus, their DIFs share many com-
mon/redundant parts (also known as Intermediate Results - IRs), which is
already acknowledged in an in-depth study of seven enterprises [14]. This
study showed that 80% of DIFs had redundant/common parts. Similarly, re-
cent studies [43, 44] from Microsoft have shown that 65% of their DIFs have
redundant parts.

These studies highlight the opportunity of optimizing the DIFs’ execution.
They imply that a proper management of IRs could provide benefits in terms
of computational resources and execution time. For instance, if the IRs are
materialized then they can be used in future executions without recomputing
them as shown in Figure 1.2. This would help to improve the execution time
and save computational resources.

The execution time of DIFs can be further reduced by choosing the stor-
age layouts for the chosen materialized IRs. Typically, the materialized IRs
are stored on HDFS, where I/O operations are expensive [10]. Hence, unnec-
essary reads and writes performed, increase the execution cost. Researchers
have come up with different storage layouts that help in reducing the amount
of read and write operations. These layouts are built on top of HDFS and are
designed for fast loading, fast query processing and efficient storage utiliza-

3



Chapter 1. Introduction

Fig. 1.3: Degree of Parallelism

tion. They are categorized into horizontal layouts (i.e., SequenceFile8, Avro9,
etc.), vertical layouts (i.e., Zebra10, etc.), and hybrid layouts (i.e., Parquet11,
ORC12, etc.). None of them is the universal best choice; different workloads
require different layouts to achieve optimal performance [5]. Indeed, the I/O
operations of loading materialized IRs can be reduced by using different stor-
age layouts for materialization based on the workload [59].

Additionally, researchers have proposed new methods to further improve
the execution of DIFs by storing data as a very wide table without apply-
ing any normalization [10, 54] and using hybrid layouts to store it, due to
their built-in support for many basic operations (i.e., selectivity, projection,
aggregation, etc.) allowing direct ad-hoc analysis, without the need of mov-
ing the data to other storage engines (i.e., relational, document store, etc.).
Hybrid layouts have many configuration parameters, which need to be con-
figured according to the running workload. Otherwise, their default values
can significantly impact the execution of DIFs.

As mentioned previously, hybrid layouts allow to read less data from the
disk for certain operations, which is not thoroughly exploited by distributed

8https://wiki.apache.org/hadoop/SequenceFile
9https://avro.apache.org

10https://wiki.apache.org/pig/zebra
11https://parquet.apache.org
12https://orc.apache.org
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frameworks when deciding the degree of parallelism (which is also the num-
ber of tasks). Indeed, they always decide the number of tasks based on the
total table size and not on the portion of the table being read, which leads
to the over-provisioning of tasks and degrade the performance of individ-
ual DIFs, because many tasks remain idle — without any data to process,
but still present extra overhead (e.g., initialization time, garbage collection)
as shown in Figure 1.3a. In an ideal scenario, it should create the number
of tasks based on the amount of data read from the disk as shown in Fig-
ure 1.3b, which would help to reduce the execution time and also save the
computational resources.

1.2 Research Problems and Challenges

Data analysis is performed by deploying DIFs on a distributed cluster to pro-
cess the stored data and getting useful information for the business. The
competition in markets demands data to be processed quickly and efficiently.
Quick analysis can be done by reducing the execution time of DIFs and ef-
ficiency can be improved by reducing the resource usage, which indirectly
leads to save money. This thesis focuses on providing solutions for both.

Nowadays, organizations have a central distributed system for analysis
installed within premises or on a public cloud. This cluster is shared and
used by multiple users of the same organizations simultaneously. These users
work for the same business objectives, hence they perform many redundant
tasks, which can be avoided by materializing their outputs (also known as
IRs). Thus, the materialization is stored on the disk, where I/O operations are
expensive. These I/O operations can be reduced by storing the materialized
IRs using the best possible storage layout based on the running workload.

The first research problem is related to the selection of best IRs under
the given Service Level Agreements (SLAs). There have been already many
solutions proposed for choosing the IRs for materialization, but they do not
consider multiple conflicting SLAs while choosing IRs for materialization.
Our goal is to propose a generic approach, which can take any SLA that is
quantifiable (i.e., it has associated metrics to compute its cost) and utilize the
given SLA’s metrics in a multi-objective approach for selecting the best IRs,
that help in improving the execution of DIFs.

The second research problem focuses on storing the chosen IRs in the
best possible way, so that their loading time can be reduced. There are many
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available storage layouts, that are best suited for different workloads. It is
very challenging to choose a storage layout for a selected IR, which can im-
prove its loading time because different storage layouts are good for different
types of operations. Thus, it is very important to analyze the type of opera-
tion, which is going to read IRs and based on that decide the best option. Our
objective is to propose heuristic-based rules and statistical-based cost model
for choosing the storage layout. The heuristic-based rules help for cold-start
when there is no statistical information are available. Whereas, we record the
statistical information during the first execution and utilize them in our cost
model for future executions.

Nowadays, storage is very cheap but time is always a constraint for get-
ting business insights. Thus, researchers have proposed denormalized tables
(aka wide tables) to store the data. Wide tables allow to analyze data with-
out any need of using JOIN operations, which is expensive in distributed
systems. Typically, these very wide tables are stored using hybrid layouts
that support projection and selection operations. This support helps to read
less data from the disk and improve the overall execution. However, hybrid
layouts have parameters that need to be configured according the running
workload. Otherwise, it can degrade the execution of DIFs.

The third research problem focuses on tuning the configuration parame-
ters for hybrid layouts. Thus, this thesis proposes a cost-based approach for
finding the best possible values according to the current workload.

As mentioned earlier, hybrid layouts help to read less data for certain
operations. However, distributed systems do not consider this important
factor when deciding the number of tasks to process the data. This leads
to over-provision of tasks, that impact the execution of DIFs and waste the
computational resources.

Thus, the fourth research problem focuses on choosing the number of
tasks and number of machines for the efficient execution of a given DIF. The
thesis utilizes the proposed cost model to decide the number of tasks and
computational resources.

1.3 Running Example

In this section, we present a running example to show the complete end-
to-end pipeline based on the above mentioned research questions. Let us
assume that there are two users (user A and user B), who are running their
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Fig. 1.4: Two DIFs with common parts

Fig. 1.5: JOIN materialized node with its selected storage format

DIFs on a shared distributed cluster as shown in Figure 1.4. As it can be seen
in the figure, the DIFs of both users have a common node (i.e., join), which
can be materialized for re-use. The problem of identifying the right node to
materialize relates to our first research question.

After choosing JOIN for materialization, we would need to store it on the
disk to re-use in future executions. There are many storage layouts available,
however each one of them is good for specific types of workloads. In our
second research question, we focus on this problem and we propose a solu-
tion that helps in deciding the right storage layout according to the access
pattern of the chosen materialized node. The proposed solution analyzes the
first operations, which are going to read the data from the materialized node.
In the above scenario, the first operation in both DIFs is filter and thus, our
approach chooses hybrid layout (as shown in Figure 1.5) due to its built-in
support for filters. It can be seen in Figure 1.5, that hybrid layouts help these
DIFs to read less blocks (i.e., 1 out of 3 for user A and 2 out of 3 for user B)
from the disk by using predicate push-down.

Let us assume that the default block size of the hybrid layout is 128MB.
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Fig. 1.6: JOIN materialized node with its selected configured storage format

Fig. 1.7: JOIN materialized node with its selected configured storage format and number of
optimal tasks

It means that the DIF of user A is reading 128MB from the disk (1 block),
whereas the DIF of user B is reading 256MB (2 blocks). The amount of data
read can be reduced by configuring the default block size of hybrid layouts.
This problem relates to our third research question. Let us suppose that our
proposed approach configures 64MB for the block size and now, we have in
total 6 blocks rather than 3 as shown in Figure 1.6. The number of blocks
read is the same but the total amount of data read has been reduced (64MB
for user A and 128MB for user B). This reduces 50% of the I/O operations
and helps in improving the execution time of each DIF.

It should be noted that the distributed processing frameworks always cre-
ate a task for each block on the disk, rather than based on the actual number
of blocks read. Thus, it always creates 6 tasks (if we execute one task per ma-
chine, then we need 6 machines to process these tasks) for each DIF, however
both DIFs are reading fewer blocks. It means many tasks are going to be idle
without processing any data and also wasting computational resources.

Our fourth research question focuses on configuring the number of tasks
and machines based on the real number of blocks read. As shown in Fig-
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ure 1.7, it configures 1 tasks for the DIF of user A and 2 tasks for the DIF of
user B, based on their number of blocks read. If we want to execute all of
these tasks in parallel, it means we just need 1 machine for the DIF of user
A and 2 machines for the DIF of user B, which would help to improve the
execution of both DIFs and also save computational resources.

1.4 Contributions

The first research problem focuses on selecting materialized IRs for the given
SLAs. We proposed a generic framework that can take any type of quantifi-
able SLA. These SLAs can be conflicting and can serve different objectives.
We utilized an existing multi-objective optimization approach (i.e., local min-
ima with hill-climbing) to consider all the given SLA’s metrics and according
to them, selecting the best IRs for materialization. We prototyped our ap-
proach for four example SLA’s metrics (i.e., loading time, query time, storage
space, and freshness). The loading time and freshness were considered due
to their conflicting nature. Our proposed framework is also compared and
tested against the state of the art solutions to confirm its usefulness.

The second research problem focuses on deciding the storage layout for
chosen IRs. We did extensive experimental study and found that only the
first operation impacts the reading directly from the disk. Thus, deciding the
storage layout based on the first operation can help in deciding the best possi-
ble storage layout. Based on this evaluation, first we propose heuristic-based
rules to choose the best storage layout. These rules are derived based on
the features provided by different storage layouts and their implementations.
The improvements that we got through our heuristic-based rules motivated
us to go for statistical-based cost model to do the same job. The cost model
provides better accuracy compared to the rule based approach. However, the
cost model requires statistical information, which is not available in the first
execution of DIF. To handle this scenario, we proposed a hybrid approach
that utilizes both heuristic-based rule for cold-start and statistical-based cost
model for future executions. We also proposed an approach to record statis-
tical information during the execution of DIFs.

The third research problem focuses on configuring the parameters of hy-
brid layouts according to the running workload. We already proposed the
cost model for the second research problem, that has a cost model for hybrid
layout to estimate its read and write cost. We have used the same cost model
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in estimating the reading cost in hybrid layouts for current running work-
load, by putting different values for all configurable parameters. This cost
model helped us to find the best possible values, which improve the overall
execution of the running workload.

Finally, the fourth research problem focuses on configuring the number
of tasks and number of machines for executing a given query. We have ex-
tended the same cost model for hybrid layouts to decide the number of tasks
and machines. The extended cost model considered the reading size and
used it further in estimating the tasks and machines, that are optimal to pro-
cess a given DIF. Our detailed experimental evaluation showed significant
improvements.

1.5 Thesis Overview

The thesis focuses on solving four research problems. The solution of each
problem is presented in a separate chapter. The main body of this thesis is
also presented in the following publications:

P1. Rana Faisal Munir, Oscar Romero, Alberto Abelló, Besim Bilalli, Maik
Thiele, and Wolfgang Lehner. ResilientStore: A Heuristic-Based Data
Format Selector for Intermediate Results13 In: International Conference
on Model and Data Engineering, (MEDI 2016). pp. 42-56. DOI: https:
//doi.org/10.1007/978-3-319-45547-1_4

P2. Rana Faisal Munir, Sergi Nadal, Oscar Romero, Alberto Abelló, Petar
Jovanovic, Maik Thiele, and Wolfgang Lehner. Intermediate Results
Materialization Selection and Format for Data-Intensive Flows14. In:
Fundamenta Informaticae, (Fundam. Inform. 2018). pp. 111-138. DOI:
https://doi.org/10.3233/FI-2018-1734

P3. Rana Faisal Munir, Alberto Abelló, Oscar Romero, Maik Thiele, and
Wolfgang Lehner. A Cost-based Storage Format Selector for Materi-

13This work has been carried out in collaboration with Besim Billali, who has helped in
reviewing the paper and setting up the experiment’s environment. Whereas, Rana Faisal Munir
proposed the core idea, did its implementation and executed the experiments on the cluster.

14This work has been done together with Sergi Nadal and Petar Jovanovic. Specifically, Petar
Jovanovic helped in formalizing the approach and devising the algorithm. Whereas, Sergi Nadal
did the implementation and experiments part for the algorithm. Rana Faisal Munir extended
Sergi’s algorithm to include characteristics vector and did the comparison with an existing state
of the art solution.
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alization in Big Data Frameworks. In: Distributed and Parallel Databases
(DAPD 2019). DOI: https://doi.org/10.1007/s10619-019-07271-0

P4. Rana Faisal Munir, Alberto Abelló, Oscar Romero, Maik Thiele, and
Wolfgang Lehner. ATUN-HL: Auto Tuning of Hybrid Layouts Using
Workload and Data Characteristics. In: European Conference of Advances
in Databases and Information Systems, (ADBIS 2018). pp. 200-215. DOI:
https://doi.org/10.1007/978-3-319-98398-1_14

P5. Rana Faisal Munir, Alberto Abelló, Oscar Romero, Maik Thiele, and
Wolfgang Lehner. Automatically Configuring Parallelism for Hybrid
Layouts. In: European Conference of Advances in Databases and Information
Systems, (ADBIS 2019). pp. 120-125. DOI: https://doi.org/10.1007/
978-3-030-30278-8_15 (Short Paper)

P6. Rana Faisal Munir, Alberto Abelló, Oscar Romero, Maik Thiele, and
Wolfgang Lehner. Configuring Parallelism for Hybrid Layouts using
Multi-Objective Optimization. Submitted to Big Data (Under review)

The related work for all research problems is presented in Chapter 2. Re-
maining chapters present a solution for each research problem. Chapter 3
presents the solution for selecting IRs for materialization, Chapter 4 solves
the problem of choosing storage layouts for chosen materialized IRs, Chap-
ter 5 provides solution to fine-tune the configuration parameters of hybrid
layouts, and Chapter 6 configures the degree of parallelism. In Chapter 7, we
summarize this thesis and discuss the future work directions.

1.5.1 Chapter 3: Intermediate Results Materialization Selec-
tion

In this chapter, we proposed a generic framework, which can take any quan-
tifiable SLA and based on these, find the best possible intermediate results for
materialization using multi-objective optimization. We consider four SLA’s
metrics (i.e., loading time, storage cost, query cost, and freshness) for this
study to show the importance and benefits of our approach. Freshness is con-
sidered to allow stale data in some materialized intermediate results, which
help to reduce loading time for frequent update input sources. We evaluate
our approach with an existing state of the art solution to show its accuracy
and benefits.
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1.5.2 Chapter 4: Storage Format Selection for Materialized
Intermediate Results

This chapter focuses particularly on the storage of materialized intermediate
results. We found that the first operation has direct impact on reading from
the disk. Whereas, subsequent operations read all the data produced by the
first operation. Thus, only the first operation can decide to read less data
from disk. Consequently, we propose heuristic-rules based on the type of
first operation and features provided by different storage layouts. We utilize
the heuristic-rules in a hybrid approach to decide the storage layouts for
the chosen intermediate results for materialization. The heuristic-rules are
used for cold-start, when there is no statistical information available. When
statistical information is available, the cost model is used to estimate the
I/O cost of different storage layouts and choosing the one, which has overall
minimum cost. Our detailed experiments on open source benchmarks show
the significant reduction in the loading time of materialized intermediate
results and overall, it improves the execution of DIFs.

1.5.3 Chapter 5: Auto Tuning of Hybrid Layouts Using Work-
load and Data Characteristics

Hybrid layouts are becoming a standard to store very wide tables, due to
their built-in support for projection and selection operations. They also have
support for dictionary encoding and compression on the stored data. These
features help to read less data from the disk and further speedup the execu-
tion of DIFs. These built-in features of hybrid layout require many configu-
ration parameters, which have default values. The default values can impact
negatively on the execution of DIFs and degrade the execution performance.
These parameters should be configured based on the characteristics of data
and running workload.

In this chapter, we propose a cost-based approach to configure these pa-
rameters and find their best possible values based on the characteristics of
data and workload. The cost model requires statistical information about
data and workload. We have utilized single-column profiling technique to
profile the data and job history files are used to extract the characteristics of
the workload. Based on these characteristics, the best possible values are con-
figured for hybrid layouts. Our detailed experiments show the improvements
in the execution of DIFs.
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1.5.4 Chapter 6: Configuring Parallelism for Hybrid Layouts
using Multi-Objective Optimization

Resource provisioning is always a challenge for the execution of DIFs. There
is no straight way to decide how many tasks and machines are optimal for
executing a given DIF. Specifically, when DIFs read data from hybrid layouts,
that help to read less data for certain operations (i.e., projection and selec-
tion). However, modern distributed processing frameworks do not consider
this factor, when deciding the number of tasks to execute a DIF. They al-
ways decide the number of tasks based on the total table size, which leads to
the tasks over-provision. This happens due to idle tasks, which do not have
any data to process but still add extra overhead and require computational
resources for execution. This can be tackled if the number of tasks and com-
putational resources are decided based on the amount of actual data read
from the disk.

In this chapter, we utilize our cost model to estimate the reading size for
hybrid layouts and use it further in a multi-objective optimization method
to decide the number of tasks and computational resources. Our approach
helps to avoid over-provisioning and also helps in saving money and energy.
Our experimental results also show the improvements in the execution of
DIFs.
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2
Related Work

In this chapter, we present the related work for all research problems, cate-
gorized into different sections. Each section presents the related work of an
individual research problem.

2.1 Intermediate Results Materialization

The related work of intermediate results materialization are categorized into
two main research domains, namely, relational databases and distributed pro-
cessing frameworks. These both research domains have proposed different so-
lutions to improve the execution of queries by materializing the common
parts.

2.1.1 Relational Databases

There have been extensive research carried out in relational databases to im-
prove the query performance by utilizing materialized views. These existing
works can be categorized broadly into views selection, multi-query optimiza-
tion, and sub-expressions elimination.
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Views Selection. [55] presents a detailed survey on view selection method-
ologies in relational databases. These methodologies expect a workload and
schema as an input and try to pick a set of views for materialization by
finding the trade-off between query processing and view maintenance costs.
These works expect that the workload is redundant and iterative.

Additionally, the research community of data warehouses [31] has also
studied the view selection problem in detail for improving the execution of
ETLs by materializing and reusing the redundant parts. Modern database
systems also have a built-in physical adviser (e.g., [4]) that analyzes the
workload history and based on that, proposes a set of possible views for
materialization to improve the execution of queries.

The main focus of these research works is to improve the query execution
time by utilizing materialized views. They only consider query processing
and view maintenance cost as possible metrics for SLAs. There is no possi-
bility to add more SLAs according to the business requirements. For instance,
in some cases, it might be a good idea to use stale data (i.e., freshness of a
materialized view) to fetch results quickly. However, this is not possible in
these existing solutions.

Multi-query Optimization. The main focus of multi-query optimization is
to optimize the execution of concurrent running queries by reusing the re-
dundant parts. The materialization is temporary and the materialized inter-
mediate results are deleted as soon as queries finished their executions. There
have been extensive works for relational databases [51, 67, 70], which focus
on concurrent workload and temporary materialization without any type of
SLAs.

Sub-expressions Elimination. These works [73, 86] try to find the common
sub-expression within a query or among a set of concurrent running queries.
They also keep the materialized output in memory and discard it after fin-
ishing the execution.

2.1.2 Distributed Processing Frameworks

Similar to relational databases, distributed processing frameworks also have
work on materialized view selection (i.e., materialized intermediate results)
and multi-query optimization (i.e., sharing computations). These works ex-
plicitly focus on distributed processing frameworks and their technologies,
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which are different from relational databases and also have different chal-
lenges.

Materialized Intermediate Results. There are research works [21, 50] ex-
plicitly focusing on distributed processing frameworks to choose a set of
nodes for materialization and reusing them in future executions. These works
are based on heuristic rules, which they use while selecting intermediate re-
sults for materialization. They are also tightly coupled with technologies,
because the rules are designed based on the technology used for DIFs. Addi-
tionally, they do not consider multiple SLAs based on the business require-
ments.

The closest approach to ours is [64], however it focuses on performance
aimed to cloud environments. Their goal is to find a set of materialized
views and a storage platform (i.e., relational databases or Hadoop cluster)
to improve the execution of DIFs. They accomplish this by using a cost
model, which estimates the performance improvements using materialized
views and different storage platforms. Based on these costs, they decide a set
of materialized views and a platform to store them. However, they consider
only a fixed SLA metric (i.e., performance gain using materialization and dif-
ferent storage engine). There is no way to introduce a new metric in their
framework.

Sharing Computations. The distributed processing frameworks have also
utilized the idea of multi-query optimization for optimizing the concurrent
running DIFs. Existing research works [11, 62, 84] focus on concurrent run-
ning DIFs, whereas our goal is to improve the execution of recurrent DIFs.

Materialization Workload SLAs

Views selection Yes Iterative Partial (query cost and
view maintenance cost)

Multi-query optimiza-
tion No Concurrent Partial (query cost)

Sub-expressions selec-
tion No Concurrent Fixed

Materialized interme-
diate results Yes Iterative Fixed

Sharing computations No Concurrent Fixed
Our approach Yes Iterative Any quantifiable SLAs

Table 2.1: Summary of related work for intermediate results materialization
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Summary. Table 2.1 provides a summary of different research lines on in-
termediate results materialization. View selection and materialized interme-
diate results have the same objective to ours. However, the difference is in
that they consider only two SLA metrics, one for improving the query execu-
tion and second for reducing the view maintenance cost. These SLAs, in the
way they are proposed, they are tightly coupled and as such, it is not possible
to introduce a new quantifiable SLA (e.g., Freshness). On the other hand, all
other research lines focus on the concurrent executions of DIFs rather than
on iterative execution. Thus, they use temporary materialization and they do
not consider any maintenance cost.

In summary, most of these works do not support multiple SLAs, whereas
our approach can take any type of quantifiable SLAs along with their associ-
ated characteristics vector. Moreover, our approach focuses on iterative DIFs
and would materialize intermediate results for future re-usage based on all
the given SLA’s metrics.

2.2 Storage Layouts for Materializing Intermediate
Results

Typically, the selected materialized intermediate results are stored on a dis-
tributed file system, where I/O operations are expensive. Thus, the writing
and reading of materialized IRs can impact the execution of DIFs. There are
many storage layouts proposed for reducing the I/Os cost, however these
storage layouts are optimized for different types of workload.

These storage layouts can be categorized into horizontal, vertical, and hy-
brid. Horizontal layouts store their data row-wise and are good for scan-
based workloads. Whereas, vertical layouts divide data into vertical partitions
(known as column groups) and are good for projection-based workloads. On
the other hand, hybrid layouts divide data into horizontal partitions and inside
each partition, they store data column-wise. These layouts provide support
for both projection and selection operations. However, they are not good for
scan-based workload, because they have an extra cost of row reconstruction.

As mentioned earlier, there is no layout that can be used for all types
of workload. Thus, researchers have proposed the use of multiple storage
layouts in a single system. For example, DB2 [65] utilizes both horizontal
and vertical layouts in the same table-space and the in-memory DBMS SAP
HANA [23] also uses horizontal and vertical layouts for On-line Transaction
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Processing (OLTP) and On-line Analytical Processing (OLAP) workloads, re-
spectively. However, these layouts are pre-determined and non-modifiable at
run-time.

The use of multiple layouts also pushes the organizations to go for multi-
database environments for supporting different types of workload. For in-
stance, Polybase [20] uses both a Hadoop cluster and a relational database
for storage. It dynamically decides the system for execution based on the
running workload and based on its decision, it may also move data from one
system to another. Similarly, [39] keeps multiple copies of the same data in
different storage layouts and based on the workload, it chooses the most ap-
propriate. In addition, there are systems [22, 42, 69], that choose a storage
engine by considering the data access patterns. In [22], the system requires
training in order to take the right decision in choosing the best storage en-
gine for queries. Furthermore, this training runs every query in all available
systems to see which system is good for most of the queries.

There are research works [5, 41] that have vertical layouts as their base
storage layout and create different column groups based on the running
workload. These systems also have a cost model for estimating the read-
ing cost from different column groups. However, the drawback of these ap-
proaches is that the creation of column groups is NP-hard problem and it is
not feasible for a very wide table which has thousands of columns.

There are few works done for very wide tables [9, 10] and nested data [7].
[9, 10] help in reducing the seek cost in a wide table by storing the columns
in the appropriate order based on the access patterns. This approach helps
to reduce the disk cost and, overall, it reduces the execution cost of different
queries. However, it considers only hybrid layouts in their study and it pro-
vides a cost model only for estimating the seek cost. [7] proposes a caching
approach for nested data (i.e., JSON), which helps to keep more frequently
used data in the cache by storing them in appropriate layout, according to the
running workload. This work also supports our hypothesis to use different
layouts for different type of workloads. However, it is limited to only nested
data and not applicable to other scenarios.

[8] has proposed a cost model for Spark, which helps to estimate the cost
of different query plans and decides the best one based on its cost. They
assume the number of tasks and executors are fixed. Their main goal is to
evaluate different query plans and choose the best one. However, this work
can be complementary to our approach and would optimize the overall query
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plan from planning to execution. [37] has proposed a cost model to estimate
the reading and writing costs for different schemas presented in a multi-
schema database. This work focuses on finding the best schema based on a
given query, rather than focusing on their physical storage layouts.

System
modification

Cost
Model Workload

Horizontal layouts No No Scan
Vertical layouts No No Projection
Hybrid layouts No No Projection and selection
Custom vertical
layouts Yes Yes Scan and projection

Our approach No Yes Scan, projection, and
selection

Table 2.2: Summary of related work for choosing storage layouts for materializing IRs

Summary. Table 2.2 summarizes the related work of choosing storage lay-
out for materializing IRs. We summarize only those works, which directly
use or propose physical storage layout for storing the data. To the best of our
knowledge, there is no related work focusing explicitly on materializing IRs.
Moreover, the use of multiple systems is also out of our scope.

There are already many storage layouts, which are supported by default
in the existing distributed processing frameworks. Thus, we do not have to
modify anything in these systems to use them. However, the customization
proposed on top of vertical layouts is not possible without any modification.
It requires an organization to change their current running infrastructure.
Typically, organizations hesitate for any new modification. Specifically, when
they require to move their data form old storage layout to a newly proposed
storage layout. Thus, we propose a framework, which does not require any
modification in the current running system but still supports all types of
workload. Additionally, we also propose I/O cost model for horizontal, ver-
tical, and hybrid layouts for estimating reading and writing costs. The cost
model helps in choosing a storage layout, configuring its parameters, and
controlling the degree of parallelism.
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2.3 Configuring Parameters of Hybrid Layouts

There are many techniques proposed for optimizing hybrid layouts. Typi-
cally, these techniques store extra metadata to improve the performance of
selective queries. For instance, SmartFetch [24] proposes an indexing tech-
nique for hybrid layouts, which stores extra metadata (i.e., indexing infor-
mation) per row group and also per data node. This metadata are used in
selective queries to filter row groups better, compared to the default metadata
of hybrid layouts. However, this approach uses default size of row group (i.e.,
128MB).

Researchers have also proposed few partitioning techniques [77, 78] to
improve the execution of selective queries. These techniques compute ex-
tra metadata based on the predicates presented in different queries. These
predicates are referred as features, where a bit is stored for each tuple match-
ing a feature. This eventually computes a feature-vector for every tuple and
this is stored as extra metadata per horizontal partition. The feature-vector
metadata helps in skipping horizontal partitions more efficiently.

There are few research works [9, 10] proposing to optimize a table layout
by storing columns in different orders. They focus on reducing the seek cost
in a table by re-ordering the columns. The columns are re-ordered based on
the access patterns. Thus, the columns that are accessed together are stored
together. This approach also proposes the duplication of some columns.

Modern distributed processing systems (e.g., Spark and Hadoop) have
many configuration parameters, which should be tuned to improve the exe-
cution of different workloads. Researchers have proposed many techniques [15,
27, 34, 36, 63] to find the optimal values of different parameters. [63] proposes
a trial and error approach to tune the configuration parameters of Spark. Sim-
ilarly, [27] proposes a methodology to profile the impact of different param-
eter pairs on benchmarking applications, by applying a graph algorithm to
create complex candidate configurations. These configurations are checked
in parallel and then, the best performing one is chosen.

Additionally, there is a research work [15], that profiles the bottlenecks
(i.e., JVM, GC, serialization, etc.) of TPC-H queries and parameters are man-
ually configured to avoid these bottlenecks, which significantly increase the
query performance. These existing works focus on improving the execution
of the overall system rather than specifically focusing on tuning the param-
eter of hybrid layouts. Our approach can take benefit from these techniques
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to improve the overall execution of DIFs.

System
modifica-
tion

Extra
Metadata

Default
configu-
ration

Cost
model

SmartFetch Yes Yes Yes No
Partitioning tech-
niques Yes Yes Yes No

Table layout opti-
mization Yes Yes Yes Yes1

Tuning distributed
processing systems No No No2 No

Our approach No Yes No Yes
1 They provide a cost model to estimate seek cost
2 They do not focus on configuring Hybrid Layouts

Table 2.3: Summary of related work for configuring parameters of hybrid layouts

Summary. Table 2.3 summarizes the related work for configuring parame-
ters of hybrid layouts. These research works require extra metadata to work
properly, which leads to modify the existing infrastructure. Additionally,
they always use default configuration of hybrid layouts. There are also few
works, which have proposed a cost model but these cost models are not us-
able for configuring the parameters of hybrid layouts. On the contrary, our
approach does not require extra metadata except statistical information about
data. Moreover, it proposes a cost model which explicitly focus on fine-tuning
the configuration parameters of hybrid layouts.

2.4 Configuring Parallelism for Hybrid Layout

The degree of parallelism is crucial in distributed processing frameworks,
because it helps to decide how much computational power is required to
run a given DIF. There are few solutions [60, 83] from Hadoop community
to control the number of mappers and reducers. In [60], the elbow curve
technique is used to find the trade-off between number of tasks and execution
time. This helps to find the right number of tasks where execution time is
minimized. Similarly, [83] utilizes a multi-objective approach for estimating
the number of tasks by considering a deadline constraint. These approaches
do not consider the amount of data read, while estimating the number of
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tasks, but only estimate the tasks based on the available number of machines
and some objectives (such as deadline). As previously argued, the amount of
data read is an important factor in deciding the number of tasks.

Similarly, the cloud community [35, 40, 72, 79] also proposes many solu-
tions to control the resource provisioning by controlling the number of tasks
execute in parallel. Additionally, [85] surveyed related works on energy-
efficient techniques for big data analytics and categorized them into five. One
of them (i.e., energy-aware resource allocation) focuses on deciding the num-
ber of machines to execute a given query with the aim to save energy. These
works from both cloud computing and energy-efficient big data analytics
focus more on deciding the number of machines to process an application.
They aim at saving energy and computational resources, which indirectly
leads to cost savings. However, they make these decisions without consid-
ering the reading size. Our approach could help them to decide resource
provisioning in more granular level and overall, it can help these works to
achieve their goals more efficiently.

The shuffle phase is always a bottleneck in distributed processing frame-
works and [17] explicitly focuses on improving the shuffle performance in
Spark by controlling the total number of shuffle files. This approach consol-
idates multiple shuffle files into one based on the available cores. This helps
in improving the execution time of shuffle phase.

Nevertheless, these existing works do not explicitly consider the degree of
parallelism. Their main aim is to decide number of machines for improving
query execution time, which might lead to allocate unnecessary computing
resources, because they do not consider data read.

Makespan1 Resource
Consumption

Cost
Model

Estimating Number of
Tasks Yes No Yes2

Resource Provisioning in
Cloud No Yes No

Tuning Shuffling Phase Yes No No
Our approach Yes Yes Yes

1 Makespan is the total time taken to execute a given DIF
2 Yes, to estimate number of tasks for given constraints

Table 2.4: Summary of related work for configuring parallelism for hybrid layouts
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Summary. Table 2.4 summarizes the related works for configuring paral-
lelism. The research works for estimating number of tasks and tuning shuffle
phase only focus on improving execution time. On the other hand, the cloud
community only tries to reduce resource consumption without considering
makespan. Additionally, all these works do not consider amount of data be-
ing processed, which is an important factor when deciding the number of
tasks. Thus, our approach takes into consideration the amount of data read
and provide better estimation for number of tasks and machines.
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3
Intermediate Results Materialization

Selection

Data-intensive flows deploy a variety of complex data transformations to build infor-
mation pipelines from data sources to different end users. As data are processed, these
workflows generate large intermediate results, typically pipelined from one operator
to the following ones. Materializing intermediate results, shared among multiple
flows, brings benefits not only in terms of performance but also in resource usage
and consistency. Similar ideas have been proposed in the context of data warehouses,
which are studied under the materialized view selection problem. With the rise of
Big Data systems, new challenges emerge due to new quality metrics captured by
service level agreements which must be taken into account. In this chapter, we pro-
pose a novel multi-objective approach for automatic selection of intermediate results
for materialization in data-intensive flows, which can tackle multiple and conflicting
quality objectives. The experimental results show that our approach provides 40%
speedup on average with respect to the current state-of-the-art solutions.
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Co-authoring declaration. This work has been done together with Sergi
Nadal. Precisely, the introduction (Section 3.1), problem formulation (Section
3.2) and definition of cost model for intermediate result materialization selec-
tion (Section 3.3) were done jointly with equal contribution. The state space
search algorithm (Section 3.4) was mainly developed by Sergi Nadal, which
is extended to include the characteristic vector. The experimental evaluation
(Section 3.5) was done by Rana Faisal Munir.

3.1 Introduction

Nowadays, many organizations are shifting their business strategy towards
data analytics in order to guarantee their success. In the past, the vast ma-
jority of analyzed data was transactional, however the emergence of Big Data
systems allows a new range of data analytics, by replacing traditional extract-
transform-load (ETL) process with much richer data-intensive flows (DIFs)
[45]. This new range of data analytics is supported by the Hadoop1 ecosys-
tem which has a distributed storage system (Hadoop Distributed File Sys-
tem - HDFS2) to store large scale data and a processing engine (i.e., MapRe-
duce [18]) to execute DIFs. It works on a distributed cluster of commodity
hardware which provides competitive advantage to organizations by reduc-
ing their hardware costs. In addition, many modern cloud providers offer
pay-per-use services to organizations by implementing the big data systems
under service level agreements (SLAs).

An in-depth study of analytical workloads, in Big Data systems across
seven enterprises, shows that user workloads have high temporal locality, as
80% of them will be reused by different stakeholders on the range of minutes
to hours [14]. Thus, providing partial materialization of results in shared
flows can clearly bring benefits by saving computational resources. The ma-
terialization boils down to the traditional data management problem of mate-
rialized view selection [33], which is well-known to be NP-hard [29]. There are
some works[21, 62, 84], which have tackled the problem of finding the op-
timal partial materialization in DIFs, however all of them are specific to the
MapReduce framework and only aim at optimizing the system performance-
wise by ignoring other relevant SLA’s metrics (such as freshness, reliability,
scalability, etc.[75]).

1https://hadoop.apache.org
2https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
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Similarly, the existing materialized view solutions in relational databases
[31] focus only on improving query execution time without considering mul-
tiple generic SLAs. Moreover, the aforementioned solutions do not con-
sider different characteristics associated with different SLAs. For instance, in
some organizations, they allow to get results from a stale materialized node
(i.e., to allow low freshness) for a certain time period to reduce the loading
cost. These characteristics can be expressed separately and the optimal value
should be chosen for each materialized node. These shortcomings of existing
solutions are addressed by our proposed approach, which is a technology
independent materialization solution and can take into consideration generic
quantifiable SLAs with their associated characteristics.

3.1.1 Motivational Example

To motivate our work, we present a DIF, shown in Figure 3.1, which depicts a
high-level representation containing relational operations and User Defined
Functions (UDFs). It uses five input sources and serves three queries. Each
data source and data operator is labeled by its estimated processing cost (i.e.,
consumed resources, in seconds) and storage cost (in GB). Note that data
processing entails extracting and loading data from the sources into the data
processing system.

For the sake of this example, let us suppose that all the sources update
once per day, except Source 1 and Source 3 that have a update frequency
of 6 and 4 times per day, respectively. Query 1, Query 2 and Query 3 have
a frequency of 2, 20, and 10 times per day, respectively. In addition, let
us assume that we allow stale materialized results (i.e., we do not update
materialized nodes with each update in their associated input sources) and
it is provided as a characteristic vector (given as number of updates per time
unit r1, 2, ..., ns).

In this example, we focus on optimizing four SLA’s metrics (i.e., time to
load, time to query, space needed to store intermediate results, and fresh-
ness). Loading time is measured by the sum of processing cost from the
sources to the partial materializations, query time is measured by the sum of
execution cost from the partial materializations to the user’s output, storage
space is measured by the sum of storage cost for the selected partial mate-
rializations, and freshness is measured using the cost function presented in
Section 3.3.3.

Several of the existing intermediate result materialization approaches from
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Fig. 3.1: An Example of a DIF

Big Data Systems can be used, as discussed in Section 2.1. Let us focus on
one of them, namely ReStore [21], which uses two kinds of heuristics (i.e.,
conservative and aggressive) in order to choose DIF nodes for materializa-
tion. Conservative heuristics materialize the output of those operators that
reduce the input size (i.e., project and filter). The aggressive heuristics mate-
rialize the output of those operators which produce large outputs and those
known to be computationally expensive (i.e., join, group and cogroup). Table
3.1 shows the selected nodes and a quadruple with the costs (i.e., loading
time, query time, storage space, and freshness). It should be noted that query
time represents the sum of all three queries’ time. The first two columns
show both ReStore’s heuristics, while the rightmost shows a pareto-optimal
solution (i.e., a solution that cannot be improved further in the presence of
multiple conflicting SLAs) in boldface.

ReStore Cons. ReStore Agg. Pareto-optimal
Nodes N1, N4 N2, N3, N5, N8 N7
Cost x75 s, 257 s, 4.1 GB, 1y x336 s, 115 s, 59 GB, 1y x101 s, 100 s, 3 GB, 0.78y

Table 3.1: Selected intermediate nodes and cost for the four SLA’s metrics (load, query, store,
freshness)

As shown in Table 3.1, ReStore conservative heuristics choose N1 and
N4. They take more time in loading, due to Source 1, which updates very
frequently and effects the loading cost of N1. We calculate the total load time
of a node by multiplying its load time with the update frequency of its input
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sources. Furthermore, both N1 and N4 do not provide good speedup because
they have high query time. ReStore aggressive heuristics choose N2, N3, N5,
and N8. These nodes help to reduce the query time, but require more space
to store and more time to load. It should be noted that ReStore does not
support freshness. If the input sources change, it deletes all their dependent
materialized nodes. This pull-strategy provides a fixed degree of freshness
and thus, we set it to 1 in our quadruple.

Finally, the pareto-optimal solution considers four SLA’s metrics (i.e.,
loading time, query time, storage space, and freshness) together by assigning
them the same weight, and based on them, it chooses only node N7, which
provides better speedup compared to ReStore’s heuristics. Even though, N7

depends on Source 3 , which has a high loading cost due to its high update
frequency, it is still worth to materialize because it is reused more often by
repetitive queries (i.e., Query 2, Query 3). Moreover, the loading cost can be
improved by choosing the optimal value of refresh frequency for N7. The
possible values are r1, 2, 3, 4s, where 4 will provide the maximum freshness.
The pareto-optimal solution chooses 3 as the refresh frequency for N7, which
helps to improve the load time and it also provides a good degree of fresh-
ness.

The above given example shows that the state-of-the-art solutions produce
suboptimal results in the case of different SLAs. To address this problem, we
revisit the traditional frameworks for materialized view selection [80] and
analyze their applicability and extensions in the context of DIFs for Big Data
systems. As a result, we present an approach to automatically select the opti-
mal materialization of intermediate results, driven by multiple quality objec-
tives represented as quantifiable SLAs with their associated characteristics.
This is achieved by implementing a multi-objective optimization technique
(discuss in Section 3.4) which efficiently tackles multiple and conflicting ob-
jectives to select materialized nodes.
Contributions. The main contributions of this chapter are as follows:

• We propose a novel cost model for multi-objective selection of optimal
partial data materialization for DIFs.

• We present a local search algorithm that, driven by a set of SLAs, prob-
abilistically selects a set of near-optimal intermediate results to materi-
alize.

• We assess our method and show its performance gain by using the
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TPC-H benchmarking suit.

Outline. The rest of the chapter is structured as follows. Section 3.2 presents
the theoretical building blocks and formalizes our approach. Sections 3.3
and 3.4 present the cost model for intermediate result selection and the algo-
rithm to explore the search space. In Section 3.5, we present the experimental
results, while Section 3.6 concludes the chapter.

3.2 Formal Building Blocks and Problem Statement

3.2.1 Multiquery AND/OR DAGs and Data-Intensive Flows

The general framework for materialized view selection [80] relies on mul-
tiquery AND/OR Directed Acyclic Graphs (DAGs). As defined in [82], a
query DAG is a bipartite graph G, where AND nodes (or operational nodes)
are labeled by a relational algebra operator, and OR nodes (or view nodes) are
labeled by a relational algebra expression. Moreover, given a set of queries
Q defined over a set of source relations R, a multiquery DAG G is a query
DAG, which may have multiple sink (query) nodes. Roughly speaking, the
materialized view selection problem can be expressed as a search space based
problem over the multiquery DAG G. Additionally, [81] formalizes the out-
put of such problem as a data warehouse (DW) configuration C “ xV, QVy,
where QV is the set of queries in the query set Q rewritten over the view
set V. Note that there exist two special DW configurations: xQ, QQy which
represents a materialization of the query set Q and xR, Qy which represents
a complete materialization of the source data stores R.

However, the multiquery AND/OR DAGs fail to capture the complex se-
mantics present in DIFs operators, as they solely rely on relational operators.
To this end, in this chapter we build upon the ideas from the aforementioned
frameworks and adapt them for the case of DIFs, which consider more com-
plex data transformations [46]. It is straightforward to see that any multi-
query DAG G can be represented as a DIF, however the opposite does not
hold due to the fact that AND/OR DAGs are solely based on relational op-
erators, while DIFs are extended with more complex operations. Thus, in
this chapter, we extend the notion of DW configuration to Big Data system
(BDS) configuration for the case of DIFs. Hereinafter, we will depict a BDS
configuration as a set of nodes from the DIF to materialize B “ tb1, . . . , bnu.
In the following sections, we describe the specific components for the prob-
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lem in-hand, and reformulate the materialized view selection problem in the
context of BDS.

3.2.2 Components

Data-Intensive Flow. In this chapter, we adopt the notation from [49], hence
we define a DIF D as a DAG pV, Eq where its nodes (V) are the flows’ opera-
tional nodes, and its edges (E) represent the directed data flow. Operational
nodes are defined as o “ xI, O, S, Vprey, where I and O are sets of respec-
tively input and output schemata (a DIF can have multiple inputs and out-
puts), where each schema is defined as a finite set of attributes, S expresses
operator’s semantics, and Vpre a subset of attributes of the input schemata
(Vpre Ď

Ť

IPI I) whose values are used by o.

Design Goal (DG). DG represents a set of design goals, where each (DGi)
characterizes an SLA. It can be specified as either a minimization or a max-
imization of an objective cost function, or alternatively as a boundary that
must not be surpassed in such cost function. Formally:

• Min/Max: From a set of BDS configurations B , it returns the minimal
B by means of evaluating the cost function CF, defined as DGminpBq “

minBPB pCFpBqq. Note that maximizing the cost function is equivalent
to the negation of minimization.

• Constraints: For a BDS configuration, it checks whether the evaluation of
the cost function CF fulfills the constraint, formally DGpBq “ rCFpBq ď
Ks, where K is a variable to enforce an upper or lower limit. Note that
the constraint can express an arbitrary logical predicate (e.g., ă,ą,ě).
It is important to note that DG(C), where C is constraints, in this case
is binary true/false and it differs from the above which gets the value
obtained from the cost function.

Cost Function (CF). Given a BDS configuration, CF represents a set of cost
functions where each (CFi) is the estimation of an SLA for B. Hence, we
define CFpBq “

ř

bPB Epbq (where Epbq is the cost estimation of an element
b P B).

Characteristics Vector (CV). Some costs are determined once a node is cho-
sen, but for SLAs, we can select arbitrary values for the features that impact
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them. For instance, in some organizations, they allow stale data for some
period of time, which can be defined as a refresh frequency for every ma-
terialized node. Thus, the refresh frequency should be chosen to maximize
the overall benefit. We keep a vector of such choices. Each position of the
vector represents a characteristic affecting some SLAs. These characteristics
will impact on the associated cost function CF.

Utility Function. In the context of multi-objective optimization (MOO) [56],
it is common to aggregate all objectives DG1, . . . , DGn into a single value to
obtain the global utility. Such function, known as the utility function U as
it measures benefit, is formally defined as UpDGq “ UpCF1pBq, . . . , CFnpBqq.
Each CFipBq provides a quantitative evaluation of B (it can be seen as individ-
ual utility functions for each cost function) for its associated DGi, in the case
of min/max design goals, or 0, and `8 for satisfied and non-satisfied con-
straints, respectively. Generally in MOO high utilities are preferred. How-
ever, in our context there are some CF where we aim for minimal utilities
(e.g., query time).

3.2.3 Problem Statement

We state the problem of intermediate results materialization selection and
format in DIFs as: given a data-intensive flow D, a set of design goals DG, a
set of cost functions CF, a characteristic vector CV, a utility function UpDGq,
and a cost model represented by a set of estimators over D calculated by
means of statistical information from sources, return a BDS configuration B1,
such that, UpDGq is minimal or maximal based on the given CF, each b P B1

with its optimal characteristic values chosen from CV.

3.3 Cost Model

In this section, firstly we present our approach to estimate statistics for each
operation of a DIF. We assume that the statistics of each input source are
available. Secondly, we discuss the metrics (i.e., execution and storage) that
we consider in this chapter. It should be noted that we choose to ignore
the CPU cost, and focus only on the I/O operations. Also, regardless of
being executed in parallel, the overall execution cost of the flow will remain
the same (only time span would be reduced). Finally, we use the proposed

32



3.3. Cost Model

metrics to estimate the cost of SLAs. In this chapter, we present the cost
functions for four SLA’s metrics (loading, query, storage, and freshness).

3.3.1 Data-Intensive Flow Statistics

As previously mentioned, cost functions are computed from estimators. Ev-
ery operational node in a data-intensive flow D might have several estima-
tors, each assessing a single SLA metric (e.g., an execution cost), where they
perform a cost based estimation according to the operator’s semantics. In
order to devise more accurate metrics, some essential statistics must be ob-
tained from the input data stores and propagated across D. By topologically
traversing D, we can propagate such statistics at each node, based on the
specific semantics of operators. In [30], the authors describe a complete set
of statistics which are necessary to perform cost based estimations for DIFs.
Here we focus on the following subset: selectivity factor selPpRq, number of
distinct values per attribute VpR.aq and cardinality TpRq. R denotes an input
data store, while R.a is an attribute of R. Note that statistics only consider
logical properties of the flow, hence they are independent of the underlying
engine where the flow is executed.

Example 3.3.1
Let us assume a JOIN operator R1 “ R ’ S (e.g., N6 in Figure 3.1), with
input schemata Rpa, bq, Spc, dq and semantics PR.a“S.c. Inspired by the work
in [26], we propose measures for the above-mentioned statistics for this
JOIN operator (we have done likewise for the rest of operators) as:

sel1P “

$

’

’

’

’

&

’

’

’

’

%

1
VpR.aq

, if domainpS.cq Ď domainpR.aq

VpR.aX S.cq
VpR.aq ¨VpS.cq

, otherwise

VpR1.attiq “ VpR.attiq ¨ p1´ selPq
TpRq

VpR.attiq TpR1q “ sel1PpR ’ Sq ¨TpRq ¨TpSq

The selectivity factor is obtained as the fraction of the number of shared
values in the JOIN attributes, when the domain of the right-hand side is
contained in the domain of the left-hand side (i.e., analogously to Primary
Key(PK)-Foreign Key(FK) relations), otherwise an estimation is made as a
fraction of shared values and its Cartesian product. Regarding the number
of distinct values for an attribute, it is estimated as the input number of
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distinct values, multiplied by the probability that no repetitions of a value
are selected. Finally, the cardinality is measured likewise the relational
case.

3.3.2 Metrics

Once statistics for D have been calculated, they can act as building blocks for
metrics. Here, we focus on estimating both performance-wise (Executionestimator)
and space-wise (Spaceestimator) metrics. Performance metrics are measured by
means of estimated disk I/O (in blocks) and space metrics by the number of
disk blocks occupied by the intermediate results materialization. It is worth
noting that in terms of execution, the CPU cost is negligible as opposed to
I/O cost [3], hence we ignore CPU cost and focus on the I/O cost of opera-
tors. Therefore, non-blocking operational nodes (acting as pipelines) will not
incur any cost for such Executionestimator.

To devise metrics, certain characteristics of the underlying engine are re-
quired. We focus on the following subset: the size of a disk block B, the
number of main memory buffers available M, and the size in bytes that each
attribute occupies sizeO f pattiq. For instance, in the Oracle relational database
the block size is approximately of 8KB, while in Hadoop’s HDFS it is 64MB
or 128MB. The incurred space of intermediate results is measured by means
of the estimated number of blocks generated. However, this will vary accord-
ing to the underlying schema that such results have and therefore, we need
to make this calculation based on the record length, that is sizeO f pattiq (in-
cluding the corresponding control information). Thus, the specific number of
blocks for an input R is measured as:

BpRq “

»

—

—

—

—

—

TpRq
Z

B
ř

sizeO f pattiq

^

fi

ffi

ffi

ffi

ffi

ffi

Example 3.3.2
Given the JOIN operation from example 3.3.1, one implementation of such
operator is based on the block-nested loop algorithm, which scans S for
every block of R using M ´ 2 memory buffers (as the remaining two are
used to perform tuple comparisons and output results), thus the estimation
for execution and space costs is as follows:
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Executionestimator “ BpSq ` BpRq ¨
R

BpSq
M´ 2

V

Spaceestimator “ BpR1q

However, in a MapReduce environment, execution cost is dominated
by data transfers (i.e., communication cost over the network) that occurs
during the data shuffling phase between mapper and reducer nodes [2].
In such case, the natural implementation of a JOIN is using the hash join
algorithm, where the hash function maps keys to k buckets and data is
shipped to k reducers. Assuming no data skewness, each reducer receives
a fraction of TpRq

k and TpSq
k . Having c as a constant representing the incurred

network overhead per transferred HDFS block, the cost estimations of the
JOIN are:

Executionestimator “
BpRq ` BpSq

k
¨ c Spaceestimator “ BpR1q

Note that the presented metrics can be highly variable within D. For
instance, not surprisingly, JOIN nodes are the operations that consume the
most time and space in order to generate intermediate results. Additionally,
modern DIFs make heavy usage of User Defined Functions (UDFs) which
consists of ad-hoc operations, difficulting the estimation of their I/O cost.
An approach to solve this problem is to rely on static analysis of code to
estimate the I/O cost for UDFs [38]. Finally, it is worth noting that other
approaches exist to measure the presented metrics, for instance [74] proposes
a method based on micro-benchmarking. On the contrary, our approach does
not require any execution of the flow which however, impacts the quality of
the estimation.

3.3.3 Cost Functions

In this section, we present a set of cost functions to evaluate a BDS configura-
tion, based on metrics from the materialized operational nodes of D. In our
experiments, we focus on traditional metrics used in multi-query optimiza-
tion namely loading cost, query cost, storage cost and freshness. However,
note that our approach is extensible to other types of metrics such as mon-
etary aspects [61], energy consumption [66], etc. For instance to estimate
monetary cost, the pay-per-use cloud services charge based on the resources
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used, which can be estimated by our cost model. Further, the estimated re-
source utilization can be used to calculate the cost of renting machines on
different cloud providers. Regarding storage, here we are not concerned
with the layout to be used as this is assessed once the selection of nodes to
be materialized has been found.

First, we must present some auxiliary methods over BDS configurations
in which cost functions are based on. Let Prepbq and Sucpbq be respec-
tively the input and output subgraphs for a node b, recursively defined as
Prepbq “ b Y @biPpredecessorspbqPrepbiq and Sucpbq “ b Y @biPsuccessorspbqSucpbiq,
and respectively ending when deg´pbq “ 0 and deg`pbq “ 0. Hence, we
can define the input and output subgraphs of a BDS configuration B as
IpBq “

Ť

bPB Prepvq and OpCq “
Ť

vPC Sucpvq. Specifically, the former is a
subgraph where its source nodes are the sources in a D and sink nodes are
all the elements b P B. The latter is a subgraph where its source nodes
are all elements b P B and sink nodes are the final nodes in D. Addition-
ally, sourcespbq gives the input sources of a node b and sinkspbq provides the
queries over a node b.

Loading Cost. The cost of loading a set of intermediate results CFLT is the
sum of processing source data and propagating them to the intermediate
results in B. Our approach is valid for both maintenance and update of inter-
mediate results, as long as source statistics are properly updated. From a BDS
configuration B, the estimated loading cost is intuitively the cost of executing
the operations of D, loading the intermediate results for each node b P B
(i.e., IpBq), and the cost of writing such results to the disk. Thus, we define
CFLT “

ř

bPBr
ř

biPIpbq Executionestimatorpbiq ˚ RFpbiqs `
ř

bPB Spaceestimatorpbq.
Here, RF represents the refresh frequency of materialized nodes which is
fixed in the characteristics vector CV of each node. The unit of refresh fre-
quency is total number of updates per time unit. It should be noted that we are
talking about sequential files that do not provide random access, so only full
update is possible (no incremental).

Query Cost. The query cost CFQT is the sum of querying the intermediate
results, transform the data and deliver results to the user. From a BDS config-
uration B, the estimated query cost is computed as the sum of execution costs
of successor nodes for each node b P B (i.e., OpCq). However, note that the cost
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of processing the operations of the nodes in B should not be taken into ac-
count as it is already evaluated in CFLT . Therefore, it is necessary to consider
only nodes in the set OpBqzB, denoted O`pBq. Finally, it is necessary to con-
sider the cost of reading such intermediate results from the disk. Hence, we
define CFQT “

ř

bPBr
ř

biPO`pbqpExecutionestimatorpbiq ˚ p
ř

siPsinkspbiq QFpsiqqs `
ř

bPB Spaceestimatorpbq. Here, QF represents the frequency of queries. The
query frequency can be expressed per day, hour or minute. QF helps to se-
lect the most reused node. Queries with high frequencies benefit more from
the re-usage. Hence, a node which is used in highly repetitive queries will
be given more weight during selection.

Storage Cost. The storage cost function CFS concerns the storage space
needed to store intermediate results. It is computed as the sum of estimated
space for storing the results of each node in B, and it can be seen as the es-
timated space require to accommodate the deployed BDS configuration. It is
defined as CFS “

ř

bPB Spaceestimatorpbq. Notice that Spaceestimator can be used
for estimating the costs of reading and loading intermediate results, showed
in CFLT and CFQT , as well as to estimate the occupied space for the case of
minimizing or constraining its value.

Freshness. The freshness cost function estimates the freshness of the results
of a query, which are obtained using materialized nodes, denoted as B1. For
the freshness function, we build on the formula from [68]. The variable age
tells how old data are in a materialized result with regard to the current
data in the input sources. In our case, age cannot be known as it is not
possible to foresee when materialized results are going to be used. It should
be noted that update frequency of a node is calculated based on its input
sources. Whereas, the refresh frequency is given in the characteristics vector
CV of each node. Moreover, we assume that refresh frequencies in CV are
synchronized with the input sources. We calculate the update frequency of a
materialized node b as an average of the input frequencies of its input sources
UFpbq “ AveragesiPsourcespbqUFpsiq. Then, we can approximate age of b as the
mid point between two refreshments Agepbq “ RFpbq´1{2. With such, we can
measure the freshness of a node b as Freshnesspbq “ p1`UFpbq ˚ Agepbqq´1.
Furthermore, Freshnesspbq is used to calculate the freshness of the results
of a query Q as CFFreshnesspQresultsq “ Averageb1PB1Freshnesspb1q. This cost
function helps to choose a node for materialization which provides up-to-
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date results to the queries.

3.4 State Space Search Algorithm

As previously mentioned, the problem of intermediate results materialization
in DIFs can be reduced to the general materialized view selection problem,
known to be NP-hard. Hence, we must avoid exhaustive algorithms and rely
on informed search algorithms. Furthermore, in this particular case, purely
greedy algorithms will not provide near-optimal results as the proposed cost
functions are not monotonic. In classic artificial intelligence, a state space
search problem is usually represented with the following components: (i) ini-
tial state where to start the search; (ii) set of actions available from a particular
state; (iii) transition model describing what each action does and what are the
derived results from it; (iv) goal test which determines whether the evaluated
state is the goal state (i.e., the optimal state); and (v) path cost function to
assign cost to the actions path.

In our context, we see a state as any BDS configuration B over which
action functions are applied. It is noteworthy to mention that in such problem
we are not interested in the set of actions that have led to a solution, but in
the solution itself, which is initially unknown. Additionally, as any state B is
a valid solution, we drop the component of goal state. Furthermore, the path
cost is substituted by the definition of a heuristic function, which will guide
the search. In the following subsections, we present the particularities of our
specific problem for the remaining components.

3.4.1 Actions

For a BDS configuration B, we can compute actions (navigations over the
graph), yielding new BDSs B1. First, we define the generic navigation oper-
ation B1 “ Navpborigin, bdestinationq, with borigin, bdestination P D and semantics
Navpborigin, bdestinationq “

`

Bztboriginu
˘

Y tbdestinationu. We then define three
specific actions applied over nodes in B:

1. Forward (Fpb, b1q “ Navpb, b1q): characterizing a forward movement
from b to b1 in D, applicable when b1 P successorspvq.

2. Backward (Bpb, b1q “ Navpb1, bq): characterizing a backward movement
from b1 to b in D, applicable when b1 P predecessorspbq.
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3. Stay (Npbq “ H): always applicable, as it does not perform any move-
ment. Such operator is only useful when other nodes b1 are combined
with M or U, so that a new state is generated where b remains selected.

4. Increment (Incpb, iq): Increases the value of a characteristic (identified by
position ith of the vector CV) for a node b.

5. Decrement (Decpb, iq): On the contrary, it helps to decrease the value of
a characteristic for node b at ith position of the vector CV.

From the previous definitions, for each node b, we define the set Actionspbq
as:

ď

biPsuccessorspbq

tFpb, biqu Y
ď

biPpredecessorspbq

tBpb, biqu Y tNpbqu Y tIncpb, iqu Y tDecpb, iqu

Finally, we obtain all possible actions from a BDS configuration B by
computing the Cartesian product of the power set of each Actionspbiq (note,
empty sets are removed from each power set but this is not depicted for
readability) as PpActionspb1qq ˆ . . . ˆ PpActionspbnqq. The rationale behind
this operation is to generate, for each node b, all combinations of movements.
The usage of a power set is relevant for the cases when the input or output
schemata of a node is not unary (e.g., a JOIN). Then, such different combina-
tions are furtherer combined with the rest of nodes via a Cartesian product.
Note that such set can be extremely large for complex Ds, however it is easy
to see that many combinations generate invalid BDS configurations. To this
end, we define the two essential conditions that a BDS configuration must
fulfill in order to be valid, namely answerability and non-dominance.

Answerability of all queries. Ensuring that all queries (sink nodes) can
be answered from materialized results. It can be checked by guarantee-
ing there is at least one materialized node for each path in D. Formally,
@b P sourcespDq@pi P Pathsb,sinkspDqDnode P pi : node P B. For instance, in Fig-
ure 3.2a, we can see that the green-colored BDS configuration does not satisfy
answerability as the path from N2 to N9 does not contain any materialized
node.

Non-dominance of nodes. The purpose of our approach is to minimize the
number of nodes to materialize by avoiding unnecessary materializations.
For instance, if it is decided to materialize all sink nodes then it is unneces-
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sary to materialize any intermediate node. In graph theory, a node m dom-
inates n if all paths from the source node to n must pass through m. We
extend this definition for the case of multiple nodes, and thus we test non-
dominance of a set of nodes by checking that, for each node b there is at least
one path from b to sink nodes where b is the only selected node. This is for-
mally defined as @b P BDpi P Pathsb,sinkspDq : |t@node P pi : node P Bu| “ 1. For
instance, Figure 3.2b, shows that the green-colored BDS configuration does
not satisfy non-dominance, as nodes N6 and N7 dominate N5.

Besides the two essential conditions, it is necessary to maintain a set of
visited nodes to check whether a state B has not been already visited, and
thus avoid unnecessary expansions in the search space. Figure 3.2c, depicts
the valid BDS configurations obtained by applying actions to the BDS config-
uration {3,4}. Experimenting with the DIF in Figure 3.1, it has been observed
that on average eliminating states that do not fulfill such conditions makes
a reduction on the search space by 88%. Next, we generate increment and
decrement actions for the current node to move vertically by using different
index positions of CV. This helps to find the best possible values for given
characteristics vector CV for each to-be-materialized node.

(a)

(b)
(c)

Fig. 3.2: (a) depicts a BDS configuration where answerability is not satisfied, (b) depicts a
configuration where non-dominance is not satisfied, and (c) depicts the valid actions for

configuration {3,4}

3.4.2 Initial State

As previously mentioned, the search space contains many local optimum
points due to the non-monotonicity of cost functions, therefore the obtained
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solution might vary depending on the initial state. Three possible initial
states have been devised aiming to cover all search space varieties:

• Materialize all source nodes, representing the BDS configuration B “

sourcespDq.

• Materialize all sink nodes, representing the BDS configuration B “

sinkspDq.

• Random selection of nodes, guaranteeing a valid initial state where an-
swerability and non-dominance are satisfied. Further, for the random
selected nodes, we also randomly choose values in all positions of the
characteristics vector CV.

Note that the two former are special cases of the third, thus this is the
strategy that has been chosen to generate initial states (we provide a more
thorough discussion on this in Section 3.4.4).

3.4.3 Heuristic

Provided that values of the different objectives lay in very different ranges,
and in order to provide a consistent comparison, it is necessary to make use
of a non-dimensional utility function normalizing all objectives. There exist a
vast number of different normalization strategies [28]. For our purpose, and
given the nature of the problem, we make use of the normalized weighted sum
as utility function, defined as:

hpBq “ UptCF1, . . . , CFnu, Bq “
n
ÿ

i“1

wi ¨ CFtrans
i pBq

CFtrans
i pBq stands for the evaluation of the transformed cost function for

B, being CFipBq is evaluation CFi (see Section 3.2.2), CFo
i the utopia point (i.e.,

minimal BDS for CFi), and CFmax
i the maximal BDS:

CFtrans
i pBq “

CFipBq ´ CFo
i

CFmax
i ´ CFo

i

Such approach yields values between zero and one, depending on the ac-
curacy of both CFo

i and CFmax
i computation. However, it is mostly unattain-

able to get their exact values, and for that we have to rely on estimations.
To achieve this, we compute estimations of utopian BDSs for all cost func-
tions as the union of all minimum nodes for each path from source to sink
nodes. Maximum points are obtained by following the similar approach, in
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this case obtaining maximum nodes for each path from source to sink nodes.
Note that, if design goals with constraints are presented, then it is possible
to use such constraint value K as maximum point by dismissing the need of
estimations.

3.4.4 Searching The Solution Space

Local search algorithms consist of the systematic modification of a given
state, by means of Action functions, in order to derive an improved state.
Many complex techniques do exist for such approach (e.g., simulated an-
nealing or genetic algorithms). The intricacy of these algorithms consists
of their parametrization, which is also their key performance aspect at the
same time. In this chapter, we focus on hill-climbing, a non-parametrized
search algorithm which can be seen as a local search by always following the
path that yields higher heuristic values. Since the used cost functions are
highly variable due to their non-monotonicity, hill-climbing might provide
different outputs depending on the initial state. In order to overcome such
problem, we adopt a variant named Shotgun hill-climbing which consists of
a hill-climbing with restarts (see Algorithm 1). After certain number of iter-
ations, we can keep the best solution. Such approach of hill-climbing with
restarts is surprisingly effective, specially when considering random initial
states.

3.5 Experiments

In this section, we report our experimental findings on the evaluation of our
approach for intermediate results selection. Our experiments are performed
on an 8-machine cluster. Each machine has a Xeon E5-2630L v2 @2.40GHz
CPU, 128GB of main memory and 1TB SATA-3 of hard disk. Each machine
runs Hadoop 2.6.0 and Pig 0.15.03 on Ubuntu 14.04 (64 bit). We have ded-
icated one machine for the name node and the remaining seven machines
for data nodes. We use TPC-H4 benchmarking tool to generate datasets and
queries. These queries have been converted to Apache Pig which is a pro-
cedural language of the big data systems. In order to create a complex DIF,
we use CoAl [48], which in this case, combines six TPC-H queries into one
integrated DIF as shown in Figure 3.3. The DIF size is chosen with the goal

3https://pig.apache.org
4http://www.tpc.org/tpch/
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Algorithm 1 Shotgun Hill-Climbing

Input D, i: Ź DIF, number of iterations
Output solution Ź Solution BDS configuration

1: solution “ null

2: do
3: B “ randomInitialState(D); f inished “ f alse
4: while ! f inished do
5: neighbors “ ResultsFromActions(B)
6: B1 “ stateWithSmallestHeuristic(neighbors)
7: if h(B1) ă h(B) then
8: B “ B1

9: else
10: f inished “ true
11: end if
12: end while
13: if h(B) ă h(solution) then
14: solution “ B
15: end if
16: ´´ i
17: while i ą 0
18: return solution

of representing a realistic data pipeline, however being still tractable for val-
idation with an exhaustive search.

3.5.1 Intermediate Results Selection Evaluation

In this section, we evaluate our approach to validate its two properties: one
is convergence and second is the quality of the obtained solutions. We also
compare our approach with an existing state of the art solution to show its
effectiveness.

Evaluation of Convergence and Quality of the Obtained Solutions

The goal of this experiment is to evaluate convergence and quality of the
obtained solutions in Algorithm 1. For the sake of experiments, we assign
update frequency to each table of TPC-H as shown in Table 3.2. We assume
that supplier and nation tables never update and hence, they have 0 update
frequency. Further, part and customer tables do not update very often and
their changes can be applied every 6 hours. That is why, we assign them
4 per day update frequency. Finally, orders and lineitem tables are frequently
updated and they update together whenever there is a new order. We assume
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Fig. 3.3: DIF of six TPC-H queries

Table Name UF
Part 4 / day
Lineitem 24 / day
Orders 24 / day
Customer 4 / day
Supplier 0 / day
Nation 0 / day

Table 3.2: Update Frequency (UF) of TPC-H tables

that their changes are synchronized every 1 hour and thus, their update fre-
quencies are 24 per day.

To evaluate the convergence of solutions, we systematically executed sin-
gle shots of our approach (i.e., one iteration) until the number of obtained
solutions converged and no new solutions were obtained. With such infor-
mation, and using the different frequencies, we can provide an estimation of
the probability to obtain a solution BK, formally defined as:

PpBKq “
f reqpBKq

n
ř

j“1
f reqpBjq

(3.1)

We aim to provide an estimation of the probability of the running Algo-
rithm 1 with i iterations, to find a solution BK. To this end, we introduce
Equation (3.2) measuring the probability to obtain such solution at position
K (1 ď K ď n) by running i iterations. It should be noted that B1 has been
confirmed to be the optimal after performing a breadth first search.
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PpBK, iq “ PpBK, i´ 1q
n
ÿ

j“K

PpBj, 1q ` PpBK, 1q
n
ÿ

j“K`1

PpBj, i´ 1q (3.2)

Fig. 3.4: Evolution of probabilities per number of iterations (each line corresponds to a potential
solution)

The above mentioned formula is a recursive formula where the base case
(i.e., PpBK, 1q) corresponds to the previously defined PpBKq (i.e., the proba-
bility to find solution BK in one iteration). The rationale behind the recursive
case is that after each iteration the one with the lowest heuristic value is kept.
Thus, we measure the probability that the solution at position K (i.e., BK) re-
main chosen after i iterations. This is achieved by adding (a) the probability
that in the previous i´ 1 iterations, BK is chosen and in the ith iteration an
equal or worst solution is chosen (i.e., PpBK, i´ 1q

řn
j“K PpBj, 1q); and (b) the

probability that in the previous i´ 1 iterations a worst solution was chosen
and in the ith iteration BK is chosen (i.e., PpBK, 1q

řn
j“K`1 PpBj, i´ 1q). Intu-

itively, increasing the number of iterations, those with smallest heuristics will
have a higher probability to be found regardless of the initial probability be-
ing low. With such basis, we can provide an estimation of the evolution of the
probability to find a solution BK by applying the aforementioned formula.

Based on the above mentioned formula, we experiment with the trade-off
between different SLAs. We perform evaluation with the following settings:
(1) two SLA’s metrics (i.e., load time, query time), equally weighted to 50%,
(2) three SLA’s metrics (i.e., load time, query time, storage space), equally
weighted to 33%, and (3) four SLA’s metrics (i.e., load time, query time, stor-
age space, freshness), equally weighted to 25%. Our experiments show that
the number of iterations to converge gradually increases with the number of
considered SLAs. As shown in Figure 3.4, our approach takes 11 iterations,
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Query Name Start Time Repeated When to Repeat
Q3 0 Yes 6 / hour
Q5 1 No -

Q10 2 Yes 2 / hour
Q11 3 Yes 1 / hour
Q17 0 Yes 14 / hour
Q19 2 No -

Table 3.3: Sample workload based on TPC-H

26 iterations, and 39 iterations to converge (i.e., to be certain with a prob-
ability of 80%, that the obtained solutions will be one in the top three) for
two, three, and four considered SLA’s metrics, respectively. In addition, we
measure the average execution time of an iteration in different settings. Our
approach takes 55.45 seconds, 58.68 seconds, and 183.34 seconds for two,
three and four SLA’s metrics, respectively. For four SLA’s metrics, it takes
more time because it has larger search space, due to the conflicting SLAs and
the characteristics vector (i.e., refresh frequency). As all considered scenarios
follow the same convergence trend as shown in Figure 3.4, let us focus on the
most complex scenario involving the trade-off of four SLAs. For four SLA’s
metrics, we obtained n “ 22 different solutions across 90 executions. It can be
seen that after 39 iterations, it is almost certain (i.e., ą90% probability) that
the obtained solutions will be one in the top three.

From such results, we conclude that the problem of finding optimal solu-
tions by using hill-climbing indicates the issues with local optimums, known
for greedy multi-objective optimization algorithms, and opens the challenge
of applying more complex (i.e., parametrized solutions). However, the ap-
proach of shotgun hill-climbing, quickly yields near-optimal results after few
iterations with high probability.

Comparison with an Existing Solution

Several intermediate materialization approaches for Big Data systems can be
found in the literature, as discussed in Section 2.1. However, all of them fo-
cus on improving the query execution time without considering others SLAs
(such as freshness). In order to show the effectiveness of our approach, we
compare against the best representative solution (i.e., ReStore).

As mentioned in [14], 80% of queries are repeated in the range of min-
utes to hours. Thus, we created a sample workload by utilizing six TPC-H
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Fig. 3.5: Comparison of our approach, ReStore (C) conservative heuristics and ReStore (A)
aggressive heuristics

queries, based on the aforementioned work. We set four out of six queries
as repetitive and two out of six as non-repetitive queries. In addition, we
set their query frequencies in the range of minutes to hours as shown in Ta-
ble 3.3. Moreover, ReStore has a configuration parameter for applying its
eviction policies (to delete unused materialized nodes). For experiments, we
chose different configuration values such as 9, 29, 55, and 70 in minutes to
compare with all the possible behaviors of ReStore.

Figure 3.5 depicts three charts to show different metrics for comparison.
In Figure 3.5a, we compare the total number of materialized nodes, in Figure 3.5b,
we show the total space required (presented using base 10 logarithm) , and
in Figure 3.5c, we show the average speedup gain in the repetitive queries.
When executing the queries for the first time as shown in Figure 3.5a and
Figure 3.5b, ReStore materializes each operator matching the heuristics and
thus, it materializes more nodes and takes more space. Whereas, our ap-
proach uses the cost model to materialize only those nodes which satisfy all
the four objectives (i.e., loading time, query time, storage space, and fresh-
ness).

When we configured 9 minutes for applying ReStore’s eviction policies, it
perceives only Q17 as a repetitive query because it is repeated before apply-
ing the eviction policies. Hence, it deletes all the materialized nodes except
those which are used in Q17. Similarly, when we chose 29 minutes, now it
assumes that Q3 and Q17 are repetitive queries and keeps only their mate-
rialized nodes. This decision helps to reduce the occupied space but it also
decreases the average speedup as shown in Figure 3.5c. Likewise, when we
configured 55 minutes, ReStore notices three queries (i.e., Q3, Q10, and Q17)
as repetitive and keeps only the associated materialized nodes. As a conse-
quence, it deletes all other materialized nodes which also reduces the average
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Fig. 3.6: Effect of Refresh Frequency on Loading Cost and Freshness

speedup. Finally, when we configured 70 minutes, now it detects all possible
repetitive queries and manages to keep all the required materialized nodes.
However, still ReStore (C) keeps more nodes and takes more space compared
to our approach as shown in Figure 3.5a and Figure 3.5b. On the other hand,
ReStore (A) keeps a similar number of materialized nodes to our approach,
but provides less average speedup. In general, our approach considers query
frequency which helps to choose only the required materialized nodes from
the start and provides better speedup than ReStore’s heuristics.

In our experiments, we also evaluated our approach based on the charac-
teristics vector (i.e. refresh frequency) to find the trade-off between loading
cost and freshness. As shown in Figure 3.6, ReStore does not have support
to balance them. It always deletes a materialized node as soon as any of its
input source is updated. Thus, it always provides maximum freshness (only
affected by the time to materialize new nodes). Consequently, it worsens the
loading cost for materialized nodes, which may have highly variable input
sources. Oppositely, our approach takes refresh frequency as an input and
based on this, it tries to balance loading cost and freshness, by choosing the
optimal value for each to-be-materialized node.

From these experiments, we conclude that our approach provides bet-
ter solutions for materialization than ReStore. In addition, it can consider
different SLAs as discussed in Section 3.3.3, which are not an option in the
existing materialization solutions. Moreover, our example shows that we can
also accept refresh frequency as a characteristic to find the balance between
freshness and loading cost which is not possible in the existing materialized
solutions.
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3.6 Conclusions

In this chapter, we have presented an approach for the selection of inter-
mediate results from data-intensive flows. We have built upon the general
framework for materialized view selection by giving it additionally a multi-
objective perspective. Moreover, we have provided a set of three cost func-
tions with its building blocks (i.e., engine-independent statistics and engine-
dependent metrics), and a representation of the approach as a state space
search problem. Experimental results have showed that our approach is
highly efficient in terms of performance, while providing near-optimal re-
sults.
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4
Storage Format Selection for Materialized

Intermediate Results

Modern big data frameworks (such as Hadoop and Spark) allow multiple users to
do large-scale analysis simultaneously, by deploying Data-Intensive Flows (DIFs).
These DIFs of different users share many common tasks (i.e, 50-80%), which can be
materialized and reused in future executions. Materializing the output of such com-
mon tasks improves the overall processing time of DIFs and also saves computational
resources. Current solutions for materialization store data on Distributed File Sys-
tems by using a fixed storage format. However, a fixed choice is not the optimal one
for every situation. Specifically, different layouts (i.e., horizontal, vertical or hybrid)
have a huge impact on execution, according to the access patterns of the subsequent
operations. In this chapter, we present a cost-based approach that helps deciding the
most appropriate storage format in every situation. A generic cost-based framework
that selects the best format by considering the three main layouts is presented. Then,
we use our framework to instantiate cost models for specific Hadoop storage formats
(namely SequenceFile, Avro and Parquet), and test it with two standard benchmark
suits. Our solution gives on average 1.33x speedup over fixed SequenceFile, 1.11x
speedup over fixed Avro, 1.32x speedup over fixed Parquet, and overall, it provides
1.25x speedup.
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4.1 Introduction

Data analysis plays a decisive role in today’s data-oriented organizations,
which produce and store large volumes of data (i.e., in the order of petabytes
to zettabytes [71]). To store and process such data, organizations typically
rely on the use of distributed frameworks, such as Apache Hadoop1 and
Apache Spark2. These frameworks are used by multiple users and the data is
processed by deploying complex analytical workflows that orchestrate mul-
tiple tasks. Each task produces an output that is used as input for the subse-
quent tasks. The workflows may have many redundant tasks, whose output,
if materialized, can be reused to improve the overall execution time. In this
chapter, we refer to the materialization of the output of redundant tasks as
Intermediate Results (IRs).

Figure 1.2a shows two analytical workflows, orchestrating multiple tasks.
They both have a common task (i.e., JOIN), which can be materialized for
reuse. That is, if these workflows were to be submitted again as shown in
Figure 1.2b, they would not require to recompute the JOIN, because that
would have already been materialized and could be reused by both. This IR
would help on saving computational resources and reducing the execution
time. Yet, note that IRs are different from intermediate results, produced by
different tasks in the same workflow. For instance, in Spark, the intermediate
results are always stored in memory and discarded afterwards. Whereas, a
IR is stored in the disk and its purpose is to be reused not only by the same
workflow but also by different workflows.

The importance of IRs has been acknowledged in an in-depth study of
seven enterprises [14], where it was shown that 80% of their different analyt-
ical workflows had redundant/common tasks. Similarly, recent studies [43,
44] from Microsoft have shown that 65% of their workflows have redundant
parts. These studies imply that a proper management of IRs could provide
benefits in terms of computational resources and execution time. Yet, a solu-
tion to this problem means answering the following questions: ”(1) which IR
should be chosen?” and ”(2) which layout should be used for its storage?”.

This thesis have already proposed an approach in Chapter 3, which helps
on choosing the IRs that minimize the overall analytical workflow execution
times. However, IRs are typically stored in a Distributed File System (DFS),

1http://hadoop.apache.org
2https://spark.apache.org
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using a single fixed layout, thus, ignoring the second question of ”which lay-
outs should be used when persisting IRs?”. The importance of this question lies
on the fact that, since DFS I/O operations are expensive, the analytical work-
flow execution times can be further reduced by choosing the physical storage
layouts based on the operators. Obviously, a fixed storage layout can not
be optimal for all types of workloads. Indeed, [5] shows the importance of
storing data according to their access pattern and that single fixed layouts
are not good for all types of workloads. Similarly, [25, 41] also focus on the
importance of storing data according to their access patterns and highlight
the effect of different storage layouts on different workloads3. Nevertheless,
no current solution is able to choose the layout of IRs automatically.

In this chapter, we present a cost-based approach to address the second
question and find the most appropriate storage layout for IRs. However, since
a cost model requires statistical information about the data and the analytical
workflows in order to make a decision, we also propose the use of a rule-
based approach for cold-start. Therefore, we first apply rules for choosing
storage layouts, while collecting the statistical information. Once the required
statistical information has been gathered, we can apply the proposed cost-
model.

Our contributions are as follows:

• We present a generic I/O model for the three main layouts (i.e., hori-
zontal, vertical, and hybrid) in big data frameworks, for estimating their
read and write costs.

• We instantiate the cost model on Hadoop Distributed File System (HDFS),
for SequenceFile, Avro, and Parquet.

• We propose and implement a generic framework for big data systems,
to store the selected IRs in the appropriate storage format.

• We conduct comprehensive experiments on two de-facto standard in-
dustry benchmarks for Decision Support Systems (DSSs). The results
show that our approach reduces the overall workflow execution times
when compared to using single fixed layouts, by providing a 1.25x av-
erage speedup.

The remainder of this chapter is organized as follows: In Section 4.2, we
discuss the storage layouts and our motivation. In Section 4.3, we present

3http://www.svds.com/how-to-choose-a-data-format
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our overall approach. In Sections 4.4, we discuss heuristic rules. In Section
4.5 and Section 4.6, we present the generic cost model and its instantiation
in detail. In Section 4.7, we report on our experimental results. Finally, in
Section 4.8, we conclude the chapter.

4.2 Background and Motivation

In this section, we discuss the different storage layouts available and exem-
plify them with their corresponding instantiation for HDFS. Moreover, we
discuss existing materialized solutions and also motivate our work by illus-
trating the fixed layout limitations.

Fig. 4.1: Horizontal and vertical layouts

4.2.1 Storage layouts

There are many layouts, used in different processing frameworks, that can be
divided into three categories based on how they fragment data: horizontal,
vertical or hybrid. Each concrete layout has its own physical storage structure
that is beneficial for a specific kind of workloads.

Avro

Header

101,201,301,401

Avro Schema

{

“type” : “record”,

“name” : “Table 1”,

“fields”: [

{“name”:“A" “type”:“int”},

{“name”:“B" “type”:“int”},

{“name”:“C" “type”:“int”},

{“name”:“D" “type”:“int”}

]

}

102,202,302,402

103,203,303,403

Table 1

A B C D

101 201 301 401

102 202 302 402

103 203 303 403

Sequence File

Header

Key : 101

Value : 201,301,401

Key : 103

Value : 203,303,403

Key : 102

Value : 202,302,402

(a) (b)

Fig. 4.2: Examples of SequenceFile and Avro layouts

Horizontal layouts

They are organized row-wise, and the attributes of each row are stored to-
gether, as shown in Figure 4.1a (where R represents the row and C repre-
sents the column of a row). For this reason, a horizontal layout especially
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suits scan-based workloads (i.e., reading all rows and columns). However, if
a query is just referring to a small subset of columns, this layout results in a
low effective read ratio, since non-required columns will be fetched anyway.
In HDFS, the horizontal layout is implemented by SequenceFile4 and Avro5.
SequenceFile is a special type of horizontal layout storing simple key-value
data, whereas Avro explicitly splits data into columns inside every row. In
other words, it embeds schema information. Figure 4.2 shows an example of
a table and its corresponding format in SequenceFile (i.e., Figure 4.2a) and
Avro (i.e., Figure 4.2b).

Table 1

A B C D

101 201 301 401

102 202 302 402

103 203 303 403

Yahoo Zebra

Header

Group1
sync marker

Group2
sync marker

Group3
sync marker

Group2 Group3

Group1

301 401

402

403

302

303

101,201

102,202

103,203
Yahoo Zebra Schema

[A : int, B : int] as Group1

[C : int] as Group2

[D : int] as Group3

Fig. 4.3: Example of Zebra layout

Vertical layouts

They divide each row into columns, and store each column separately, which
is beneficial for workloads reading just few columns. Thus, these layouts ex-
cel in projection-based workloads. Figure 4.1b sketches the physical structure
of vertical layouts. Zebra6, illustrated in Figure 4.3, is an implementation of
this kind for HDFS. Zebra also allows to group columns together, but without
any horizontal partition.

Fig. 4.4: Hybrid layouts

4https://wiki.apache.org/hadoop/SequenceFile
5https://avro.apache.org
6https://wiki.apache.org/pig/zebra
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Hybrid layouts

They are a combination of horizontal and vertical layouts, having two al-
ternative implementations: Either the data is divided horizontally and then
vertically, like in Figure 4.4a, or vice versa, like in Figure 4.4b. Both cases are
especially helpful for combinations of projection and selection operations.
There are many implementations of this kind, but the most popular ones in
HDFS are Optimized Row Columnar (ORC)7 and Parquet8, both primarily
fragmenting data horizontally. Figure 4.5 exemplifies Parquet.

Table 1

A B C D

101 201 301 401

102 202 302 402

103 203 303 403

Parquet

Header

Row Group 1
sync marker

Row Group 2
sync marker

Footer

Parquet Schema

message Table1 {

require int32 A;

require int32 B;

require int32 C;

require int32 D;

}

101,102

201,202

301,302

401,402

103

203

303

403

Row Group 1

Row Group 2

(Schema + Row Groups

+ Statistics)

(Version)

Fig. 4.5: Example of Parquet layout

4.2.2 Layout performance comparison

Ad-hoc and exploratory analysis are very popular among data analysts, help-
ing them to understand different aspects of their business. However, it is very
difficult to tune a system for such scenarios since the workload is very dy-
namic, and current solutions are not considering layouts depending on workflow
operations, and ignore this fact when storing IRs in the disk.

Fig. 4.6: The effect of the number of retrieved columns on different layouts

7https://orc.apache.org
8http://parquet.apache.org
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Fig. 4.7: Flowchart of our approach

To illustrate the drawback of the current static approaches let us assume
the following example from TPC-H. Lets assume the join between Lineitem
and Part tables is chosen as a IR. Figure 4.6 shows the execution time of a
simple projection-based query for horizontal and hybrid layouts. It can be
seen that Parquet (i.e., a hybrid layout) performs well when the total amount
of data read from disk is below 75%, whereas Avro (i.e., a horizontal layout)
performs better as soon as we read more than 75% of data. This is happening
due to the added cost of row reconstruction for hybrid layouts. Thus, this
shows that the characteristics of the query/workflow help to determine the
optimal layout.

4.3 Our Approach in a Nutshell

From here on, a Data-Intensive Flow (DIF) is represented as a directed-acyclic
graph of operations (an example can be seen in Figure 1.2). Nodes represent
operations and directed edges show the dependencies between the nodes.
The starting node of an edge produces the data to be consumed by the ending
node (note that a node output can be consumed by several nodes). Different
DIFs can have multiple common nodes, whose output when materialized is
referred to as Intermediate Results (IRs).

Given a DIF, Figure 4.7 illustrates the flowchart of our approach. Follow-
ing the two questions introduced in Section 4.1, first, (i) it selects IRs using
Chapter 3 and, then, (ii) for each of them, it chooses the best storage layout.

4.3.1 Storage layout selection

Since existing materialized solutions use a fixed layout for IRs, our approach
helps them to decide the best storage layout for each chosen IR. If statistical
information about IRs is available, we use the cost-based model to decide the
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storage layout. If for any reason we have not enough statistical information
(see the variables required by our cost model in Section 4.5) to make a deci-
sion on a given IR, we can still apply heuristic rules (in Section 4.4.2) to de-
termine the storage layout. The heuristic rules choose a storage layout based
only on the operation type. Obviously, it might happen that the heuristic
rules do not choose the best storage layouts since they do not consider essen-
tial information to estimate the total volume of data to be read from the disk.
For example, projections/selections can perform differently based on the per-
centage of columns/rows read. Thus, factors such as the number of columns
and selectivity factors may drastically impact the operation performance de-
pending on the storage layouts, as illustrated in Figure 4.6. These factors
cannot be considered in heuristic rules, because they heavily depend on the
concrete operation and data characteristics. Still, heuristic rules provide a
fair first-approach to the problem with small computational requirements
in scenarios where there is lack of information. Oppositely, if the required
statistics are available, the cost-based approach, like the one in Section 4.5,
is more accurate. Finally, the DIF is executed and the chosen IRs are stored
with their chosen storage formats. Our approach also records/updates the
needed statistical information to be used in the future.

4.4 Heuristic Rules

In this section, we present heuristic rules for choosing the storage format
for a materialized node. We compare the existing data formats based on
their features. In this chapter, we focus on the following set of data formats,
which vary from each other in term of the implemented layout: horizontal:
SequenceFile and Avro; vertical: Zebra; and hybrid: Parquet. Next, we present
our heuristic rules based on the devised features of such data formats.

4.4.1 Comparison of Data Formats

In Table 4.1, a comparison of all the layouts and their representative for-
mats is given. This allows to look at their features side by side. As it can
be noted from the table, all formats except SequenceFile, store the schemas
of data. The schema information helps during the data serialization and
de-serialization phases by avoiding the need to cast the data at the appli-
cation level - which is a costly operation. Moreover, the table shows that
both vertical and hybrid layouts provide support for column pruning. It
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means, they only read the required columns and do not perform unneces-
sary reads. Hybrid layouts can also push down the selection predicates into
the storage layer because they store indexing information that helps in fil-
tering the records while reading. Furthermore, since hybrid layouts store
statistical information for each column, they enable easier computation of
aggregates. Additionally, vertical and hybrid layouts have support for nested
records which helps in storing bag, map and custom user data types. It can
also be noted that hybrid layouts have additional features but they also have
a significant overhead when writing and therefore when reading the same
amount of data (due to the amount of metadata stored with data). Moreover,
nowadays vertical layouts have been subsumed into hybrid, as they support
all their features.

Features Horizontal Vertical Hybrid
SequenceFile Avro Zebra ORC Parquet

Schema No Yes Yes Yes Yes
Column Pruning No No Yes Yes Yes

Predicate Pushdown No No No Yes Yes
Metadata No No No Yes Yes

Nested Records No No Yes Yes Yes

Table 4.1: Comparison of data formats

In summary, each format provides a different set of features that will
affect the overall performance when retrieving the intermediate results from
the disk. Generally, hybrid layouts perform well if a subset of data is read.
Alternatively, horizontal layouts perform well if all, or most of the data is
read.

4.4.2 Selecting the Appropriate Format

In this section, we introduce the set of heuristic rules that choose a data for-
mat for a given IR, which derive from well-known properties of horizon-
tal, vertical and hybrid layouts and their features presented in Table 4.1.
Note that more than one rule may apply when deciding for a given to-be-
materialized node. In case two contradictory rules apply (e.g., selecting Avro
and Parquet), we prioritize the selection based on the data format’s features.
Hence, we give the highest priority to Parquet owing to the fact that Parquet
has more features and a more flexible behavior. The second highest priority is
assigned to Avro because it stores schema information about the data which
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speeds up the reading. Finally, the lowest belongs to SequenceFile, which is
only chosen for key-value data.

rule1 : v Ñ SequenceFile, IF |v.O| “ 2

rule2 : v Ñ Parquet, IF Dx P successorspvq, WHERE x.S P tAggregationOpsu

rule3 : v Ñ Parquet, IF Dx P successorspvq, WHERE x.vpre Ĺ v.O

rule4 : v Ñ Avro, IF @x P successorspvq, WHERE x.vpre “ v.O

rule5 : v Ñ Avro, IF Dx P successorspvq, WHERE x.S P tJoin, CartesianProduct,

GroupALL, Distinctu

Rule1 chooses SequenceFile for the materialization of nodes that have ex-
actly two attributes. This is an immediate application of the SequenceFile
format (which stores data as key-value pairs). Otherwise, several columns
would need to be combined (e.g., with a separator marker such as “-” or
“;”) either in the key or the value and parsed at the application level. Rule2
chooses Parquet when performing aggregations on data. Since Parquet stores
statistical information for each column, it is the most efficient when comput-
ing aggregates. Also, Parquet’s hybrid layout is also the best choice when it
comes to read subsets of data, or when operators apply on subsets of columns
(see Table 4.1). This rationale is behind rule3. Oppositely, Avro is chosen
when all the data is read or when the operator does not apply on a certain
subset of columns. This is a consequence of Avro implementing a horizontal
layout. Hence, both rule4 (the operator affects all columns) and rule5 (the
operator requires to read the whole data without filtering) recommend Avro.
It is noteworthy to mention that our rules do not consider vertical layouts
as they are subsumed by hybrid layouts. Furthermore, leveraging on the
presented formalization other formats can be easily added.

4.5 Cost-Based Model

The cost-based model relies on a wide range of statistical information that is
summarized in Table 4.2, containing system constants, data statistics, work-
load statistics as well as layout variables. The system constants are generally
based on [41]. We only extended the list with specific variables related to
the selectivity factor and storage layouts.We assume the constants depending
on the configuration of the environment (e.g., BWDisk, BWNet) are given and
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Variable Description
System Constants

R Replication factor
p Probability of accessed replica being local
ChunkSize Block size in the DFS
BWDisk Disk bandwidth
BWNet Network bandwidth
TimeSeek Disk seek time

TimeDisk
ChunkSize

BWDisk

TimeNet
ChunkSize

BWNet
Data Statistics

|IR| Number of Rows in IR
RowSize Average Row Size of IR
ColValueSize Average Column Size1 of IR
#Cols Columns of IR

Workload Statistics
Re fCols Number of columns used in an operation
SF Selectivity factor of an operation

Layout Variables
RGSize Row group size of hybrid layouts
MetaSizeLayout Metadata size for a given layout
BodySizeLayout Size of the body of a layout
HeaderSizeLayout Size of the header of a layout
FooterSizeLayout Size of the footer of a layout
UsedChunksLayout Number of chunks of a layout
UsedRowGroupsLayout Number of row group of hybrid layouts
|RG| Number of rows of a row group
TotalSeeksLayout Total number of seeks for a given layout

1 Extra 4 bytes are considered for variable length columns

Table 4.2: Parameters of the Cost Model

the statistics are collected during the DIW execution. Moreover, it should
be noted that we consider only I/O cost in our cost model, because it is the
dominant factor in DIWs.

TotalSizeLayout “ HeaderSizeLayout ` BodySizeLayout ` FooterSizeLayout (4.1)

UsedChunksLayout “
TotalSizeLayout

ChunkSize
(4.2)

TotalSeeksLayout “ rUsedChunksLayout s (4.3)
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Independently of the kind of layout, the driving factor of our cost model
is the file size. The body, together with the header and footer compose it
(Equation 4.1). From that, we can obtain the number of chunks used (Equa-
tion 4.2) and the number of disk seeks we need to reach them (Equation 4.3).
The number of seeks is equal to the total number of chunks rounded up,
because one seek is required for every chunk, even if it is not full. Note that
modern Solid State Disks (SSDs) also have seek time (i.e., time required to
turn on the right circuit), however their seek time is much less (i.e., 0.1ms)
compared to hard disks (i.e., 4ms) [52, 53]. Thus, our cost model still applies
and we would only need to update the system constants accordingly.

In the next subsections, we analyze the cost of data writes and reads,
because they are the dominant factors in the overall execution time of DIWs.
The write cost model estimates the data volume footprint of each layout as
well as the cost incurred in writing it, while the read cost model estimates the
cost of an operation depending on the access pattern. Regarding the latter,
given the simplicity of a file system (far from that of a DBMS) only three
operations are possible (namely full scan, projection, and selection).

WWriteTrans f er “
TimeDisk ` pR´ 1q ¨ TimeNet

TimeSeek ` TimeDisk ` pR´ 1q ¨ TimeNet
(4.4)

CostWriteLayout “ UsedChunksLayout ¨WWriteTrans f er (4.5)

` TotalSeeksLayout ¨ p1´WWriteTrans f erq

4.5.1 Write cost

First of all, we have to take into consideration that distributed processing
frameworks are using DFS to store data into multiple chunks. Thus, the num-
ber of chunks of a file is used to estimate the overall writing costs. Given that
a chunk consists of multiple contiguous disk blocks and inside it, sequential
read is guaranteed, assuming that the chunk size is smaller than a disk cylin-
der, the write cost can be simply computed as the number of chunks plus the
seek cost to locate the position of each. Nevertheless, since our cost model is
thought for distributed processing frameworks, we further need to consider
the replication factor R used for fault-tolerance, and therefore the network
costs for writing R copies needs to be taken into account. We assume that the
replication procedure is sequential (as it is in HDFS) and the multiple copies
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are written one after another. Equation 4.4 gives the weight of transferring a
chunk by considering the network and the disk write against the seek costs.
Finally, Equation 4.5 shows the total write cost taking both seek and transfer
weights into account.

In the following, we present the write cost for each horizontal, vertical
and hybrid layouts.

Horizontal layouts

They store data row-wise into the body section. Oppositely, metadata con-
taining information such as schema and version, is written into the header
and footer sections. Nevertheless, in some implementations, additional meta-
data is also written in the body with every row, for example, metadata used
to separate each row or each column (i.e., its size is not constant and depends
on the number of columns).

BodySizeHorizontal
“ MetaSizeHBody

` |IR| ¨ pMetaSizeHRow ` RowSizeq (4.6)

Equation 4.6 estimates the size of the body by multiplying the average
row size and metadata (i.e., SizepMetaHRowq) by the total number of rows, plus
other metadata (i.e., SizepMetaHBodyq) we may find in the body section.

OneColSize “ ColValueSize ¨ |IR| (4.7)

BodySizeVertical
“ MetaSizeVBody

` #Cols ¨ pMetaSizeVCol
`OneColSizeq (4.8)

Vertical layouts

They store each column independently (i.e., values of a column, which share
the same data type, are stored consecutively) using a separator (i.e., MetaSizeVBody

)
of fixed size between columns. Equation 4.7 provides the estimation of the in-
dividual column size, which is used in Equation 4.8 to determine the overall
size of the body by multiplying the size of one column by the total number
of columns.
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UsedRowGroupsHybrid “
#Cols ¨ pMetaSizeYCol

` |IR| ¨ ColValueSizeq

RGSize
(4.9)

MetaSizeHybrid
“ rUsedRowGroupsHybrid s ¨MetaSizeYRowGroup (4.10)

BodySizeHybrid
“ UsedRowGroupsHybrid ¨ RGSize `MetaSizeHybrid

(4.11)

Hybrid layouts

They are a combination of horizontal and vertical layouts. They divide rows
into horizontal partitions known as row groups and each row in one row
group is further divided into vertical partitions storing each column sepa-
rately, and inserting metadata (i.e., MetaSizeYCol

) between them. Additionally,
they also store metadata (i.e., MetaSizeYRowGroup ) for every row group. Thus, the
total size of the body depends on the number of row groups being used,
which can be estimated as in Equation 4.9 and the size of metadata of row
groups is estimated in Equation 4.10. Notice that the metadata of the row
group is stored irrespectively of it being completely full, so this must be
rounded up. Furthermore, Equation 4.11 obtains the size of the body by mul-
tiplying the number of row groups by the size of a row group and by adding
the total size of metadata.

4.5.2 Read cost

This section presents the read cost model for scan, projection and selection
operations. All DIW operations in current massively distributed processing
environments use a full scan access pattern on the DFS, except projection and
selection operations that are specifically supported natively in some storage
layouts. Thus, we consider them separately in the following.

ScanSizeLayout “ TotalSizeLayout ` pUsedChunksLayout ¨MetaSizeLayoutq (4.12)

Scan

It reads all stored data from the disk, irrespective of the layout being used.
Relatively, the metadata (such as schema, statistics, etc.) stored inside header
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or footer sections, reads separately in each task. The reason is that the dis-
tributed processing engines (such as Hadoop and Spark) create a separate
process for each task with its own memory. This memory is not accessible
to other tasks and hence, forces to read all metadata in each task separately,
and consequently, increases the reading size. The number of tasks is equal to
the number of used chunks. Equation 4.12 estimates the scan size, which can
be used further to estimate the scan cost.

The scan cost purely depends on the number of used chunks to be read.
Assuming the block is the transfer unit between disk and memory, there are
three factors impacting the cost: the average seek time needed to locate a disk
block cylinder, the rotation time to move the disk head over the cylinder to
reach the block, and the transfer time to bring data in the block from disk
into memory. Nevertheless, despite every chunk consists of multiple blocks
on disk, it should be noted that DFS typically guarantee that all disk blocks
are contiguous within one disk cylinder, under the assumption that the chunk
size does not go beyond the cylinder size. This is why we do not need to con-
sider seek time for all the disk blocks. Instead, we only consider seek time
once for every chunk. Also, as confirmed in our experiments, the rotation
time is negligible, because modern hardware and operating systems imple-
ment very effective pre-fetching techniques. Furthermore, our cost model is
also applicable to SSDs. Since SSDs have very small seek time and high I/O
speed, the corresponding system constants would simply be replaced respec-
tively. For the rest, since the basic unit of our cost model is defined in terms
of bytes, all the estimations will remain the same.

WReadTrans f er “
TimeDisk ` p1´ pq ¨ TimeNet

TimeSeek ` TimeDisk ` p1´ pq ¨ TimeNet
(4.13)

UsedChunksScanLayout
“

ScanS izeLayout

ChunkSize
(4.14)

CostScanLayout “ UsedChunksScanLayout
¨WReadTrans f er (4.15)

` TotalSeeksLayout ¨ p1´WReadTrans f erq

On the other hand, we have to take under consideration that in a dis-
tributed data processing framework data can be accessed remotely. Conse-
quently, we introduce a probability p to indicate the likelihood of chunks
being accessed locally (i.e., data shipping through the network is not needed
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to reach the operation executor). This is used to estimate the weight of trans-
ferring the chunk data compared to the corresponding seek time using Equa-
tion 4.13. Then, Equation 4.14 estimated the total number of read chunks and
Equation 4.15 provides the scan cost taking both the seek and the transfer
cost into account with the corresponding weights.

Projection

It helps in fetching only some columns from disk (skipping others) to save
some I/Os. Its cost depends on the support provided by each layout.

Horizontal layouts. They do not provide specific support for projection op-
eration, but actually use a full scan to bring all the data into memory and only
afterwards discard the unnecessary columns. Therefore, its cost is exactly the
same as that of scan (i.e., Equation 4.15).

ProjectSizeVertical
“ HeaderSizeVertical

` FooterSizeVertical
`OneColSize ¨ Re fCols (4.16)

CostProjectVertical
“ UsedChunksProjectVertical

¨WReadTrans f er (4.17)

` Re fCols ¨ TotalSeeksOneCol

¨ p1´WReadTrans f erq

Vertical layouts. They do support projections. Their cost depends on the
size retrieved data, which is exactly that of the referred columns and the
metadata in the header and footer sections, as in Equation 4.16. The seek time
depends on the number of retrieved columns (that might not be consecutively
stored in disk), and their size. Equation 4.17 combines both components
considering the weight of a read transfer as defined in Equation 4.13.
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|RG| “

[

|IR|
UsedRowGroupsHybrid

_

(4.18)

Re f ColsSize “ Re fCols ¨ pMetaSizeYCol
` |RG| ¨ ColValueSizeq (4.19)

ProjectSizeHybrid
“ HeaderSizeHybrid

` FooterSizeHybrid
(4.20)

` pRe f ColsSize `MetaSizeYRG q

¨UsedRowGroupsHybrid ` pUsedChunksHybrid
¨MetaSizeHybrid

q

CostProjectHybrid
“ UsedChunksProjectHybrid

¨WReadTrans f er (4.21)

` TotalSeekHybrid ¨ p1´WReadTrans f erq

Hybrid layouts. They also natively support projection, and similarly to ver-
tical layouts, we have to calculate its size to estimate the cost. However, hy-
brid layouts store data into multiple row groups. Therefore, we first need the
row group size to estimate the projection size. As each row group contains a
subset of rows, we estimate it as in Equation 4.18. Furthermore, Equation 4.19
gives the size of the columns used in the operation inside a group, which is
then used in Equation 4.20 to estimate the overall projection size. Similar
to the scan cost, hybrid layout also reads metadata separately for projection
in each task, which we consider in the projection size. Hybrid layouts also
have a seek cost to be considered, which depends on the number of row
groups needed by the overall size of the file (not only of the result of the
projection). Similar to previous cases, we can estimate the projection cost of
hybrid layouts by appropriately weighting the transfer and seek times as in
Equation 4.21.

Selection

It helps in fetching only some rows from disk (skipping others) to save some
I/Os. As for projection, its cost depends on the support provided by each
layout.

Horizontal and vertical layouts. They do not natively support this opera-
tion. They perform scan to bring all the data into memory and then filter
them out based on the given predicate. Thus, their selection cost is the same
as that of scan.

67



Chapter 4. Storage Format Selection for Materialized Intermediate Results

PRGSelected “ 1´ p1´ SFq|RG| (4.22)

RowsSelectedSize “

R

SF ¨ |IR|
|RG|

V

¨ #Cols (4.23)

¨ pMetaSizeYCol
` |RG| ¨ ColValueSizeq

UsedRGSelectHybrid
“

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

UsedRGHybrid

¨PRGSelected if Unsorted

R

RowsSelectedSize
RGSize

V

if Sorted

(4.24)

SelectSizeHybrid
“ HeaderSizeHybrid

` FooterSizeHybrid
(4.25)

` pUsedRGSelectHybrid
¨ RGSizeq

` pUsedChunksHybrid
¨MetaSizeHybrid

q

CostSelectHybrid
“ UsedChunksSelectHybrid

¨WReadTrans f er (4.26)

` TotalSeeksSelectHybrid
¨ p1´WReadTrans f erq

Hybrid layouts. They keep statistical information about data values in ev-
ery column for every row group (typically, inside the header or footer sec-
tions). This helps in skipping some of the row groups that do not satisfy
the predicate. Thus, the number of row groups to be read depends on the
filtering condition and the sorting order of the column on which the selection
is applied.

For unsorted columns, we can use the probability as in Equation 4.22
(borrowed from bitmap indexes [12]) to estimate the likelihood of any data
in a row group satisfying the condition (i.e., a row group being fetched).
In Equation 4.24, this probability is used to obtain the expected number of
retrieved row groups. However, if a column is sorted, then we are using
the Selectivity Factor (SF) to estimate how much data is going to be read using
Equation 4.23, which is later used in Equation 4.24 to calculate the fetched
row groups for sorted columns (notice that all data fulfilling the condition
is stored together if they are sorted on that column). Having the number
of selected row groups, Equation 4.25 determines the size of a selection by
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adding up the total size of fetched row groups, metadata, header, and footer
sections. As previously discussed about multiple reads of metadata in each
task, we also consider this factor in the estimation of selection size.

Finally, this selection size can be used to estimate the total number of
chunks and seeks as in Equations 4.2 and 4.3, which are then weighted as in
Equation 4.26 to estimate the total selection cost.

4.6 Instantiating the Cost Model

This section shows the file sizes for the three considered HDFS file formats,
together with the system variables with their values according to our testbed.
Table 4.3 lists all the system variables. They are divided in three categories.
First category has the variables related to disk which are important to calcu-
late the reading and writing cost. Additionally, second category has variables
for network to calculate the transfer cost, since Hadoop writes multiple copy
of data for fault tolerance purpose and this involves writing to other nodes.
For this writing, it needs to transfer data, and it is important in calculating
the overall write cost. Final category lists the variables related to the config-
uration of our Hadoop cluster.

Fig. 4.8: Physical file format of SequenceFile

4.6.1 SequenceFile (SeqFile) format

SeqFile9 is introduced in 2009 to improve the performance of MapReduce
framework. It is used to store the temporary output of map phases as com-
pressed to reduce I/Os. Moreover, it is also splittable which is ideal for
processing in parallel. It considers a special type of horizontal layout, which
stores data in the form of key-value pairs. Figure 4.8 shows its structure and
Table 4.4 shows the specific variables of SeqFile with their values.

9https://wiki.apache.org/hadoop/SequenceFile
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Variables for Disk

BWDisk Disk bandwidth 1.30ˆ 108

bytes/second

BlockSize Disk block size 8.00ˆ 103

bytes

TimeSeek
Disk random seek
time

5.00ˆ 10´3

seconds

TimeRotation Disk rotation time 4.17ˆ 10´6

seconds
Variables for Network

BWNet Network bandwidth 1.25ˆ 108

bytes/second
Variables for Hadoop

ChunkSize HDFS block size 1.28ˆ 108

bytes

Bu f f erSize Buffer size 6.40ˆ 104

bytes
R Replication factor 3

p
Probability of ac-
cessed replica being
local [41]

0.97

Table 4.3: System variables with their values according to our testbed

RowSizeSeqFile
“ RecordLengthSize ` KeyLengthSize (4.27)

` ColValueSize ¨ #Cols (4.28)

`MetaSizeSCol
¨ p#Cols´ 2q

TotalRowsSizeSeqFile
“ RowSizeSeqFile

¨ |IR| (4.29)

MetaSizeSBody
“

S

TotalRowsSizeSeqFile

SyncBlockSize

W

¨ SyncMarkerSize (4.30)

BodySizeSeqFile
“ TotalRowsSizeSeqFile

`MetaSizeSBody
(4.31)

To instantiate from our generic cost model, we need to estimate the sizes
of header, body and footer sections. The header section of SeqFile has a fixed
size, so we define it as a constant. To estimate body size, we need to calculate
row and metadata sizes. SeqFile divides each row into a key-value pair and
stores one column into the key, and the remaining columns into the value by
using a user-defined separator. Thus, it has two types of metadata: one is
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Variables for SeqFile
HeaderSizeSeqFile

Header size of SeqFile 30
RecordLengthSize Fixed field 4
KeyLengthSize Number of bytes for key 4

MetaSizeSCol

Number of bytes for user-
defined separator per col-
umn

1

SyncMarkerSize Size of sync marker 16

SyncBlockSize
Number of bytes between
sync markers 2,000

FooterSizeSeqFile
Footer size 0

Table 4.4: Sizes of SeqFile according to our testbed

used to separate values and another to make blocks for parallel processing.
Then, the size of a row is compound of some fields of fixed size (i.e., record
and key lengths) together with the corresponding key-value pair as shown
in Figure 4.8, containing all user columns (notice that we need two less user-
defined separators than columns, because the key is managed by the file
format itself). Equation 4.27 is estimating this size (i.e., a row for SeqFile),
which is later used in Equation 4.29 to estimate the size of all key-value pairs.
Equation 4.30 calculates the overhead of block-related metadata (i.e., sync
markers), which SeqFile introduces at fixed intervals. Finally, Equation 4.31
simply adds the size of key-value pairs and metadata, which allows in turn
to obtain the total size of SeqFile using Equation 4.1 with an empty footer
section.

Fig. 4.9: Physical file format of Avro
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Variables for Avro
VersionSize Version of Avro 5
CodecSize Compression codec 4
SyncMarkerSize Size of sync marker 16

ColSchemaSize
Size of schema information
per column ~30 bytes

BSizeAvro Block size of Avro 4,000

MetaSizeARow

Meta information for each
row 8

MetaSizeABlock

Meta information for each
block 8

FooterSizeAvro Footer size 0

Table 4.5: Sizes of Avro according to our testbed

4.6.2 Avro format

Apache Avro10 is a language-neutral data serialization system. It means Avro
can be written in one language and can be read in another language without
changing the code. This support is provided by the schema information
which Avro stores as a meta information. Moreover, it is also compressible
and splitable. It is a horizontal layout and Figure 4.9 sketches its physical
structure. Moreover, there are specific variables for Avro which are given in
Table 4.5. The data schema is stored in a header section of variable length.
Similarly, the size of body is also variable and it depends on the number of
rows in an IR.

HeaderSizeAvro “ VersionSize ` #Cols ¨ ColSchemaSize (4.32)

` CodecSize ` SyncMarkerSize

TotalRowsSizeAvro “ pRowSize `MetaSizeARowq ¨ |IR| (4.33)

MetaSizeABody
“ pMetaSizeABlock

` SyncMarkerSizeq (4.34)

¨

R

TotalRowsSizeAvro

BSizeAvro

V

BodySizeAvro “ TotalRowsSizeAvro `MetaSizeABody
(4.35)

10https://www.tutorialspoint.com/avro/avro_tutorial.pdf
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Header section of Avro contains meta information corresponding to the schema
of the data in the form a JSON. Given that the size of the schema is orders
of magnitude smaller that data, we estimate it as a constant per column.
Considering also the version and codec information, the overall header size
is calculated by Equation 4.32. Following the horizontal layout, Avro adds
metadata to each row, which is considered in Equation 4.33 to estimate the
size of a row. Moreover, it also adds extra metadata in the body for every
block. Thus, Equation 4.34 is calculating the total size of metadata by multi-
plying the number of blocks by the size of sync marker and that of counter
for the number of rows in the block. Finally, Equation 4.35 is used to calcu-
late the body size, which allows in turn to obtain the total size of Avro using
Equation 4.1 with an empty footer section.

Fig. 4.10: Physical file format of Parquet

4.6.3 Parquet format

Apache Parquet11 is introduced in 2013 to provide hybrid layout support for
Hadoop echosystem. It divides data horizontally into row groups, whereas
each row group is further divided vertically to store columns separately, as
sketched in Figure 4.10. Additionally, it also divides each vertical partition
into multiple pages. Moreover, it also stores the schema and statistical infor-
mation about the data as meta information in the footer section. All variables
specific to Parquet are listed in Table 4.6.

11http://parquet.apache.org
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UsedPagesRowGroupParquet
“ pColValueSize ¨ |RG| ` SyncMarkerSizeq (4.36)

¨
#Cols

PageSize

BodySizeParquet “ pppDe f initionLevelSize ` RepetitionLevelSize (4.37)

` PageSizeq ¨UsedPagesRowGroupParquet
q

` RowCounterSize ` SyncMarkerSizeq ¨UsedRowGroupParquet

FooterSizeParquet “ VersionSize ` ColSchemaSize ¨ #Cols (4.38)

`MagicNumberSize ` FooterLengthSize

`UsedRowGroupParquet ¨MetaSizePCol

¨ p1`UsedPagesRowGroupParquet
q

The header section of Parquet has a fixed size, as stated in Table 4.6. To esti-
mate the body size, we first need to estimate the total number of row groups
(i.e., Equation 4.9) and the total rows per row group (i.e., Equation 4.18).
Moreover, we need to be aware that Parquet stores every individual column
by dividing it into multiple pages, whose number which is estimated by
Equation 4.36 per row group. Next, we are calculating the body size of Par-
quet using Equation 4.37, by considering metadata for each page (namely def-
inition level and repetition level), and for every row group (namely counter
of rows per row group and sync marker).

Finally, we calculate the footer size by approximating the size the of the
schema, sketched in Figure 4.10, by a constant amount of bytes per column.
Moreover, Parquet also stores statistical information about columns in the
Footer section for both row groups and data pages. Equation 4.38 uses all
these values together to calculate overall size of footer. Then, total size of
Parquet is obtained by adding the header, body and footer sections, as de-
fined in Equation 4.1.

4.7 Experiments

In this section, we evaluate our approach and show the accuracy of our cost
model for estimating the file sizes and the cost of scan, projection and selec-
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Variables for Parquet
HeaderSizeParquet Size of header 4

De f initionLevelSize
Size of definition
level 4

RepetitionLevelSize
Size of repetition
level 4

RowCounterSize
Size of number of
rows 8

SyncMarkerSize Size of sync marker 16
VersionSize Version in footer 4

ColSchemaSize
Size of schema infor-
mation per column ~30 bytes

MetaSizePCol

Size of columns meta
data for storing sta-
tistical information

40

MagicNumberSize
Magic number in
footer 4

FooterLengthSize
Footer length in
footer 4

RGSize
Layout row group
size 128MB

PageSize Layout page size 1MB

Table 4.6: Sizes of Parquet according to our testbed

tion for different storage formats. We choose representative storage formats
from Apache Hadoop, the most popular distributed processing framework,
because it is used in 59% of the enterprises to process big data, as shown
in a survey from Cloudera [6]. In order to generate realistic data-intensive
workflows, we rely on standard industry benchmarks. We utilize TPC-H and
TPC-DS for evaluating our approach. TPC-H provides OLAP-like queries
that are typically characterized by a low selectivity factor. To properly assess
our approach, a broader range of analytical queries (i.e., typical reporting
and data mining queries) are required. For this reason, we also leverage on
TPC-DS for a more representative set of experiments.

Prior to conduct our experiments, we first instantiate our cost-model for
Apache Hadoop. In HDFS, we can find several storage formats that follow
the storage layouts discussed. Among them, we choose the most representa-
tive ones to show the effectiveness of our approach: SequenceFile (SeqFile)
and Avro for horizontal layouts and Parquet for hybrid layouts. Section 4.6
contains all the details about the instantiation of these formats, including the
file format size calculation and the required system variables. Note that, de-
spite being included in Section 4.5 for the sake of completeness, we did not
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include any vertical layout, since those available for HDFS ended up being
subsumed by hybrid ones and deprecated with time. Additionally, it is not
possible to use hybrid layouts to mimic the behavior of vertical layouts, be-
cause the current implementations of hybrid layouts define a maximum limit
on the size of row groups (i.e., 2GB), and do not allow creating different
column groups (grouping different columns inside one vertical group and
storing them row-wise). Finally, note also that for a fairer comparison, we
are not considering encoding, which is available only in Parquet.

4.7.1 Experimental setup

Our experiments are performed on a 16-machines cluster12. Each machine
has a Xeon E5-2630L v2 @2.40GHz CPU, 128GB of main memory and 1TB
SATA-3 of hard disk and runs Hadoop 2.6.2 and Pig 0.16.0 on Ubuntu 14.04
(64 bit). We have dedicated one machine for the HDFS name node and the
remaining 15 machines for data nodes. We are using Apache Parquet 1.9.0,
Avro 1.7.0 and elephant-bird 4.913 for SeqFile.

Fig. 4.11: Validating the size estimation

4.7.2 Validation of file size estimations

In this section, we are validating the accuracy of our size estimation by cre-
ating a synthetic IR (i.e., join of Lineitem and Part tables of TPC-H), and
compare the actual size with the estimated one for each operation, namely
scan, projection, and selection. We have chosen JOIN over other operations,
because typically it is a computationally expensive operation and very com-
mon in modern DIFs. Figure 4.11 shows the results for scan operation on

12http://www.ac.upc.edu/serveis-tic/altas-prestaciones
13https://github.com/twitter/elephant-bird

76



4.7. Experiments

different scale factors. Figure 4.11a shows the results for the size, while Fig-
ure 4.11b shows the corresponding error rate for each studied format. We see
that Avro and Parquet are slightly underestimated (up to -3% error), while
SeqFile is slightly overestimated (up to 0.5%).

Fig. 4.12: Validating the projection cost model

Similarly, Figure 4.12 shows the results for validating our file size esti-
mation after a projection. To do so, we read different number of columns,
ranging from 5 to 25, by executing 100 different runs, randomly selecting
different columns on each run, over 8GB and took the average of all runs.
Figure 4.12a compares the actual and estimated size, and Figure 4.12b shows
the percentage of error. SeqFile and Avro perform a scan for projection and
their errors are the same as of the scan. However, Parquet has errors between
+4% to -2%, whose variance is due to variable column sizes (e.g., column
with string data type), whereas we use average column size for all columns.

Finally, Figure 4.13 validates the file size after a selection operation. For
this experiment, we generate different selectivity factors. Also, since the sort-
ing order of the filter column affects the reading, we are validating our results
for both sorted and unsorted columns. Moreover, we repeated our experi-
ments 100 times over 8GB by randomly choosing different search values and
took the average of all executions. Figures 4.13a and 4.13b show the results of
size estimations and errors in estimations, respectively, for unsorted columns.
Observe that our cost model slightly underestimates the sizes (i.e., up to -4%).
Moreover, the errors are more irregular when having small selectivity factors.
This is due to the fact that when searching for few values, it is more difficult
to find the exact row groups that contain those values. Figures 4.13c and
4.13d show the results for sorted columns. Here our cost model for Parquet
has errors in the range between +2% to -4% for the same reason discussed for
unsorted columns.
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Fig. 4.13: Validating the selection cost model

All in all, the errors obtained in all our tests are rather small and con-
sistent. Most importantly, we show next that these errors do not affect our
prediction to choose the right storage format in all the experiments we con-
ducted, since the estimated values still preserve the partial order among the
actual values. Moreover, most of the deviations appear due to the hidden
metadata contained in the implementations of these layouts. Thus, it is not
possible to improve in a generic way the cost model for all implementations.

4.7.3 Validation of file format choice

We have selected 6 out of 16 queries for TPC-H, and 16 out of 99 queries
for TPC-DS based on two main criteria: the selectivity factor (from 1% to
92%), and the number of referred columns (from 3 to 66). All the selected
queries were grouped based on these criteria. Then, representative queries
are chosen with the goal of covering all the possible scenarios.

In order to create a complex DIF, we used Quarry [48] to combine all
TPC-H and TPC-DS queries into one integrated DIF as shown in Figure 3.3,
and Figure 4.14, respectively. To perform realistic experiments, we gener-
ate data with scale factors ranging from 1GB to 256GB. In our experiments,
nine nodes are selected to be materialized. We choose two metrics to analyze
our approach, namely write cost (Section 4.5.1) and read cost (Section 4.5.2)
for each materialized node. However, due to limitations in the native mea-
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Fig. 4.14: DIF of 16 TPC-DS queries

surement of Hadoop performance, the charts corresponding to the read cost
include also the execution cost of the first operation right after reading the
IR, since their costs cannot be decoupled.

Rule-based approach

Table 4.7 shows all nine nodes that have been materialized, together with
their outgoing operators and storage formats decided by applying the heuris-
tic rules. The rule-based column shows the choices made by our rule-based
approach. The rationale behind these choices is as follows. Avro is chosen for
N1 and N9, because the outgoing operators are joins, that use a scan access
pattern, where Avro excels, as discussed in Section 4.2.1. For all other nodes,
the rule-based approach is choosing Parquet. For Nodes N5 and N6, the
outgoing edges contain FOREACH operations, where Parquet benefits from
independent column storage. Nodes N4, N7 and N8 have FILTER operations
in their outgoing edges, where Parquet can benefit from its native predicate
push-down. Both FOREACH and FILTER operations only require a subset
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Node Outgoing Operators Rule-based Trojan Cost-based Real Best Choice
N1 JOIN, JOIN Avro Avro Avro Avro

N2
JOIN, JOIN, FILTER
(SF: 0.19) Parquet Avro Avro Avro

N3
JOIN, FILTER (SF:
0.59) , FILTER (SF:
0.01)

Parquet Avro Avro Avro

N4
FILTER (SF: 0.03),
FILTER (SF: 0.2),
FILTER (SF: 0.19)

Parquet Avro Avro Avro

N5
FOREACH (Ref
Cols: 3), FOREACH
(Ref Cols: 3)

Parquet Parquet Parquet Parquet

N6

FOREACH (Ref
Cols: 15), FORE-
ACH (Ref Cols:
4)

Parquet Avro Parquet Parquet

N7
FILTER (SF: 0.13),
FILTER (SF: 0.92) Parquet Avro Avro Avro

N8

JOIN, FILTER (SF:
0.19), FILTER (SF:
0.03), FILTER (SF:
0.01)

Parquet Avro Avro Avro

N9 JOIN, JOIN Avro Avro Avro Avro
*Projection is implemented as FOREACH in Apache PIG

Table 4.7: Materialized nodes with the statistics about their operations and chosen storage
formats

of data, and Parquet excels whenever a subset of data is read. Finally, nodes
N2 and N3 have JOIN and FILTER as outgoing edges, and there would be
different options to choose. However, for our rule-based approach Parquet
is chosen, since, in case of several options available, it chooses the richest
format providing more features.

Trojan cost-model

The Trojan cost-model [41] provides cost formulas only for reading oper-
ations (i.e., scan). Since there is no estimation for writing operations and
therefore, in our comparison we consider only the reading cost. For reading,
Trojan considers the number of referred columns and always assumes a 100%
selectivity factor. We executed the Trojan cost model on top of our scenario
and the results obtained were as follows. Trojan selects Avro for all the nodes
except N5. In N5, the number of referred columns are considered and there-
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fore Parquet is predicted as the best choice. However, Trojan fails to predict
N6 correctly. This is due to the fact that it assumes a high random reading
cost (which in reality is not true, see Figure 4.16). For the other nodes, Trojan
predicts correctly, however this is due to the fact that Parquet cannot filter
when the selectivity factor is high. Thus, the high selectivity factor always
favors Avro. In a scenario with a low selectivity factor, Trojan would fail to
correctly predict the storage layouts.

Cost-based approach

Note that Table 4.7 also shows some relevant collected statistics, such as the
selectivity factor (SF) and the number of referred columns (Ref Cols), of the
outgoing operators. It also shows the choices made by our cost-based ap-
proach. Here, we have not reported the estimated cost of our cost model,
but we validated its choices with the actual executions, which confirms the
accuracy of its predictions. Moreover, we have divided these nine nodes into
three different color groups which are green, grey, and white. Green and
grey groups contain nodes for which our rule-based approach works fine.
Whereas, white group contains all the nodes for which our rule-based ap-
proach fails.

Fig. 4.15: Detailed experimentation conducted for node N1

Fig. 4.16: Results for N6
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Fig. 4.17: Results for N2

Let us focus on N1 from the green group, for which the rule-based ap-
proach chooses the correct storage format (i.e., Avro). Figure 4.15 shows the
actual write / read time of each storage format. It can be verified that the
chosen layout (i.e., Avro) is always faster for both write and read operations.

Similarly, the rule-based approach also chooses the right storage format
for grey group, which contains nodes with projection operations. However,
the amount of data read is less than 70% and that’s why it is better to use
Parquet. Figure 4.16 shows the actual execution for N6. Figure 4.16a shows
the actual execution time for both write and read operations. It can be seen
that Parquet takes more time in writing (i.e., it writes more metadata), but its
reading benefits compensate it as shown in Figures 4.16b and 4.16c read time
for Q42 and Q52, respectively.

On the other hand, the rule-based approach failed to choose the correct
storage formats for the white group. All these nodes involve filter operations,
where the amount of data to be read depends on the selectivity factor and
all of them are greater than or equal to 0.1 (see Table 4.7). As already shown
in Figure 4.13, different storage formats perform differently depending on
the amount of data read. Therefore, since the rule-based approach does not
leverage on statistics, the data volume to be read is not considered and it fails
when choosing the right storage format. As it can be seen in Figure 4.13b, the
predicate push-down mechanism implemented by Parquet is useless when
the selectivity factor is greater than 1.0E-05 for unsorted columns. The rule-
based approach always considers predicate push-down to be worth and thus
still chooses Parquet. Oppositely, since our cost-based model considers the
selectivity factor, it is able to select the right format for these nodes. For ex-
ample, the results of N2 for the white group are shown in Figure 4.17, where
the optimal choice is Avro, which takes less time than Parquet in both write
and read operations. All the nodes of the white group follow the same trend
and our cost-based approach successfully choses the right storage format.

82



4.7. Experiments

Fig. 4.18: Single Fixed Format vs Our Approach for TPC-DS

Fig. 4.19: Single Fixed Format vs Our Approach for TPC-H

In general, our cost model is able to decide the right format in all cases
shown in Table 4.7, because it considers the amount of data read (which in
this case is determined by the format file size and the selectivity factor of
the operation), which actually depends on two operations, namely projection
and selection. Figure 4.18 compares our approach with a typical approach
materializing all chosen IR with a fixed format (i.e., always SequenceFile,
Parquet or Avro). It shows the overall execution time of the DIF when using
a single fixed format for IR with regard to a dynamic choice of the format
based on our cost model. Our approach on average provides 1.6x speed up
over fixed Parquet, 1.34x speedup over fixed SequenceFile, 1.03x speedup
over fixed Avro and, in the average, it provides 1.33x speedup for TPC-DS.

Note that in TPC-DS, our cost model favors Avro, and this is due to the
fact that the chosen IR have subsequent operations with high selectivity fac-
tors. In contrast, when we changed the workload to TPC-H, the cost model
recommends Parquet in the majority of materialized nodes, due to the low
selectivity queries. The overall results of TPC-H are shown in Figure 4.19.
Observe that, for TPC-H, our approach on average provides 1.32x speedup
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over fixed SequenceFile, 1.19x speedup over fixed Avro, 1.04x speedup over
fixed Parquet and overall, it provides 1.18x speedup.

Note that, a given kind of workload may favor a certain format. However,
a system should be able to adapt to different workloads as we saw when
comparing TPC-DS (scan-based favors Avro) and TPC-H (selection-based and
projection-based favor Parquet). In conclusion, our cost model is capable
of choosing the appropriate storage format for different workloads, which
always leads to improvements in query execution time.

4.8 Conclusion

Modern analytical workloads involve different types of queries in which a
fixed storage format for IRs does not guarantee the best performance. Ad-
ditionally, the currently available solutions have not considered at the same
time choosing both IRs and the types of the storage layouts to be used for
their storage. They consider these problems separately and therefore fail to
provide an optimal solution. We explicitly focus on choosing the storage
layouts for IRs and propose a whole process-cycle. Our proposed approach
uses any existing solution to choose IRs and after deciding which IRs in a
data intensive workflow to store, it chooses the best storage format, which
improves performance, by analyzing their access patterns. Overall, this re-
duces the load time and, in general, the total workflow execution time. We
have implemented our generic cost-based model for Hadoop and instantiated
on different storage formats to show its effectiveness. Our evaluation results
show the benefits of our approach and support our hypothesis that IR should
be materialized by considering the best storage format.
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5
Auto Tuning of Hybrid Layouts Using

Workload and Data Characteristics

Ad-hoc analysis implies processing data in near real-time. Thus, raw data (i.e., neither nor-

malized nor transformed) is typically dumped into a distributed engine, where it is generally

stored into a hybrid layout. Hybrid layouts divide data into horizontal partitions and inside

each partition, data are stored vertically. They keep statistics for each horizontal partition

and also support encoding (i.e., dictionary) and compression to reduce the size of the data.

Their built-in support for many ad-hoc operations (i.e., selection, projection, aggregation, etc.)

makes hybrid layouts the best choice for most operations. Horizontal partition and dictionary

sizes of hybrid layouts are configurable and can directly impact the performance of analytical

queries. Hence, their default configuration cannot be expected to be optimal for all scenarios.

In this chapter, we present ATUN-HL (Auto TUNing Hybrid Layouts), which based on a cost

model and given the workload and the characteristics of data, finds the best values for these

parameters. We prototyped ATUN-HL for Apache Parquet, which is an open source imple-

mentation of hybrid layouts in Hadoop Distributed File System, to show its effectiveness. Our

experimental evaluation shows that ATUN-HL provides on average 85% of all the potential

performance improvement, and 1.2x average speedup against default configuration.
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5.1 Introduction

Data analysis plays a decisive role in today’s data-driven organizations, which
increasingly produce and store large volumes of data in the order of petabytes
to zettabytes [71]. The storage and processing of such data has imposed a
shift in the hardware, from single machines to large scale distributed sys-
tems. Apache Hadoop1 is a pioneer large-scale distributed system and con-
sists of a storage layer, namely Hadoop Distributed File System (HDFS)2, and
a processing layer, namely MapReduce[18]. The former allows to keep data
in raw format without any normalization or pre-processing. The latter allows
data-intensive flows (DIFs) to process raw data such that they are ready for
the analysis.

Hadoop and many modern in-memory processing engines (i.e., Apache
Spark3) provide high-level languages (i.e., Apache Pig, Hive, and SparkSQL)
that facilitate writing DIFs for processing raw data (e.g., removing dirty data,
integrating multiple data sources) stored in HDFS. Typically, the processed
data is stored as a very wide table for analytical queries, because of its advan-
tages over normalized tables [10, 54]. Hybrid layouts are de-facto preferred
options for storing such wide tables, due to their built-in support for many
basic operations (i.e., selection, projection, aggregation, etc.) allowing ad-hoc
analysis, without the need of moving the data to other storage (i.e., relational,
document store, etc.).

There are several available hybrid layout implementations, such as: Op-
timized Record Columnar (ORC)4, Parquet5 and CarbonData6. All of them
follow the same physical structure. Data is stored into multiple horizontal
partitions, known as stripes in ORC, row groups (RGs) in Parquet and block-
let in CarbonData, and each horizontal partition stores its data column-wise.
Hybrid layouts also store min-max statistics [57] for each horizontal partition
to help in filtering (i.e., partitions that do not match predicates of a query are
skipped). In addition, they support dictionary encoding to encode repetitive
values, that can also be used for further filtering partitions.

Despite having default values, the sizes of horizontal partition and dic-
tionary are configurable. Thus, their values should be decided based on the

1https://hadoop.apache.org
2https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
3https://spark.apache.org
4https://orc.apache.org
5https://parquet.apache.org
6https://carbondata.apache.org
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Small Partition Large Partition
Parallelism + -
Task overhead - +
Filtering + -
Metadata size - +
Dictionary encoding - +
Memory buffering + -
Load balancing + -

Table 5.1: Effect of horizontal partition size

data characteristics and usage. For instance, it is recommended to have a
small size of horizontal partition for low selectivity queries and, a large size
for high selectivity queries. However, it is not straight-forward to find an
optimal size for all the queries, because this depends on their concrete se-
lectivity and the type of data they access, therefore the problem becomes
challenging. Moreover, the size of horizontal partitions can also effect dif-
ferent execution settings, which is shown in Table 5.1. It can be seen that
small partitions positively impacts parallelism (by increasing the number of
parallel tasks), filtering (by skipping unmatched partitions using statistics),
memory buffering (they require less memory to buffer the data before flush-
ing to the disk), and load balancing (by better distributing the loads among
multiple machines). Whereas, large horizontal partitions help positively to
reduce task overhead (by reading less metadata and reducing Java garbage
collector overhead), metadata size (by storing less statistics), and also helps in
performing better encoding (by encoding large number of repetitive values).
In this chapter, we aim at improving filtering, metadata size and dictionary
encoding by choosing the optimal partition size.

Similarly, the characteristics of data require different dictionary sizes to
handle different attribute lengths and number of distinct values. The dictio-
nary is not only important for compression, but it can also be used to filter
partitions. Specifically, when data is unsorted and it is not possible to filter
partitions simply using min-max statistics, as we will show in Section 5.4.3.

In this chapter, we present our approach, namely ATUN-HL, which helps
to find the best values for the aforementioned parameters using a cost model,
which estimates the optimal values for the size of the horizontal partition and
the dictionary, based on the given workload and data characteristics. More-
over, it should also be noted that the chunk size of HDFS is always greater
than or equal to the horizontal partition size. Hence, it should be configured

87



Chapter 5. Auto Tuning of Hybrid Layouts Using Workload and Data Characteristics

accordingly. We instantiated ATUN-HL for Parquet, to show its applicability
in real scenarios and conducted an extensive evaluation on TPC-H7 to show
that ATUN-HL can significantly improve the query response times over Par-
quet with default configuration.

The main contributions of this chapter can be summarized as follows:

• We extend the cost model for hybrid layouts presented in Chapter 4.

• We propose ATUN-HL, a framework to optimize hybrid layouts.

• We prototype ATUN-HL on Parquet to show its benefits.

• We report the results of our extensive evaluation with TPC-H bench-
mark.

The remaining chapter is organized as follows. In Sections 5.2 and 5.3, we
discuss the cost model and our approach in detail. In Section 5.4, we show
our experimental results. Finally, in Section 5.5, we conclude the chapter.

5.2 Cost Model

In this section, we extend the cost model of Chapter 4. Specifically, we refine
the selection cost model based on the use of min-max statistics and dictionary
encoding. Further, we extend it to estimate the dictionary size for hybrid
layouts.

First, we present the physical structure of hybrid layouts, which helps to
build the cost model. Based on that, we estimate the cost of selections and
the size of the dictionary. The former helps to find the optimal RG size. Our
cost model considers two scenarios to estimate the selection cost, which are as
follows: filtering using min-max statistics and using the dictionary. Likewise,
it considers two types of dictionaries, i.e., global and local.

Fig. 5.1: Physical structure of hybrid layouts

7http://www.tpc.org/tpch
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As shown in Figure 5.1, the data is divided into RGs (i.e., horizontal par-
titions), and inside each RG, it is stored column-wise. Further, if dictionary
encoding is possible, first dictionaries are stored per column and afterwards
the corresponding encoded data. If dictionary encoding is not possible, then
the data values are stored contiguously without any encoding. Moreover, hy-
brid layouts also store metadata (e.g., min-max statistics) for each RG inside
either the header or footer section. Thus, the size of hybrid layouts depends
on the size of the actual data and metadata.

Variable Description
Data Statistics

|T| Number of rows in a table
|C| Distinct values of a column
|D| Number of values in the dictionary
SortedCol True for sorted and False for unsorted data

Hybrid Layouts Variables
MetaRGSize Size of metadata for an RG
MarkerSize Size of sync marker

Table 5.2: Additional parameters introduced for the cost model

Our cost model for hybrid layouts relies on a wide range of statistical
information that are summarized in Table 4.2, containing system constants,
data statistics, workload statistics as well as hybrid layout variables. We
assume that the constants which depend on the configuration of the environ-
ment (e.g., BWDisk, BWNet) are provided. In Table 5.2, we only show the new
variables introduced for this chapter. Furthermore, we discuss the collection
of statistics (e.g., dataset and workload) in Section 5.3.

UsedRowGroups “
ColValuesSize ¨ |T| ¨ #Cols

RGSize ´ pMarkerSize ¨ #Colsq
(5.1)

|RG| “
|T|

UsedRowGroups
(5.2)

TotalMetaSize “ pMetaRGSize ¨ #Colsq ¨UsedRowGroups (5.3)

5.2.1 Estimating the selection cost

The selection cost model estimates the number of RGs read from the disk
and as well as the total read size. For this, first we need to estimate the
total number of RGs using Equation 5.1, and the number of rows in an RG
(|RG|) using Equation 5.2. Further, we also need to estimate the total size of
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metadata (cf. in Equation 5.3), which is always read from disk to check the
matching RGs. Our selection cost model focuses on two cases as discussed
earlier. The first one considers filtering using min-max statistics of each RG,
and second one filtering using the dictionary.

ReadRowGroups “

$

’

’

’

&

’

’

’

%

SF ¨UsedRowGroups ` 1 sorted data

UsedRowGroups unsorted & min-max

p1´ p1´ SFq|RG|q ¨UsedRowGroups unsorted & dictionary

(5.4)

Filtering using min-max statistics.

There are two extreme cases when hybrid layouts use min-max statistics to
filter RGs, depending on whether data is sorted or not. If data is completely
sorted then the selected data will always be contiguous and we can calculate
the total number of read RGs based on the selectivity factor as shown in
Equation 5.4. We add one to handle the effect of position variation inside the
RGs for sorted data, because hybrid layouts read the whole RG even if there
is only one matching row. The reason to add one is illustrated in Figure 5.2.
It shows two RGs and each has 5 rows. Let us assume that we select 3 rows.
There are two possible scenarios: (A) there is no overlap and only one RG is
read from disk; and (B) there is an overlap and two RGs are read. If we take
the average of all possible positions of the first selected row in the first RG, it
gives approximately pSF ¨UsedRowGroupsq ` 1.

Fig. 5.2: Effect of position variation inside the RGs

If data is completely unsorted (i.e., uniform distribution), it is unlikely
(shown in Section 5.4.3) to skip any RG, because the distribution of data
makes the min-max range of each RG too wide. Hence, the read RGs will
be the same as the total number of RGs. We will also experimentally show
in Section 5.4.3 the ineffectiveness of min-max statistics for uniformly dis-
tributed unsorted data. Intermediate cases exist for different kinds of skew-
ness, and Equation 5.4 could be enriched with corresponding estimations
without affecting the rest of the chapter.
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Filtering using the dictionary.

The dictionary can also be used to filter RGs when data is encoded. When
min-max statistics fail to filter any RG, the dictionary is still very useful,
because it contains all existing values. The number of RGs required to be
read from disk can be estimated as in Equation 5.4 (borrowed from bitmap
indexes [13]).

UsedChunks “

QUsedRowGroups ¨ RGSize

ChunkSize

U

(5.5)

ReadSize “ pReadRowGroups ¨ RGSizeq ` pTotalMetaSize ¨Usedchunksq (5.6)

|Chunk| “

YChunkSize
RGSize

]

(5.7)

ChunkSeeks “

$

’

’

’

&

’

’

’

%

ReadRowGroups

|Chunk|
` 1 if sorted

UsedChunks ¨
´

1´ p1´
ReadRowGroups

UsedRowGroups
q|Chunk|

¯

if unsorted
(5.8)

WReadTrans f er “
TimeDisk ` p1´ pq ¨ TimeNet

TimeSeek ` TimeDisk ` p1´ pq ¨ TimeNet
(5.9)

QueryCost “
ReadSize

ChunkSize
¨WReadTrans f er (5.10)

` pChunkSeeks `UsedChunksq ¨ p1´WReadTrans f erq

The above equations give the expected number of RGs being read from
disk, which helps in estimating the total query cost. In distributed processing
engines, the data is processed in multiple tasks in parallel and the number
of tasks equals to the number of chunks used to store the data, which can be
estimated using Equation 5.5.

Moreover, we observed that each task reads all the metadata separately.
The reason is that the distributed processing engines (such as Hadoop and
Spark) create a separate process for each task with its own memory. This
memory is not accessible to other tasks and hence, forces to read all meta-
data, and consequently, increases the reading size. We consider this in Equa-
tion 5.6, where we estimate the total read size.

Additionally, we take into consideration the disk seek cost, which de-
pends on the number of chunks being read and also on the number of seeks
required to fetch the metadata. The former is equal to the number of read
chunks if data is sorted, because it reads consecutive RGs. In Equation 5.7,
we calculate the total number of RGs inside a chunk, which is used in Equa-
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tion 5.8 to estimate the total number of seeks for sorted data. Similar to
filtering, we add add one to Equation 5.7 to handle the effect of position vari-
ation of RGs inside chunks. On the other hand, when data is unsorted, the
number of seeks is directly influenced by the distribution of the read RGs,
which are non-consecutive due to fact that any RG can match the predicate
independently of its position. Thus, it can be approximated by estimating
how many RGs are read from a chunk, which depends on the total number
of RGs inside a chunk, again calculated using Equation 5.7. Similarly, we
need to estimate the total seeks for reading metadata. As discussed earlier,
typically, metadata is stored in the header or footer sections and one seek is
required to locate it on the disk. Additionally, it is always read separately in
every task, hence the total seeks of metadata will be equal to the total number
of tasks (which is equal to the number of chunks).

In distributed processing engines, sometimes, they require to read the
data remotely (for instance, it depends on occupancy of machines and unbal-
anced distribution of workload) and for it, we use a probability p to indicate
the likelihood of chunks being accessed locally (i.e., data shipping through
the network is needed to reach the operation executor). This is used in Equa-
tion 5.9 to estimate the weight (to calculate the resources usage) of transfer-
ring the chunk data compared to the corresponding seek time. Further, it is
used along with the total number of seeks in Equation 5.10 to estimate the
total query cost.

|D| “

$

&

%

|C| for global dictionary

r|C| ¨ p1´ pp|C| ´ 1q{|C|q|RG|s for local dictionary
(5.11)

DictionarySize “ |D| ¨ ColValueSize (5.12)

Usedbits “ rlog2|D|s (5.13)

EncodedColSize “

$

&

%

Usedbits ¨ |T| for global dictionary

Usedbits ¨ |RG| for local dictionary
(5.14)

5.2.2 Estimating the size of the dictionary

As discussed earlier, hybrid layouts support dictionary encoding, which helps
to encode repetitive values to reduce the size and also to facilitate filtering
RGs. There are different implementations of dictionary encoding in different
types of hybrid layouts. For instance, CarbonData uses a global dictionary
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to encode the data, whereas Parquet uses a local dictionary inside every RG.
However, these two implementations can be easily handled by the same cost
model.

Global dictionary. The size of the dictionary depends on the number of
values to store inside, which is the total distinct values (i.e., |C|) of a column
estimated in Equation 5.11. The size of the dictionary for one column can
be then estimated using Equation 5.12. Further, the average number of bits
required to encode one value are estimated in Equation 5.13, and used in
Equation 5.14 to estimate the encoded size of the data.

Local dictionary. Similarly, the size of the local dictionary depends on the
number of values to be put inside the dictionary of an RG, which is the same
as the distinct values of a column inside an RG. We estimate the total number
of expected distinct values8 inside an RG as shown in Equation 5.11. Next,
similar to global dictionary, the average number of bits required to encode
one value are estimated in Equation 5.13, and used further in Equation 5.14
to estimate the encoded size of the data.

5.3 ATUN-HL

In this section, we first discuss about the collection of data and workload
characteristics. Next, we explain our methodology, which utilizes the cost
model to find the optimal sizes for RG and dictionary.

Fig. 5.3: Overview of ATUN-HL

8https://math.stackexchange.com/questions/72223/finding-expected-number-of-distinct-
values-selected-from-a-set-of-integers
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5.3.1 Collecting workload and data characteristics

Figure 5.3 shows the overview of our approach. It takes a query log and the
sample data as input, and analyzes them in different components to extract
statistical information. The query log is used to extract the information re-
lated to the workload. First, our approach extracts the clauses from all the
query representatives. Second, it merges the similar clauses or the clauses
that can be subsumed. Thirdly, it applies frequent itemset mining approach
[32], to rank the most frequent clauses. Finally, it takes the top-k clauses to
extract the workload information to be considered. On the other hand, our
approach also takes a sample of data and computes the statistical information
listed in Table 5.2. We use the single column profiling technique from [1].

The use of query log to optimize the parameters for future workloads is
justified in [77, 78], which conclude that filters are recurring and only a small
portion are entirely new over time.

5.3.2 Finding the best configuration parameters

Let us assume T is a wide table and has a set of columns defined as C “

tc1, c2, ..., cnu. Similarly, a query log is defined as Q “ tq1, q2, ..., qnu, the frequent
clauses extracted from Q are defined as P “ tp1, p2, ..., pnu the total cost of
workload is calculated as CostPpRGSize, Zq “

ř

pPP QueryCostpRGSize, Zq, where
Z represents the total size of T (considering dictionary encoding if needed).
Our goal is to minimize CostP by selecting the best RG and dictionary sizes.
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Algorithm 1 shows the steps to find the optimal sizes of RG and dictio-
nary. It initializes a set in line 1 with the element 0, which corresponds to the
scenario where dictionary encoding is completely disabled for all columns.
Next, in lines 2 to 4, it iterates over all the columns, computes their dictio-
nary sizes, rounds them up to the nearest kilobytes, and stores them inside
the set. Further, in lines 7 to 12, it iterates over all those dictionary sizes and
computes the table size according to the current processed dictionary size.
Then, the encoded size is used to find the optimal RG size by solving the
derivative of the overall cost function. Finally, this value is used to compute
the corresponding cost. If the cost is smaller than the best until now, we keep
the current processed dictionary and RG sizes as the best ones.

In order to be able to find the minimum cost, we derive the function
with respect to the RG size (i.e., d

dRGSize
pCostPpRGSize, Zqq “ 0). Equation 5.15

shows the overall query cost after replacing all variables except read RGs,
which still depends on how data has been stored (see Equation 5.4). Notice
that, we need to remove the ceiling function of Equation 5.5, as well as floor
from Equation 5.7. We can do the former, because the number of chunks is
much smaller than the total number of RGs, and it is only used in calculat-
ing the meta size and seek cost, and both are very small compared to the
total reading size. Similarly, we also remove floor in Equation 5.7, due to its
negligible impact on overall cost. We validated their removal with detailed
experiments (see Section 5.4.3).

Z “

$

&

%

pColValueSize ¨ |T| `MarkerSizeq ¨ #Cols no encoding

pDictionarySize ` EncodedColSize `MarkerSizeq ¨ #Cols encoding

Y “ MetaRGSize ¨ #Cols

QueryCostpRGSize, Zq “
ReadRowGroups ¨ RGSize `

Y ¨ Z2

RGSize ¨ ChunkSize
ChunkSize

(5.15)

¨ WReadTrans f er

`

ReadRowGroups `
Z

RGSize
ChunkSize

RGSize

¨ p1´WReadTrans f erq
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5.4 Experimental Results

In this section, we discuss the setup and the dataset used for our experi-
ments. We also show the ineffectiveness of min-max statistics and usefulness
of dictionary for unsorted data. Moreover, we provide the results to validate
the accuracy of the cost model and to show the benefits of our approach.

Variable Value
p 0.97
ChunkSize 512MB
BWDisk 1.30ˆ 108 bytes/second
BWNet 1.25ˆ 108 bytes/second
TimeSeek 5.00ˆ 10´3 seconds
MetaRGSize 156 bytes
MarkerSize 16 bytes

Table 5.3: Values according to our environment

5.4.1 Setup

The machine used in our evaluation has a Xeon E5-2630L v2 @2.40GHz CPU,
128GB of main memory, and 1TB SATA-3 of hard disk, and runs Hadoop
2.6.2 and Spark 2.1.10 on Ubuntu 14.04 (64 bit). Our approach is evaluated
under two settings: a single node and a 4-machines cluster9. In the clus-
ter, we dedicated one machine to HDFS name node and Spark master node
together, and the remaining three machines to data nodes for Hadoop and
workers for Spark. It should be noted that we use a very small cluster for our
experiments, because our focus is on the initial map phase of the jobs that
does not involve shuffling. Notice that the performance of the latter would
be affected by the cluster size, but not that of the former.

We prototyped our approach for Apache Parquet 1.8.2, which further di-
vides each column into multiple data pages (i.e., 1MB) and also stores min-
max statistics per data page (i.e., 53 bytes). Nevertheless, currently Parquet
does not support data page filtering, so we applied the cost model as de-
scribed above. If needed, our cost model could be easily adaptabed to data
page filtering by simply replacing RG size with data page size and |RG| with
the number of rows of a data page.

Table 5.3 shows the values of all environmental variables in our testbed.

9http://www.ac.upc.edu/serveis-tic/altas-prestaciones

96



5.4. Experimental Results

In addition, default RG and dictionary sizes in Parquet are 128MB and 1MB,
which we use in our evaluation together with best and worse obtained costs.

5.4.2 Dataset

As mentioned in [10, 54], very wide tables are common in modern analytical
systems, because of their advantages in processing compared to normalizing
data into narrower tables. Nevertheless, in TPC-H, the widest table has only
16 columns and in TPC-DS10, only 26. To the best of our knowledge, there is
no public benchmark available that consists of wide tables. Hence, we follow
[77] to generate a wide table by completely denormalizing all other tables
in TPC-H against lineitem. The FROM clauses in all queries are consequently
changed to the corresponding denormalized table.

5.4.3 Results

We perform four types of evaluations for our approach. Firstly, we show the
drawbacks of min-max based filtering for unsorted data through statistical
and also experimental evaluation. Secondly, we show the benefits of dic-
tionary based filtering for unsorted data. Thirdly, we validate the accuracy
of our cost model. Finally, we show the performance improvements of our
approach on the cluster by comparing it to the baseline setting.

Usefulness of min-max statistics.

As previously discussed, min-max statistics are not useful for unsorted data,
because uniform data distribution makes it is unlikely to skip RGs. This
behavior is validated with a detailed statistical and experiment evaluations.

PSkipping “

ř|C|
i“1

´´ i´ 1
|C|

¯|RG|
`

´

|C| ´ i
|C|

¯|RG|¯

|C|
(5.16)

ReadRowGroups “ p1´ PSkippingq ˆUsedRowGroups (5.17)

Since point queries (i.e., those that search one single value) have higher
probability of skipping an RG than the other supported types (namely in-
terval and list of values), we only provide a statistical cost model for point
queries in Equation 5.16. This estimates the probability of being outside of an

10http://www.tpc.org/tpcds
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RG, which would be the case if the value is less than the minimum of the RG
or greater than the maximum. Thus, our cost model adds the probability of
both (i.e., minimum and maximum) for each value of that column. Further,
the probability of skipping one RG is used in Equation 5.17, to find the total
number of RGs read.

Fig. 5.4: Probability of skipping one RG

Figure 5.4a plots Equation 5.16 for different number of rows |RG|, and
different number of distinct values of a column |C|, which was confirmed
with the corresponding experiments. We took 100 as the minimum for |RG|,
because Parquet does not allow less rows per RG than that. Thus, it can
be observed that the probability of skipping an RG is very low (i.e., always
less than ă 2%), confirming that min-max statistics are useless for unsorted
data. Moreover, when the number of rows in an RG increases, the probability
of skipping decreases, which means that it is almost certain that a full scan
will be performed. A higher number of distinct values slightly increase the
chances of skipping an RG, but it is still very unlikely for RGs with many
rows.

Benefits of dictionary encoding.

We also plot Equation 5.4 for dictionary encoding (see Figure 5.4b), confirm-
ing its superiority over min-max statistics. It can be seen that this clearly
gives higher probability of skipping, but the chances of skipping still de-
crease quickly as the number of rows in an RG grows. Yet, it helps with low
selectivity queries (when min-max statistics still fail).

Cost model validation.

Figure 5.5 shows the comparison of our cost model, the estimation through
its simplified version (which allows derivation as presented in Equation 5.15),
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Fig. 5.5: Comparison between cost model, simplified version, and real execution

and also actual execution (averaging 250 random runs and in each run, filter-
ing on a random value). We normalized them (px´minq{pmax´minq) to facil-
itate visual comparison. Moreover, as we will show below, the different units
(as our cost model only considers I/O cost) do not affect the quality of our
prediction to choose the optimal RG size, since the estimated values always
preserve the shape of the actual ones (i.e., minimum real cost is obtained for
approximately the same value in the model).

We empirically validated the estimations on both sorted and unsorted
data, with and without encoding. It can be seen that our cost model and
its simplified version are very close and result in approximately the same
value. Hence, the derivative can be safely used to find the optimal RG size.
Moreover, these both versions follow exactly the same trend as the actual
execution.

Performance evaluation.

We analyzed TPC-H queries to extract the clauses and ranked them according
to their usage. The top 6 clauses which appear in 82% of the queries, are used
to find the optimal RG and dictionary sizes. ATUN-HL chooses 30.76MB (that
we round up to 32MB) for RG and 1MB for dictionary (that is the default one).

Figure 5.6a shows our estimated overall cost for TPC-H queries. It can be
seen that ATUN-HL predicts the default RG size (i.e., 128MB) as the worst
configuration (being the minimum at 32MB). As discussed earlier, it is very
unlikely for Parquet to skip any RG, when the number of rows in an RG
grows. When this turning point is crossed, the larger the RG the better,
and our estimated cost depicts this behavior after 128MB. Moreover, we also
verified our estimation with detailed experiments as shown in Figure 5.6b
and Figure 5.6c. Figure 5.6b compares the time improvements of ATUN-
HL against the optimal, default, and worst configurations. ATUN-HL is not
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Fig. 5.6: Speedup gain

far from the optimal configuration, resulting in 85% of all potential gain.
Additionally, Figure 5.6c shows the relative gain with regard to default RG
size, which is 1.2X speedup on average (for the tested scale factors), clearly
increasing with the increase in scale factor.

Finally, in Figure 5.7, we also scrutinize the effect on individual query
execution time for scale factor 64GB. This shows that our approach improves
the execution time of most of the queries, but does not help those actually
performing a full scan (i.e., Q1, Q13, Q15, and Q16) because of one reason
(i.e., high SF, ą 10%) or another (i.e., string matching using regular expression,
which is not yet supported by Parquet). As shown above, the large RG size
is always better for full scan.
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Fig. 5.7: Improvement in query execution time for 64GB scale factor

5.5 Conclusions

Hybrid layouts are widely used to store processed data in highly distributed
Big Data systems to perform ad-hoc analysis. Nevertheless, they have many
configurable parameters that need to be tuned according to the characteris-
tics of the data and workload, which can heavily impact query performance.
Consequently, we proposed a cost-based approach to help optimizing such
hybrid layouts. We prototyped our approach for Apache Parquet, evaluated
it on TPC-H queries, and showed the improvement it provides.
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6
Configuring Parallelism for Hybrid Layouts

using Multi-Objective Optimization

Distributed processing frameworks (e.g., Hadoop, Spark) divide the data into multiple parti-

tions and process each partition in separate tasks. These tasks can be executed in parallel and

thus speedup the analysis. Furthermore, the advent of hybrid layouts has additionally sped-up

the analysis by allowing to read less data for certain operations (i.e., projection, selection). Yet,

distributed frameworks do not consider the actual data read when creating the tasks to process

the partitions. Thus, the number of tasks is always created based on the total file size and not

on the actual data being read. However, this may lead in launching more tasks than needed,

which in turn may increase the job execution time and induce significant waste of computing

resources. The latter due to the fact that each task introduces extra overhead (e.g., initializa-

tion, garbage collection, etc.). To allow a more efficient use of resources and reduce the job

execution time, we propose a method that decides the number of tasks based on the data being

read. To this end, we first propose a cost-based model for estimating the size of data read in hy-

brid layouts. Next, we use the estimated reading size in a multi-objective optimization method

to decide the number of tasks and computational resources to be used. To show the effectiveness

of our approach we prototype it for Apache Parquet and Spark, and found that our estimations

were highly (0.96) correlated to the real execution times. Additionally, we perform experimen-

tal evaluation on TPC-H to show that, on average, our recommended configurations are only

5.6% away from the Pareto front and provide 2.1x speedup against the default solutions.
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6.1 Introduction

The competition in businesses demands quick insights from data, which is
exponentially growing from petabytes to zettabytes [71]. Researchers have
proposed distributed processing frameworks (e.g., Hadoop ecosystem1 and
Spark2) for quickly processing such large volumes of data to meet the busi-
ness demands. These frameworks provide distributed storage (e.g., HDFS3)
and distributed processing [18]. In addition, for more efficient analysis, very
wide tables [10, 54] are being used to store non-normalized data in hybrid
layouts [9, 58]. Through their built-in operations (e.g., projection, selection),
these layouts read data more efficiently from the disk.

There are several available hybrid layout implementations, such as: Op-
timized Record Columnar (ORC)4, Parquet5 and CarbonData6. All of them
follow the same physical structure as shown in Figure 5.1. Data is stored into
multiple horizontal partitions, known as stripes in ORC, row groups (RGs)
in Parquet and blocklets in CarbonData, and each horizontal partition stores
its data column-wise, which is beneficial for projection. Statistics about the
data are stored in each partition, and they may help on filtering partitions.
Furthermore, hybrid layouts support dictionary encoding for compressing
repetitive values of individual columns. The dictionary can also be used to
filter partitions.

Therefore, hybrid layouts allow to read less data from the disk. Nev-
ertheless, this is not thoroughly exploited by distributed frameworks when
deciding the number of tasks for processing the data. They always decide the
number of tasks based on the total table size and not on the portion of the
table being read. This leads to the over-provisioning of tasks, where many
tasks remain idle — without any data to process, but still present extra over-
head (e.g., initialization time, garbage collection). Furthermore, the idle tasks
also waste the computational resources which are assigned to them. The lat-
ter is not considered even in the area of cloud computing [35, 40, 72, 79],
where computational resources are decided based on the total data size. This
leads to wastage of resources and money.

1https://hadoop.apache.org
2https://spark.apache.org
3https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
4https://orc.apache.org
5https://parquet.apache.org
6https://carbondata.apache.org
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6.1. Introduction

Motivational Example. As mentioned above, data is first partitioned and
then processed in parallel. Let us assume that a partition is equal to one RG
and as shown in Figure 1.3, we have a hybrid layout containing four RGs.
Let us further assume that we are applying a filter operation, which only sat-
isfies two RGs. By default a distributed framework would create four tasks.
However, two of them would remain idle (c.f. Figure 1.3a), and yet would
read extra metadata from the disk and would require extra initialization time.
This would increase the makespan — execution time. Furthermore in terms
of computational resources, four executors7 would be required to execute all
these tasks in parallel. Whereas, in an ideal scenario, based on the amount
of data read (c.f. Figure 1.3b) only two tasks with two executors would be
enough. The latter would help on saving computational resources and reduce
the makespan.

As argued above, we need to decide the number of tasks based on the
actual data read from the disk. To do that, we first need to estimate the read
size, which can be done by utilizing our cost model presented in Chapter 4.
The cost model estimates the scan, projection, and selection sizes for hybrid
layouts.

In this chapter, we extend it further to estimate the makespan of the job
implementing a query based on the estimated reading size. Thus, we design
a framework which takes a user query and data statistics as inputs to estimate
the reading size, and then through a multi-objective optimization method [19]
decide the number of tasks and executors.

After configuring the number of tasks and executors, the query would be
automatically submitted to a distributed processing framework. We imple-
mented our approach for Parquet and Spark to show its applicability in real
scenarios.

The main contributions of this chapter can be summarized as follows:

• We extend the cost model for hybrid layouts presented in Chapter 4 to
estimate the makespan of a job.

• We propose a framework based on a multi-objective optimization method [19]
that using our extended cost model, configures the number of tasks and
executors for a given query.

• We prototype our approach on Parquet and Spark to show its benefits.

7An executor is a computational resource/unit which can execute a task.
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• We report the results of our extensive evaluation with TPC-H bench-
mark.

The remainder of this chapter is organized as follows: In Sections 6.2 and
6.3, we present the cost model and the architecture of our approach. In Sec-
tion 6.4, we discuss a multi-objective method to find the number of tasks and
executors. In Section 6.5, we present our experimental results and finally, in
Section 6.6, we conclude the chapter.

6.2 Cost Model for Hybrid Layouts

In Chapter 4, we did not consider configuring the number of tasks and ma-
chines, but focused on choosing different storage layouts based on their read-
ing and writing cost. Thus, we extend the cost model to consider new factors
(e.g., UsedExecutors, PSize, etc.) and estimations to help in deciding the num-
ber of tasks and machines for a given query. In this section, we present the
extended cost model for estimating the number of tasks and executors. It
should be noted that the number of tasks depends on the partition size (also
known as input split).

Variable Description
System Constants

UsedExecutors Number of executors for processing
PSize Size of partition to control the number of tasks

Table 6.1: Additional parameters introduced for the cost model

6.2.1 Parameters of the Cost Model

Our cost model for hybrid layouts relies on a wide range of statistical infor-
mation that are summarized in Table 4.2, containing system constants, data
statistics, workload statistics as well as hybrid layout variables. We assume
that the constants which depend on the configuration of the environment
(e.g., BWDisk) are provided (they can be taken from the configuration files of
the cluster). Furthermore, we discuss the collection of statistics (i.e., dataset
and workload) in Section 6.3. In Table 6.1, we only show the newly intro-
duced variables for this chapter.
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6.2.2 Physical Format of Hybrid Layouts

As shown in Figure 5.1, hybrid layouts divide the data into multiple RGs
(estimated using Equation 5.1 on page 89) and each RG contains a subset of
rows (estimated using Equation 5.2 on page 89). In each RG, hybrid layouts
store data column-wise and its size can be estimated using Equation 4.11
(on page 64). Moreover, hybrid layouts also store metadata (e.g., min-max
statistics) for each RG inside either the header or footer section, which can
be estimated using Equation 5.3 (on page 89). The size of actual data and
metadata are further used in Equation 4.1 (on page 61) to estimate the total
size of the file.

UsedTasks “

R

BodySize
PSize

V

(6.1)

UsedWaves “

R

UsedTasks
UsedExecutors

V

(6.2)

LastWaveExecutors “ ppUsedTasks ´ 1q mod UsedExecutorsq ` 1 (6.3)

#RGsPartition “

S

PSize
RGSize

W

(6.4)

6.2.3 Estimating Number of Tasks

Modern distributed processing frameworks decide the number of tasks based
on the total file size (which is the size of actual data without metadata) and
the partition size (estimated using Equation 6.1). Moreover, the degree of
parallelism depends on the number of executors. All tasks cannot be exe-
cuted at once, if the number of executors is less than the total number of
tasks. Thus, we need multiple rounds/waves to finish the job (estimated us-
ing Equation 6.2). Further, we can calculate the number of executors active
in the last wave using Equation 6.3. Additionally, each partition contains one
or more RGs, which can be estimated using Equation 6.4.

6.2.4 Estimating MakeSpan

In this chapter, we focus on read-only analytical jobs, to estimate the amount
of data read for their first operation and based on that, we try to find the
best partition size to control the number of tasks. Given the simplicity of
a file system (far from that of a DBMS), only three operations need to be
considered: scan, projection, and selection. These three operations can be
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generalized to selection sorted and selection unsorted, because scan and projection
operations are just the extreme cases of selection unsorted with selectivity
factor of 1 (i.e., they read all RGs).

Data read estimation. As mentioned above, hybrid layouts help to read
only the referred columns and their size can be estimated using Equation 4.19
(on page 67). Additionally, they use the available metadata (e.g., min-max
statistics) to filter some RGs. If selection is applied on sorted data, the average
number of read RGs can be calculated directly based on the selectivity factor
as shown in Equation 5.4 (on page 90). We add one to handle the effect of
position variation inside the RGs, because hybrid layouts read the whole RG
even if there is only one matching row [58]. Whereas, for selection of unsorted
data, the expected number of read RGs can be estimated using Equation 5.4
(on page 90).

FullPartitions “

$

’

&

’

%

UsedTasks ´ 1 selection unsorted
R

ReadRGs
#RGsPartition

V

selection sorted
(6.5)

PartialPartitions “

$

&

%

0 selection unsorted

2 selection sorted
(6.6)

LastPartition “

$

&

%

1 selection unsorted

0 selection sorted
(6.7)

EmptyPartitions “ UsedTasks ´ FullPartitions ´ PartialPartitions (6.8)

´ LastPartition

Fig. 6.1: Type of partitions in selection sorted and unsorted

108



6.2. Cost Model for Hybrid Layouts

Types of partitions. Distributed processing frameworks process data by di-
viding them into multiple partitions, where each partition is processed in a
separate task. For selection unsorted, every task processes a full partition except
the last task, whose partition might not be completely full, as shown in Fig-
ure 6.1a. Equation 6.5 and Equation 6.7 indicate the number of full and last
partitions. Thus, for unsorted data, any partition has the same probability
of containing data. However, selection sorted guarantees that we read full par-
titions, except for, potentially, the first (from where selection starts) and last
one (where selection ends), because requested data will not start just at the
beginning and finish just at the end of a partition. To reflect this, we always
have two partial partitions (Equation 6.6) and the number of full partitions
depends on the number of RGs to be read (Equation 6.5). Importantly, note
that all other partitions will nevertheless read their metadata to determine
no data matches the predicate (Equation 6.8). Figure 6.1b exemplifies these
partitions.

Cost estimation. The total cost of a task depends on four factors: initializa-

tion cost, I/O cost, CPU cost, and networking cost. The initialization cost is constant
and can be determined according to the execution environment. The I/O cost

depends on the amount of data read within a task and the disk bandwidth.
We do not consider CPU cost due to its negligible impact compared to I/O cost

(existing works [9, 58] already proved that this is enough to capture the ex-
ecution trend). Finally, we do not need any shuffling [9], because we focus
only on the first operation loading data and therefore, the networking cost for
shuffling is considered to be zero.

However, there might be some cases when partition size goes beyond
the chunk size and it may require some chunks to be transferred over the
network. There are two solutions to handle this scenario. One solution is
to put a maximum limit on the partition size and always keep it less than
the chunk size. The other solution is to use an existing approach [47], which
transfers data in advance to avoid idle cycles on the processing machines. The
approach to be used should be chosen based on the business requirements.

CostMetadata “
MetaSize
BWDisk

`
MetaSize
BWNet

¨ pUsedExecutors ´ 1q (6.9)

There is still a networking cost for metadata (Equation 6.9), because cur-
rent solutions require to sequentially transfer metadata to all other executors
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before start processing the data. Typically, it is read and transferred by the
master or driver executor.

CostFullPartition
“ CostInit (6.10)

`
MetaSize ` Re f ColsSize ¨ #RGsPartition ¨ p1´ p1´ SFq|RG|q

BWDisk

OddData “
Re f ColsSize ¨ pFullPartitions ¨ #RGsPartition´ ReadRGsq

PartialPartitions
(6.11)

CostPartialPartition “ CostInit `
MetaSize `OddData

BWDisk
(6.12)

ResidualData “ Re f ColsSize (6.13)

¨ pUsedRGs ´ #RGsPartition ¨ FullPartitionsq ¨ p1´ p1´ SFq|RG|q

CostLastPartition “ CostInit `
MetaSize ` ResidualData

BWDisk
(6.14)

CostEmptyPartition “ CostInit `
MetaSize
BWDisk

(6.15)

Each partition has an initialization cost, which is a constant, and I/O cost
(which depends on metadata and the amount of data read inside the par-
tition). As shown in Figure 6.1, full partitions read all matched RGs inside a
partition, and their cost can be estimated using Equation 6.10. Equation 6.11
estimates data read from partial partitions and Equation 6.12 its cost. Equa-
tion 6.13 reads the data left in the last partition and Equation 6.14 its cost.
The other partitions just read metadata and its cost is in Equation 6.15.

CostAllTasks “ FullPartitions ¨ CostFullPartition
(6.16)

` EmptyPartitions ¨ CostEmptyPartition

` PartialPartitions ¨ CostPartialPartition

AvgCostTask “
CostAllTasks

UsedTasks ´ LastPartition
(6.17)

These cost of all partitions help to estimate the total cost of all tasks using
Equation 6.16, which is used in Equation 6.17 to estimate the average cost of
a task. It should be noted that the cost of last partition is only applied for
selection unsorted and it is considered separately when estimating the total
makespan. Thus, we do not consider its cost here.
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Fig. 6.2: Execution of tasks

Estimating makespan. As discussed earlier, each task processes different
amounts of data and thus, some tasks can finish earlier compared to others.
Likewise, each executor can finish their assigned tasks on different times.
Thus, we should estimate makespan based on the executor that is processing
largest stack of tasks (e.g., in Figure 6.2, Executor 0 and Executor 1 are the
ones with the largest stack). This can be done by estimating standard devi-
ation among tasks and used it further for estimating overall makespan of an
operation.

Used
1

RGs “ #RGsPartition ¨ FullPartitions (6.18)

Read
1

RGs “ Used
1

RGs ¨ p1´ p1´ SFq|RG|q (6.19)

For standard deviation, first we need to estimate the number of RGs inside
full partitions, using Equation 6.18. It is further used in Equation 6.19 to
estimate the actual read RGs based on the selectivity factor.

Stdev “

$

’

’

’

’

’
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’
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’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

´

#RGsPartitions ¨
Read

1

RGs
Used1

RGs
¨

Used
1

RGs ´ Read
1

RGs
Used1

RGs
Selection unsorted

¨
Used

1

RGs ´ #RGsPartitions

Used1

RGs ´ 1

¯

d

řUsedTasks
i“1 pCostTaski

´ AvgCostTaskq
2

UsedTasks ´ 1
Selection sorted

(6.20)

Finally, we use hypergeometric distribution [76] for selection unsorted to es-
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timate the standard deviation of a full partition in Equation 6.20, based on
the read RGs. Hypergeometric distribution estimates the standard deviation
of choosing a subset of items without replacement from the total available
items. This is similar to our case where we are also trying to select RGs
(i.e., Read

1

RGs) from the total RGs (i.e., Used
1

RGs). Similarly, we also estimate
standard deviation in Equation 6.20 for selection sorted.

MakeSpan “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

When LastWaveExecutors “ 1

CostFullPartitions
˚ pUsedW aves´ 1q ` CostLastPartition ` CostMetadata

When LastWaveExecutors ą 1

pUsedWaves ¨ AvgCostTaskq ` CostMetadata

`Stdev ¨
b

UsedWaves ¨ 2 ¨ logepLastWaveExecutorsq

(6.21)

Finally, we estimate makespan for an operation using Equation 6.21. There
are two scenarios based on the number of executors active in the last wave.
In the first scenario, there is only one executor in the largest stack. In this
case, the last task is processing LastPartition. Then, we do not need to take any
standard deviation, because there is one single largest stack. Thus, we just
add the average duration of all task in that stack.

In the second scenario, the makespan depends on metadata transfer, the
average cost of a task, the number of executors running in the last wave,
and their standard deviation. Thus, we need to estimate expected maxi-
mum [16] of those by using the standard deviation as presented in Equa-
tion 6.21, which accounts for the standard deviation of the addition of tasks
(i.e.,

a

UsedWaves), as well as the maximum among executors in the last wave
(i.e.,

a

2 ¨ logepLastWaveExecutorsq).

6.3 Our Approach

In this section, we discuss our approach in detail. Figure 6.3 shows its ar-
chitecture, which does not require any change in a distributed processing
framework (i.e., it is fully transparent for users). The main function blocks of
our architecture are the following ones:
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Fig. 6.3: Architecture of our approach

6.3.1 Query Parser

The query parser takes a query as input and uses an existing parser (i.e.,
SparkSQL parser8) to validate its syntax. After validation, it generates the
physical plan of the query as an XML and forwards it to the next module.
The physical plan represents a tree that starts from input sources to the final
output. It also highlights the operations, which can be push-down to the
storage layer.

6.3.2 Query Profiling

The query profiling takes physical plan as an input and extracts pushdown
operations from the plan. Hybrid layouts can only pushdown two operations:
projection and selection. It is easy to extract referred columns from the phys-
ical plan. Whereas, for selection, it is not possible to extract selectivity factor
(SF) from the physical plan. To extract SF, query log needs to be parsed for
analyzing the old executions of the same query. Finally, this module passes
the pushdown operations along with required statistical information of op-
erations to the cost model.

6.3.3 Data Profiling

The data profiling module takes a sample of data and computes the statistical
information listed in Table 6.1. We rely on an existing approach, namely
single column profiling technique from [1].

8https://jaceklaskowski.gitbooks.io/mastering-spark-sql/spark-sql-AstBuilder.

html
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6.3.4 Cost Model

The cost model is used to estimate the reading size for a given query. Typi-
cally, a query can have many operations linked together as a Directed Acyclic
Graph (DAG). The operations are ordered based on their possibility of push-
down to the storage layer. Hence, the first operation is always a pushdown
operation, which reads directly from the disk and impacts parallelism. The
subsequent operations takes processed data from the first operation, which
modern processing frameworks (e.g., Spark) always keep in memory.

The cost model takes a pushdown operation, workload, data statistics,
and cluster configuration as inputs, which are used to estimate the makespan
for a given partition size and the number of executors as presented in Sec-
tion 6.2. Our goal is to find the best partition size and the number of ex-
ecutors, which can be done using a multi-objective optimization method (see
Section 6.4).

6.4 Multi-Objective Optimization

In this chapter, we focus on optimizing two objectives, which are contradict-
ing to each other. These objectives are makespan of query and resource usage (i.e.,
number of executors) required to run the query. We would like to minimize
both together. However, they are mutually contradicting, i.e., if we want to
reduce makespan, we require more computational resources. In the same
way, if we want to save computational resources, we have to compromise
makespan. Thus, we need to find a trade-off between them that satisfies user
requirements and constraints.

The first objective function (i.e., MakeSpanpOperationType, PSize, UsedExecutorsq)
is based on the makespan estimation according to Equation 6.21 (as defined
in Section 6.2) for a given operation type, partition size, and the number of
executors. Similarly, the second objective function (i.e., ResourceUsagepPSizeq “

CostAllTasks as defined in Equation 6.16 estimates the resource usage, which
increases with the number of tasks.

PSize ą“ RGSize and PSize ă“
TotalSize

UsedExecutors
(6.22)

PSize ă“ ExecutorMemorySize (6.23)

UsedExecutors ă“ MaxExecutors (6.24)
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To avoid unfavorable or even impossible configurations, we need to add
three constraints. Firstly, Equation 6.22 guarantees that the partition size is
always greater than or equal to the RG size and at the same time, we have
enough partitions to utilize all assigned executors as shown in Equation 6.23.
Finally, Equation 6.24 enforces the maximum number of executors.

Fig. 6.4: Pareto front for a selection (circle size represents resource usage, the bigger the more
resources; and color represents makespan, red for high and green for low)

Typically, there is no single optimum in a multi-objective optimization
problem, but a Pareto front which contains many potentially optimal solu-
tions depending on user prioritization of one objective or another (as shown
in Figure 6.4a). Thus, the user has to choose one configuration from the
Pareto front to, in the end, execute the query at hand. Our framework9 facil-
itates the user choice by reducing the many possible configurations to very
few (belonging or close to the Pareto front), so helping her to select one ac-
cording to her preferences. As shown in Figure 6.4b, the position in the
solution space does not determine the position in the configuration space,
which hinders user’s choice. In this case, our framework leaves only two (out
of thirty-five possible solutions), which satisfy both objectives according to
our estimations. When the user selects one of those two, the framework sub-
mits the query seamlessly to a processing engine by configuring the partition
size and number of executors accordingly.

In this chapter, we do not focus on proposing a new multi-objective method,
rather we focus on finding the best possible configuration (i.e., number of
tasks and executors) for a given query. Thus, we use an existing multi-
objective optimization approach, namely NSGA-II [19], implementing genetic
algorithms. It simply takes objective functions along with constrains as input,
and produces the Pareto front as an output.

9http://www.essi.upc.edu/dtim/tools/adbis2019
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6.5 Experimental Results

In this section, we discuss the setup and dataset used in our experiments.
We also provide the results that validate the accuracy of the cost model and
show the benefits of our approach.

Variable Value
UsedExecutors 2, 3, 4, 5, and 6
ChunkSize 128 MB
BWDisk 1.3 x 108 bytes/second
BWNet 1.25 x 108 bytes/second
CostInit 1 second
RGSize 128 MB
MarkerSize 16 bytes
MetaColsSize

156 bytes
HeaderSize 4 bytes

Table 6.2: Values according to our environment

6.5.1 Setup

We perform experiments on 5-machines cluster. Each machine has a Xeon E5-
2630L v2 @2.40GHz CPU, 128 GB of main memory, and 1TB SATA-3 of hard
disk, and runs Hadoop 2.6.2 and Spark 2.1.10 on Ubuntu 14.04 (64 bit). In the
cluster, we dedicated one machine for the HDFS name node and Spark master
node together, and the remaining machines to data nodes for Hadoop and
executors for Spark. It should be noted that we use a very small cluster for
our experiments, because our focus is on the initial map phase of the jobs that
does not involve shuffling. Notice that the performance of the latter would
be affected by the cluster size, but not that of the former. We prototyped
our approach for Apache Parquet 1.8.2. Table 6.2 shows the values of all
environmental variables in our testbed. We also configured replication factor

equals to the number of machines to have replicas on every machine thus
avoiding chunk transfer in the case of having partition size greater than the
chunk size. For real use cases, [47] can be used to transfer HDFS chunks
in advance to avoid idle cycles on the processing machines or configure the
maximum limit on partition size to make sure it should not exceed HDFS
chunk size.

We also instantiated our cost model presented in Section 6.2 for scan,
projection, and selection (both sorted and unsorted). Scan operation is just a
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selection unsorted with selectivity factor 1, referring all the columns of the
table. Similarly, Projection is also a selection unsorted with selectivity factor 1
and based only on the referred columns. For Selection, we just need to give
selectivity factor and it would work for both.

6.5.2 Results

As mentioned in [10, 54], very wide tables are common in modern analytical
systems, because of their advantages in processing compared to normalizing
data into narrower tables. Nevertheless, to the best of our knowledge, there is
no public benchmark available that consists of wide tables. Therefore, in this
section, we first validate the accuracy of our cost model for makespan with a
synthetic dataset of a very wide table. Further, we present the results to show
the benefits of our approach to choose the best configuration for queries over
the TPC-H denormalized schema.

Fig. 6.5: Validation of our estimation for makespan

Cost model validation.

We generated a synthetic dataset of a very wide table with 1186 columns with
different data types and 32 GB of size. We executed scan, projection with 10

referred columns, and selection with 0.2 selectivity factor to compare the real
executions with our estimations. Figure 6.5 shows that comparison (notice
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that, we normalized the results, both real and estimation, like x´min
max´min

to
facilitate visual comparison).

Figure 6.5a, Figure 6.5b, and Figure 6.5c show the results for a scan oper-
ation with different number of executors. Similarly, Figure 6.5d, Figure 6.5e,
and Figure 6.5f show the results for a projection operation with different
number of executors. Finally, Figure 6.5g, Figure 6.5h, and Figure 6.5i show
the accuracy of our estimations in comparison with the real executions for
selection operation against sorted data. And, Figure 6.5j, Figure 6.5k, and
Figure 6.5l shows the results for selection operation against unsorted data.
Observe that, our estimations successfully capture the trends of real execu-
tions in almost all cases. Most of our predictions closely follow the real
trends. In case of Figure 6.5c, 6.5h, and 6.5i the divergences with the real
trend are due to the different units used in our estimation (i.e., these esti-
mations are in cost units corresponding to I/Os, whereas the real executions
are in seconds). Yet, the trends are predicted correctly and suffice to find
the optimal partition size. The only exception is 6.5b, where we estimated
a lower cost for large partition. Nevertheless, even in this case, our choice is
still better than the default partition size.

We also confirm the accuracy of our estimations with the real executions
using statistical correlation, which measures how well the cost model esti-
mates are related to the real execution. In Figure 6.5, it can be seen that our
estimations are highly correlated (i.e., overall Pearson correlation coefficient
0.96) to real executions.

Query SF Ref Cols Similar Queries
Q1 [0.98, 0.98] [7, 7] -
Q3 [0.0026, 0.0056] [5, 7] Q8, Q12, Q17
Q10 [0.011, 0.031] [4, 11] Q4, Q5, Q6, Q7, Q11, Q14
Q16 [0.04, 0.08] [2, 8] Q2, Q13, Q15, Q18
Q20 [0.000025, 0.0007] [5, 11] Q19, Q21
Q22 [0.11, 0.2] [2, 7] Q9

Table 6.3: Representative queries of TPC-H

Performance evaluation.

In TPC-H, the widest table has only 16 columns and in TPC-DS10, only 26.
Hence, we follow [77] to generate a wide table by completely denormalizing

10http://www.tpc.org/tpcds
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Fig. 6.6: Comparison between our configurations and default ones for TPC-H. Y-axis represents
the normalized values.

all other tables in TPC-H against lineitem. The FROM clauses in all queries are
consequently changed to the corresponding denormalized table. This results,
for a scale factor 16GB, in a denormalized table of 124GB being generated for
the evaluation. We have chosen six representative queries based on different
projected attributes and selectivity factors as shown in Table 6.3. The table
shows the intervals of selectivity factor and number of referred columns of
each group of queries. The other queries follow similar access patterns to
those selected.

As presented earlier, there is no optimal solution in a multi-objective op-
timization, but there are many best solutions referred to as Pareto front. The
Pareto front of our estimation is denoted as ParetoEstimated, and the Pareto
front of the real execution is denoted as ParetoReal . It could happen that in
the ParetoEstimated, we miss some real Pareto solutions. These are referred to
as ParetoMissed. Furthermore, we have the default set of solutions — when a
default partition size (i.e., 128MB) is used, denoted as De f aultReal . Finally,
each solution has two metrics based on our objectives, namely, makespan and
resource usage.

We compute the Euclidean distance between ParetoEstimated and ParetoReal

(both makespan and resource usage components are normalized to mitigate dif-
ferences in the scales, resulting on a maximum distance of

?
2), and also to
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penalize the missed solutions, we compute the distance between ParetoMiss

and ParetoEstimated — all these distances compute to Our Solution. Furthermore,
we also compute the distance between De f aultReal and ParetoReal — which are
represented as Default Configurations. More precisely, the Euclidean distance is
computed between each solution of one set and all the solutions of the other
set, and each time the minimum distance between them is taken.

In Figure 6.6, we show the Boxplot of the distances corresponding to Our

Solution compared to the boxplot of the distances to Default Configurations. We
are showing the results of the representative queries (chosen based on their
referred columns and selectivity factors) of TPC-H. Observe the boxplots in
Our Solution are smaller and closer to zero distance, which means that the so-
lutions proposed (i.e., ParetoEstimated) are much closer to the real Pareto front
(i.e., ParetoReal) than the default configurations (i.e., De f aultReal). In summary,
on average we are as close as 5.6% to the real Pareto front, whereas, the de-
fault configuration is much further from the Pareto front (on average 58.2%).

Fig. 6.7: Speedup gain for TPC-H queries

We also compare the query execution time (i.e., makespan) of our ap-
proach with the default configuration (e.g., default partition size of 128MB).
As mentioned earlier, we have multiple solutions for a query and we took
the minimum makespan among these solutions for comparison. Similarly,
we have multiple default configurations and we took the average of their
makespans. Figure 6.7a compares the makespan of TPC-H queries, which
highlights the advantage of our approach over the default solutions. Like-
wise, we also present the speedup gain in Figure 6.7b, which is between 1.8x
to 2.5x. On average, our approach provides 2.1x speedup against the default
configuration.
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6.6 Conclusions

Hybrid layouts are widely used to store processed data in highly distributed
Big Data systems to perform ad-hoc analysis. These Big Data systems process
data on a computers cluster by creating multiple tasks. Typically, they create
tasks based on the total size of the table, rather than based on the reading
size of the query. Moreover, always using the default configuration has a
heavy impact on performance. Thus, we proposed a cost-based framework
which utilizes a multi-objective approach to decide the number of tasks and
executors for a given query based on the reading size. We prototyped our
approach for Apache Parquet, evaluated it on TPC-H queries, and showed
the improvement it provides.
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7.1 Conclusions

Big data systems are the core of modern data analytics. These systems pro-
vide off-the-shelf tools to store and process data quickly. Yet, there is room
for improvements. Typically, different users have many duplicate computa-
tions in their DIFs, which can be avoided by materializing and reusing them
in the future. We provided the whole life-cycle of selecting common parts
among different DIFs for materialization and storing them in the best pos-
sible storage layout for reducing their loading cost. Additionally, we also
proposed optimization mechanisms for storage layouts to further improve
their performance.

The main goal of this thesis is to provide a set of solutions, which do
not require any modification in the existing running system. The proposed
solutions can be adapted by real scenarios without any change in their in-
frastructure. Yet, they help in improving the execution of DIFs and saving
computational resources.

In the following, we provide conclusions for each chapter, separately.

Intermediate Results Materialization Selection. In Chapter 3, we proposed a
generic framework, which can take any quantifiable SLA and based on them,
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find the best possible intermediate results for materialization using multi-
objective optimization. We consider four SLA’s metrics (i.e., loading time,
storage cost, query cost, and freshness) for this study to show the importance
and benefits of our approach. Freshness is considered to allow stale data in
some materialized intermediate results, which help to reduce loading time
for frequent update input sources. We compared our approach with an ex-
isting state of the art solution and showed that our approach provides 40%
speedup on average.

Storage Format Selection. In Chapter 4, we focused particularly on the stor-
age of materialized intermediate results. We found that the first operation
has direct impact on reading from the disk. Whereas, subsequent operations
read all the data produced by the first operation. Thus, only the first op-
eration can decide to read less data from disk. Consequently, we proposed
heuristic-rules based on the type of first operation and features provided
by different storage layouts. We utilized the heuristic-rules in a hybrid ap-
proach to decide the storage layouts for the chosen intermediate results for
materialization. The heuristic-rules are used for cold-start, when there is no
statistical information available. When statistical information is available, the
cost model is used to estimate the I/O cost of different storage layouts and
choosing the one, which has overall minimum cost. Our detailed experiments
on open source benchmarks showed the significant reduction in the loading
time of materialized intermediate results and overall, it improves the execu-
tion of DIFs.

Configuring Parameters of Hybrid Layouts. In Chapter 5, we proposed a
cost-based approach to configure hybrid layout’s parameters and find their
best possible values based on the characteristics of data and workload. The
cost model requires statistical information about data and workload. We have
utilized a single-column profiling technique to profile the data and job his-
tory files are used to extract the characteristics of the workload. Based on
these characteristics, the best possible values are configured for hybrid lay-
outs. Our detailed experiments showed the improvements in the execution
of DIFs.

Configuring Parallelism for Hybrid Layouts. In Chapter 6, we proposed an
approach to estimate the number of tasks for improving both execution time
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and resource consumption. Typically, Big Data systems process data on a
computers cluster by creating multiple tasks. They create tasks based on
the total size of the table, rather than based on the reading size of the DIF.
Moreover, always using the default configuration has a heavy impact on per-
formance. Thus, we proposed a cost-based framework which utilizes a multi-
objective approach to decide the number of tasks and executors for a given
DIF. We prototyped our approach for Apache Parquet, evaluated it on TPC-H
queries, and showed the improvement it provides.

Finally, in summary, this thesis provides solutions for selecting material-
ized intermediate results and storing them in the best possible storage lay-
outs. It also provides solutions to optimize storage layouts to best fit for the
current running workload.

7.2 Future Directions

In this thesis, we provided a way to choose the best intermediate results
for materialization by considering different quantifiable SLAs. However, the
management of intermediate results (when to update/delete) has not been
considered in this thesis. This would help in deciding when to update and
delete a materialized result, it would also help to decide when it is beneficial
to update an existing materialized intermediate result.

Furthermore, the cost model proposed for storage layouts has not consid-
ered compression techniques, which are used often when storing the data to
reduce their size. It would be nice to extend the cost model for estimating
the size of compressed data, which would help to estimate the time needed
to compress/decompress and process the data. This would help in choosing
storage layouts with different compression algorithms. The extended cost
model would also help in deciding when it is beneficial to compress the data,
because if storage is cheaper and query response time is critical then it might
be a good idea to disable compression.

Additionally, it would be nice to extend the configurable parameters list
of hybrid layouts to consider more parameters for improving the execution
time of DIFs. Specifically, the parameters related to compression and encod-
ing can be very important for improving the performance of different DIFs.
Moreover, the approach for controlling the degree of parallelism focuses only
on improving the execution of the map phase. It would also be nice to apply
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the same approach for the shuffle phase. This would help to improve the
overall performance of an individual DIF. Further, we have not considered
data locality when deciding the degree of parallelism.

Finally, data integration can also benefit from our proposed solutions. In
data integration, data are stored in different layouts, which might needed to
be virtually integrated for crossing their data. However, it is always chal-
lenging to find the optimal query plan, because different data sources have
different features. Our cost model can help to estimate the cost in an indi-
vidual storage layout, which would help in finding the overall best query
execution plan.
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