Temporal Graph Mining and
Distributed Processing

Ph.D. Dissertation
Rohit Kumar

Dissertation submitted month April, 2018

A thesis submitted to the Faculty of Engineering at Université Libre De Brux-
elles (ULB) and the Barcelona School of Informatics at Universitat Politecnica
de Catalunya, BarcelonaTech (UPC), in partial fulfillment of the requirements
within the scope of the IT4BI-DC programme for the joint Ph.D. degree in
computer science. The thesis is not submitted to any other organization at
the same time.

Thesis submitted: April, 2018

ULB Main Ph.D. Supervisor: Prof. Toon Calders
Université Libre de Bruxelles, Brussels, Bel-
gium

UPC Ph.D. Supervisors: Prof. Alberto Abell6
Universitat Politecnica de Catalunya,
BarcelonaTech, Spain

PhD Committee: Prof. Esteban Zimanyi, Université Libre de
Bruxelles, Brussels, Belgium
Prof. Stijn Vansummeren, Université Libre
de Bruxelles, Brussels, Belgium
Prof. George Fletcher, Eindhoven University
of Technology, Netherlands
Prof. Céline Robardet, National Institute of
Applied Science, Lyon, France
Prof. Ricard Gavalda, Universitat Politeécnica
de Catalunya, BarcelonaTech, Spain

PhD Series: Barcelona School of Informatics, Universitat
Politécnica de Catalunya, BarcelonaTech

ISSN: xxoxx-xxxx
ISBN: XXX-XX-XXXX-XXX-X

© Copyright by Rohit Kumar. Author has obtained the right to include the
published and accepted articles in the thesis, with a condition that they are
cited, DOI pointers and/or copyright/credits are placed prominently in the
references.

Printed in Spain by XX, 2018

Curriculum Vitae

Rohit Kumar

Rohit Kumar graduated with honors in Physics in 2007 from Hindu Col-
lege, Delhi University in India. While doing his graduation, he also did a
3-year summer internship from (Jawaharlal Nehru Centre for Advanced Sci-
entific Research, JNCASR IISC Bangalore). He used to visit the research cen-
ter every summer vacation for 1.5 months to do an internship as a research
assistant to study Nanomaterials under the supervision of Prof CNR Rao as
part for the POCE (Project-oriented chemical education) internship.

In November 2007, he joined TCS (Tata consultancy services) an Indian
IT company and was working as a research and training assistance while
doing his masters from CMI (Chennai Mathematical Institute. It was a joint
program conducted by TCS and CMI wherein he used to go to the university
for his Master in Computer science course 2 days a week and work as research
and training assistant in TCS for rest of the time.

In April 2011, he graduated from CMI with Master in Computer science
degree. He stayed in TCS for next 3 years working in different roles. He
worked both as a researcher in Industry lab working on prototype projects
and also as a technical team lead and architect to take one of the prototypes
to market as a hugely successful large-scale system to be used by multiple
clients from Education domain. During this period he also filled 3 patents
out of which one is already granted.

In August 2014, he decided to pursue his PhD studies under the supervi-
sion of professors Toon Calders, at the Department of Computer and Decision
Engineering, at Université Libre de Bruxelles. His PhD has been funded by the
Fonds de la Recherche Scientifique-FNRS under Grant(s) no T.0183.14 PDR.

His research interests mainly fall into the business intelligence field, fo-
cusing on: Graph Data management, Distributed graph mining, Temporal network
Analysis, Information flow mining.

ii

Curriculum Vitae

In 2015, Rohit joined the Erasmus Mundus Joint Doctorate program of In-
formation Technologies for Business Intelligence, Doctoral College (IT4BI-DC), and
continued his PhD studies in cohort with Universitat Politecnica de Catalunya
(UPC). Professor Alberto Abell6 from UPC has joined the supervision of his
PhD thesis as a host co-advisor.

As part of his joint PhD studies, Rohit performed one research stay at
Universitat Politecnica de Catalunya, his host university, working with professor
Alberto Abell6 (April 2016 - April 2017).

While doing his PhD he has published 8 peer-reviewed publications, in-
cluding 1 journal paper, 4 research track full conference papers, 2 workshop
papers, and 1 tool demonstration.

iv

Abstract

With the recent growth of social media platforms and the human desire to
interact with the digital world a lot of human-human and human-device in-
teraction data is getting generated every second. With the boom of the Inter-
net of Things (IoT) devices, a lot of device-device interactions are also now
on the rise. All these interactions are nothing but a representation of how
the underlying network is connecting different entities over time. These in-
teractions when modeled as an interaction network presents a lot of unique
opportunities to uncover interesting patterns and to understand the dynam-
ics of the network. Understanding the dynamics of the network is very im-
portant because it encapsulates the way we communicate, socialize, consume
information and get influenced. To this end, in this PhD thesis, we focus on
analyzing an interaction network to understand how the underlying network
is being used. We define interaction network as a sequence of time-stamped
interactions E over edges of a static graph G=(V, E). Interaction networks can
be used to model many real-world networks for example, in a social net-
work or a communication network, each interaction over an edge represents
an interaction between two users, e.g., emailing, making a call, re-tweeting,
or in case of the financial network an interaction between two accounts to
represent a transaction.

We analyze interaction network under two settings. In the first setting,
we study interaction network under a sliding window model. We assume
a node could pass information to other nodes if they are connected to them
using edges present in a time window. In this model, we study how the im-
portance or centrality of a node evolves over time. In the second setting, we
put additional constraints on how information flows between nodes. We as-
sume a node could pass information to other nodes only if there is a temporal
path between them. To restrict the length of the temporal paths we consider
a time window in this approach as well. We apply this model to solve the
time-constrained influence maximization problem. By analyzing the interac-
tion network data under our model we find the top-k most influential nodes.
We test our model both on human-human interaction using social network
data as well as on location-location interaction using location-based social

Abstract

network(LBSNs) data. In the same setting, we also mine temporal cyclic
paths to understand the communication patterns in a network. Temporal
cycles have many applications and appear naturally in communication net-
works where one person posts a message and after a while reacts to a thread
of reactions from peers on the post. In financial networks, on the other hand,
the presence of a temporal cycle could be indicative of certain types of fraud.
We provide efficient algorithms for all our analysis and test their efficiency
and effectiveness on real-world data.

Finally, given that many of the algorithms we study have huge compu-
tational demands, we also studied distributed graph processing algorithms.
An important aspect of these algorithms is to correctly partition the graph
data between different machines. A lot of research has been done on efficient
graph partitioning strategies but there is no one good partitioning strategy
for all kind of graphs and algorithms. Choosing the best partitioning strategy
is nontrivial and is mostly a trial and error exercise. To address this prob-
lem we provide a cost model based approach to give a better understanding
of how a given partitioning strategy is performing for a given graph and
algorithm.

vi

Abstracto

Con el reciente crecimiento de las redes sociales y el deseo humano de in-
teractuar con el mundo digital, una gran cantidad de datos de interaccién
humano-a-humano o humano-a-dispositivo se generan cada segundo. Con el
auge de los dispositivos 10T, las interacciones dispositivo-a-dispositivo tam-
bién estdn en alza. Todas estas interacciones no son mds que una repre-
sentacion de como la red subyacente conecta distintas entidades en el tiempo.
Modelar estas interacciones en forma de red de interacciones presenta una
gran cantidad de oportunidades tinicas para descubrir patrones interesantes
y entender la dinamicidad de la red. Entender la dinamicidad de la red
es clave ya que encapsula la forma en la que comunicamos, socializamos,
consumimos informacién y somos influenciados. Para ello, en esta tesis doc-
toral, nos centramos en analizar una red de interacciones para entender como
la red subyacente es usada. Definimos una red de interacciones como una se-
quencia de interacciones grabadas en el tiempo £ sobre aristas de un grafo
estitico G = (V,E). Las redes de interaccién se pueden usar para mod-
elar gran cantidad de aplicaciones reales, por ejemplo en una red social o
de comunicaciones cada interaccién sobre una arista representa una interac-
cién entre dos usuarios (correo electrénico, llamada, retweet), o en el caso
de una red financiera una interaccién entre dos cuentas para representar una
transaccion.

Analizamos las redes de interaccién bajo mdltiples escenarios. En el
primero, estudiamos las redes de interaccién bajo un modelo de ventana
deslizante. Asumimos que un nodo puede mandar informacién a otros no-
dos si estan conectados utilizando aristas presentes en una ventana temporal.
En este modelo, estudiamos cémo la importancia o centralidad de un nodo
evoluciona en el tiempo. En el segundo escenario afiadimos restricciones
adicionales respecto cémo la informacién fluye entre nodos. Asumimos que
un nodo puede mandar informacién a otros nodos solo si existe un camino
temporal entre ellos. Para restringir la longitud de los caminos temporales
también asumimos una ventana temporal. Aplicamos este modelo para re-
solver el problema de maximizacién de influencia restringido temporalmente.
Analizando los datos de la red de interaccion bajo nuestro modelo intenta-

vii

Abstracto

mos descubrir los k nodos mds influyentes. Examinamos nuestro modelo
en interacciones humano-a-humano, usando datos de redes sociales, como
en ubicacién-a-ubicaciéon usando datos de redes sociales basades en local-
izacién (LBSNs). En el mismo escenario también minamos caminos ciclicos
temporales para entender los patrones de comunicacién en una red. Existen
multiples aplicaciones para coclos temporales y aparecen naturalmente en re-
des de comunicacién donde una persona envia un mensaje y después de un
tiempo reacciona a una cadena de reacciones de compafieros en el mensaje.
En redes financieras, por otro lado, la presencia de un ciclo temporal puede
indicar ciertos tipos de fraude. Proponemos algoritmos eficientes para todos
nuestros andlisis y evaluamos su eficiencia y efectividad en datos reales.

Finalmente, dado que muchos de los algoritmos estudiados tienen una
gran demanda computacional, también estudiamos los algoritmos de proce-
sado distribuido de grafos. Un aspecto importante de estos algoritmos es
el de correctamente particionar los datos del grafo entre distintas méquinas.
Gran cantidad de investigacién se ha realizado en estrategias para particionar
eficientemente un grafo, pero no existe un particionamento bueno para todos
los tipos de grafos y algoritmos. Escoger la mejor estrategia de particién no
es trivial y es mayoritariamente un ejercicio de prueba y error. Para abordar
este problema, proporcionamos un modelo de costes para dar un mejor en-
tendimiento de como una estrategia de particionamiento actiia dado un grafo
y un algoritmo.

viii

Abstrait

Avec la croissance récente des plateformes de médias sociaux et le désir hu-
main d’interagir avec le monde numérique, de nombreuses données d’interaction
humain-humain et humain-appareil sont générées chaque seconde. Avec le
boom des appareils de I'Internet des Objets (IoT), beaucoup d’interactions
entre appareils et appareils sont également en augmentation. Toutes ces
interactions ne sont rien d’autre qu'une représentation de la facon dont le
réseau sous-jacent relie différentes entités au fil du temps. Ces interactions,
lorsqu’elles sont modélisées en tant que réseau d’interaction, présentent de
nombreuses opportunités uniques de découvrir des modeles intéressants et
de comprendre la dynamique du réseau. Comprendre la dynamique du
réseau est trées important car il encapsule notre fagcon de communiquer, de
socialiser, de consommer de l'information et d’étre influencé. A cette fin,
dans cette these de doctorat, nous nous concentrons sur ’analyse d’un réseau
d’interaction pour comprendre comment le réseau sous-jacent est utilisé.
Nous définissons le réseau d’interaction comme une séquence d’interactions
horodatées & sur les arétes d'un graphe statique G = (V,E). Les réseaux
d’interaction peuvent étre utilisés pour modéliser de nombreux réseaux du
monde réel, par exemple, dans un réseau social ou un réseau de communi-
cation, chaque interaction sur un bord représente une interaction entre deux
utilisateurs, par exemple, emailing, appel, re-tweeting ou cas du réseau fi-
nancier une interaction entre deux comptes pour représenter une transaction.
Nous analysons le réseau d’interaction sous deux parametres. Dans le
premier cas, nous étudions le réseau d’interaction sous un modéle de fenétre
glissante. Nous supposons qu'un noeud peut transmettre des informations a
d’autres noeuds s’ils y sont connectés en utilisant des arétes présentes dans
une fenétre temporelle. Dans ce modele, nous étudions comment I'importance
ou la centralité d’un nceud évolue avec le temps. Dans le second cas, nous
imposons des contraintes supplémentaires sur la maniere dont I'information
circule entre les nceuds. Nous supposons qu'un nceud pourrait transmettre
des informations a d’autres nceuds seulement s’il y a un chemin temporel
entre eux. Pour limiter la longueur des chemins temporels, nous considérons
également une fenétre temporelle dans cette approche. Nous appliquons ce

ix

Abstrait

modele pour résoudre le probleme de maximisation de 1'influence contrainte
par le temps. En analysant les données du réseau d’interaction sous notre
modele, nous trouvons les nceuds les plus influents. Nous testons notre
modele a la fois sur l'interaction humain-humain en utilisant les données
de réseaux sociaux ainsi que sur l'interaction localisation-localisation en util-
isant des données de réseau social basé sur 'emplacement (LBSN). Dans le
méme cadre, nous explorons également les chemins cycliques temporels pour
comprendre les schémas de communication dans un réseau. Les cycles tem-
porels ont de nombreuses applications et apparaissent naturellement dans les
réseaux de communication ol une personne poste un message et réagit apres
un certain temps a un fil de réactions de ses pairs sur le poste. En revanche,
dans les réseaux financiers, la présence d'un cycle temporel pourrait étre
révélatrice de certains types de fraude. Nous fournissons des algorithmes
efficaces pour toutes nos analyses et testons leur efficacité et leur efficacité
sur des données réelles.

Enfin, étant donné que de nombreux algorithmes étudiés ont d’énormes
exigences de calcul, nous avons également étudié des algorithmes de traite-
ment de graphes distribués. Un aspect important du traitement de graphe
distribué consiste a partitionner correctement les données de graphe en-
tre différentes machines. De nombreuses recherches ont été menées sur
des stratégies efficaces de partitionnement de graphe, mais il n’existe pas
de bonne stratégie de partitionnement pour tous les types de graphes et
d’algorithmes. Choisir la meilleure stratégie de partitionnement est non triv-
ial et est principalement un exercice d’essais et d’erreurs. Pour résoudre ce
probléme, nous proposons une approche basée sur un modéle de cotit afin de
mieux comprendre comment une stratégie de partitionnement donnée fonc-
tionne pour un graphe et un algorithme donnés.

Contents

Curriculum Vitae iii
Abstract v
Abstracto vii
Abstrait ix
Thesis Details XV
1 Thesis Summary 1
1 Background and Motivation 1
1.1 Research Problems and Challenges 2
2 ThesisOverview 5

21 Efficient estimation of neighborhood profiles in a slid-
ing window graph streeam model 6
2.2 User-User interaction in social networks 7

2.3 Location-Location interaction in Location based social
networks L Lo 9
24 Cyclic pattern detection in interaction networks 11
2.5 Distributed graph processing for temporal graphs 14
3 ThesisStructure Lo o 15
4 Summary of Contributions, 16

2 Maintaining sliding-window neighborhood profiles in interaction

networks 19
1 Introduction 20
2 Preliminaries e 21
3 Problem statement 22
4 Maintaining the exact neighborhood profile. 23

41 Summary for neighborhood functions 23

42 Updating summaries 25

Xi

Contents

5 Approximating neighborhood function 28
51 Hyperloglog and sliding-window hyperloglog sketches 29
52 Computation of neighborhood profiles based on sliding

HLL e 30
6 Related work 32
7 Experimental evaluation 33
8 Concludingremarks, 36
3 Information Propagation in Interaction Networks 39
1 Introduction 40
2 Preliminaries 42
3 Solution Framework 45
3.1 The Exact algorithm 46
3.2 Approximate Algorithm 49
4 Applications L L Lo 54
4.1 Influence Oracle: 54
4.2 Influence Maximization: 54
5 Related Work 55
6 Experimental Evaluation 58
6.1 Datasetsand Setup, 59
6.2 Accuracy of the Approximation 60

6.3 Runtime and Memory usage of the Approximation Al-
gorithm 61
6.4 Influence Oracle Query Efficiency 62
6.5 Influence Maximization 62
7 Conclusion e e e 66
4 Location Influence in Location-based Social Networks 67
1 Introduction 68
2 Related Work 69
3 Location-based Influence 70
3.1 Location-Based Social Network 70
3.2 Models of Location-based Influence 71
3.3 Friendship-Based Location Influence 72
3.4 Combined Location Influence 73
3.5 Problem Formulation 73
4 Solution Framework 74
4.1 Influence Oracle 74
42 Approximate Influence Oracle 77
4.3 Influence Maximization 78
5 LBSN Data Analysis 80
51 Mobility analysis of friends 80
52 Settingwand T 81

Xii

Contents

7
8

EVALUATION e e e e e 82
6.1 Approximate vs. Exact Oracle 83
6.2 Influenceof wand v, . 85
6.3 Influence Maximization 86
6.4 Qualitative Experiment, 87
Conclusion o e e 88
Co-authoring Agreement 89

5 2SCENT: An Efficient Algorithm for Enumerating All Simple Tem-

poral Cycles 91
1 Introduction L .. 92
2 Relatedwork. L o 94
3 Preliminaries. oo 96
4 Source DetectionPhase. 97
4.1 Reverse Reachability Summary 98

42 Improvements using Bloom Filters 100

43 Combining Root Node Candidate Tuples 103

5 Constrained Depth-First Search, 105
6 Proof of Correctness for Constrained Depth-First Search 110
6.1 Soundness L oo o 110

6.2 Completeness 112

6.3 MainResult L .. 115

7 Complexity of constrained Depth-First Search 119
8§ PathBundles. 121
8.1 ExpandingaBundle 122

8.2 Extending the Algorithm to Bundles. 124

8.3 Counting the Number of Pathsina Bundle. 124

9 Experiments o L. 127
9.1 Dataset 127

9.2 Performance Evaluation 128

9.3 Qualitative Evaluation 131

10 Conclusion L Lo 133
6 Cost Model for Pregel on GraphX 135
1 Introduction 135
2 Background L 136
2.1 Pregel Model 137

2.2 Partitioning L 138

3 Cost Model for Pregel GraphX 139
3.1 Pregel Model in GraphX 139

3.2 The Cost model formulation 141

4 Experimental Validation of the Cost Model 147
4.1 Experiment Configuration and Setup 147

xiii

Contents

4.2 Estimating a1, ap, a3, By, Pwand yo 148

4.3 Cost model validation 150

5 Concluding remarks 150

7 Conclusions and Future Directions 153
1 Conclusions e 153

2 Future Directions 155
Bibliography 157
Referenceso 157

Xiv

Thesis Details

Thesis Title: Temporal Graph Mining and Distributed Processing

Ph.D. Student: Rohit Kumar

Supervisors: Prof. Toon Calders, Université Libre de Bruxelles, Brussels,
Belgium (ULB Main Supervisor)
Prof. Alberto Abell6, Universitat Politecnica de Catalunya,
BarcelonaTech (UPC Supervisor)

The main body of this thesis consist of the following papers.

[1] Maintaining sliding-window neighborhood profiles in interaction net-
works. Rohit Kumar, Toon Calders, Aristides Gionis, and Nikolaj Tatti.
Joint European Conference on Machine Learning and Knowledge Dis-
covery in Databases (ECML/PKDD), September 07-11, 2015, Porto, Por-
tugal.

[2] Information Propagation in Interaction Networks. Rohit Kumar and
Toon Calders. 20th International Conference on Extending Database
Technology EDBT , March 21-24, 2017, Venice, Italy.

[3] Location Influence in Location-based Social Networks. Muhammad
Aamir Saleem, Rohit Kumar, Toon Calders, Xike Xie and Torben Bach
Pedersen. Tenth ACM International WSDM Conference, February 06-
10, 2017, Cambridge, UK.

[4] 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal
Cycles. Rohit Kumar and Toon Calders. Under revision for VLDB vol
11.

[5] Cost Model for Pregel on GraphX. Rohit Kumar, Alberto Abello, and
Toon Calders. 21st European Conference on Advances in Databases and
Information Systems ADBIS , September 24-27 , 2017, Nicosia, Cyprus.

In addition to the main papers, the following peer-reviewed publications have
also been made.

XV

Thesis Details

o Journal articles:

[1] Effective and Efficient Location Influence Mining in Location-Based
Social Networks. Muhammad Aamir Saleem, Rohit Kumar, Toon
Calders, and Torben Bach Pedersen. Accepted for publication in
KAIS (Editorial Manuscript Number: KAIS-D-17-00549R1).

* workshop papers:

[2] Activity-Driven Influence Maximization in Social Networks. Ro-
hit Kumar, Muhammad Aamir Saleem, Toon Calders, Xike Xie
and Torben Bach Pedersen. The European Conference on Machine
Learning and Knowledge Discovery in Databases ECML/PKDD
(Nectar Track) , September 18-22 , 2017, Skopje, Macedonia.

[3] Finding simple temporal cycles in an interaction network. Rohit
Kumar and Toon Calders. The European Conference on Machine
Learning and Knowledge Discovery in Databases ECML/PKDD
(TD-LSG workshop) , September 18-22 , 2017, Skopje, Macedonia.

o Tool demonstrations:

[4] IMaxer: A Unified System for evaluating Influence Maximization
Mechanisms in Location-based Social Networks. Muhammad Aamir
Saleem, Rohit Kumar, Toon Calders, Xike Xie and Torben Bach
Pedersen. International Conference on Information and Knowl-
edge Management CIKM, November 6-10, 2017, Singapore.

This thesis has been submitted for assessment in partial fulfillment of the PhD
degree. The thesis is based on the submitted or published scientific papers
which are listed above. Parts of the papers are used directly or indirectly
in the extended summary of the thesis. The thesis is not in its present form
acceptable for open publication but only in limited and closed circulation as
copyright may not be ensured.

XVi

Chapter 1

Thesis Summary

1 Background and Motivation

Graphs play an important role in many application domains. For example, in
social media, graph analysis is done to detect the latest trending topic [8, 15]
or to provide recommendation services [60]. In microblog sites, the represen-
tation of the interaction between different users and the topics they discuss
as a graph helps in identifying seed users for viral marketing by studying
the information propagation in the network [71, 28]. In computer networks,
simulating the action logs of users as a subgraph mining problem can help
to detect threats and anomalies [5, 110]. Web graph mining is used to make
search more efficient and relevant [83]. Netflix uses graph based machine
learning algorithms for movie recommendations [26]. Road network graph
analysis is used for traffic control and monitoring in real time. People, de-
vices, processes and other entities are more connected than at any other point
in history.

In contrast to earlier works on dynamic graphs [4, 87, 13], we do not
study the structural evolution of networks, but rather how they are being
used. Consider for instance a road network. Most of the existing work on
dynamic graphs would study how the network evolves; which new roads
are added, or become blocked, and how does this for instance influence the
reachability of nodes over time. We, however, are interested in interactions,
for instance, how cars are using this network. Typical problems we study
involve monitoring which roads are used more intensely, what are popular
routes, how does the usage of the network evolve over time. Therefore, we
model an interaction network as a pair (V,£), where V are nodes, and & is
a set of triples (v, w,t) indicating that v interacted with w at time ¢, ¢ is a
natural number representing a time stamp. Interaction networks can be used
in many different contexts:

Chapter 1. Thesis Summary

5,10 \\2 c \2 / -

C

N4 N \/ NA

Fig. 1.1: A toy interaction network, and three snapshot graphs with a window size of 3.

¢ friends in a social network that interact, for instance by sending per-
sonal messages, or replying to a post;

¢ retweet networks where a mention or a retweet of another user can be
considered an interaction;

* a car that travels on a road segment from v to w at time ¢;
* two proteins that interact at a time t in a biological interaction network.

Traditional dynamic network approaches would either transform this data
into either a sequence of graph snapshots and process every snapshot, con-
sisting of all edges that were active within the snapshot, or would consider
an interaction (v,w,t) as an edge addition from v to w at time t, and ignore re-
peating edges. In our work, however, we do want to consider the full dynamic
nature of the interaction graph including the exact order of between interac-
tions and the repetition of interactions. In this context several problems arise
naturally, we present the details of the research problems we addressed in
the next section.

1.1 Research Problems and Challenges

In this thesis, we study an interaction network in two different settings. The
first setting is inspired by the sliding window model [38] from data streams.
In this model, as the window slides over the edge stream a new snapshot of
the graph is formed. For example, consider the illustration given in Figure 1.1
of an edge stream over the set of nodes V = {a,b,c,d,e}. The numbers on
the edges denote the time of interactions over the edges. Let the window
length be 3. The snapshot graphs G(t) at times t = 3,4, 5 are also depicted in
Figure 1.1. The snapshot graphs at time t for a window w represents a graph
consisting of edges formed by the interactions happening between time ¢
and time t — w. Under this sliding window model we address the following
research problem:

1. Background and Motivation

* [Research Problem 1] Efficient estimation of neighborhood profiles
in a sliding window graph stream model: Classical approaches to an-
alyze a static graph using measures of node centrality such as PageR-
ank, degree centrality or betweenness centrality is also quite interesting
to analyze in a streaming interaction network model. One approach
is to run the static version of the algorithm on the new graph snap-
shot. However, as the graph snapshots update very frequently with
every new interaction, re-computation could be too costly. Hence, re-
cent studies [101, 10] have focused on creating incremental algorithms
which could re-compute the new measures for the new graph snapshot
using just the new set of interaction and reusing the old values from the
earlier snapshots. Inspired by these approaches, we focus on a similar
problem of estimating neighborhood profiles of all the nodes in an in-
teraction network over a sliding window. The neighborhood profile of
vertex v for a distance r is defined as the number of vertices at distance
r from vertex v. The distance between two vertices u and v, dg(u,v), is
defined as the length of the shortest path from u to v. For example, in
the snapshot graphs in Figure 1.1, the neighborhood profile of vertex a
for distance 2 is 1(d), 0, 1(e) respectively for the three snapshots. If ¥ = 1
neighborhood profile is the same as the degree of a vertex. Maintain-
ing the neighborhood profile over time has applications in modeling
network evolution and monitoring the importance of the vertices of the
network [91, 19].

Unlike the previous setting in which we focused on a sliding window
model, in this setting, we analysis the entire interaction log to study informa-
tion flow patterns in the network. There are three research problems which
we study under this setting:

* [Research Problem 2 and 3] Activity-Driven Influence Maximization
in Social Networks: Understanding how information propagates in a
network has a broad range of applications like viral marketing [98], epi-
demiology and outdoor marketing [103]. For example, imagine a com-
puter games company that has a budget to hand out samples of their
new product to 50 gamers, and want to do so in a way that achieves
maximal exposure. In that situation, the company would like to target
those customers that have the maximal influence on social media. For
this purpose, they monitor interactions between gamers and learn from
these interactions which gamers are the most influential. Notice that
for the company it is also important that the selected people are not
only influential but that their combined influence should be maximal;
selecting 50 highly influential gamers in the same sub-community is
less effective than targeting potentially less influential users but from

Chapter 1. Thesis Summary

different communities. This example is an instance of the Influence max-
imization problem [98], whose common ingredients are: a graph in which
the nodes represent users of a social network, an information propaga-
tion model, and a target number of seed nodes that need to be identified
such that they jointly maximize the influence spread in the network un-
der the given propagation model.

All previous works share one property: they are based on probabilis-
tic models and if activity data is used, it is only to indirectly estimate
model parameters. Recently, however, new, model-independent and
purely data-driven methods have emerged [52]. Under this data-driven
approach, we study the Influence Maximization problem using interac-
tion network data. We study the problem both from a viral marketing
perspective by studying user-user interaction in a social network (Re-
search Problem 2) and also from an outdoor marketing perspective by
studying user-location interaction in a location-based social network
(Research Problem 3).

* [Research Problem 4] Cyclic pattern detection in interaction networks:
Continuing the work on information flow mining in interaction net-
works, next we focused on using the information flow patterns to find
interesting events in the network or to characterize networks based on
the occurrence frequency of these patterns in the network. Recently,
Paranjape et al. [93] introduced an algorithm for counting the num-
ber of occurrences of a given temporal motif in a temporal network.
In their paper, the authors show that data sets from different domains
have significantly different motif counts, showing that temporal motifs
are useful for capturing differences in temporal behavior. As an exten-
sion of this work, we focus on efficiently finding cyclic patterns in an
interaction network. Cycles appear naturally in many problem settings.
For instance, in logistics if the interactions represent resources being
moved between facilities, a cycle may indicate an optimization oppor-
tunity by reducing excessive relocation of resources; in stock trading,
cyclic patterns may indicate attempts to artificially create high trading
volumes; and in financial transaction, data cycles could be associated
with specific types of fraud. The potential of cycles in the context of
fraud detection has already been acknowledged [57]. Detecting or enu-
merating cycles in a directed static graph has already been studied for
decades [62]. The existing algorithms for enumerating cycles in static
graphs, however, do not directly apply to temporal networks. Hence,
we address this problem of detecting and enumerating temporal cycles
in an interaction network.

Lastly, we also looked into distributed graph processing and challenges
involved with supporting distributed graph processing for dynamic graphs

4

2. Thesis Overview

or temporal graphs. Using incremental stream-based algorithms as we stud-
ied in research problem 1 is an efficient way to handle large graph streams.
However, distributing the computation on multiple machines is also a popu-
lar approach to handle large graphs [105, 81]. Next, we discuss the specific
research problem we addressed in this area:

* [Research Problem 5] Distributed graph processing for temporal graphs:
There are multiple distributed graph processing systems proposed in
literature such as Spark GraphX [122], GraphLab [81], PowerGraph [49],
Trinity [105], Apache Giraph [2] to partition the graph data over dif-
ferent systems and manage the memory usage and computation time.
This approach works on the principle of divide and conquers by di-
viding the computation and data between different machines. For a
graph, however, correctly partitioning of data between different ma-
chines, to avoid too much communication and balancing the compu-
tation at the same time, is far more complicated than for a data-set
consisting of independent records. For dynamic graphs, the graph par-
titioning needs to be done again and again as the graph evolves, mak-
ing the problem of graph partitioning even more challenging. There are
many partitioning strategies proposed in the literature for performing
efficient graph computations on distributed graph computing (DGC)
systems [94, 64, 24, 67]. Despite the abundance of partitioning strate-
gies, however, there exist relatively little guidelines for selecting the
best one depending on the algorithm to run and the characteristics of
the graph on which the algorithm will be run. Verma et al. in [113]
attempt to address this question with an experimental comparison of
different partitioning strategies on three different DGC systems. This
comparison leads to many interesting insights but unfortunately, lacks
theoretical justification for why one partitioning strategy outperforms
another for some specific combination of graph characteristics and algo-
rithm. In this PhD thesis, we exactly tackle this problem of the absence
of a good theoretical justification by looking into a cost model-based
approach.

2 Thesis Overview

In this section, we give a brief overview of the contribution of this PhD thesis
on the five research problems identified earlier. For details on the formal
problem description, solution framework and experimental results we refer
readers to the corresponding chapters. Below is a mapping of the research
problems and the corresponding chapters:

* Efficient estimation of neighborhood profiles in a sliding window graph

Chapter 1. Thesis Summary

stream model: The problem is addressed in detail in Chapter 2.

¢ User-User interaction in social networks: The problem is addressed in
detail in Chapter 3

¢ Location-Location interaction in Location based social networks: The
problem is addressed in detail in Chapter 4.

* Cyclic pattern detection in interaction networks: The problem is ad-
dressed in detail in Chapter 5.

¢ Distributed graph processing for temporal graphs: The problem is ad-
dressed in detail in Chapter 6.

2.1 Efficient estimation of neighborhood profiles in a sliding
window graph stream model

We study the problem of maintaining the neighborhood profile of each node
of an interaction network. In particular, we are interested in maintaining a
data structure that allows to efficiently answer queries of the type “how many
nodes are within distance r from node v at time t for a window w?”. We call it
r-neighborhood profile of a node and present the first incremental algorithm
for maintaining it for a temporal graph. The central notion of the algorithm
is to maintain a summary of all promising paths of length less than or equal
to r between two nodes u and v. A path between u and v is promising if all
other shorter length paths between 1 and v have smaller horizon. The horizon
of a path between two nodes u and v is the timestamp of the oldest edge
in the path from u to v. For every vertex u at timestamp ¢ the algorithm
maintains » summaries (S}[i]) of horizon of promising paths. The horizon
between two nodes u and v for a length i is very important for our algorithm
as it expresses in which windows u and v are at a distance 7 or less. Windows
that include the horizon will have the nodes at distance i, shorter windows
will not. Hence, if for a node u we know all horizons, for all distances i and
all other nodes v, we can give the complete neighborhood profile for u for
any window length. The summary S}'[i] updates with time by processing all
the new edges.

Example 1
Lets assume r = 3, for the graph at timestamp 5 and 10 given in Figure. 1.1,
the summary Sg[i] and Si,[i], i = 1,...,7 is given as:

2. Thesis Overview

55 510
distance b c d e distance b c d e
1 1 5 1 8 10 6 7
2 1 3 2 7
3 3 1 3

Now at timestamp 5 there are two promising paths from a to d, one of length
2 which is a-b-d with the horizon as 1 and another one of length 3, a-c-e-d
with horizon as 3.

The algorithm updates the summaries by propagating the changes in a
vertex’s i distance summary Sy[i] to all it’s neighbor’s i 4 1 distance summary
S7[i +1]. The propagation stops when i is less than r or when there is no
change in summary to propagate. We also provide an approximate version
of the algorithm where the summaries S{[i] are replaced by a sliding window
based Hyperloglog sketch[45]. For the details of the algorithm, we refer to
chapter 2.

We did an extensive performance evaluation of our algorithm on four dif-
ferent real-world data sets. To replicate the streaming behavior we processed
the interactions in a batch of 1000 interactions at a time and monitored the
time and memory required by the algorithm to keep maintaining the neigh-
borhood profile of every node. We observed that both the time and memory
required to process the new batch first increases linearly before stabilizing
at a constant value for all the new batch of interactions. We also compared
our algorithm to an offline non-streaming based baseline approach that uses
the same hyperloglog technique to estimate neighborhood profile, the Hy-
perANF algorithm of Boldi et al. [19]. To support the sliding window query-
ing, we updated the hyperloglog sketch in the HyperANF algorithm with
the sliding window hyperloglog sketch. Our algorithm processed interaction
at 1200 times faster rate compared to the sliding window based HyperANF
algorithm to support continues real-time neighborhood profile querying.

2.2 User-User interaction in social networks

In chapter 3, we proposed a new time constrained model to consider real
interaction data to identify the influence of every node in an interaction net-
work. The central idea in our approach is to mine frequent information chan-
nels between different nodes and use the presence of an information channel
as an indication of possible influence among the nodes. An information chan-
nel (ic(u,v)) is a sequence of interactions between nodes 1 and v forming a
path in the network which respects the time order. As such, an information
channel represents a potential way information could have flown in the in-
teraction network. An interaction could be bidirectional, for instance, a chat

7

Chapter 1. Thesis Summary

0:05am () 9am —>(¢)

@— 9am »@I
9:05am_)@_ 9:10am @

Fig. 1.2: Information channels between different nodes in the network. Every node is a user in a
social network and the edges represents an interaction between them.

or call between two users where information flows in both directions, or uni-
directional where information flows from one user to another, for example in
an email interaction or a re-tweet.

Figure 1.2 illustrates the notion of an information channel. There are
interactions from usera — band ¢ —» eat9 AM, from b — d and b — c at 9:05
AM and d — f at 9:10 AM. These interactions form an interaction network.
There is an information channel 2 — c via the temporal path a — b — c but
there is no information channel from a 4> ¢ as there is no time respecting path
from a to e. We define the duration (dur(ic(u,v))) of an information channel as
the time difference of the first and last interaction on the information channel.
For example, the duration of the information channel 2 — b — c is 5 minutes.
There could be multiple information channels of different durations between
two nodes in a network. In order to avoid spurious channels, we discard
excessively long channels by imposing a maximal duration of the channel.
Hence, for a given maximal time window duration w we denote the set of all
information channels of duration w or less as IC,,(u, v).

The intuition of the information channel notion is that node u could only
have sent information to node v if there exists a time respecting series of in-
teractions connecting these two nodes. Therefore, nodes that can reach many
other nodes through information channels are more likely to influence other
nodes than nodes that have information channels to only a few nodes. This
notion is captured by the influence reachability set. The Influence reachability set
(IRS) o(u) of a node u in a network G(V, £) is defined as the set of all the
nodes to which u has an information channel.

To find the IRS of all the nodes in a network for a given window w and an
interaction network G(V, &), we developed an efficient one-pass algorithm.
We also developed an approximate but more memory and time efficient
version of our exact algorithm using a time-window based HyperLogLog
sketch [45], called versioned HLL (vHLL), to compactly store the exact IRS of
all the nodes. Finally, we provided a greedy algorithm to find top-k locations
with maximum combined IRS for influence maximization. For the details of

2. Thesis Overview

the algorithm, we refer to Chapter 3.

The algorithm we proposed using VHLL performs very efficiently on large
datasets. It is able to find top 50 influential nodes in just 8.3 minutes using
a commodity hardware for an interaction network with 4 million nodes and
44 million interactions. To study the effectiveness of our algorithm to find
most influential nodes in an interaction network, we compared the influ-
ence spread of the top-k nodes found by our approach with that of static
graph based baseline approaches such as PageRank, Node Degree, Con-
TinEst(CTE) [40] and SKIM [35]. To calculate the influence spread of the
top-k nodes we used a time window constrained extension of the classical
spread prediction model, the IC model [66]. We observe that in all the three
data sets the influence spread by simulation through the seed nodes selected
by our exact algorithm is consistently better than that of other baselines. The
approx version of the algorithm results in a lesser spread but still, it is best
for one data set and is close to other baselines in other two data sets.

2.3 Location-Location interaction in Location based social net-
works

In this study, we slightly adapt the idea of temporal paths and interaction in-
fluence in interaction networks to a location to location influence in location-
based social networks. In such a network, users are not directly interacting
with each other, but instead, they interact with locations. For instance, a user
may check-in to a location. Usually, this data is then used to derive potential
interactions between people. In our work, however, we turn this idea around
and study interactions between locations, and how to leverage this to loca-
tion influence. This study has potential applications in for instance outdoor
marketing where top locations need to be selected from which most other
locations are influenced by the users interacting with the network.

We use location-based social networks (LBSNs) data in this study. LBSN
data consist of a friendship network static graph and a sequence of user
check-ins. Using the check-in data we construct the location-location inter-
action network. For example, consider the check-in data given in Figure 2.3
and the corresponding location-location interaction graph derived from the
check-in data. There is an edge from location T; to T> due to users a and f
visiting both locations. Applying the similar concept of information channel
window w we restrict the interaction between two locations only to check-ins
which happened within the given maximal time window.

We define the influence reachability of a location by its capacity to spread
its visitors to other locations. The intuition behind this definition is to find
locations from which its visitors go to many other locations thus spreading
the message. For example, if a company wants to distribute free t-shirts to
promote some media campaign in a city, it would get maximum exposure by

9

Chapter 1. Thesis Summary

Check-in Check-in Summary
a,Ty,1 loc Users @K _>@D
b, 11,1 t=1 t=2 t=3
¢, Ty,1 Ty bce,f ah f
d, Hz, 1 T2 a, h f,g a

e, Tl/ 1 M1 g i d
f, 1,1 H - b,c,d,e i

g Ml, 1 Hz d,i — —
h, T, 1

i,Hp, 1

a, T1,2

b,Hy,2

Fig. 1.3: Example of converting a user check-in data into a location-location interaction graph.
Nodes in the modeled graph are the locations(T3, T, ...) visited by users(a —). Edges are the
movement of user between locations.

selecting neighborhoods such that the visitors of these neighborhood spread
to maximum other neighborhoods in the city.

The strength of the influence of one location on another location repre-
sented as an edge in the location-location graph is derived using the follow-
ing two different models:

1. Absolute Influence Model (My,): In this model the influence strength of
location T; on T; is given by total number of users visiting from Tj to
T,. For example, in the given Figure 2.3 the influence of T; on T, is 2
where as the influence of T, on T is 3.

2. Relative Influence Model (Mpg): In this example the influence strength
of location T on T, is given by total number of users visiting from T;
to T, divided by total number of visitors to location T;. For example, in
the given Figure 2.3 the influence of T; on T, is 2/6 = 0.33 where as the
influence of T, on Ty is 3/4 = 0.75.

We also provided an extension of the above two models by considering
friends of the visitors. For example, if user ¢ has 10 friends in the social
network we add all of them as potential visitors to redefine the strength of
influence between location M; and T, as 11 instead of 1. This is done to
give more weight to the social circle strength of the visitors to impact the
influence strength of locations they are visiting. To find the location influ-
ence strength of every location for a given time window w we provide an
exact on-line algorithm. We also provide a more memory-efficient but ap-
proximate variant of our algorithm based on HyperLogLog sketch. For the
details of the algorithm, we refer to chapter 4. To address the problem of

10

2. Thesis Overview

?
4 2 4
ve's
y ¢! ’ ¥
A .9 'y‘ v ?
? I J 0!
e \ o
?
*
(a) Naive BrightKite (16 (b) Our BrightKite (72
locations) locations)

Fig. 1.4: Comparison of top- 5 influential locations (green) and their spread (red) between naive
and our approach

influence maximization we also considered a minimum threshold value to
define the potential influence of one location on another. For example, in M4
model if we consider the threshold value is 3 then T is not considered to be
influenced by T; whereas T; is influenced by T, because of their respective
influence strength on each other. However, T; and M; when combined have
am influence on T, as the number of unique visitors from T; and M; com-
bined is equal to 3. Under this combined influence model, we presented a
greedy algorithm to find top-k locations under a given window for a given
threshold value. For details of the algorithm, we refer to chapter 4.

We compared the efficiency of our algorithm on 3 different real-world
LBSN data sets. The approximate version of the algorithm performed up-to
5 times better both in terms of memory and time requirements. In absence
of any baseline to compare to our location influence spread algorithm, we
used a naive approach of selecting the top-k most visited location to compare
with the top-k locations based on our model. Though for two data sets both
the naive and our approach to have similar influence spread for one data set
(BrightKite) our approach has up-to 4 times larger spread. In Figure 1.4, we
present the result for BrightKite data set.

2.4 Cyclic pattern detection in interaction networks

Given a temporal network, the goal of our work is to efficiently find all the
simple temporal cycles in a given time window w. A temporal cycle is a tempo-
ral path from a node u to itself. The cycle is called simple if each node in the
cyclic path occurs exactly once. The cycle is valid for a given time window
w if the difference between the last and first interaction is less than or equal
to w. For example, consider the interaction network given in Figure 1.5. This

11

Chapter 1. Thesis Summary

interaction network contains 3 simple cycles, all with root node a. The cycles
are:

1 5 6
l.a>b>c—>a

1 5 6 8
2.a>b>c—>d->a

1 5 7 10 12
B.as>b>c>e>fSa

For a time window w = 7 only the
first two cycles are valid simple tempo-

ral cycles. / 5810
We first evaluate a naive incremental 6

algorithm to enumerate all cycles in a Y
given temporal network. The key idea \

behind the algorithm is to maintain a
list(L) of all valid temporal paths for a

given window length w. A temporal

t t—1 t
path p = 01 = ... = o = u Fig. 1.5: Example temporal network
is considered valid at time-stamp ¢ if

t—t) < w. If the path is not valid, it

is removed from the list as it can never be extended in future to form a valid
simple cycle. For each new interaction (u,v,t), all valid paths that end in u
and start with v is reported as a cycle. Furthermore, all valid simple paths
that end in u and do not start from v and do not contain v are extended to cre-
ate a new temporal path. Though this approach works incrementally for new
interactions, it does not scale for large networks as it requires to maintain a
lot of temporal paths in memory for constant look-up and extension.

Hence, to handle large interaction networks, we proposed a new 2-phase
algorithm called 25CENT, as the name suggests, it works in two phases. The
first phase is an efficient way to determine the root nodes of a cycle and the
list of candidate nodes which are part of the cyclic path. The source detection
algorithm though efficient has high memory requirement for some specific
interaction networks where the density of the interactions in a window is very
high and only a few nodes are root nodes. For such cases, we also present an
approximate version of the algorithm using bloom filters. We compare and
evaluate the performance of both approaches on 6 different data sets and
discuss the advantages and disadvantages of one approach over the other.

In the second phase, we run a Constrained temporal Depth-First Search to
find cycles for the given root node in a subset graph consisting of candidate
nodes identified in the first phase. Our Constrained temporal Depth-First
Search is inspired by the seminal algorithm of Johnson [62].

We also present an extension of our algorithm using a concept of path bun-
dles which provides a speedup of up to 5 times on interaction networks where

\\

12

2. Thesis Overview

there are multiple instances of the same cycle with different time interactions.
Consider for instance the following example:

4

A %\Wf
D)z

13

In this example, there are 3° = 729 cycles and each of them will be gen-
erated separately. Using the concept of path bundles we can represent the
same graph as follows:

45,6
b —>C

123 %,9

a d

16,17;8\ /0,11,12

-
f 13,14,15 ¢

Now only one cycle bundle will be generated and the count of all the
cycles in the bundle is calculated without enumerating the cycles. We refer
to chapter 5 for details of the algorithms.

We did extensive analysis of the time and memory requirements of our
algorithms on real data sets. For small networks with less frequent inter-
actions, the naive incremental algorithm outperforms 25CENT with a small
margin. However, for a larger interaction network, 25CENT outperforms the
naive algorithm by a factor of up to 300. As expected using the path bundle
approach is never slower than using the simple path approach. On the other
hand, in interaction networks when there are multiple repeated edges, we
get up to 12 times speedup due to path bundles.

We also did an analysis of the distribution of the cyclic patterns on differ-
ent data sets and found that the cycles of shorter length (up to length 7-11)
appear in communication networks such as the Facebook [114] network and
the sMs [120] network whereas cycles of much higher length (up to length 22)
appear in Twitter data set Higgs [75]. The frequency of the cycles are also
different in Facebook and SMS compare to Higgs. This indicates that though

13

Chapter 1. Thesis Summary

these networks are used for communication the nature in which information
flows in these networks is very different. We assume that these differences in
the pattern are due to the fact that both Facebook and SMS data set represents
an interaction between friends on personal topics whereas twitter network
has interaction between people who are not necessarily friends but talk about
asimilar topic.

2.5 Distributed graph processing for temporal graphs

In Chapter 6, we handle the problem of the absence of a good approach to
choose partitioning strategy for distributed graph processing. To this end,
we proposed a cost model for Pregel [84] in Apache GraphX [122]. Pregel
is a popular programming paradigm to implement graph algorithms for dis-
tributed processing. The cost model shows the relationship between four
major parameters: 1) input graph 2) DGC cluster configuration 3) algorithm
properties and 4) partitioning strategy affecting the total execution time of an
algorithm implemented using Pregel function in GraphX.

In Pregel, graph algorithms are expressed as iterative vertex-centric[87]
computations called super-steps. As the computation is vertex-centric it
could be easily and transparently distributed. To implement an algorithm
in Pregel a user has to provide the following components:

* Initialization: one initial message per vertex;

* a function to combine all incoming messages for a vertex. In case of
GraphX it is refereed to as MERGEMSsG function;

* a function called UPDATEVERTEX to update the internal state of the ver-
tex;

¢ and a function called SENDMSsG to send the vertex current state to its
neighbors.

The implementation of Pregel model in GraphXis described in Figure 1.6. For
a detailed explanation of the computation model and its implementation in
GraphX, we refer to Chapter 6. Based on our understanding of the system we
represented the cost of the computation in Pregel as the sum of the cost of the
initialization phase and the sum of the cost of all super-steps. Initialization
cost is independent of how the graph is partitioned in GraphX, hence we just
give details of the cost associated with the super-steps. The cost of the super-
steps is given as the sum of the cost of the apply-phase, gather-phase, and
reduce-phase. All of these three phases run in parallel for every partition,
hence the cost of one phase is given as the maximum runtime of that phase
on a partition. The cost of all the three phases are given as:

14

3. Thesis Structure

Super-Steps

1. Initialization 2. Apply Phase 3.Gather Phase
féleifl\f:ﬂ[:: 3.2 Run Send msg 3.3 Run Merge
1.BroadCast 2.1 Run Vertex values for Program for updated Msg program on 3.4 Write
Initial msg to all Program on vertices and Generate| 0 combine mesasges
vertices

every mirror inatl
active vertex of Uipdated Msg for destination Msgs b‘évsr[ex locally.

vertex.

4. Reduce Phase

4.1, Fetch Msgs to Vertex
if max number of Partition and reduce
uper-step not reached. message for the same

Fig. 1.6: Pregel computation model in GraphX.

¢ cost of Apply Phase = cost of running UPDATEVERTEX on vertices + By
x Data written on disk + aq

* cost of Gather Phase = B, x read data from previous step + cost of
running SENDMSsG function on edges + cost of merging all messages
locally + By Data written on disk + ap

¢ cost of Reduce Phase = ¢ x collating all messages + cost to merge all
messages for one vertex + a3

The parameters By, Br, v, ®1, &2, a3 are system configuration parameters
and hence need to be determined for a specific cluster configuration. Other
parameters such as the cost of running UPDATEVERTEX on vertices or Data
written on disk could be easily obtained from the spark monitoring APIs
during the execution of the computation. For details of these parameters and
a more detailed discussion of the cost model, we refer to Chapter 6. In order
to validate the cost model, we first estimated the system configuration param-
eters a1, ap, &3, Br, fw and 7 for a given graph data, partitioning strategy and
graph algorithm. Then we used different 17 combinations of the graph, par-
titioning strategy and algorithm to estimate the execution cost on the same
system configuration by using the estimated values of ay, &y, a3, B+, B and
7. In all the combinations we got more than 90% accuracy in estimating the
execution cost which proved the accuracy of our cost model.

3 Thesis Structure

This thesis is organized as a collection of individual research papers. Each
chapter is self-contained and can be read in isolation. There can be some over-
laps of concepts, examples, and texts in the introduction and preliminaries
sections of different chapters as they are formulated in relatively similar kind

15

Chapter 1. Thesis Summary

of settings. Interaction Network, Temporal Network and Temporal graph has
been used interchangeable in different chapters to define the same concept.
The papers included as chapters in this thesis are listed below:

[1] Chapter 2: Maintaining sliding-window neighborhood profiles in in-
teraction networks. Rohit Kumar, Toon Calders, Aristides Gionis, and
Nikolaj Tatti. Joint European Conference on Machine Learning and
Knowledge Discovery in Databases (ECML/PKDD), 2015, Porto, Por-
tugal.

[2] Chapter 3: Information Propagation in Interaction Networks. Rohit
Kumar and Toon Calders. 20th International Conference on Extending
Database Technology EDBT , March 21-24, 2017, Venice, Italy.

[3] Chapter 4: Location Influence in Location-based Social Networks. Muham-
mad Aamir Saleem, Rohit Kumar, Toon Calders, Xike Xie and Torben
Bach Pedersen. Tenth ACM International WSDM Conference, 2017,
Cambridge, UK.

[4] Chapter 5: 2SCENT: An Efficient Algorithm for Enumerating All Simple
Temporal Cycles. Rohit Kumar and Toon Calders. Under revision for
VLDB vol 11.

[5] Chapter 6: Cost Model for Pregel on GraphX. Rohit Kumar, Alberto
Abello, and Toon Calders. 21st European Conference on Advances in
Databases and Information Systems ADBIS , September 24-27 , 2017,
Nicosia, Cyprus.

4 Summary of Contributions

The thesis focuses on efficient and new approaches to analyze interaction net-
work data in different settings to understand the dynamics of the underlying
network. Below we list all the technical contributions stemming from this
thesis:

1. We provide an exact and an approximate online algorithm to efficiently
maintain and update neighborhood profile summaries of all the nodes
in an interaction network. The neighborhood profile summaries can
be used to query for the neighborhood of a node for any time win-
dow. The algorithm is also naturally parallelizable and we show ex-
perimental validation of the improvement in performance for a paral-
lel implementation of the algorithm. The code is available at https:
//github.com/rohit13k/NeighborhoodProfile.

16

https://github.com/rohit13k/NeighborhoodProfile
https://github.com/rohit13k/NeighborhoodProfile

4. Summary of Contributions

2. We presented an exact and an approximate one-pass algorithm to find
top-k influential nodes in a given network by analyzing the interaction
network data of the network. The algorithm is based on the informa-
tion channel approach. We also developed a new model called Time
Constrained Information Cascade Model to simulate influence spread
for interaction networks which is derived from the Independent Cas-
cade Model for static networks. The code for both the algorithms and
the simulation model is available at https://github.com/rohit13k/
InfluencePropagationC.

3. We developed a new model to capture influence among locations using
location based social network data. We provide multiple variation of
this model and present algorithms to find top-k influential locations
for each model. The code for all the different versions of the model is
available at https://github.com/rohit13k/LBSNAnalysisC.

4. We proposed a new approach to characterize temporal networks and
understand the communication patterns of the underlying static net-
work. In this approach, we study the frequency distribution of sim-
ple temporal cycles formed by the interactions in the temporal net-
work. We developed a naive algorithm and an efficient two phase
algorithm called 2SCENT to enumerate all simple cycles in a tempo-
ral network. The first phase algorithm in 25CENT, called GenerateSeed,
can be used independently to detect presence of cycles in a tempo-
ral network as well as to enumerate all root nodes and start and end
time of temporal cycles. The second phase of the algorithm, called Con-
strained Depth-first Search (cDFS), can be used independently to enumer-
ate all temporal paths between two nodes in a temporal network. For
GenerateSeed we also presented an extension using Bloom filters which
makes it more efficient for high frequency interaction networks. The
code for the naive algorithm and the 2SCENT algorithms are available
at https://github.com/rohit13k/CycleDetection.

5. Finally, to support processing of large scale networks on a distributed
graph processing system, we proposed a new cost model for Spark
GraphX. The cost model could be used to estimate the run time of an
distributed algorithm using GraphX Pregel API. We validated our cost
model on multiple algorithms and datasets and derived new insights
on how different factors impact the overall execution of the algorithm.

17

https://github.com/rohit13k/InfluencePropagationC
https://github.com/rohit13k/InfluencePropagationC
https://github.com/rohit13k/LBSNAnalysisC
https://github.com/rohit13k/CycleDetection

18

Chapter 1. Thesis Summary

Chapter 2

Maintaining sliding-window
neighborhood profiles in
interaction networks

The paper has been published in the Joint European Conference on Machine
Learning and Knowledge Discovery in Databases(ECML/PKDD), 2015. The
layout of the paper has been revised.

DOI: https://doi.org/10.1007/978-3-319-23525-7_44

Abstract

Large networks are being generated by applications that keep track of relationships
between different data entities. Examples include online social networks recording
interactions between individuals, sensor networks logging information exchanges be-
tween sensors, and more. There is a large body of literature on computing exact
or approximate properties on large networks, although most methods assume static
networks. On the other hand, in most modern real-world applications, networks are
highly dynamic and continuous interactions along existing connections are gener-
ated. Furthermore, it is desirable to consider that old edges become less important,
and their contribution to the current view of the network diminishes over time.

We study the problem of maintaining the neighborhood profile of each node in
an interaction network. Maintaining such a profile has applications in modeling
network evolution and monitoring the importance of the nodes of the network over
time. We present an online streaming algorithm to maintain neighborhood profiles
in the sliding-window model. The algorithm is highly scalable as it permits parallel
processing and the computation is node centric, hence it scales easily to very large

19

Chapter 2. Maintaining sliding-window neighborhood profiles in interaction
networks

networks on a distributed system, like Apache Giraph. We present results from both
serial and parallel implementations of the algorithm for different social networks. The
summary of the graph is maintained such that query of any window length can be
performed.

1 Introduction

Modern big-data systems are confronted with scenarios in which data are
gathered in exceedingly large volumes. In many cases, the system entities
are modeled as graphs, and the recorded data represent fine-grained activity
among the graph entities. Traditionally, graph mining has focused on study-
ing static graphs. However, as the emergence of new technologies makes it
possible to gather detailed information about the behavior of the graph en-
tities over time, a growing body of literature is devoted to the analysis of
dynamic graphs.

In this chapter we focus on a dynamic-graph model suitable for record-
ing interactions between the graph entities over time. We refer to this model
as interaction networks [102], while it is also known in the literature as tem-
poral networks [58] or temporal graphs [88]. An interaction network is defined
as a sequence of time-stamped interactions £ over edges of a static graph
G = (V,E). In this way, many interactions may occur between two nodes at
different time points. Interaction networks can be used to model the follow-
ing modern application scenarios:

1. the set of nodes V represents the users of a social network or a com-
munication network, and each interaction over an edge represents an
interaction between two users, e.g., emailing, making a call, re-tweeting,
etc,;

2. the set of nodes V represents autonomous agents, and each edge rep-
resents an interaction between two agents, e.g., exchanging data, being
in the physical proximity of each other, etc.

We study the problem of maintaining the neighborhood profile of each node
of a interaction network. In particular, we are interested in maintaining a
data structure that allows to answer efficiently queries of the type “how many
nodes are within distance r from node v at time t?” Graph neighborhood pro-
files have been studied extensively for static graphs [19, 91]. They provide a
fundamental primitive for mining large graphs, either for characterizing the
global graph structure, or for discovering important and central nodes in the
graph. In this work, we extend the concept of neighborhood profiles for in-
teraction networks, and we develop algorithms for computing neighborhood
profiles efficiently in large and rapidly-evolving interaction networks. Our
methods can be used for network monitoring, and allow detecting changes

20

2. Preliminaries

in the graph structure, as well as keeping track of the evolution of node cen-
trality and importance.

To make our methods scalable to large and fast-evolving networks, we de-
sign our algorithms under the data-stream model [46, 90]. This model requires
to process the interactions in an online fashion, and perform fast memory
updates for each interaction processed. To make our model adaptable to
changes and allow concept drifts we focus on the sliding-window model [38],
a data-stream model that incorporates a forgetting mechanism, by consider-
ing, at any time point, only the most recent items up to that point. One
uncommon benefit of our algorithm is that because of the data structure we
incrementally maintain, the user can decide about the exact window length
at query time.

Concretely, in this chapter we make the following contributions: (i) we
introduce a new problem of efficiently querying neighborhood profiles on
interaction networks in Section 3; (i) we develop and analyze an exact but
memory-inefficient (Section 4) and an inexact but more efficient streaming
algorithm for the sliding-window model (Section 5); (iii) we provide experi-
mental validation of the algorithms in Section 7.

2 Preliminaries

We consider a static underlying graph G = (V, E). An interaction over G is a
time-stamped edge ({v, w}, t) indicating an interaction between nodes v and
w. An interaction network over G is now defined as a pair (G, £), where G is
a static graph and £ is a set of interactions. We should point out that we do
not need to know E beforehand.

If the set of interactions £ = {({u, v}, t)} is ordered by time, it can be seen
as a stream of edges, and written as £ = {(e1,t1), (e, t2),.. .y, with t; <t < ...
Note that two fixed nodes may interact multiple times in &.

In our model we are only interested in recent events, and hence queries
over our interaction network will always include a window length w — recall
that the summary will be maintained in such a way that all window lengths
are possible, i.e., every query can use a different window length. The snapshot
graph at time t for window w, denoted G(t, w), is the triplet (V, E(t, w), recent)
in which E(t,w) = {e | (e,t/) € Ewitht—w < ' < t}, and recent is a
function mapping an edge e € E(t,w) to the most recent time stamp that an
interaction between the endpoints of e occurred, that is, recent(e) = max{t’ |
(e,t')e Esuchthatt —w < t' < t}.

Furthermore, for the graph G we have the usual definitions; a path of
length k between two nodes u, v € V is a sequence of nodes u = wy, ..., wy =
v such that {w; 1, w;} € E, foralli = 1,...,k, and all w; are different. The
distance between u and v in the graph G is defined as the length of the shortest

21

Chapter 2. Maintaining sliding-window neighborhood profiles in interaction
networks

5,10a—f— b , a——1b) a b) a b
/X\ Gs \ A A Gs
c d c d ¢ d ¢ d
N N N N

Fig. 2.1: A toy interaction network, and three snapshot graphs with a window size of 3.

path between u and v, if such a path exists, otherwise it is infinity. The
distance between nodes u and v in the graph G is denoted by dg(v, w), or
simply d(v, w), if G is known from the context.

3 Problem statement

The central notion we are computing in this chapter is the neighborhood profile:

Definition 1

Let G = (V,E) be a graph and let u € V be a node. The r-neighborhood
of u in G, denoted Ng(u,r), is is the set of all nodes that are at distance
r from node u, i.e., Ng(u,r) = {v | dg(u,v) = r}. We write ng(u,r) =
ING(u,r)| to denote the cardinality of the r-neighborhood. We will call the
sequence pg(u,r) = {ng(u,1),n6(u,2),...,ng(u,r)) the r-neighborhood profile
of the node u in graph G.

In this chapter we study the problem of maintaining the neighborhood
profile pg(;) (1,), for all nodes u € V, as new interactions arrive in £. Our
solution allows w to vary; hence, at a time point {, we should be able to query
for the neighborhood profile pg;) (4, 7) for any w. If there is an upper bound
given for w, say Wy, then we can use this information to improve memory
consumption. However, this is optional, and we can set Wy, = 0. On the
other hand, r is given and fixed. Obviously, by computing pg;) (1) we
also compute pg ;) (u,1') for ' <r.

Let H = G(t,w). To simplify the notation we will denote Ny (u, 1), ng(u,r),
pu (1, 1) by Niw(u, 1), new(u, r), prw(u, r), respectively. Moreover, if w = Wy,
then we will use N;(u,), ni(u,r), pi(u,r), respectively. We will also write
G(t) = G(t, Wmax) and E(t) = E(t, Wiax)-

Example 2

Consider the illustration given in Figure 2.1 of an edge stream over the set of
nodes V = {a,b,c,d, e}. The numbers on the edges denote the time of interac-
tions over the edges. Let the window length be 3. The snapshot graphs G(t)

22

4. Maintaining the exact neighborhood profile

at times t = 3,4,5 are also depicted in Figure 2.1. The 3-neighborhood pro-
files of node ¢ in these graphs are respectively (1,0,0), (1,1,1), and (2,1,0).

To accomplish our goal we maintain a summary S; of the snapshot graph
G(t, Wayx), from which we can efficiently compute the neighborhood profiles
prw(u, 1), for every node u in the graph G. More concretely, we require that
the summary S; has the following properties:

1. The summary S; of G(t, Wy,y) should require limited storage space.

2. The size of the r-neighborhood n; (1, 7) should be easy to compute
from S;. The time to compute n¢ (1,) from S; will be called query
time.

3. There should be an efficient update procedure to compute Sy, from Sy, ,
and the edge e;, on which the interaction at time-stamp ¢; is taking
place.

4 Maintaining the exact neighborhood profile

We first introduce an exact, yet memory-inefficient solution. This exact solu-
tion will form the basis of a memory-efficient and faster approximate solution
based on the well-known hyperloglog sketches.

4.1 Summary for neighborhood functions

An essential notion in our solution is the horizon of a path, which expresses
the latest time that needs to be included in the sliding window in order for
the path to exist; i.e., if the sliding window starts after the horizon the path
will not exist in it anymore.

Definition 2

Let G(t) = (V, E, recent) be a snapshot graph and p = (vy, ..., v) a path in it.
The edge horizon of p in G(t), denoted by h(p), is the time stamp of the oldest
edge on that path: h;(p) = min {recent((v;_1,v;)) |i=1,...,k}.

We will next define the horizon between two nodes u and v. Let Py (u,v)
be all the paths from u to v in a graph H. If H = G(t), then we will write
Pi(u,v).

Definition 3

The horizon for length i between two different nodes u and v is the maximum
horizon of any path of at most length i between them; that is, 1 (u,v,i) =
max {hi(p) | p € Pe(u,0),|p| +1 <i}. We set hy(u,v,i) = —oo if no such path
exists. For any node u, h(u, u, i) is defined to be .

23

Chapter 2. Maintaining sliding-window neighborhood profiles in interaction

networks
%, 3B, L, B,D0 —,7,7,7,7
0,—%C, 3, 3, 90,0, 1,7, 7
a b a—>b
2 2
i\ A4\ Y\ 4N

—%,3,3,3,3 c” \1 d(=%22,33 —1,3,4,4,4 c” \1 d[=%2234

5 6 5 6
e e
—0,—%,3,3,3 —0, —00,3,4,4

Fig. 2.2: Two toy snapshot graphs along with h(u, b,i) fori =0,...,4.

Example 3

Consider the leftmost graph given in Figure 2.2, along with, for every node
u € {a,b,c,d,e}, the list of horizons h(u,b,0),...,h(u,b,4). In this graph
h(d,b,1) = h(d, b,2) = 2, as there is an edge with a time stamp of 2. However,
h(d,b,3) = 3 as there is a path {d, e, ¢, b) with a horizon of 3.

The horizon between two nodes u and v for a length 7 is very important
for our algorithm as it expresses in which windows u and v are at a distance
i or less. Windows that include the horizon will have the nodes at distance
i, shorter windows will not. Hence, if for a node u we know all horizons
h¢(u,v,1), for all distances i and all other nodes v, we can give the complete
neighborhood profile for u for any window length. Hence, the summary
S¢ of the snapshot graph G(t) will be the combination, for all nodes u and
distances i = 0,...,r, of the summaries S} for N;(u,7). In other words, for
every node u, we will be maintaining the summary S} = (S¢[0],...,S{[r]),
where S[i] = {(v, ht(u,v,1)) | hi(u,v,i) > —o0}.

Example 4
For the snapshot graph given in Fig. 2.2, the summary S; consists of S*[i],
i=0,...,r. Assuming r = 3, the summaries for a and b are as follows:

S a
distance a b c d e
0 0
1 0 3 4 1
2 0 3 4 1 4
3 0 3 4 4
Sb
distance a b c d e
0 o0
1 o0 3 2
2 3 0 3 2 3
3 3 0 3 3 3

4. Maintaining the exact neighborhood profile

Algorithm 1 AppEpGe({a, b}, t), updates a summary upon addition of {a, b}
at time ¢
1: fori=0,...,r—1A(x,t') € Si] do
g(b,x,i+1) « min(#,t)
end for
fori=0,...,r—1 A (x,t') € S[i] do
g(a,x,i+1) « min(#,t)
end for
PROPAGATE({(0) oev)

4.2 Updating summaries

We describe how to update the summary S; as new edges arrive in the stream
€ or old edges expire. The latter event happens for edges whose time-stamp
becomes smaller than f — wy;5y. Removing an edge is easy enough; we need to
remove all pairs (x,t') from summaries S"[i], forall u,xe V,i=1,...,r, and
t' < t — Wyax. This operation could also be postponed and executed in batch.
Updating the summary S; to reflect the addition of a new-coming edge ¢;,
however, is much more challenging. Let us first look at an example.

Example 5

Consider the horizons of the two graphs given in Figure 2.2. Notice that
adding an edge {a,b} changed h(d,b,4) from 3 to 4 because we introduced
a path {d,e,c,a,b). However, the key observation is that we also changed
h(e, b,3) to 4 due to the path {e,c,a,b), h(c,b,2) to 4 due to the path {c,a,b),
and h(a,b,1) to 6 due to the path {a, b).

As can be seen in the example, the addition of an edge may result in a
considerable number of non-trivial changes. However, the example also hints
that we can propagate the summary updates.

Assume that we are adding an edge {a, b}, and this results in change of
h(u,v,i). This change is only possible if thereisa path p = (u = vy, ..., v = V)
through {a,b}. Moreover, we will also change h(u,vx_1,i —1). By continu-
ing in this logic, it is easy to see that all the updates can be processed via
a breadth-first search from node b. Furthermore, whenever we can conclude
that h(u, v,7) does not need to be updated, we can stop exploring this branch
since we know that no extensions of this path will result in updates. The
pseudo-code for this procedure is given in Algorithms 1-3.

In the algorithm we update the summaries, distance by distance, and
we set new (earlier) horizons that have possibly appeared due to the newly
added edge. To maintain the updates we use a function g; g(u,x,i) = h
indicates that there is a new path between u and x of length i and horizon
h. As not every new path of length i will lead to an improved horizon,

25

Chapter 2. Maintaining sliding-window neighborhood profiles in interaction
networks

Algorithm 2 PROPAGATE({g(v) }»ev), Processes all propagations that are in the
general register g.

1: fori=1,...,rdo

2 for v, x € V such that g(v, x, i) is set do

3 if MERGE(x, v,8(v, x,1),1) then

4 for (v, u) € Ef\ {a,b} do

5: horizon < min(g(u, x, i), recent(v, u))

6 if g(u,x,i+1) notset | | horizon > g(u,x,i + 1) then
7 g(u, x,i+ 1) « horizon

8

9

end if
: end for
10: end if
11: end for
12: end for

Algorithm 3 MERGE(x, v, £,1), adds x to a summary of v with a distance of i
and edge horizon ¢. If false is returned, then the branch can be pruned.

if (x,t') € S?[i] for some t' > t then return False
end if
remove all (x,t') from SY[i] for which t' <t
add x, f to S[i]

return True

we do not propagate this information immediately to the summary of the
neighboring nodes, but rather wait until we have processed all paths of length
i — 1. For those new paths that improve the summary of a node u, we will
then propagate this information further on in the graph. For every distance i,
when we process an update to a summary we will record potential updates
to horizons of length i + 1 as follows: if g(u, x, i) leads to a better horizon of
length i between 1 and x; that is, either there is not yet an entry (x, /1) in S*[i],
or h < g(u,x,i), then we will propagate this information to its neighbors u.
Let t = min(recent(u,v),g(v, x,1)), then we will propagate g(u, x,i+1) = t, if
t > g(u,x,i+1), that is, we were able to improve our potential update.

Example 6

We will continue our running example given in Figure 2.2. Let us demon-
strate how the horizons of h(u,b,i),u € {a,b,c,d, e} are updated once we
introduce the edge {a,b}. In Figure 2.3 we illustrate how the propagation
is done. At the beginning of each round we compare the current summary
S"[i] against the new candidate horizon g(u,b,i). If the latter is larger, then
we update the summary as well as propagate new candidate horizons to the
neighboring nodes. In the subsequent figures it is indicated what are the

26

4. Maintaining the exact neighborhood profile

changes with respect to the distances to node b. In the first step, due to the
addition of edge {a,b} at time 7, for distance 1 the update g(a,b,1) = 7 is
propagated. When processing this update indeed it is seen that the summary
S7[1] is updated. Therefore, this update is further propagated to the neigh-
bors, leading to the following updates: {g(c,b,2) = 4,g(e,b,2) = 1}. As only
the first update changes the summary S¢[2], only this update will be further
propagated. Furthermore, for a there is the update g(a,b,2) = 7 that needs
to be processed. Propagation leads to the following new updates (first three
for g(c, b,2), last two for g(a,b,2)): {g(a,b,3) = 4,4(b,b,3) = 3,4(e,b,3) =
4,9(c,b,3) = 4,g(e,b,3) = 1}. The last update g(e,b,3) = 1 will never be
considered as it is dominated by the update g(d,b,3) = 4. These updates
are then processed and those implying changes in the summary are again
propagated.

Proposition 1
ADDEDGE updates the summary correctly.

Proof. Assume that we are adding {a,b} at time t, and let H be the snap-
shot graph before adding this edge. Fix x. Let us define a,(i) = hy(x,v,1).
Similarly, define Bo(i) = h(;41)(x,v,7). To prove the proposition we need to
show that (1) B,(i) = max(g(v, x,7),a,(7)) and (2) if g(v, x, i) is not set, then
o (i) = Boli).

Let us first prove that whenever set, we maintain the invariant,

8(0,%,i) < max{h(p) | p € Qo |p| —1 < i} < boli), @1)

where Q, contains all paths from x to v in G(f + 1) containing (a, b) or (b, a).
Note that the second inequality follows immediately from the definition of
B. We prove the first by induction over i. The case i = 1 is trivial. If 7 > 1,
then if g(v, x,7) is set, then either it is set by ADDEDGE or there is w such that
g(w,x,i—1) is set. In the first case and, due to induction assumption, in the

7 - ZEN
2
\ 4 3 3
(73 c dL/2 @3 c d--c d--c d-
\5\ p A }\ 5
[1/3
Fig. 2.3: Propagation of updates for the vertex b when adding (a,b) for the rounds i =1,...,4.
The format of boxes is y/z, where y is the time of b in S?[i] and z = g(v, b, i) at the beginning of

ith round. The edges used for propagation during ith round are marked in red. We do not
show propagation during the last round as it is not needed.

27

Chapter 2. Maintaining sliding-window neighborhood profiles in interaction
networks

second case, it follows that (v, x, i) is a horizon of some path in Q, of length
at most i.

We prove the main claim also by induction over i. Assume i = 1. The
initialization of g(v, x,1) in ADDEDGE now guarantees (1) and (2).

Assume i > 1. Assume that B, (i) > a,(i). This can only happen if there
is a path p = (vy,..., vy € Qp with h(p) = B(i). Let p' = {vo,...,v6_1)
and let w = vx_;. We must have a,(i —1) < By(i — 1), as otherwise we
have B,(i) = a,(i). By induction, (1) immediately implies that B,(i — 1) =
g(w,x,i—1) > ay(i —1). This means that MERGE(x, w, g(w, x,i —1),i — 1) is
called, and it returns true. Consequently, (v, x,7) = h(p) = Bo(i), Eq. 2.1
implies that g(v, x,i) = By (i). This immediately proves (1) and (2).

Proposition 2

Let n = |V|, m = |E|, and r be the upper bound on the distances we are
maintaining. The time complexity of ADDEDGE is O(rmnlog(n)). The space
complexity is O(rn?).

Proof. The complexity of Algorithm 3 is log(n), since we need to search a
summary and update SY[7] for node x.

Every g(u, x,i+ 1) will be initiated only if g(v, x,i) was set for one of its
neighbors v. As such, this may happen at most as many times as u has
neighbors in the graph. Since the cummulative sum of all neighbors is 2m
we can hence bound the number of times a g(u, x,i + 1) is set for x to 2m.
Since there are n nodes, lines 5,6,7 are executed at most 2nm times per length
i, and as a consequence this is also an upper bound on the number of calls to
Algorithm 3. Putting it all together, we get a complexity of O(2nmr(log(n)))
for Algorithm 2. Since Algorithm 1 does only call Algorithm 2 once, this
proves the complexity bound for time.

The complexity bound on space easily follows from the observation that
for every node v, and every distance i = 0,...,r, the summary S°[i] contains
at most one entry for any other node.

5 Approximating neighborhood function

The algorithm presented in the previous section computes the neighborhood
profiles exactly, albeit, it has high space complexity and update time. In this
section we describe an approximate algorithm, which is much more efficient
in terms of memory requirement and update time.

The approximate algorithm is based on an adaptation of the hyperloglog
sketch [45] to the sliding-window context, similar to the adaptation by Chab-
choub and Hébrail [25]. The resulting sliding hyperloglog sketch has the
following properties: (i) it provides a compact summary of a stream of items,

28

5. Approximating neighborhood function

and (ii) it allows to answer the following question: “How many different items
have appeared in the stream since a given time point t?” Subsequently, this sketch
can replace the neighbor sets that need to be maintained by the exact algo-
rithm.

5.1 Hyperloglog and sliding-window hyperloglog sketches

The hyperloglog sketch [45] consists of an array of numbers, whose size is
2k, and a hash function 7 that assigns each item of the stream in a uniformly-
random number in the range [0,2" —1]. The value of n should be suffi-
ciently large in the sense that 2"~ should significantly exceed M, the num-
ber of distinct items in the stream. We will use the standard assumption that
n € O(log M). Initially all cells of the hyperloglog sketch are set to 0. The up-
date procedure for the hyperloglog sketch is as follows: if an item x arrives
in the stream, the first k bits of the binary representation of #(x) are used
to determine which entry of the sketch array will be updated. We denote
this index by i(x). From the remaining n — k bits #’(x), the quantity p(x) is
computed as the number of trailing bits in the binary representation of 7’(x)
that are equal to 0, plus 1. If the current value at the entry i(x) of the sketch
is smaller than p(x), we update the value of that entry. Clearly, the more
different items in the stream, the more likely it is to observe large tails of 0’s
and the higher the numbers in the hyperloglog sketch will become.

In order to make the hyperloglog sketch working in the sliding-window
setting, we need to store multiple values per entry. Initially the sliding-HLL
sketch will start with an empty set for each entry. The process a new item x
arriving in the stream at time t, we first need to retrieve the set of time-value
pairs associated with the index i(x). We then need to add the pair (¢, p(x))
to that set and remove all entries (#,) for which B < p(x) (as t is the most
recent time-stamp, it is also t' < t). We denote the sliding-HLL sketch after
processing the stream of events S = {07, ...,0,) by sHLL(S). More formally:

Definition 4
Let S = {(t1,B1),.-.,(tn, Bn)} be a set of time-value pairs. Define the subset
of time-decreasing values of S as

dec(S) = {(t;, Bi) | Bi > ,3] for all (tj, :B]) € Swith t; < t]}

A sliding hyperloglog sketch sHLL of dimension k is an array of length 2* in
which every entry contains a set of time-value pairs. For a stream S, sHLL(S)
is recursively defined as follows:

o If S = O, then sHLL(S)[i] = {}, for all indices i = 1...2k

o Otherwise, if S = (&', (x,t)) then sHLL(S)[i] = dec(sHLL(S")[i] u {(t,p(x)})
for i = 1(x); while sHLL(S)[i] = sHLL(S')[i] for all other i = 1...2k,

29

Chapter 2. Maintaining sliding-window neighborhood profiles in interaction
networks

Example 7
Suppose that the hash #, 1, and p are as follows (recall that 77 determines the
other two quantities):

item ‘ a b c d e
n 10001 10111 01011 01010 00110
! 1 3 3 2 2
0 3 1 2 2 1

For the stream of items 4, b, a, c, d, e, the resulting sliding HLL sketches are
respectively the following:

L 0 1 2 3 a L0 1 2 3
o [OLOLO[0] IR CEIEE
b L 0 1 2 3 a L 0 1 2 3
o e[0[aa0en T p[O[GIH[RD)
e, L0 1 2 3 i} L 0 1 2 3
e [B[GI[[%2 e [D[GI[52?2
e, L0 1 2 3

p[31B,3),(6, D] 5.2)] (4,2)]

When b arrives, cell 3 gets value 1, which is updated later on when c arrives,
since ¢ has the same index, but a higher value. For d and e the situation is
opposite; first d arrives giving a value of 2 in cell 2. Later on, when e arrives
this value is not updated even though e has the same index because its value
is lower.

The next proposition shows that with the sliding HLL sketch we can in-
deed obtain an approximate answer regarding the number of different items
since time s, for any s specified at query time. We omit the proof as it follows
immediately from the definition.

Proposition 3

Let S = {01,...,04) be a stream of events in which event ¢; arrives at time ¢.
Then for every index 1 < s < n, it holds that for every entry i =1, .. .,2k, it is
HLL(os,...,00)[i] = max{r | (¢,r) € sHLL(S)[{] and t > s}, where max({}) =
0.

5.2 Computation of neighborhood profiles based on sliding
HLL

We are now ready to describe our technique for computing the approximate
neighborhood profiles. Recall that we are working over a streaming graph
with nodes from a set V and a stream of edges £ = {(ey, 1), (e2,t2),...}. We
have used E; to denote the set of edges arrived until time ¢, i.e., E; = {(e, ') €

30

5. Approximating neighborhood function

& | ¥ < t}. The approximate sketch is very similar to the exact sketch, with
the exception that all sets of (node,time)-pairs are replaced by the much more
compact sliding HLL sketch. Furthermore, in order to be able to propagate
the updates to its neighbors, for every node we should know its neighbors.
Hence, at time ¢, the summary consists, for every node u, of the following
components:

N} = {(v, recent(u,v)) | (u,v) € E;} and C} ={(C{[1],C}[2],...,C],

where C¥[i] = sHLL({(0, hs(p)) | p € Pi(u,0), |p| < i}).

The set N} specifies the neighbors of node u in the graph G; = (V, E;).
Note that in the set N} we keep pairs (v,t) such that v is a neighbor of u
and t is the most recent time-stamp that an interaction between 1 and v took
place. This time-stamp is needed to decide whether the neighbor v is active
for a given window length that is specified at query time.

To update the summary C; from the summary at the previous time in-
stance, after the addition of an edge (a, b) at time ¢, we follow the almost ex-
act same propagation method as the exact algorithm. The only difference is
that instead of keeping all pairs (v, it(p)), we now keep a sliding HLL sketch
over those pairs, as specified in the previous section. Updating a sliding HLL
sketch is slightly more involved than updating the exact summary since we
need to keep the sketch as a time-decreasing sequence. The pseudo-code for
this is given in Algorithm 4.

Finally, to update the sketch, we use Algorithms 1 and 2, with the excep-
tion that the summary S%[] is replaced with the sketch C*[][j] for a fixed
bucket j. We then execute 2 copies of the algorithm, each handling its own
bucket. As these algorithms are syntactically the same to the ones of the exact
algorithm, we omit them.

Proposition 4

Let n = |V|, m = |E|, and r be the upper bound on the distances we are main-
taining. The time complexity of the sketch version of ADDEDGE is O(2krm log?(1)).
The space complexity is O(25nrlog? n).

Proof. Algorithm 4 needs to visit the iterate the entries in C[i]. Since there
are at most O(logn) different values of p, there are at most O(logn) entries.

Every g(u, x,i+ 1) will be initiated only if g(v, x,i) was set for one of its
neighbors v. As such, this may happen at most as many times as u has
neighbors in the graph. Since the cummulative sum of all neighbors is 2m
we can hence bound the number of times a g(u, x,i + 1) is set for x to 2m.
Since there are O(log n) different values of p, lines 5,6,7 are executed at most
O(lognm) times per length i, and as a consequence this is also an upper
bound on the number of calls to Algorithm 3. Putting it all together, we get a
complexity of O(2mr logZ(n)) for Algorithm 2. Since Algorithm 1 does only
call Algorithm 2 once, this proves the complexity bound for time.

31

Chapter 2. Maintaining sliding-window neighborhood profiles in interaction
networks

Algorithm 4 SKETCHMERGE(X, v, t,7), adds x to a summary of v with a dis-
tance of i and edge horizon t.

1: if (y,t') € C[i] for some ¥ > t, y > x then return False
2: end if

3: remove all (y,t') from C?[i] for which / < tand y < x
4: add (x,t) to CY[i] return True

The complexity bound on space easily follows from the observation that
for every node v, and every distance i =0, ..., r, the summary C?[i] contains
at most O(logn) entries that, and each entry requires O(logn) space.

Note that a naive way to maintain approximate neighborhood profiles
is to execute the sketching algorithm from scratch after each newly-arriving
interaction. In the worst case, this brute-force method has roughly the same
space and time complexity as our incremental algorithm. However, the brute-
force method is expected to require as much space and time as indicated by
the worst-case bound, while for our method the worst-case analysis is very
pessimistic: most of the times the summaries will not by propagated at the
whole network and updates will be very fast. This is demonstrated in our
experimental evaluation.

6 Related work

During the last two decades, a large body of work has been devoted to de-
veloping algorithms for mining data streams. Interestingly, the area started
with processing graph streams [56], but a lot of emphasis was put on com-
puting statistics over streams of items [36, 46], and many fundamental tech-
niques have been developed for that setting. Many different models have
been studied in the context of data-stream algorithms, including the sliding-
window model [38], which incorporates a forgetting mechanism where data
items expires after W time units from the moment they occur. Existing work
has considered estimating various statistics in this model [7, 9].

The concept of sketching is closely related to data streams, as efficient
streaming algorithms operate by maintaining compact sketches, which pro-
vide approximate statistics and summaries of the data stream seen so far.
Popular data-stream sketches include the min-hash sketch [33], the LogLog
sketch [42], and its improvement, the hyperloglog sketch [45], all of which have
been used to approximate distinct counts. Distance distribution sketches [19, 34]
are built on top of the distinct-count sketches, and provide a powerful tech-
nique to approximate the number of neighbors of a node in a graph within a
certain distance. Such sketches have been used extensively in graph-mining

32

7. Experimental evaluation

Table 2.1: Characteristics of interaction networks.

Nodes Distinct Total Clustering Diameter Effective

Dataset edges edges coefficient diameter
Facebook 4039 88234 88234 0.60 8 4.7
Cit-HepTh 27771 352801 352801 0.31 13 5.3
Higgs 166840 249030 500000 0.19 10 4.7
DBLP 192357 400000 800000 0.63 21 8.0

applications [19, 91].

As graphs provide a powerful abstraction to model a wide variety of
real-world datasets, and as the amount of data collected gives rise to mas-
sive graphs, there is growing interest on algorithms for processing dynamic
graphs and graph streams. This includes work on data structures that allow
to perform efficient queries under structural changes of the graph [43, 55],
as well as the design of algorithms for computing graph primitives under
data-stream models. Work in the latest category includes algorithms for
counting triangles [11, 14, 112] and other motifs [20, 23], computing graph
sparsifiers [3], and so on. Most of the above papers consider the standard
data stream model, although Crouch et al. [37] study many graph algorithms
on the sliding-window model.

7 Experimental evaluation

We provide an empirical evaluation of the approximate algorithm presented
in Section 5'. We evaluate the space requirements, time, and accuracy. We
compare the approximate algorithm with the exact algorithm presented in
Section 4 and the off-line HyperANF algorithm [19]. Since our implementa-
tions have not been optimized, we compare to a HyperANF version devel-
oped under the same conditions and without low-level optimizations such as
broad-word computing.

Datasets and setup: We use four real-world datasets obtained from SNAP
repository [75]. We take snapshots of the largest datasets Cit-HepTh and DBLP
of 500000 and 400000 edges, respectively. Three of the data sets, Facebook,
DBLP, and Cit-HepTh, have unique edges and do not contain any time infor-
mation. To create an interaction network out of these static graphs, we order
the edges randomly. In the case of DBLP we allow edges to repeat until we
have 800000 edges. Statistics of these datasets are reported in Table 2.1.

As a maximum window size we use wy,;y = 00, that is, we do not delete

1Code at : https:/ /github.com/rohit13k /NeighborhoodProfile.git

33

Chapter 2. Maintaining sliding-window neighborhood profiles in interaction
networks

Table 2.2: Average relative error as a function of ¢.

l Facebook Cit-HepTh Higgs DBLP
16 0.28 0.23 0.22 0.22
32 0.13 0.16 0.19 0.15
64 0.10 0.12 0.16 0.12
128 0.08 0.10 0.14 0.09

any previous edges. We also set r = 3, except for one experiment where we
vary r.

Accuracy of the sketch: In order to test the accuracy of the sketch algorithm,
we compare the algorithm with the exact version, and we compute the av-
erage relative error as a function of number of buckets (¢ = 2¥). Running
the exact algorithm is infeasible for the large datasets due the memory re-
quirements, and hence we use only a subset of the large datasets to measure
accuracy. The results are given in Table 2.2. As expected from previous stud-
ies, the accuracy increases with /.

Running time for updating summaries: Our next goal is to study the run-
ning time needed to update the summary upon adding an edge. The average
running time? for every 1000 edges is reported in Table 2.3. Detailed time
measurements are shown in Figure 3.3. We took average run time by running
3 iterations of Facebook and Cit-HepTh and 2 iterations of Higgs and DBLP
datasets.

The time needed to process an edge depends on two factors. First, as
we increase the number of buckets ¢, the processing time increases. Sec-
ond, a single edge may cause a significant number of updates if it connects
two previously disconnected components. We see the fluctuating nature and
peaks in the processing time in Figure 2.4 as some edge-addition updates re-
quire more time than others whenever an edge between two disjoint cluster
of nodes comes close the propagation list grows and hence the time taken
increases. Interestingly enough, for large datasets, DBLP and Higgs, the time
taken to process a new edge becomes almost constant after the snapshot
graphs stabilize.

The average processing time depends greatly on the characteristics of the
dataset. For example, we can process DBLP quickly despite its size. We sus-
pect that this is due to high diameter and high clustering coefficient.

We parallelize the algorithm to measure the speed-up. In Figure 2.5 we
see that by using 4 threads we are able to process the edges 4 times faster.

We also study the processing time as a function of the maximum distance
r. Here we use Facebook and DBLP, and vary r = 2,...,5. The results are

2We measure the time for batches to get a more accurate reading.

34

7. Experimental evaluation

Table 2.3: Average time in seconds needed to process 1000 edges as a function of ¢

l Facebook Cit-HepTh Higgs DBLP
16 0.06 7.20 3.92 0.80
32 0.08 12.57 6.84 1.31
64 0.12 28.64 12.12 2.10
128 0.17 50.74 21.38 3.45
20 250 ———
Bf=s —— k=5 ——
16 k=6 200 k=6
_1ap k=7 N k=7
(%) N 1l v L
8 12+ A 8 150
glgi \ad] £ 100
£ 8 pAd 1 5
s ol 7 r/ff
al I e 50
51 P vl |
= —”\’: — f\/v L L L L L L — L M\
° 10 20 30 40 50 60 70 80 90 0 50 100 150 200 250 300 350
edges (in thousands) edges (in thousands)
(a) Facebook (b) Cit-HepTh
60 7 :
k=4 —— k=4 ——
l k=5 —— 6 k=5 ——
sor cZ2 k=5
_ a0 k=7 _ 5rk=7
o o
) & 4r
23)
g £l
20r 2r ,/w«v“f‘"hw«”“v‘m ot b
10l AT L / *‘j“ﬁw L S T
. o byl o /Nw»,wqu‘\;fwmv \ . W ‘ ‘ ‘ ‘ ‘
100 200 300 400 500 100 200 300 400 500 600 700 800
edges (in thousands) edges (in thousands)
(c) Higgs (d) DBLP

Fig. 2.4: Time needed to process 1000 edges for different ¢

400

Serial
350 Parallel
300 f N

g250 /

b M
2 200 |
E1s0} /

100 .
I/\,/ ——

50 - 7

0 10 20 30 40 50 60 70 80 90
edges (in thousands)

Fig. 2.5: Running times for DBLP with parallelized version of the algorithm.

given in Figure 2.6. We see that the processing time increases exponentially
as a function of r. This is expected as the neighborhood sizes also increase at
a similar rate.

35

Chapter 2. Maintaining sliding-window neighborhood profiles in interaction
networks

1000 T T T T T T T T 100

100 ¢

-
5]
|

B

o

v v
E1r o~ 1 E
= ~ e 5 ol /)) L LA L LU L
0L/ o AT] S »
ot — r= g — M‘r} o r= g -
/ r=3-—— 0.01 /! r=3 ——
0.01 r=4 WM r=4
r=5 i r=s
0.001 0.001
0 10 20 30 40 50 60 70 80 100 200 300 400 500 600 700 800
edges (in thousands) edges (in thousands)
(a) Facebook (b) DBLP

Fig. 2.6: Time needed to process 1000 edges as a function of distance r

Space complexity: We also evaluate the memory usage of our method. The
results are shown in Figure 2.7. Initially, the need for space increases rapidly
as new nodes are added with every edge. Once all the nodes are seen the
memory increase drops as only the sketches of the nodes are increasing. Note
that we are not pruning any edges. As expected, the memory requirement
increases linearly with /.

Comparison with off-line method: Finally, for reference, we compare with
a non-streaming algorithm that uses the same hyperloglog technology, the
HyperANF algorithm of Boldi et al. [19]. To support querying of any window
length as supported by our algorithm we modified the HyperANF algorithm
to a Sliding-Hyper ANF algorithm by replacing the HyperLogLog sketch with
Sliding HyperLogLog sketch. Running the Sliding-HyperANF algorithm in
DBLP takes 3.6 seconds per sliding window. In contrast, for the same data-set,
our streaming algorithm gives a rate of 0.003 seconds per sliding window.

8 Concluding remarks

We studied the problem of maintaining the neighborhood profile of the nodes
of an interaction network—a graph with a sequence of interactions, in the
form of a stream of time-stamped edges. The model is appropriate for many
modern graph datasets, like social networks where interaction between users
is one of the most important aspects. We focused on the sliding-window
data-stream model, which allows to forget past interactions and adapt to new
drifts in the data. Thus, the proposed problem and approach can be applied
to monitoring large networks with fast-evolving interactions, and used to
reason how the network structure and the centrality of the important nodes
change over time.

We presented an exact algorithm, which is memory inefficient, but it set
the stage for our main technique, an approximate algorithm based on sliding-
window hyperloglog sketches, which requires logarithmic memory per net-

36

8. Concluding remarks

160

k=5 —— k=5 ——
140t k=6 — 800 -6
120l k=7 700+ k=7
g 100 | @600~
2 80] 500y e
o _— S P
£ — 2400t P
o 60 - — o _—
2 _ 2300 _ o
40 s —
20 //
o J
0 10 20 30 40 50 60 70 80 90 50 100 150 200 250 300 350
edges (in thousands) edges (in thousands)
(a) Facebook (b) Cit-HepTh
3500 T 3500 T
k=5 —— k=5 ——
3000 k=6 —— 3000 k=6 ——
k=7 k=7
2500 - —~2500
2 S
~§2000 P :6;2000 b 4
€ 1500 _— 41 E£1500 4
[} -]
= 1000 // = 1000
500 -~ — 500
= —
0 ,
100 200 300 400 500 100 200 300 400 500 600 700 800
edges (in thousands) edges (in thousands)
(c) Higgs (d) DBLP

Fig. 2.7: Memory utilization as a function of ¢

work node, and has fast update time, in practice. The algorithm is also nat-
urally parallelizable, which is exploited in our experimental evaluation to
further improve its performance. One desirable property of our algorithm
is that the sketch we maintain does not depend on the length of the sliding

window, but the length can be specified at query time.

37

Chapter 2. Maintaining sliding-window neighborhood profiles in interaction
networks

38

Chapter 3

Information Propagation in
Interaction Networks

This paper has been published in the Proceedings of the 20th International
Conference on Extending Database Technology (EDBT) 2017. The layout of
the paper has been revised.

DOI: https://doi.org/10.5441/002/edbt.2017.25

Abstract

We study the potential flow of information in interaction networks, that is, networks
in which the interactions between the nodes are being recorded. The central notion in
our study is that of an information channel. An information channel is a sequence
of interactions between nodes forming a path in the network which respects the time
order. As such, an information channel represents a potential way information could
have flown in the interaction network. We propose algorithms to estimate information
channels of limited time span from every node to other nodes in the network. We
present one exact and one more efficient approximate algorithm. Both algorithms are
one-pass algorithms. The approximation algorithm is based on an adaptation of the
HyperLogLog sketch, which allows easily combining the sketches of individual nodes
in order to get estimates of how many unique nodes can be reached from groups of
nodes as well. We show how the results of our algorithm can be used to build efficient
influence oracles for solving the Influence maximization problem which deals
with finding top k seed nodes such that the information spread from these nodes is
maximized. Experiments show that the use of information channels is an interesting
data-driven and model-independent way to find top k influential nodes in interaction
networks.

39

Chapter 3. Information Propagation in Interaction Networks

1 Introduction

In this chapter, we study information propagation by identifying potential
“information channels” based on interactions in a dynamic network. Study-
ing the propagation of information through a network is a fundamental and
well-studied problem. Most of the works in this area, however, studied the
information propagation problem in static networks or graphs only. Nev-
ertheless, with the recent advancement in data storage and processing, it is
becoming increasingly interesting to store and analyze not only the connec-
tions in a network but the complete set of interactions as well. In many
networks not only the connections between the nodes in the network are im-
portant, but also and foremost, how the connected nodes interact with each
other. Examples of such networks include email networks, in which not only
the fact that two users are connected because they once exchanged emails is
important, but also how often and with whom they interact. Another exam-
ple is that of social networks where people become friends once, but may
interact many times afterward, intensify their interactions over time, or com-
pletely stop interacting. The static network of interactions does not take these
differences into account, even though these interactions are very informative
for how information spreads. To illustrate the importance of taking the inter-
actions into account, Kempe et al. [65] showed how the temporal aspects of
networks affect the properties of the graph.

Figure 3.1a gives an example of a toy interaction network. As can be seen,
an interaction network is abstracted as a sequence of timestamped edges. A
central notion in our study is that of an information channel; that is, a path
consisting of edges that are increasing in time. For instance, in Figure 3.1a,
there is an information channel from a to e, but not from a to f. This notion of
an information channel is not new, and was already studied under the name
time-respecting path [65] and is a special case of temporal paths [118].In contrast
to earlier work on information channels we additionally impose a constraint
on the total duration of the information channel, thus reflecting the fact that
in influence propagation the relevance of the message being propagated may
deteriorate over time. To the best of our knowledge, our work is the first
one to study the notion of temporal paths with time constraints in influence
propagation on interaction networks.

We propose a method to identify the most influential nodes in the net-
work based on how many other nodes they could potentially reach through
an information channel of limited timespan. As such, the information chan-
nels form an implicit propagation model learned from data. Most of the
related work in the area of information propagation in interaction or dy-
namic networks uses probabilistic models like the independent cascade(IC)
model or the Linear Threshold(LT) model, and tries to learn the influence

40

1. Introduction

d —‘é e
9 src. dst. time

b c 8
e c 7
7 f b e 6
e f 2
f a d 1

b ~—> & ®)

(a)

Fig. 3.1: (a) An example Interaction graph. (b) The interaction in reverse order of time.

probabilities that are assumed to be given by these models [66, 29, 28, 35].
Another set of recent work focuses on deriving the hidden diffusion network
by studying the cascade information of actions [50, 52] or cascade of infec-
tion times [40, 100]. These chapter, however, use a very different model of
interactions. For example, the work by Goyal et al. [50, 52], every time an
activity of a node a is repeated within a certain time span by a node b that
is connected to a in the social graph, this is recorded as an interaction. Each
user can execute each activity only once, and the strength of influence of one
user over the other is expressed as the number of different activities that are
repeated. While this model is very natural for certain social network settings,
we believe that our model is much more natural for networks in which mes-
sages are exchanged, such as for instance email networks because activities
such as sending an email can be executed repeatedly and already include
the interaction in itself. Furthermore, [52] is not based on information chan-
nels, but on the notion of credit-distribution, and [50] does not include the
time-respecting constraint for paths.

One of the key differentiators of the techniques introduced here and ear-
lier work is that next to an exact algorithm, we also propose an efficient one-
pass algorithm for building an approximate influence oracle that can be used
to identify top-k maximal influencers. Our algorithm is based on the same
notion as shown in so-called sliding window HyperLogLog sketch [72] leading
to an efficient, yet approximate solution. Experiments on various interaction
networks with our algorithm show the accuracy and scalability of our ap-
proximate algorithm, as well as how it outperforms algorithms that only take
into account the static graph formed by the connected nodes.

The contribution of this chapter are as follows.

* Based on the notion of an Information Channel, we introduce the Influence

41

Chapter 3. Information Propagation in Interaction Networks

Fig. 3.2: Interaction network example with multiple information channels between node ¢ and

f

Reachability Set of a node in a interaction network.

* We propose an exact but memory inefficient algorithm which calculates
the Influence Reachability Set of every node in the network in one pass
over the list of interactions.

* Next to the exact algorithm, an approximate sketch-based extension is
made using a versioned HyperLogLog sketch.

¢ With the influence reachability sets of the nodes in our interaction net-
work, we identify top-k influencers in a model-independent way.

* We propose a new Time Constrained Information Cascade Model for
interaction networks derived from the Independent Cascade Model for
static networks.

* We present the results of extensive experiments on six real world inter-
action network datasets and demonstrate the effectiveness of the time
window based influence spread maximization over static graph based
influence maximization.

2 Preliminaries

Let V be a set of nodes. An interaction between nodes from V is defined
as a triplet (u,v,t), where u,v € V, and ¢ is a natural number representing
a time stamp. The interaction (u, v, t) indicates that node u interacted with
node v at time t. Interactions are directed and could denote, for instance, the
sending of a message. For a directed edge u — v, u is the source node and
v is the destination node. An interaction network G(V,) is a set of nodes

42

2. Preliminaries

V, together with a set £ of interactions. We assume that every interaction
has a different time stamp. We will use n = |V| to denote the number of
nodes in the interaction network, and m = |€| to denote the total number of
interactions.

Time Constrained Information Cascade Model: For interaction networks,
influence models such as the Independent Cascade Model or Linear Thresh-
old Model no longer suffice as they do not take the temporal aspect into
account and are meant for static networks. To address this shortcoming, we
introduce a new model of Information Cascade for Interaction networks. The
Time Constrained Information Cascade Model (TCIC) is a variation of the famous
Independent Cascade Model. This model forms the basis of our comparison
with other baselines SKIM [35], PageRank and High Degree. We say a node
is infected if it is influenced. For a given set of seed nodes we start by infect-
ing the seed nodes at their first interaction in the network and then start to
spread influence to their neighbors with a fixed probability. The influence
spread is constrained by the time window(w) specified; i.e, once a seed node
is infected at time stamp £ it can spread the infection to another node via a
temporal path only if the interaction on that path happens between time ¢
and t 4+ w. For sake of simplicity we use a fixed infection probability in our
algorithms to simulate the spread nevertheless node specific probabilities or
random probabilities could easily be used as well. In Algorithm 5 we present
the algorithm for the TCIC model.

In order to Find highly influential nodes under the TCIC model we intro-
duce the notion of Information Channel.
Definition 5
(Information Channel) Information Channel ic between nodes u and v in an
interaction network G(V,), is defined as a series of time increasing interac-
tions from & satisfying the following conditions: ic = (u, n1,t1), (n1, 1, t2), ...(ng, v, tx)
where t; < tp < .. < . The duration of the information channel ic is
dur(ic) := tp — t; + 1 and the end time of the information channel ic is end(ic) :=
fr. We denote the set of all information channels between u and v as IC(u, v),
and the set of all information channels of duration w or less as IC.,(u, v).

Notice that there can exist multiple information channels between two nodes
u and v. For example, in Fig 3.2 there are 2 information channels from a
to f. The intuition of the information channel notion is that node u could
only have sent information to node v if there exists a time respecting series
of interactions connecting these two nodes. Therefore, nodes that can reach
many other nodes through information channels are more likely to influence
other nodes than nodes that have information channels to only few nodes.
This notion is captured by the influence reachability set.

43

Chapter 3. Information Propagation in Interaction Networks

Algorithm 5 Simulation with a given seed set and window

Input: G(V,E) the interaction graph given as a time-ordered list {; of
(u,9,t), w, and S the seed set. p is the probability of infection spread on
interaction.
Output: Number of nodes influenced by the seed.
Initially all nodes are inactive and for all activateTime is set to -1.
for (u,v,t) € g do
if ue S then
u.isActive=true
u.activateTime=t
end if
if u.isActive & (t — u.activateTime) < w then
With probability p
v.isActive=true
if u.activateTime > v.activateTime then
v.activateTime=u.activateTime
end if
end if
end for
Return: Count of nodes for which isActive is true.

Definition 6

(Influence reachability set) The Influence reachability set (IRS) o(u) of a node
1 in a network G(V,) is defined as the set of all the nodes to which u has
an information channel:

o(u) := {veV|IC(u,0)+ J} .
Similarly, the influence set for a given maximal duration w is defined as
ow(u) ={veV|3ice IC(u,v) : dur(ic) < w} .

The IRS of a node may change depending on the maximal duration w. For
example, in Figure 3.2 03(a) = {b,c,d} and o5(a) = {b,c,d, f}. This is quite
intuitive because as the maximal duration increases, longer paths become
valid, hence increasing the size of the influence reachability set. Once we
have the IRS for all nodes in a interaction network for a given window we can
efficiently answer many interesting queries, such as finding top k influential
nodes. Formally, the algorithms we will show in the next section solve the
following problem:

Definition 7
(IRS-based Oracle Problem) Given an interaction network G(V, £), and a du-
ration threshold w, construct a data structure that allows to efficiently answer

44

3. Solution Framework

the following type of queries: given a set of nodes V' € V, what is the cardinality
of the combined influence reachability sets of the nodes in V'; that is: || ey 0w (v)].

First we will present an exact but memory inefficient solution that will main-
tain the sets 0, (v) for all nodes v. Clearly this data structure will allow to
get the exact cardinality of the exact influence reachability sets, by taking
the unions of the individual influence reachability sets and discarding dupli-
cate elements. The approximate algorithm on it’s turn will maintain a much
more memory efficient sketch of the sets 0y, (v) that allows to take unions and
estimate cardinalities.

3 Solution Framework

In this section, we present an algorithm to compute the IRS for all nodes in
an interaction network in one pass over all interactions. In the following all
definitions assume that an interaction network G(V,€) and a threshold w
have been given. We furthermore assume that the edges are ordered by time
stamp, and will iterate over the interactions in reverse order of time stamp.
As such, our algorithm is a one-pass algorithm, as it treats every interaction
exactly once and, as we will see, the time spent per processed interaction is
very low. It is not a streaming algorithm because it can not process interac-
tions as they arrive. The reverse processing order of the edges is essential in
our algorithm, because of the following observation.

Lemma 1

Let G(V, £) be an interaction network, and let (1, v, t) be an interaction with a
time stamp before any time stamp in &; i.e., for all interactions (u/,7/,t') € &,
t' >t G'(V,Eu{(umv,t)}) denotes the interaction network that is obtained
by adding interaction (u, v, t) to G. Then, for all w € V\{u}, IRS.,(w) is equal
in G and G'.

Proof. Suppose that IRS,,(w) changes by adding (u,v,t) to £. This means
that there must exist an information channel ic from w to another node in
G’ that did not yet exist in G. This information channel hence necessarily
contains the interaction (u,v,t). As t was the earliest time in the interaction
network G’, (u,v,t) has to be the first interaction in this information channel.
Therefore w must be u and thus w ¢ V\{u}. O

This straightforward observation logically leads to the strategy of re-
versely scanning the list of interactions. Every time a new interaction (u, v, t)
is added, only the IRS of the source node u needs to be updated. Notice that
there is no symmetric definition for the forward scan of a list of interactions;
if a new interaction arrives with a time stamp later than any other time stamp
in the interaction network, potentially the IRS of every node in the network

45

Chapter 3. Information Propagation in Interaction Networks

changes, leading to an unpredictable and potentially unacceptable update
time per interaction.

In order to exploit the observation of Lemma 1, we keep a summary of
the interactions processed so far.

Definition 8

(IRS Summary) For each pair u,v € V, such that IC,(u,v) # &, A(u,v) is
defined as the end time of the earliest information channel of length w or
less from u to v. That is:

AMu,v) = min({end(ic) | ic € IC,(u,v)})
The IRS summary ¢, (1) is now defined as follows:

Pw(u) ={(v,A(u,v)) | veIRS,(u)} .

That is, we will be keeping for every node u the list of all other nodes that are
reachable by an information channel of duration at most w. Furthermore, for
every such reachable node v, we keep the earliest time it can be reached from
u by an information channel. The IRS of a node u can easily be computed
from ¢ (1) as o, (u) = {v | 3t : (v,t) € @(u)}. On the other hand, the
information stored in the summary consisting of ¢(u) for every u is sufficient
to efficiently update it whenever we process the next edge in the reverse order
as we shall see.

Example 8

In Figure 3.2, p3(a) = {(b,1),(d,2),(c,4)} and @3(c) = {(f,5), (e,3)}. There are
2 information channels between ¢ and f, one with dur(ic) = 1 and end(ic) = 8
and another with dur(ic) = 3 and end(ic) = 5 and hence A(c, f) = 5.

3.1 The Exact algorithm

We illustrate our algorithm using the running example in Figure 3.1a. Ta-
ble 3.1b shows all the interactions for the graph reverse ordered by time
stamp. Recall that we process the edges in time decreasing order. The algo-
rithm is detailed in Algorithm 6. First, we initialize all ¢(u) to the empty set.
Then, whenever we process an interaction (u, v, t), we know from Lemma 1
that only the summary ¢(u) may change. The following lemma explains how
the summary ¢(u) changes:

Lemma 2

Let G(V, £) be an interaction network, and let (1, v, t) be an interaction with a
time stamp before any time stamp in &; i.e., for all interactions (u/,v/,t') € &,
' >t. G'(V,E u{(u,v,t)}) denotes the interaction network that is obtained by
adding the interaction (u, v, t) to G. Let ¢’(u) denote the summary of u in G’
and ¢(u) thatin G. Then, ¢' (1) =| ({(v,t)} v pu) U {(z,t') € p(v) |t —t+1 <
w}), where | (A) denotes A\{(v,t)e A | (v, t')e A:t <t}

46

3. Solution Framework

Proof. Let ic be an information channel of duration maximally w from u to
z in G’ that minimizes end(ic). Then there are three options: (1) ic is the
information channel from u to v formed by the single interaction (u, v, t) that
was added. The end time of this information channel is . (2) ic was already
present in G, and hence (z,end(ic)) € ¢(u), or (3) ic is a new information
channel. Using similar arguments as in the proof of Lemma 1, we can show
that ic needs to start with the new interaction and that the remainder of ic
forms an information channel ic’ from v to z in G with end(ic’) = end(ic). In
that case (z,end(ic)) € ¢(v). Given the constraint on duration we furthermore
need to have end(ic) — t +1 < w. Hence, ¢’ (1) needs to be a subset of {(v,t)} U
() u{(z,t') € (v) | ' —t+1 < w}, and we can obtain ¢’ (1) by only keeping
those pairs that are not dominated. O

Example 9
Figure 3.1a represents a small interaction network and Table 3.1b shows the
edges in order of time. For w = 3 the Influence Summary Set will update as

follows:
b ¢ d e f

o [OTOTOTOT 0T

(@)) c d e f
o[(8 {3
(ﬂ) a b c d e f
o U 8] §] 8] (e7)]]
(bi,‘;) a b c d e f
o[U] (c,7)(e 6) 3] I (¢, 7]]
a b c d e f
(ab5) (b, 5)
7| 7 oo lololen|o
e,6 !
a b c d e f
(03) b2 | ©7)
7D g | U0 |0
a b c d e f
(d,e3) (b,5)
- (¢,7) (e,3) | (¢,7)
7 leo |V b o |V
a b c d e f
(e.f.2) (b,5) (¢7)
- (¢,7) (e,3)
A

47

Chapter 3. Information Propagation in Interaction Networks

a b c d e f
(b,5)
) €D | e G
(e,3) | (e,6) (b,4) ¢ ’2
(d’ 1) (/)

While processing the edge (b, ¢, 6), first we add (e, 6) in the summary of d and
then add (c,7) from the summary of e in summary of b. As the summary of
b already had (c,8), the value will be updated. Next, during the processing
of edge (a,b,5) the summary of a is updated first by adding (b,5) then while
merging the summary of b in 4 we will ignore (e, 8) because the duration of
the channel is 4 and the permitted window length is 3. The only addition is
hence (c,7).

(a,d1)
—

Theorem 1. Algorithm 6 updates the IRS summary correctly.

Proof. This proof follows by induction. For the empty list of transactions, the
algorithm produced the empty summary. This is our base case. Then, for
every interaction that is added in the for loop, it follows from Lemma 1 and
Lemma 2 that the summaries are correctly updated to form the summary of
the interaction graph with one more (earlier) interaction. After all interactions
have been processed, the summary is hence that of the complete interaction
graph. O

Lemma 3
Algorithm 6 runs in time O(mn) and space O(n?), where n = |V|and m = |€|.

Proof. Each edge in £ is processed exactly once and for each edge, both App
and MERGE are called once. We assume that the summary sets ¢(u) are
implemented with hash tables such that looking up the element (v,) for a
given v takes constant time only. Under this assumption, the App function
has constant complexity. The MERGE function calls ApD for every item in
¢(v) at least once. The number of items in ¢(v) is upper bounded by n and
hence the time complexity of one merge operation is at most O(n). This leads
to the upper bound O(mn) in total.

For the space complexity, note that in the worst case for each node there
is an information channel to every other node of duration at most w. In that
case, the size of the individual summary ¢(v) of every node v is O(n) which
leads to a space complexity of O(n?) in total. O

As we can see from Lemma 3 the memory requirements for the exact
algorithm is in worst case quadratic in the number of nodes of the graph.

48

3. Solution Framework

Algorithm 6 Influence set with Exact algorithm

Input: Interaction graph G(V,E). (g is the list of interactions reversely or-
dered by time stamp
Threshold w (maximum allowed duration of an influence channel)
Output: ¢(u) forallueV

function App(¢(u),(v,t))
if3t' :(v,t) e ¢(u) then
> There is at most one such entry
if t < then
(1) = (@(w)\(v,t)) v (v,1)
end if
else
¢(u) = ¢(u) v {(v, 1)}
end if
end function

function MERGE(¢(u),¢(v),t,w)
for all (x,ty) € ¢(v) do
if ty —t < w then ApDp(¢(u),(x,tx))
end if
end for
end function

Initialize: ¢(u) « YueV

for all (u,v,t) € EG o
App(p(u) (0, 1))
MERGE(¢p(u),9(v),t,w)

end for

This will not scale well for large graphs as we want to keep this data structure
in memory for efficient querying. Hence in the next section we will present
an approximate but more memory and time efficient version of the algorithm.

3.2 Approximate Algorithm

Algorithm presented in the previous section computes the IRS exactly, albeit
at the cost of high space complexity and update time. In this section, we
describe an approximate algorithm which is much more efficient in terms of
memory requirements and update time. The approximate algorithm is based
on an adaptation of the HyperLogLog sketch [45].

49

Chapter 3. Information Propagation in Interaction Networks

HyperLogLog Sketch

A HyperLogLog (HLL) sketch [45] is a probabilistic data structure for ap-
proximately counting the number of distinct items in a stream. Any exact
solution for counting the number of distinct items in a stream would require
O(N) space with N the cardinality of the set. The HLL sketch, however, ap-
proximates this cardinality with no more than O(log(log(N))) bits. The HLL
sketch is an array with § = 2k cells (c1,---, cﬁ), where k is a constant that con-
trols the accuracy of the approximation. Initially all cells are 0. Every time an
item x in the stream arrives, the HLL sketch is updated as follows: the item
x is hashed deterministically to a positive number /(x). The first k bits of
this number determines the 0-based index of the cell in the HLL sketch that
will be updated. We denote this number ((x). For the remaining bits in h(x),
the position of the least significant bit that is 1 is computed. This number is
denoted p(x). If p(x) is larger than ¢,(,), ¢,(,) will be overwritten with p(x).

For example, suppose that we use a HLL sketch with = 2% = 4 cells.
Initially the sketch is empty:

L 012 3
p[0[0]0[0]

Suppose now item a arrives with /(a) = 1110100110010110;,. The first 2 bits
are used to determine ((a) = 11, = 3. The rightmost 1 in the binary repre-
sentation of h(a) is in position 2, and hence c3 becomes 2. Suppose that next
items arrive in the stream with (c,(,), p(x)) equal to: (c1,3), (co,7), (c2,2), and
(c1,2), then the content of the sketch becomes:

L0123
p[7132]2]

It is clear that duplicate items will not change the summary. Furthermore,
for a random element x, P(p(x) > ¢) = 2. Hence, if d different items have
been hashed into cell ¢, then P(c, > ¢) = 1 — (1 —27%)4. This probability
depends on d, and all ¢; are independent. Based on a clever exploitation
of these observations, Flajolet et al. [45] showed how the number of distinct
items in a stream can be approximated from the HLL sketch. Last but not
least, two HLL sketches can easily be combined into a single sketch by taking
for each index the maximum of the values in that index of both sketches.

Versioned HLL Sketch

The HLL sketch is an excellent tool for our purpose; every time an edge (4, b)
needs to be processed (recall that we process the edges in reverse chronolog-
ical order), all nodes reachable by an information channel from b, are also
reachable by an information channel from a. Therefore, if we keep the list of

50

3. Solution Framework

reachable nodes as a HLL sketch, we can update the reachable nodes from a
by unioning in the HLL sketch of the reachable nodes from b into the HLL
sketch of those reachable from a. One aspect, however, that is not taken
into account here is that we only consider information channels of length w.
Hence, only those nodes reachable from b by an information channel that
ends within time window w should be considered. Therefore, we developed
a so-called versioned HLL sketch vHLL. The vHLL maintains for each cell
c; of the HLL a list L; of p(x)-values together with a timestamp and is up-
dated as follows: let tcyrrent be the current time; periodically entries (r, t) with
t — teurrent +1 > w are removed from vHLL. Whenever an item x arrives, p(x)
and (x) are computed, and the pair (o(x), tcurrent) is added to the list Ll(x).
Furthermore, all pairs (7,t) such that r < p(x) are removed from L,(,). The
rationale behind the update procedure is as follows: at any point in time
teurrent We need to be able to estimate the number of elements x that arrived
within the time interval [fcurrent, tcurrent + w — 1]. Therefore it is essential to
know the maximal p(x) of all x that arrived within this interval. We keep
those pairs (7,¢) in L, such that r may, at some point, become the maximal
value as we shift the window further back in time. It is easy to see that any
pair (r,t) such that r < p(x) for a newly arrived x at feyrrens will always be
dominated by (0(x), fcurrent).- On the other hand, if p(x) < r we still do have
to store (0(x), tcurrent) as (7,) will leave the window before (o(x), tcurrent) Will.

Example 10

Suppose that the elements ¢,d, c,a,b, a have to be added to the vHLL. Recall
that we process the stream in reverse order, hence the updates are processed
in the following order: (a,t¢), (b,t5), (a,t4), (¢, t3), (d,t2), (e,t1). Let 1 and p
be as follows for the elements in V:

item ‘ a b c d e
L 1 3 3 2 2
0 312 21

51

Chapter 3. Information Propagation in Interaction Networks

The subsequent vHLL sketches are respectively the following:

L0 1 2 3
e GLO[B] 0]
£t 0 1 2 3

o[3] G te)] 3] {}]

(bt5) L0 1 2 3
o[{}] B, t6)] {}] 4, t5)]

(a,ts) L0 1 2 3

(ch) L0 1 2 3
o[]G)]]2 13)]

(ﬂ) L 0 1 2 3
p [U] B 1) 2 0)] (2, 1)]
(e,_)tl) L0 1 2 3

p’ {}‘ (3r t4)‘ (Zr tZ)/ (1/ tl)‘ (2/ t3)‘

Notice that also two VHLL sketches can be easily combined by merging
them. For each cell 1, we take the union of the respective lists L, and L) and
remove all pairs (7, t) in the result that are dominated by a pair (+/,#') that
came from the other list with # < t and ' > r. If the lists are stored in order
of time, this merge operation can be executed in time linear in the length of
the lists.

Example 11
Consider the following two vHLL sketches:

L0 1 2 3
P’ {}‘ (3/ t4)‘ (Ltl)’ (21 tZ)‘ (21 tS)‘

L0 1 2 3
o [{(5, 1)} B, t2)] (4,13)] (1, 1)

The result of merging them is:

L 0 1 2 3
p’ {(5/ tl)}‘ (3/ tZ)‘ (1/ tl)' (2/ tZ)/ (4/ t3)‘ (2/ t3)‘

Note that adding versioning to the HLL sketch comes at a price.

Lemma 4
The expected space for storing a VHLL sketch for a window length w is

O(B(log(w)))-

Proof. The size of each pair (7, t) stored in a list L, is dominated by ¢ and takes
space O(log(w)). In worst case, all elements in the window Xcurrent, - - - » Xcurrent+w—1

52

3. Solution Framework

Algorithm 7 Approximate Algorithm for IRS

function ArPPROXADD(¢(u),(p(v), t),4(V))
if 3(p, fYel,: (o, t') dominates (o(v), t) then
Ignore (p(v), t)
else
if 3(p, fYel,: (p(v), t) dominates (p, t') then
remove (p, t') from L,
end if
Append (p(v),t) in L,
end if
end function
function APPROXMERGE(¢p(u),9(v),t,w)
while i < B do
for all (x,ty) e L; do = Iterate over ¢(v)
if ty — f < w then
APPROXADD(¢p(u),(x, tx), 1)
end if
end for
i+ +
end while
end function

are different and all arrive into the same cell ¢,. In that case, the expected
number of pairs in Lt is E[X] + X5 + ... + X 1] where X; denotes the fol-
lowing statistical variable: X; equals 1 if (p(x;), feyrrent+i—1) is in Lt and 0 oth-
erwise. This means that X; = 1 if and only if p(x;) > max{p(x1),...,p(xi—1))}.
As each p(x;), j < i has the same chance to be the largest, P(X; = 1) < %
Hence we get:

EILJ] < ELX) +.. 4 Xga] € 3] 1 = Oflog(w)) -
i=1

vHLL-Based Algorithm

The approximate algorithm is very similar to the exact algorithm 6; instead
of using exact sets we use the more compact versioned HyperLogLog sketch.
ApD and MERGE are the only functions which need to be updated as per the
new sketch everything else will remain the same as shown in algorithm 6. We
will just present the APPROXADD and APPROXMERGE functions in Algorithm 7.

Lemma 5
The expected time complexity for Algorithm 7 is O(mp(log(w))?), where n =
|V]| and m = |&].

53

Chapter 3. Information Propagation in Interaction Networks

Proof. In the APPROXMERGE function the while loop will run for B itera-
tions and the inner for loop will run for an expected of log(w) items(from
Lemma 4). Hence time complexity would be O(Blog(w)O(APPROXADD)).

Now in the APPROXADD function there are at-most log(w) comparisons,
hence O(ArPrROXADD) = O(log(w)). For each edge APPROXADD and APPROXMERGE
are called only once. Hence O(mp(log(w))?) is the expected time complex-
ity. O

Lemma 6
The expected space complexity for the Algorithm 7 is O(nf(log(w))?), where
n=|V]and m = |£].

Proof. From Lemma 4 the expected size of one vHLL sketch is O(B(log(w))?).
There will be only one vHLL sketch for each node, hence, expected space
complexity is O(nB(log(w))?). O

4 Applications

4.1 Influence Oracle:

Given the Influence Reachability Set of an interaction network computing the
influence spread of a given seed set, S € V is straightforward. The influence
spread for seed set S is computed as:

Inf(S) = | J o(u) (3.1)

ues

HyperLogLog sketch union requires taking the maximum at each bucket in-
dex ¢ which is very efficient, so the the time complexity would be O(|S|¢).

4.2 Influence Maximization:

Influence Maximization deals with the problem of finding top k seed nodes
which will maximize the influence spread. After the pre processing stage of
computing IRS we can use a greedy approach to find the top-k seed nodes
by using the Influence oracle. First we show the complexity of the top-k
most influential nodes problem is NP-hard and then show that the Influence
oracle function is monotone and submodular. Hence we can use a greedy
approximation approach.

Lemma 7
Influence maximization under the Influence Reachability Set model is NP-hard.

Proof. Given the Influence Reachability Set for all the nodes the problem of
finding a subset of k nodes such that the union is maximum is a problem

54

5. Related Work

which is similar to the problem of maximum coverage problem. As the later
is a NP-hard problem we deduce that the given problem is NP-hard. O

Lemma 8
The influence function ¢(S) is submodular and monotone.

Proof. First we will prove that Inf(S) is a submodular function. Let S and T
be two sets of seed nodes such that S ¢ T. Let x be another node not in T.
Now, let the marginal gain of adding x in S, ie., Inf(S+ x) — Inf(S) = P.
P is the set of those nodes for which there is no path from S and hence
these should belong to Inf(x). Let the marginal gain of adding x in T,i.e.,
Inf(T +x) — Inf(T) = P'. Ttis clear that P’ € P, as otherwise there will be
a node u for which there is a path from S but not from T and this is not
possible given S < T. Hence Inf(S + x) — Inf(S) = Inf(T + x) — Inf(T).

It is obvious to see the that Inf is monotone as it is a increasing function,
adding a new node in the seed set will never decrease the influence, and
hence if S < T then Inf(S) < Inf(T). O

Greedy Approach for Influence Maximization:

Algorithm 8 outlines the details for the greedy approach. We start by first
sorting the nodes based on the size of the Influence Reachability Set. The node
with maximum IRS set size becomes the most influential node and is taken
as the first node in seed set. Next at each stage we iterate through the sorted
list and check the gain by using influence oracle of the already selected nodes
and the new node. The node which results in maximum gain is added into
the seed set.

5 Related Work

The problem of Influence Maximization and Influence spread prediction is a
well know problem. Broadly, the work in this area can be categorized into
two main categories. The first category is based on static graphs [39, 9§,
66, 35] where the underlying graph is already given and the probability of a
node getting influenced is derived from probabilistic simulations. The second
category is data driven, where the underlying influence graph is derived
based on a relationship such as friendship between two users or common
action within a specified time [100, 40, 52, 50]. The static graph approaches
do not capture the dynamics of real networks such as social media and hence
the data driven approaches are more suitable.

Static graph The Influence Maximization problem in social network was
first studied by Richardson et al. [39, 98] where they formalized the problem
with a probabilistic model. Later Kempe et al. [66] proposed a solution using

55

Chapter 3. Information Propagation in Interaction Networks

Algorithm 8 Influence Maximization using IRS

Input: The Influence set 0;,Vu € V and the number of seed nodes to find is k

initialize selected < & A covered «— &
Sort u € V descending with respect to |0y|. Save this sorted list as ¢
while selected < k do

gain =0;us = &

forall u e / do

if |covered U 0y| — |covered| > gain then
gain = |covered U 0y| — |covered|

us = {u}
end if
if gain > 0, then
break;
end if
end for
selected « selected U us; covered < covered U 0y,
end while

discrete optimization. They proved that the Influence Maximization problem
is NP-hard and provided a greedy algorithm to select seed sets using max-
imum marginal gain. As the model is based on Monte Carlo simulations, it
is not scalable for large graphs. Later improvements were proposed by Chen
et al. [29] using the DegreeDiscountand prefix excluding maximum influence
in-arborescence (PMIA) [28] algorithms. Both algorithms are heuristic-based.
Leskovec et al. proposed the Cost-Effective Lazy Forward (CELF) [74] mech-
anism to reduce the number of simulations required to select seeds. All of the
above-mentioned studies focus on static graph and do not take the temporal
nature of the interactions between different nodes into consideration. The
latest work on the static graph Influence Maximization problem by Cohen et
al. [35] is the fastest we have come across which scales to very large graphs.
We compare our seed sets and their influence spread with the seeds selected
by their algorithm SKIM. Related work on information flow mining on static
graph may be found in [68, 74, 76, 96, 89]. Lie et al. in [78] and Chen et
al. in [27] independently proposed the first time constrained Influence Maxi-
mization solutions for static graph. Their work considers the concept of time
delay in information flow. They assign this delay at individual node level
based on different probabilistic models and not the information channels or
pathways between the nodes.

Data Driven approach There are a few recent work which consider the
temporal aspect of the graph and are based on real interaction data. Goyal
et al. [52] proposed the first data based approach to find influential users in

56

5. Related Work

Table 3.1: Comparison of related work on different parameters

Gomez- | Co- DuN | Tang | Goyal Lei |IRS
Rodriguez| hen [40] [107] |[52, Kempe| [78]
[100] [35] 50] [66]
Static Graph(S), | C S C S C S S I
Data or Cas-
cade (C), Inter-
action Network
@)
Considers in- Yes No Yes No Yes No No Yes
formation
channel or
pathways?
Time window Yes No Yes No Yes No No Yes
constrained
Approx sketch- | Yes Yes Yes Yes No No Yes | Yes
ing or sampling
One Pass algo- | No Yes No No Yes No Yes | Yes
rithm

a social network by considering the temporal aspect in the cascade of com-
mon actions performed by users, instead of using just static simulation of
the friendship network. However, their work does not consider the time con-
straint in the information flow. In [50] they do use a time window based ap-
proach to determine true leaders in the network. However, the time window
they consider is for direct influence only, i.e., once a user performs an action
how many of his/her friends repeat that action in that time window. They
have some additional assumptions like information propagation is non-cyclic
and if one user performs an action more then once, they use only the time
stamp of the first action. Our approach does not make such assumptions and
identifies influential nodes without any constraints on the number of times
a user performs an action or that the propagation graph needs to be a DAG.
The time constraints we impose are on the path of information flow from the
start of the action. Also, our proposed solution just needs a single pass over
the propagation graph whereas Goyal’s work do a single pass over the action
log but multiple passes on the social network to find the child nodes. Our
sketch based approximation further improves the time and space complexity.

There are a few more recent works on data driven approach by Gomez-
Rodriguez et al. [100] and Du et al. [40]. These works try to derive the un-
derlying hidden influence network and the influence diffusion probabilities
along every edge from a given cascade of infection times for each node in the

57

Chapter 3. Information Propagation in Interaction Networks

network. Du et al. [40] proposed a scalable algorithm called ConTinEst, which
finds most influential nodes from the derived influence network. ConTinEst
uses an adaption of a randomized neighborhood estimation algorithm [33] to
find the most influential node in the network. But getting the cascade data
of infection times for every network is not always possible. For example in
an email or a messaging network, we may have access only to interactions
between the users and not to the actual individual infection time. To the best
of our knowledge our work is the first to try to predict and maximize influ-
ence in a network in which only the interaction data is available and no other
action cascade or relationship between users is provided.

In Table 3.1 we give a brief comparison matrix of our IRS approach with
some of the other works in Influence Maximization. We compare against
the type of input each approach considers; i.e, a static graph (S), action cas-
cade or infection time based event cascades (C) or interaction network based
(I). We also compare if in the modeling of the information propagation in
the approach considers information pathways or channels to do influence
maximization and if the pathways have time window based constrains. For
performance comparison, we see if they do use some sampling or sketch-
ing techniques to improve performance and if the algorithm is a one pass
algorithm.

6 Experimental Evaluation

In this section, we address the following questions:

Accuracy of Approximation. How accurate is the approximation algo-
rithm for the Oracle problem? In other words, how well can we estimate the
size of the IRS set based on the versionned HLL sketch?

Efficiency. How efficient is the approximate algorithm in terms of pro-
cessing time per activity, and how does the window length w impact the
efficiency? How long does it take to evaluate an Oracle query based on the
IRS summary?

Effectiveness. How effective is the identification of influential nodes us-
ing IRS to maximize the influence spread under the Time-Constrained Infor-
mation Cascade Model? To this end, we compare our algorithm to a number
of competitors:

e SKIM is the only algorithm which scale to large datasets in few minutes
time. We ran SKIM using the same parameters Cohen et al. [35] use in
their paper for all the experiments. SKIM is from the category of algo-
rithms which considers a static graph and takes input in the form of a
DIAMICS format graph. Hence we convert the interaction network data
into the required static graph format by removing repeated interactions
and the time stamp of every interaction.

58

6. Experimental Evaluation

¢ ConTinEst(CTE) [40] is the latest data driven algorithm which works on
static networks where the edge weights corresponds to the associated
transmission times. The edge weight is obtained from a transmission
function which in turn is derived from an cascade of infection time of
every node. As we assume that only the interaction between different
nodes of a network is being observed and no other information such
as the Infection time cascade is available, we transform the interactions
into a static network with edge weights as required by ConTinEst. The
first time a node u appears as the source of an interaction we assign the
infection time u; for the source node as the interaction time. Then each
interaction (u, v, t) is transformed into an weighted edge (u, v) with the
edge weight as the difference of the interaction time and the time when
the source gets infected, i.e, f — u;. We ran the same code as published
by the authors with the default settings on the transformed data.

* The popular baselines PageRank(PR) and High Degree(HD)[66]. Here
we select the k nodes with respectively the highest PageRank and out-
degree. Notice that for PageRank we reversed the direction of the inter-
action edges, as PageRank measures incoming “importance” whereas
we need outgoing “influence.” By reversing the edges this aspect is
captured. To make a fair comparison with our algorithm that takes into
account the overlap of the influence of the selected top-influencers, we
developed a version of HD that takes into account overlap. That is, we
select a set of nodes that together have maximal outdegree. In our ex-
periments we call this method the Smart High Degree approach (SHD).
Notice that SHD is actually a special case of our IRS algorithm, where
we set w = 0.

We also ran some performance experiments comparing the competitors to
our IRS algorithm. In the interpretation of these results, however, we need to
take into account that the static methods require the graph to be preprocessed
and takes as input the flattened non-temporal graph, which is in some cases
significantly smaller as it does not take repetitions of activities into account.

6.1 Datasets and Setup

We ran our experiments on real-world datasets obtained from the SNAP
repository [75] and the koblenx network collection [73]. We tested with social
(Slashdot, Higgs, Facebook) and email (Enron, Lkml) networks. As the real
world interaction networks available from previous works were not large
enough to test the scalability of our algorithm, we created another dataset
by tracking tweets related to the US Election 2016. We follow the same tech-
nique used to create the Higgs data set of the SNAP repository. Statistics of
these data sets are reported in Table 3.2. These datasets are available online,

59

Chapter 3. Information Propagation in Interaction Networks

Table 3.2: Characteristics of interaction network along with the time span of the interactions as
number of days.

Dataset [V|[.10°] | |€][.10°] | Days
Enron 87.3 1,148.1 | 8,767
Lkml 27.4 1,048.6 | 2,923
Facebook 46.9 877.0 | 1,592
Higgs 304.7 526.2 7
Slashdot 51.1 140.8 978
US-2016 4,468 44,638 16

sorted by time of interaction. We kept the datasets in this order, as our al-
gorithm assumes that the interactions are ordered by time. This assumption
is reasonable in real scenarios because the interactions will always arrive in
increasing order of time and it is hence plausible that they are stored as such.
The overall time span of the interactions varies from few days to many years
in the data sets. Therefore, in our experiments we express the window length
as a percentage of the total time span of the interaction network.

The performance results presented in this section are for the C++ imple-
mentation of our algorithm. All experiments were run on a simple desktop
machine with an Intel Core i5-4590 CPU @3.33GHz CPU and 16 GB of RAM,
running the Windows 10 operating system. For the larger dataset US-2016
the memory required was more than 16 GB. hence, we ran the experiments
for the US-2016 dataset on a Linux system with 64 GB of RAM.

6.2 Accuracy of the Approximation

In order to test the accuracy of the approximate algorithm, we compared the
algorithm with the exact version. We compute the average relative error in
the estimation of the IRS size for all the nodes, in function of the number
of buckets (8 = 2¥). Running the exact algorithm is infeasible for the large
datasets due to the memory requirements, and hence, we test only on the
Slashdot and Higgs datasets to measure accuracy. We tested accuracy at
different window lengths. The results are reported in Table 3.3. As expected
from previous studies, the accuracy increases with . There is a decrease
in accuracy with increasing window length because as the window length
increases, the number of nodes with larger IRS increases as well, resulting
in a higher average error. values beyond 512 yield only modest further
improvement in the accuracy. Therefore, we used B = 512 as default for all
of the next experiments.

60

6. Experimental Evaluation

Table 3.3: Average relative error in the estimation of the IRS size for all the nodes as a function
of b for different window length.

window %
1 10 20
16 0.075 0.116 0.113
Higgs 32 0.044 0.081 0.053
64 0.026 0.056 0.046
128 0.008 0.015 0.017
256 0.005 0.008 0.009
512 0.002 0.006 0.007
16 0.048 0.055 0.105
Slashdot 32 0.023 0.044 0.042
64 0.013 0.022 0.33
128 0.011 0.04 0.05
256 0.01 0.026 0.025
512 0.005 0.019 0.02

Dataset B

6.3 Runtime and Memory usage of the Approximation Algo-
rithm

We study the runtime of the approximation algorithm on all the datasets for
different window lengths w. The runtime increases with the increasing win-
dow length, as expected given that the number of nodes in the IRS increases,
resulting in more elements in the VHLL to be merged. We study the pro-
cessing time in function of the time window w. Here we vary w from 1%
to 100%. The results are reported in Figure 3.3. It is interesting to see in
Figure 3.3 that the processing time becomes almost constant as soon as the
window length reaches 10%. This is because the IRS does not change much
once the time window is large enough. This behavior indicates that at higher
window lengths the analysis of the interaction network becomes similar to
that of the underlying static network. As the algorithm is one pass it scales
linearly with the input size. For the largest data set US-2016 with approx 45
million interactions the algorithm was able to parse all the interactions in just
8 min.

As shown in Table 3.4, we observe that the space consumption is essen-
tially dependent on the number of nodes and not on the number of interac-
tions on the network. For example, on Enron dataset the total space require-
ment is just 295 MB for w = 20%, whereas for Higgs the memory requirement
is 1229 MB, as the number of nodes for this data set is 4 times that of Enron.
It is natural to see a slight increase in the space requirement with window
length w as the lists in the vHLL sketches become larger.

61

Chapter 3. Information Propagation in Interaction Networks

Table 3.4: Memory used in MB to process all the interactions at different window length w

Datasets w=1 w=10 w=20
Slashdot 194.9 385.4 431.5

Higgs 1008.6 11383 1229.8
Enron 416.3 426 426.3
Facebook 247 .4 470 496.2
Lkml 228.5 282.5 295.2

Us-2016 50449 56,829 59,104

10000

1000 £

Log (Time)
1<
g

Facebook
Enron

Lkml
| Us-2016 —

L L L L L
0 10 20 30 40 50 60 70 80 90 100
Window (%)

Fig. 3.3: Log of the time to process all the interactions as a function of time window w

6.4 Influence Oracle Query Efficiency

Now, we present the query time for the Influence Oracle using IRS. After
the pre-processing step of computing the IRS for all nodes, querying the
data structure is very efficient. We pick seed nodes randomly and query the
data structure to calculate their combined influence spread. In Figure 3.4
we report the average query time for randomly selected seeds. We observe
that, irrespective of the graph size the query time is mostly the same for
all graphs. This is because the complexity of the versionned HyperLogLog
union is independent of the set size. As expected, query time increases with
the number of seed nodes. Even for numbers of seed nodes as large as 10,000,
the query time is just few milliseconds.

6.5 Influence Maximization

Our next goal is to study how the Influence Reachability Set could be used to
solve the problem of Influence Maximization. First we do an effectiveness
analysis and then an efficiency comparison with the baseline approaches.

Effectiveness analysis:

We compare the influence spread by running the Time Constrained In-
formation Cascade Model with infection probabilities of 50% and 100%. We
compare our sketch based algorithm with the latest sketch based probabilistic

62

6. Experimental Evaluation

60 :
Slashdot
Higgs
50 - Facebook
Enron
Lkml
US-2016 =—
40 + /
)
9 :
%]
E 30+ 4
(0]
£
|_
20 + e
10 e
0 | | | | | | | | |

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Seeds

Fig. 3.4: Influence spread prediction query time in milliseconds for window length, w = 20% as
a function of the seed set size.

approach SKIM [35] and ConTinEst(CTE) [40]. As Both SKIM and ConTinEst
require a specific input format of the underlying static graph we ran a pre-
processing phase to generate the required graph data from the interaction
network. We ran both SKIM and ConTinEst using the code published by
the respective authors. We also compare with other popular baselines PageR-
ank(PR) and High Degree(HD)[66] by selecting top k nodes with highest page
rank and highest out degree. We used 0.15 as the restart probability and a
difference of 10~* in the L1 norm between two successive iterations as the
stopping criterion. We also introduced a variation of High Degree called
Smart High Degree(SHD) in which instead of selecting top k nodes with high-
est degree we select nodes using a greedy approach to maximize the distinct
neighbors.

The results of our comparison are reported in Figure 3.5. We observe
that in all the datasets the influence spread by simulation through the seed
nodes selected by our IRS exact algorithm is consistently better than that of
other baselines. The IRS approx approach results in lesser spread but still
it is best for Lkml dataset and is close to other baselines in other datasets.
In other datasets like Enron or Facebook the nodes with highest degree are
the same node for which the longer temporal paths exists hence the spread
is similar. SKIM and ConTinEst both perform worst at smaller windows
but with higher window lengths their performance increases; this is because
for higher window lengths there is less pruning of the information channels

63

Chapter 3.

10000

45000

Information Propagation in Interaction Networks

6000

" e
9000 — 40000 Ho — Ho —
— - SKIM 5000 SKIM
a0 000 || sty — R
e — | R —
o o | ot i)
B e % asom0 % s
s000 20000
"
3 2000
w0 a8 15000
=43
2000
st
3000 IRS(EXACT) mmm 10000
e
200 s000 o
s B 3= % 3 W w w & w s % = wm m W m s & w s » B w B W B @ & w
wop ook ok
— 0, i o, — o,
(a) Lkml (w = 1%) (b) Enron (w = 1%) (c) Facebook (w = 1%)
11000 20000
T T
— fri—
5000 2 a8
1000 e 1000 e
= Ry —— Rsoman
— = e — et —
e P
_ o0 = —
o 8000 o 17000
o 25000
7000 Eid 16000
st ——
e — 20000
i)
a0 15000
I I I I I I I I I I
wop wp wp
J— 0, — 0, — 0,
(d) Lkml (w = 20%) (e) Enron (w = 20%) (f) Facebook (w = 20%)
17000 s0000 12000
e e
Bn= BR=
L6000 45000 so 10000 so
Raosn R povon
Sl — Sl —
oo waco = wooo | sl
P
& 14000 & = &
s2000 a0
13000
) 25000 200
12000 f-
20000 o ‘
T I T T R T R TR R T T T T TR
wp o o
— 0, _ 0, 1 _ 0,
(g) Lkml (w = 1%) (h) Enron (w = 1%) (i) Facebook (w = 1%)
20000 ss000 20000
T T T
19500 Jo— Jo— 27000 o
S so000 Fi e
1000 | sty —— O 20000 |- msiapis
Sihd — St — st —
e s s
lxnnn/’f)
£ £ e ——
17500 — 40000 = 23000
17000 - 2000
35000
Lo500 21000
16000 20000 20000
T N R T T R R R R s Hw wm wm o o% W w s & m

topk

(j) Lkml (w = 20%)

topk

(k) Enron (w = 20%)

topk

(1) Facebook (w = 20%)

Fig. 3.5: Comparing the spread of the influence of top k seeds using Simulation Algorithm for
different seed size at different window length w at Infection probability 50%(a-f) and 100%(g-1)

respectively.

resulting in a very small change in the Influence reachability set size. Hence,
the behavior is the same as the analysis of the static graph and the time
window does not have much effect on the Influence Reachability Set. The Smart
High Degree approach out-performs High Degree in all of the cases. For
smaller values of k the spread is very similar because of common seeds, for
example 4 out of 5 seeds are common in Slashdot as nodes with highest
page Rank is the also the node with highest degree and highest IRS set size

64

6. Experimental Evaluation

Table 3.5: Common seeds between different window length for top 10 seeds

Datasets 1% -10% 1% -20% 10% - 20%

Slashdot

Higgs
Enron

Facebook
Lkml
US-2016

N O Wo
NO O~ O
S U1 O N W N\

Table 3.6: Time in seconds to find top 50 seeds by IRS(approx) and all other baseline approach.

Datasets IRS SKIM PR HD SHD CTE
Slashdot 1.1 1.2 219 09 21 694

Higgs 2.2 43 298 0.7 1.5 3,802
Enron 93.7 22 494 04 8.1 1,349
Facebook 10.3 1.1 356 0.5 29 790
Lkml 117.9 1.7 29.8 05 229 733

US-2016 498 23.6 4,261 474 3,3384 -

at w = 1%. But as k increases IRS performs much better.
Efficiency analysis:

Next, we compared the time required to find the top 50 seeds. The results
are reported in Table 3.6. For IRS we report time taken by the more efficient
IRS approx approach. The IRS approach takes more time for Enron and
Lkml as compare to other baselines because the IRS approach depends on the
number of interactions. While IRS is slower than Page Rank and Smart High
Degree for smaller datasets it scales linearly with the size and takes 8 times
less time for the US-2016 dataset with millions of nodes and interactions.
For SKIM the time required to find top k seeds is quite low. However, it
requires preprocessed data in the DIMACS graph format [1] and the pre-
processing step takes up to 10 hours for the US-2016 dataset. ConTinEst does
not scale so well for large graphs and is the slowest in all dataseta. For the
US-2016 dataset the memory requirements were so high that it could not even
finish the processing. IRS provides a promising tradeoff between efficiency
and effectiveness, especially for smaller window lengths when the temporal
nature of the graph has a higher role in determining the influential nodes.
Effect of window on top k seeds:

To see the effect of the time window on the most influential nodes we
study the common seeds between different window lengths. We observed
that the top k seeds change drastically as we change the window length, es-

65

Chapter 3. Information Propagation in Interaction Networks

pecially when the window length is small. But for window lengths greater
than 10% the top k seeds do not change much. For US-2016 the top 10 seeds
are exactly the same for the 10% and 20% window. In Table 3.5 we have re-
ported the common seeds among different top 10 seeds at different window
lengths. There are no common seeds between the top 10 seeds found for win-
dow lengths of 1% and 10% for Slashdot and Enron and only 3 — 4 common
seeds for Higgs, Facebook and Lkml. This shows that for different window
lengths there are different nodes which become most influential and hence it
is necessary to consider window length while doing Influence maximization.

7 Conclusion

We studied the problem of information propagation in an interaction net-
work. We presented a new time constrained influence channel based approach
for Influence Maximization and Information Spread Prediction. We pre-
sented an exact algorithm, which is memory inefficient, but it set the stage for
our main technique, an approximate algorithm based on a modified version
of HyperLogLog sketches, which requires logarithmic memory per network
node, and has fast update time. One interesting property of our sketch is that
the query time of the Influence Oracle is almost independent of the network
size. We showed that the time taken to do influence maximization by a greedy
approach on our sketch is very time efficient. We also showed the effect of
the time window on the influence spread. We conclude that smaller window
lengths have very high impact on the Information propagation and hence it
is important to consider the spread window to do Influence maximization.

66

Chapter 4

Location Influence in
Location-based Social
Networks

The paper has been published in the Proceedings of the 10th ACM Interna-
tional Conference on Web Search and Data Mining (WSDM), 2017.
DOI: http://doi.acm.org/10.1145/3018661

Abstract

Location-based social networks (LBSNs) are social networks complemented with lo-
cation data such as geo-tagged activity data of its users. In this chapter, we study
how users of a LBSN are navigating between locations and based on this information
we select the most influential locations. In contrast to existing works on influence
maximization, we are not per se interested in selecting the users with the largest set
of friends or the set of locations visited by the most users; instead, we introduce a
notion of location influence that captures the ability of a set of locations to reach
out geographically. We provide an exact on-line algorithm and a more memory-
efficient but approximate variant based on the HyperLogLog sketch to maintain an
Oracle data structure that allows to efficiently find a top-k set of influential locations.
Experiments show that our algorithms are efficient and scalable and that our new
location influence favors diverse sets of locations with a large geographical spread.

67

Chapter 4. Location Influence in Location-based Social Networks

Check-ins Friendships

a, f,h
loc Users >@ User Friends
t=2 t=3 af

t=1 a ¢h,i
T, b,cef ah f bree \ b df,i
T, ah 1.8 a P c af
M; g i d A) d b,e
H - b,c,d,e i d,i 4 ' e dg
Hy di - _ @ f b
d,i 8§ ¢
h a
i ab

Fig. 4.1: Running example of a LBSN
1 Introduction

This work is done in collaboration with another PhD student Muhammad
Aamir Saleem and his supervisors Xike Xie and Torben Bach Pedersen. For
Section wise contribution details please refer to Section 8.

One of the domains [6, 44, 85] in social network analysis that received am-
ple attention over the past years is influence maximization [66], which aims at
finding influential users based on their social activity. Applications like viral
marketing utilize these influential users to maximize the information spread
for advertising purposes [29]. Recently, with the pervasiveness of location-
aware devices, social network data is often complemented with geographical
information. For instance, users of a social network share geo-tagged content
such as locations they are currently visiting with their friends. These social
networks with location information are called location-based social networks
(LBSN).

In this chapter, we study navigation patterns of users based on LBSN data
to determine influential locations. Where other works concentrate on finding
influential users [119], popular events [125], or popular locations [127], we
are interested in identifying sets of locations that have a large geographical
impact. Although often overlooked, the geographical aspect is of great im-
portance in many applications. Consider, for instance, a marketer interested
in creating visibility of her products by offering free promotional items. In
order to choose the most suitable locations for offering these items, not only
the popularity of the places is important, but also the geographical reach.
By visiting other locations, people that were exposed to the advertisement,
especially the receivers of the promotional items, may indirectly promote the
products. When the goal is to create awareness of the product name, it may
be preferable to have a moderate presence in many locations throughout the
whole city rather than high impact in only few locations. Consider the LBSN
example in Figure 1. Nodes represent popular locations of different cate-

68

2. Related Work

gories, such as tourist attractions (T, T3), a metro station (M;), and hotels
(Hj and Hj). Lower-case letters represent users. For each user, her friends in
the social network and check-ins have been given. The top-2 locations with
the maximal number of unique visitors are T;, M;. The geographical impact
of these locations, however, is not optimal; visitors of these locations reach
also T, and H7, while the visitors of T, H, visit all locations.

To capture geographical spread and influence, in Section 3 we introduce
the notion of a bridging visitor between two locations as a user that visits both
locations within a limited time span. If there are many bridging visitors from
one location to another, we say that there is an influence. We introduce differ-
ent models that capture when the number of bridging visitors is considered
to be sufficient to claim influence between locations. One model is based on
the absolute number of visitors, one on the relative number, and we also have
variants that take the friendship graph into account. Based on these models,
we define influence for sets of locations and the location influence maximization
problem: Given a LBSN and a parameter k, find a set of k locations such that their
combined location influence on other locations is maximal.

To solve this problem, in Section 4 an exact online algorithm, called In-
fluence Oracle, is presented that maintains a summary of the LSBN data that
allows to determine the influence of any set of locations at any time. Based on
this data structure, we can easily solve the location influence maximization
problem using a greedy algorithm. As for large LBSNs with lots of activities
the memory requirements of our algorithm can become prohibitively large,
we also develop a more memory-friendly version based upon the well-known
HyperLogLog sketch [45].

In Section 5 we analyze several LBSNs to select reasonable threshold val-
ues for our models. In Section 6 the effectiveness and efficiency of our algo-
rithms are demonstrated on these datasets. In a qualitative experiment, the
effect of our new location influence notion is illustrated.

In summary, the main contributions of this chapter are (i) the introduction
and motivation of a new location-to-location influence notion based on LBSN
data, (ii) the development of an efficient online Influence Oracle, and (iii)
the demonstration of the usefulness of the location influence maximization
problem in real-life LBSNs.

2 Related Work

Influence maximization in the context of social networks has already been
studied in much detail [53, 51, 30]. We focus here mainly on works that study
the identification of influential users, events, or locations from LBSNs data.
We divide the studies into two groups. The first group covers studies using
check-ins as an additional source of data to identify influential users, whereas

69

Chapter 4. Location Influence in Location-based Social Networks

the second group utilizes the check-ins for finding influential locations.

Influential users and events. Zhang et al. [125] use social and geograph-
ical correlation of users to find influential users and popular events. Users
with many social connections are considered influential as well as events vis-
ited by them. Similarly, Wu et al. [119] identify influential users in LBSNs
on the basis of the number of followers of their activities (check-ins). Li et
al. [77] and Bouros et al. [21] on the other hand, identify regionally influential
users on the basis of their activities. The focus of the work by Wen et al. [117]
and Zhou et al. [126] is to find and utilize the influential users for product
marketing strategies such as word-of-mouth. Our focus, however, is to find
influential locations that could be used, e.g., for outdoor marketing. None of
the previous works applies directly to our problem.

Influential locations in LBSNs. Zhu et al. [127], Hai [54], and Wang et
al. [115] study location promotion. Given a target location, their aim is to find
the users that should be advertised to attract more visitors to this location.
On the other hand, in Zhou et al. [126] study the problem of choosing an
optimal location for an event such that the event’s influence is maximized;
that is, they aim at finding a single location which attracts most users.

Novelty. Our work is different from all of the above as we focus on find-
ing a set of influential locations where influence is defined using visitors as a
mean to spread influence to other locations. Applications include outdoor
marketing by selecting locations with maximal geographical spread.

3 Location-based Influence

We first provide preliminary definitions and then present location influence.
Moreover, we formally define the Oracle and Location Influence Maximization
problems.

3.1 Location-Based Social Network
Let a set of users U and a set of locations L be given.

Definition 9

An activity is a visit/check-in of a user at a location. It is a triplet (u,1,f),
where u € U is a user, [€ L a location and ¢ is time of the visit of u at [. The
set of all activities over U and L is denoted A(U, L).

Definition 10
A Location Based Social Network (LBSN) over U and L consists of a graph
Gs(U, F), called social graph, where F < {{u,v}|u,v € U} represents friend-
ships between users, and a set of activities A < A(U,L). It is denoted
LBSN(Gs, A).

70

3. Location-based Influence

3.2 Models of Location-based Influence

The influence of a location is its capacity to spread its visitors to other loca-
tions. The effect of an activity in a location, however, remains effective only
for a limited time. We capture this time with the influence window threshold
w. Visitors that travel from one location to another within a time w are called
Bridging visitors:

Definition 11

Bridging Visitor: Given LBSN(Gg, A) and w, a user u is said to be a bridging
visitor from location s to location d if there exist activities (u,s,t;),(u,d, t;) € A
such that 0 < t; — t; < w. We denote the set of all bridging visitors from s to
d by VB(w) (S, d)

The influence of a location s is measured by two factors, i.e., the number
of locations that are influenced by s and the impact by which s influences
the locations. The impact of an influence between two locations s and d is
captured by the influence models (M).

Absolute Influence Model (M 4)

In practice, if a significant number of people perform an activity, then it
is considered compelling. Thus, in order to avoid insignificant influences
among locations, we use a threshold 4. The influence of a location s on a
location d is considered only if the number of bridging visitors from s to d is
greater than 74. The influence of a location s on d under M, is represented

by Ip(w,) (s, d):

1’ if Vi w S/d =T
Inrp) (s d) = {0 Vi (5,4)] > T4

We omit w and 74 from the notations when they are clear from the con-
text.

/ 4.1)
otherwise

Example 12
Consider the running example of Figure 1. Let 74 = 2 and w = 2. Then,
I4(Ty, H1) = 1 because |VB(T1,H1)| =3 (= 1) Similarly, I4(Hy, Hy) = 1.
However, I[4(M7, Hy) = 0 because |V3(M1, Hy)| = 1(* t4).

The influence between two locations may change with the value of 74 and
w. For example, if we update the value of 74 to 3 and w to 2, I4(Ty, Hy) =1,
however, 14 (Hpy, H1) becomes 0 because |V(Hy, Hy)| = 2(* T4).

Relative Influence Model (Mg)

In My, the influences of two pairs of locations are considered equal as long
as the number of their bridging visitors is greater than 74. Sometimes, how-

71

Chapter 4. Location Influence in Location-based Social Networks

ever, the relative number of contributed bridging visitors is important. Con-
sider, for example, a popular location s that attracts many visitors and a
non-popular location d with few visitors. In such a setting, to capture the in-
fluence of s on d, we may have to set the absolute threshold 74 very low. This
low value of T4, however, may result in many other popular locations being
influenced by s even if only a very small fraction of their visitors come from s.
Therefore, in such situations, it may be beneficial to use different thresholds
for different destinations, relative to the number of visitors in these destina-
tion locations. This notion is captured by the relative influence model (MRg).
The influence of s on d under My is represented by I,)(s,d) and is pa-
rameterized by the relative threshold x:

V ,d
y IVB(w) (s, d)] _—
V()] (4.2)
0, otherwise

w, TR

1,
IR(UJ,TR) (s,d) :=

where V(d) is the set of users who visited location 4.

Example 13

Consider the running example given in Figure 1. Let 7g = 0.4 and w = 2.
. Vp(Ty, H be,

In this example, Ir(T;, H;) = 1 because | B‘(V;I‘l)‘ = {|’;{,c,5l,i%i|}| = % > TR,

Similarly, Ir(Hy, H1) =1 and Ig(M;1, Hy) = 0.

3.3 Friendship-Based Location Influence

Activity data in LBSNs is often sparse in the sense that the number of check-
ins per location is low. In Section 6 we see that in the real-world datasets we
use there have only up to 6 check-ins per location on average. This sparsity
of data affects the computation of location influence. In order to deal with
this issue, we use the observation that users tend to perform similar activities
as their friends (This claim is verified and confirmed in Section 5). Hence, we
define friendship-based influence between locations, by incorporating also
friends of bridging visitors, which we consider potential visitors. The set of
bridging visitors together with the potential visitors from a location s to d
is represented by Vs (,,)(s,d), and the set of visitors to a location d together
with their friends is denoted V((d).

In order to incorporate potential visitors in the influence models, we re-
place Vp(,,)(s,d) in Equation (4.1) and Equation (4.2) by Vg (.,)(s,d), and V(d)
in Equation (4.2) by V((d). The updated influence of s on d under M, and
MR respectively are represented by 4.7, 5 (s,d) and Ig (e, f)(s, d). Again,
we omit w, T4¢ and Tgy from the notations when it is clear from the context.

72

3. Location-based Influence

Example 14
Let T4 = 2 and w = 2. We have I4¢(Ty, Hy) = 1 because |Vps(T1, H1)| =
{a,b,c,d,e, f,g,i}| exceeds Taf- Similarly, IAf(Hz, H;) =1and IAf(Ml,Hl) =
1.
Furthermore, let gy = 0.4 and w = 2. We have Ig¢(T1,H;) = 1 be-
|Vps(T1,Hy)l _ |{a,b,c,d,e,f,g,1:}| _1
Vi, £l {abede,f,gi}l
Irf(My, Hy) = 0.

cause

(= rf). Similarly, Ir¢(Hz, Hy) = 1 and

3.4 Combined Location Influence

Based on the influence models, a location can influence multiple other loca-
tions. In order to capture such influenced locations, we define the Location
influence set:

Definition 12
Given a location s, and an influence model M, the location Influence Set ¢y, ,(s)

is the set of all locations for which the influence of s on that location under
Mis1,ie., ¢1,(s) = {deL|Iy(s,d) =1}

Next, we define combined location influence for a set of locations S. To do
this, we use the following principled approach: any activity at one of the
locations of S is considered an activity from S. In that way we can capture
the cumulative effect of the locations in S; even though all locations in S in
isolation may not influence a location d, together they may influence it. The
bridging visitors from a set of locations S to d is represented by Vp(,(S, d):

Vi) (S,d) = | Va(w)(s,d) (4.3)

SES

The influence of a set of locations S on location d under M, and My is
defined similarly as for single locations.

Example 15
In Figure 1, let w =2, 74 =3 and S = {T7, M1}. Under My, T> ¢ ¢(T7) and
T, ¢ $(M,). However, T, € ¢(S) as |Vp(S, To)| = {a, f, g} = Ta.

3.5 Problem Formulation

Based on these influence models, we now define two problems related to
finding influential locations in a LBSN.

Problem 1

(Oracle Problem) Given a LBSN and an influence model M, construct a data
structure that allows to answer: Given a set of locations S < L and a threshold T,
what is the combined location influence ¢y, (S) of S.

73

Chapter 4. Location Influence in Location-based Social Networks

Once we have such an Oracle, we can utilize it for many interesting appli-
cations. One such application we consider in this chapter is finding the top-k
most influential locations:

Problem 2

(Location Influence Maximization Problem) Given a parameter k, a LBSN,
and an influence model M, the location influence maximization problem is
to find a subset S < L of locations, such that |S| < k and the number of
influenced locations |¢y,,(S)| is maximum.

4 Solution Framework

We first provide a data structure to solve the oracle problem. We present
an exact algorithm in Section 4.1 and an approximate but more memory-
and time-efficient algorithm in Section 4.2. Finally, in Section 4.3, we solve
Problem 2 with a greedy algorithm.

4.1 Influence Oracle

In this section, we provide a data structure for maintaining location sum-
maries for each location. We assume activities arrive continuously and deal
with them one by one. The summary ¢(s) for a location s consists of the
list of all locations to which it has bridging visitors. We present an online
algorithm to incrementally update these summaries.

Definition 13
The Complete location summary for a location s € L is the set of locations that

have at least one bridging visitor from s, together with these bridging visitors;
ie, ¢(s) :={(d,Vp(s,d)) |de L A |Vp(s,d)| > 0}.

If a user u visits a location s at time ¢, then u acts as a bridging visitor be-
tween all the locations u visited within the last w time stamps and s. There-
fore, for each user u € U, we maintain a set of locations the user has visited
and the corresponding latest visiting time. This is called the visit history H(u)
and is defined as H(u) := {(s, tmax)|4 € V(S), tmax = max{t | (u,l,t) € A}}.
Suppose that we have the complete location summary for the check-ins so far
and the visit history of all users, and a new activity (u,d, t) arrives. We up-
date the complete location summary as follows: the location-time pair (d, t)
is added in H(u) if d does not already appear in the visit history, and other-
wise the latest visit time of d is updated to ¢ in H(u). Furthermore, for every
other location-latest visit time pair (s,#') in the history of u, ¢(s) is updated
by adding user u to the set of bridging visitors from s to d provided that the
difference between the time stamps t — t’ does not exceed the threshold w.
This procedure is illustrated in Algorithm 9.

74

4. Solution Framework

Algorithm 9 Updating complete location summaries

: Input: New activity (u,d, t), threshold w, ¢(I) for I € L

1

2:

3: Output: Updated ¢(.) and H(.)
4 for (s,) € H(u) do
5: ift—f < w then
6 if (d, Vp(s,d)) € ¢(s) then

7 Vi(s,d) « Vp(s,d) U {u}

8 ¢(s) — @(s)\{(d, Vi(s,d))}
9

: else
10: Vi(s,d) < {u}
11: end if
12: @(s) < @(s) u{(d,Vg(s,d))}
13: else
14 H(u) — H\((s, 1))
15: end if
16: end for

17: i 3¢ = (d,1') € H(u) then
18 H(u) < (Hu)\{(dt)})
19: end if

20: H(u) «— H(u) v {(d, 1)}

Example 16

We illustrate the algorithm using the running example shown in Figure 1.
For simplicity, we only consider the activities of two users: d and i. We also
add a new activity of d at Hp at time stamp 5. In this example, we consider
w = 2. The activities are processed one by one in increasing order of time. We
show how the visit history (i), H(d) and the complete location summaries
¢(H1), p(Hz), (M) evolve with different activities at different time stamp
in Figure 4.2. Note, at time stamp 5 only ¢(M;) is updated even though M;
and H; are both in the visit histories of d because w = 2. The visit history of
d is cleaned by removing H; from the H(d) as no future activities by d affect
@(H1). The visit time of Hj is updated to the latest visit time. Similarly, #(i)
is also cleaned up.

It can be observed from the example that a new activity of a user u only
updates the complete location summary of the locations in the recent visit
history of u. Notice that, since the activities of a user arrive in strictly in-
creasing order of time, the size of H(u) is upper bounded by w, as only
locations that are visited within a time window w are processed.

Proposition 5
The time required to process an activity is O(wlog(|U])). The the complete

75

Chapter 4. Location Influence in Location-based Social Networks

t=1 t=2 t=3 t=5
.. (i,Hy, 1) (i,My,2) (i, Hy,3)
Activity: (d, sz, R Hi,Z) @,]\/1[1,3) (d, Hp,5)
{(Hz, 1)/
niy: {my D) g3y
(Mllz)} (H)}
{(HZ/)/
. {(Hzrl)/ {(M1/3)/
H(d) . {(HZr 1)} (H1,2)} E]Ialr))/ (H2,5)}
1,3
e(H1): {} i} {My, {d})} {(My, {d})}
(P(HZ) . {} {(le{d})/ {(le{d})/ {(Hll {d})/
' My, 4ih)) - (M {7, dh)} (M, {i,d})}
M) () 0 ()

Fig. 4.2: Updating ¢(I) and H for w = 2 for M4

location summary ¢@(.) can be stored in O(|L[*|U|) memory and for the visit
history #(.) in O(|U|w) memory.

Proof. The visit history H(u) for a user u can at maximum have w locations
hence the for loop in line 4 of the algorithm will run for maximum w iter-
ation. The maximum set size of the bridging visitors is |U|, so adding an
element to the set will take maximum log(|U|) time using an appropriate
data structure, such as a balanced tree for storing a set. Thus, the total time
for processing an activity in the worst case is O(wlog(|U])). The memory
complexity is straightforward as there could be maximally |L| influenced lo-
cations and the bridging visitor set size is at most |U|, hence, the memory
complexity is O(|L||U][) in the worst case for a location hence for all locations
it is O(|L]2|U]). O

Proposition 6
The time required to produce ¢(S) from ¢(.) for given threshold T and set of
locations S is O(|S||L||U|log |U]).

Proof. Every location can have influence on maximally |L| locations with the
bridging visitor set size at most |U|. Hence, to produce ¢(S), the union of
sets of size |U| has to be taken at most |S||L| times, thus, the time complexity
is O(|S||L||U]). O

Relative and Friendship-Based Location Influence. For the relative mod-
els, we additionally have to maintain the total number of unique visitors per
location, which can be done in the worst case time O(log(|U])) and space
O(]U|) per activity and hence does not affect the overall complexity. For the

76

4. Solution Framework

friendship-based location influence, for every activity, we process the same
activity at the same time for all friends as well. As the number of friends is
bounded by |U]|, we get:

Proposition 7

The time required to process an activity for Friends based bridging visitors
is O(w|U|). The memory required to maintain the summary is the same as
for the Mp, O(|L*|U])).

Proof. Every user can have maximally |U| friends and hence adding them in
the bridging visitor set would take |U| time. There are maximum w location
in the visit history of a user, thus, bridging visitors of w locations would be
updated giving a total time complexity of O(w|U]). O

4.2 Approximate Influence Oracle

In worst case the memory requirements of the exact algorithm presented
in last section are quite stringent: for every pair of locations (s,d), in ¢(s)
the complete list of bridging visitors from s to d is kept. Therefore, here
we present an approximate algorithm for maintaining the complete location
summaries in a more compact form. This compact representation will repre-
sent a significant saving especially in those cases where the window size w is
large since in that case the number of bridging visitors increases.

We observe that when computing the number of bridging visitors be-
tween s and d we do not need the set of bridging visitors between s and
d, but only the cardinality of that set. For the relative number of bridging
visitors, we additionally need only the numbers of visitors |V (s)|. Further-
more, as per Equation 4.3, in order to find the accumulated complete loca-
tion summary, we need to combine two complete location summaries; for
instance: the complete location summary ¢({s1,s,}) is obtained by taking
the following pairwise union of ¢(s1) and ¢(sy): if ¢(s1) and ¢(sp) respec-
tively contain the pairs (d, Vg(s1,d)) and (d, Vg(s1,d)), then ¢({s1,s2}) con-
tains (d, Vp(s1,d) U Vg(sp,d)). But then again, for further computations, we
only need the cardinality of the bridging visitor sets. Hence, if we accept
approximate results, we could replace the exact set Vp(s,d) with a succinct
sketch of the set that allows to take unions and get an estimate of the cardinal-
ity of the set. In our algorithm, we use the HyperLogLog sketch (HLL) [45] to
replace the exact sets Vp(s,d) and V(s). The HLL sketch is a memory-efficient
data structure of size 2 that can be used to approximate the cardinality of a
set by using an array. The constant k is a parameter which determines the ac-
curacy of the approximation and is in our experiments in the order of 6 to 10.
Furthermore, the HLL sketch allows unions in the sense that the HLL sketch
of the union of two sets can be computed directly from the HLL sketches of
the individual sets. For our algorithm, we consider the HLL algorithm as

77

Chapter 4. Location Influence in Location-based Social Networks

a black box. By using HLL, we not only reduces memory consumption but
also improve computation time, because adding an element in a HLL sketch
can be done in constant time and taking the union of two HLL sketches takes
time O(2%); that is: the time to take the union of two sets is independent of
the size of the sets.

Proposition 8

Let b = 2F be the number of buckets in the HLL sketch. The time needed to
process an activity using the HLL sketch is O(w). The memory required to
maintain the complete location summary is O(|L|?b).

Proof. Adding an element in a HLL set takes constant time, hence, to process
the activity HLL set of w locations will be updated in O(w). The size of the
HLL set is b irrespective of the number of elements in the set and thus, the
memory required to store ¢(!) is O(|L|b). Hence, for all locations the memory
required is O(|L[?b). O

4.3 Influence Maximization

In order to solve the Location Influence Maximization Problem, we apply the
standard greedy algorithm to compute top-k as obtaining an exact solution
is intractable as the next proposition states. The proof relies on a reduction
from set-cover.

Proposition 9

The following problem is NP-complete for all influence models: given a
LBSN and bounds k and f, does there exist a set of locations S of size k
such that |¢(S)| = B.

Proof. Inclusion in NP is trivial as the set S can be guessed. NP-hardness fol-
lows from a reduction from set cover []. Consider an instance § = {Sy,...,Sn}
withall §; € {1,...,n} and bound k of the set cover problem: does there exist
a subset S’ of S of size at most k such that | JS’ = {1,...,n}. We reduce this
instance to a LBSN as follows: L = {I1,..., I} u{sy,...,sm}, U = {u1,..., um},
F=g,A={(u;s;,0)|i=1...m}u{(u;l,j)|i=1...m,jeS;}. Thatis, ev-
ery element j of the domain {1, ..., n} is associated to a location lj, and for ev-
ery set S; we introduce a location s; visited by user u; at time 0. Furthermore,
user u; visits all locations /; such that j € S; at time stamp j. If we use the ab-
solute model with T =1land w 2 n+1,fori=1...m, ¢({s;}) = {l; | j € S;}.
As such there exists a set cover of size k if and only if there exists a set of
locations S of size k such that |¢(S)| = n. O

Recall that the influence of a set of locations S is computed by accumu-
lating the effect of all locations in S. It is hence possible that two locations
s and s’ separately do not influence a target location d because individually

78

4. Solution Framework

they have too few bridging visitors to d, but together they reach the thresh-
old. This situation occurs for instance in Figure 1, for the locations H, and
M;. These locations individually do not reach the threshold to influence H;
for 74 = 2 and w = 1. However, together they do. One inconvenient con-
sequence of this observation is that the influence function that we want to
optimize is not sub-modular [80]. Indeed, in the example above, adding H»
to the set {M;} gives a higher additional benefit (1 more influenced location)
than adding H, to {}. Therefore, we do not have the usual guarantee on the
quality of the greedy algorithm for selecting the top-k.

The main reason that we do not have the guarantee is that the benefit
is not gradual; before the threshold is reached it is 0, after the threshold is
reached it is 1. This means that a location that has T — 1 bridging visitors to
1000 other locations each, gives the same benefit as a location that does not
have any bridging visitors. Clearly, nevertheless, the first location is more
likely to lead to a good solution if later on additional locations are selected.
Therefore, we would like to incorporate potential future benefits into our ob-
jective function. Thus, in order to compute the influence of a location, we
consider locations that are influenced as well as those locations that are not
yet influenced but have potential to be so in future. To characterize the poten-
tial of future benefit in combination with the number of influenced locations,
we use the following formula:

dag¢s

LI(S) = (1= a) x [¢(S)] + («) x Y (min{|V5(S,d)|, T}) (4.4)
del

In this formula, & = [0, 1] represents a trade-off between the number of influ-
enced locations and a reward for potential influenced locations. For relative
models, we replace the |V5(S,d)| with |Vp(S,d)|/|V(d)|.

Next, we apply a greedy method on the basis of location influence to find
top-k locations. We start with an empty set S of locations and iteratively add
locations to it until we reach the required number of top elements: k. In each
step, for each location s € L, we evaluate the effect of adding s to S, and keep
the one that gives the highest benefit LI(S). Then, we update S « S u {I}.

Example 17

Consider the case in Figure 4.2 for w = 1, ¢(Hy) = {(Hy,{d}), (M1, {i})},
e(M1) = {(H1,{i})} and ¢(H1) = {(My,{d})}. We aim to find top-2 loca-
tions in this example with & = 0.1 and T = 2. During the first iteration,
LI(Hp) =09 x0+0.1 x (1+1) = 0.2, because H, does not completely influ-
ence any other location, however H; and M; are potential influenced loca-
tions for the bridging visitors d and i, respectively. Similarly, LI(M;) = 0.1
and LI(H;) = 0.1. Thus, we choose Hj as first seed as it has maximum value.
In the next iteration, we first combine the seed H, with M; and compute the

79

Chapter 4. Location Influence in Location-based Social Networks

Non-Friends 1 F
Friends === P

009 TEEEE=L

08 =

0.06 0.6 |/

CDF

0.4

Correlation

0.03

ﬂ ﬂ § Q 0.2 FourSquare
BrightKite -
0 N @ & 0 Gowalla

Brooklyn Manhattan Pittsburgh Washington 0 10 20 30 40 50
Cities time (in hrs)
(a) Visit correlations (b) CDF of visit time

Fig. 4.3: Statistical analysis of the LBSN data.

combined influence. Here, LI({Hy, M1}) = 09 x1+0.1 x (2) = 1.1. Sim-
ilarly, LI({H,H1}) = 1.1 . Since, M; and H; provide equal benefit of 0.9,
when combined with Hj, thus we can randomly choose either M; or H; as a
second seed.

5 LBSN Data Analysis

When constructing the friendship-based influence model the assumption was
made that friends tend to follow friends. Furthermore, the influence mod-
els of Section 3.3 have several parameters to set: T and w. Before going to
the experiments, first in this section we verify and confirm the friendship as-
sumption and show how to set the thresholds with reasonable values based
on an analysis of the LBSN datasets given in Table 4.1.

5.1 Mobility analysis of friends

In real life, usually activities of friends are more similar than activities of non-
friends. In LBSNS, this implies that a visit of a user to a location increases
the chances of visits of his/her friends to the same location. We considered
this assumption when constructing our friendship-based influence model in
Section 3.3. We illustrate the correctness of this assumption by computing
the correlations between activities of users, their friends, and non-friends:
Let L, and L, be the locations visited by users u# and v, respectively. The
correlation between activities of u and v is measured by the Jaccard Index
[22] between L, and L,. The average correlation of activities of users and

those of their friends is denoted friendship correlation (p{orr), and the average
correlation between activities of users and their non-friends is denoted Non-
friendship Correlation (p?g;r). In order to avoid an unreasonable bias due to the

80

5. LBSN Data Analysis

[— 1F
08|/ 081 -
LL LL
0.6 0.6 |
[a))] g
O 04} O o4t
FourSquare FourSquare
02 BrightKite -] 02 if BrightKite -
0)) . Gowalla . 0)) Gowalla)
10 20 30 40 50 0 0.2 0.4 0.6 0.8 1
Vgl Vgl / [Vl
(a) Absolute without-friends (b) Relative without-friends
= e 1r
081 e]
LL LL e
0.6 -
o) ./’f
O o O o4y
FourSquare FourSquare
25 BrightKite -] 0.2 BrightKite - 1
0 i)) _ Gowalla) 0) Gowalla)
0 200 400 600 800 1000 0 0.2 0.4 0.6 0.8 1
Vi Vel / [Vl

(c) Absolute with-friends (d) Relative with-friends

Fig. 4.4: Cumulative distribution function (CDF) of thresholds for all influence propagation
models

fact that friends tend to live in the same city, we restrict our computation of
the average non-friendship correlation to users in the same city. We randomly
picked four cities of the United States, i.e., Brooklyn, Manhattan, Pittsburgh,
and Washington and consider the activities of users in these cities to study
the correlations. The statistics of p{o,, and pg,, of all the users are given in
Figure 4.3a. The figure presents boxplots without outliers. It can be seen that
median of p{m, even though still small, is up to 5 times larger than p?gfw. The
same pattern is observed for all the datasets, thus only results for Gowalla are
shown due to space constraints. This validates the claim that the activities of
friends are more similar than non-friends.

5.2 Setting w and T

In order to determine the value of influence window w, we measure the
time difference between consecutive visits of users to distinct locations. The
cumulative distribution functions (CDF) for three LBSNs are given in Figure

81

Chapter 4. Location Influence in Location-based Social Networks

\ Users \ Locations \ Check-ins \ POIs

FourSquare | 16K 803K 1.928M 582K
BrightKite | 50K 771K 4.686M 631K
Gowalla 995K | 1.257M 6.271M 1.162M

Table 4.1: Statistics of datasets

4.3b. It can be seen that for all LBSNs in our study, 80% of the consecutive
activities are performed within 8 hours. Thus, we consider this a suitable
value of w.

We furthermore computed the absolute and relative number of bridging
visitors, both for the with-friends and without-friends models, for each pair
of locations with at least one bridging visitor. The cumulative distribution
functions for each of these numbers are depicted in Figure 4.4. If we assume
that 80% of the locations with bridging visitors between them are influencing
each other, suitable values of T4, Tg, T4 f and TRy are 2,0.4,120 and 0.6, re-
spectively. Obviously, the choice to consider 80% of the connected locations
as influencing is an application-dependent choice to be made. In our case,
the publicly available LBSN datasets are sparse in the sense that only very
few locations have multiple visits and therefore we have chosen to give high
weight to connected locations by claiming influence for 80% of them.

6 EVALUATION

We conducted our experiments on a Linux machine with Intel Core i5-4590
CPU @3.33GHz CPU and 16 GB of RAM, running the Ubuntu 14 operating
system. We implemented the exact and the approximate algorithms in C++.

Datasets. We used 3 real-world datasets : FourSquare [47], BrightKite,
and Gowalla [32]. These datasets each consisted of two parts: the friendship
graph and an ordered list of check-ins. A check-in record contains the user-
id, check-in time, GPS coordinates of location, and a location-id. The statistics
of the datasets are given in Table 4.1.

Data Prepossessing. The real-life datasets required preprocessing be-
cause many locations are associated with multiple location identifiers with
slightly different GPS coordinates. Consider, for instance, Figure 4.5. In this
figure, 13 GPS coordinates that appear in the FourSquare dataset are shown

Fig. 4.5: GPS coordinate of 13 location-ids on GoogleMaps

82

6. EVALUATION

No. of Buckets (b)
64 128 256
5 Abs. mean +¢ | 0.02+0.15 | 0.01+0.1 | 0.01 +0.08
E Abs. friends | mean 0 | 0.167 + 0.63 | 0.08 + 0.45 | 0.04 £+ 0.49
= Rel. mean +¢ | 0.06 +0.23 | 0.06 + 0.23 | 0.06 + 0.23
& | Rel. friends | mean +¢ | 0.05+ 021 | 0.05+ 021 | 0.05+ 0.2
with-out Exact 38.7
g | friends Approx 40 | 37.5 | 42.9
= | with Exact 389.6
friends Approx 61.9 | 671 | 709
B with-out Exact 505
g | friends Approx 531 | 644 | 835
g with Exact 3790
> | friends Approx 541 | 658 | 855

Table 4.2: Exact vs Approx algorithm comparison for accuracy (relative error), time (sec) and
memory (MB)

which corresponds to different locations IDs in the dataset, but which clearly
belong to one unique location. In order to resolve this issue, we clustered
GPS points to get POIs. We used the density-based spatial clustering algo-
rithm [79] with parameters eps=10 meters and minpts=1 to group the GPS
points. New location IDs are assigned to each cluster which were used in all
our experiments. All 3 datasets have similar problems. The statistics of the
new IDs are reported in column POlIs of Table 4.1.

6.1 Approximate vs. Exact Oracle

We analyzed the accuracy of the influence approximation based on the HLL
sketch. We also analyzed memory consumption and computation time im-
provement for the approximate approach. The results are similar for all the
datasets and hence we only present results for BrightKite due to space con-
straints.

Approximation Accuracy. For every location with a non-empty influence
set, we used the HLL-based approximate version of the Oracle to predict
the size of the influence set. Then the relative error as compared to the real
size was computed for every location. In Table 4.2 the mean and standard
deviation of this relative approximation error over all locations with a non-
empty influence are is given. The experiments are performed for both with-
friends and without-friends for the absolute influence model and relative
influence model. We ran the experiments for different numbers of buckets
(b) for the HLL sketch, being, 64,128 and 256. As can be seen in the table,
the errors are unbiased (0 on average), and the standard deviation decreases
as the number of buckets increases. The error is a bit higher in the relative

83

Chapter 4. Location Influence in Location-based Social Networks

Tp (FS) mmm Tp (FS) mwm
~~ Tq (FS) ~~ Tq (FS)
) I)
@ 10907 1p@EK D oo TP(EK
O 1500 | T4 (BK) B 0 Tq (BK)
~ Tp (GW) m=mms ~ 400 | 1P (GW)
Q goo| Ta(GW) '~ Qo Tq (GW)
£ £
= 400 | %& = 200
8 20 50
w (hours) w (hours)
(a) with-Friends (b) without-Friends

Fig. 4.6: Time to process all activities (Tp) and query oracle (Tq) for T = 2 at different w

model as compared to the absolute model because in the relative model the
influence is computed by taking the ratio of two approximated sets. Values
for b beyond 256 yielded only modest further improvements and hence we
used b = 256 in all further experiments.

Approximation Efficiency. Next, we compare the computation time and
memory requirements for the approximate approach with that of the ex-
act approach. In order to do so, we computed influence sets with friends
and without friends. The computation times and memory consumption are
shown in Table 4.2. The approximate approach outperforms the exact ap-
proach up to a factor 6 in time using only 15% of memory for the models
including friends. Due to sparsity of data, however, the gain for the without-
friend case is negligible. This is because the sizes of the sets of bridging
visitors are very modest and hence there is no need to reduce memory con-
sumption. It can be observed that time and memory of the approximate
approach increase with increasing number of buckets b.

w/o friends (FS)
friends (FS)

wi/o friends (BK)
friends (BK)

w/o friends (GW)

Memory (MB)

2400 friends (G\LV)
1600 i
800
0 : R B
8 20 50
w (hours)

Fig. 4.7: Memory to process all activities at different w

84

6. EVALUATION

without Friends

1300 | without Friends

o
%3/ with Friends % 300 with Friends
= 1000 ¢ e 200
(e N—r
%E) 700 r g 100 7~v‘\J\JJu“)JVU\NWM’}r,ULN‘L“}LerM'alr-“VJ\'f}‘/'Aﬁ'WVJ‘"}w\'J“}M\WWN‘\MN ol
400 — = o —
1000 2000 3000 40%0 1000 2000 3000 4(23())0
Activities (in 107) Activities (in 107)
(a) Memory (b) Time

Fig. 4.8: Performance evaluation for processing 1000 activities for w = 8

6.2 Influence of wand T

Runtime. We study the runtime of the approximate algorithm on all the
datasets for different values of w := 8,20 and 50. The average runtime for
processing all the activities (Tj) under the models varies only depending on
whether or not we consider friends; it does not depend on 7. The oracle
query time (Tj) is independent of T and model. Hence we only show re-
sults for T = 2. The run times are shown in Figure 4.6 for the three datasets
FourSquare, BrightKite and Gowalla. The running time increases with in-
creasing influence window size w as more locations from the visit history
remain active. Running time is higher in the with-friends case which is not
surprising either as the number of users to include in the bridging visitors
sets increases due to the addition of friends. The time taken to process dataset
Gowalla is the highest as it has the largest number of locations.

In Figure 4.8b, we report the time taken in function of the number of
activities for w = 8. Per 1,000 activities in the BrightKite dataset the runtime
is reported. As can be seen in the figure, the average time taken per 1,000
activities remains constant. The time taken for the friendship-based influence
model is the highest as more users are merged.

Memory Consumption. We also study the memory required by the ap-
proximation algorithm on all the datasets for different values of w := 8,20
and 50. Unlike for the processing time, the average memory required to pro-
cess all the activities under the models does not vary based on whether we
consider friends or not. This is because the HLL sketch storing the bridging
visitor set size remains constant in size even if a larger number of users is
added to it. The memory requirement increases slightly with w as more loca-
tions are getting influenced due to a larger influence window. The results are
shown in Figure 4.7. In Figure 4.8a, we report the memory used as a function
of the number of activities for w = 8. Per 1,000 activities in the BrightKite

85

Chapter 4. Location Influence in Location-based Social Networks

dataset the runtime is reported. The total memory requirements increase lin-
early with time as new locations come in over time for which a complete
influence summary needs to be maintained. In Figure 4.9 on the other hand,
we see that over time the size of user visit history remains constant due to
the pruning of outdated locations in the visit histories.

6.3 Influence Maximization

Influence of x. Our next goal is to study how the influence maximization
algorithm performs for different values of a. In order to avoid data sparsity
issues, we filter out those locations which have only one visitor from all the
datasets. We tested the spread of top 200 locations obtained by considering
values of & from 0.01 to 0.99. We observed that the number of bridging
visitors per location is highly skewed as can be learned from Figure 4.4a.
Due to this, the potential influenced locations having few bridging visitors
are less likely to affect the influenced set of the locations. The effect of varying
alpha on the influence spread is shown in Figure 4.10. As expected for these
sparse datasets, our algorithms perform best with a lower value of a. We use
« = 0.03 for our experiments.

- Time (sec)

k=10 | k=20 | k=50
Ty =2 2 3 35
R =04 5 6 46
Tap =120 | 2 5 46
R =06 | 4 6 53

Table 4.3: Time taken to find top k locations (BrightKite)

Computation time. We study the computation time for finding top-k in-
fluential locations under both the with-friends and the without-friends influ-

Without cleanup ——
50000 With cleanup
40000
30000
20000

10000

No. of users

1000 2000 3000 4000
Activities (in 10°%)

Fig. 4.9: User visit history growth w.r.t. cleanup process

86

6. EVALUATION

N

0.88

i B
o 1 t+m.. FourSquare

n - BrightKite

5 83? \ ~... Gowalla

S o \ S
— 092

o]

S

o

(9p]

0 0.050.10.150.20.250.3
a

Fig. 4.10: Influence spread w.r.t. alpha (200 seeds)

ence models. The runtime is close in the both absolute and relative models.
The time increases with k. Nevertheless, the increase is modest; for instance,
finding the top-50 locations takes less than a minute. We report the results in
Table 4.3.

6.4 Qualitative Experiment

In order to validate our model of location influence, we compared the results
of our method with a naive approach for selecting top-k locations. In the
naive approach, we selected the top k locations such that the number of dis-
tinct users visiting those locations is maximized. This result is compared to
the top-k most influential locations found using the absolute influence model
with T = 1. We compared the influence spread by the top-k locations of both
approaches.

We considered the activities performed in the area of New York in all
the three data-sets and fetched top-5 locations for w = 8 hours for both ap-
proaches. We further computed the influence spread for the selected loca-
tions of both approaches using the absolute influence model. Top-5 locations
with their influenced locations are plotted using Google Maps as shown in
Figure 4.11 for FourSquare and BrightKite. In the figure, it can be observed
that for BrightKite our method leads to a set of locations with a much larger
spread as compared to the naive approach, both geographically and in terms
of the number of locations influenced. On the other hand, the spread for both
approaches for FourSquare is similar. The reason is that for this dataset the
problem of selecting the top locations is almost trivial as there is only a small
set of locations visited multiple times with as a result that once this limited
set of locations is selected, it does not matter which other users are selected.

87

Chapter 4. Location Influence in Location-based Social Networks

?
4 2 4
? Y.
:9 ! ’ '8
’ v '
? 4 Y,
Y ey SR AT
,
L)
(a) Naive BrightKite (16 (b) Our BrightKite (72
locations) locations)
{ o,
B / y ot
0 4 y By
. Yy 8 vR ¢
L T
(c) Naive FourSquare (239 (d) Our FourSquare (239
locations) locations)

Fig. 4.11: Comparison of top- 5 influential locations (green) and their spread (red) between
naive and our approach

7 Conclusion

In this chapter, we introduced a mechanism that can be used to optimize out-
door marketing strategies such as finding optimal locations for displaying
advertisements to maximize the geographical spread. In order to do that, we
captured the interactions of locations on the basis of their visitors in order to
compute the influence of locations among each other. We provided two mod-
els namely the absolute influence model and the relative influence model.
We further incorporated friends of users in order to deal with data sparsity.
We proposed an oracle data structure to efficiently compute the influence of
locations on the basis of these models, that can be used for different appli-
cations such as finding top-k influential locations. In order to maintain this
data-structure, we first provided a set-based exact algorithm. Then, we opti-
mized the time and memory requirements of the algorithm up to 6 times and
7 times, respectively by utilizing a probabilistic data structure. Finally, we
provided a greedy algorithm to compute the top-k influential locations. In

88

8. Co-authoring Agreement

order to evaluate the methods, we utilized three real datasets. We first ana-
lyzed the LBSN datasets to verify some claims and to provide optimal values
for thresholds of the influence models. Then, we evaluated our approaches
for the computation of the oracle data structure and finding top-k locations
in terms of accuracy, computation time, memory requirement and scalability.
We further show the effectiveness of our proposed models by comparing the
influence spread of top-k locations fetched by our approach with that of a
naive approach.

8 Co-authoring Agreement

This work is done jointly with equal contribution from another PhD stu-
dent Muhammad Aamir Saleem who is the first author of the paper. The
main problem formulation (Section 1, and 2), influence model design (Sec-
tion 3), algorithm design (Section 4) and final conclusions (Section 7) were
done jointly with equal contributions. The statistical analysis of the LBSN
data (Section 5) was done by Muhammad Aamir Saleem and the implemen-
tation of the algorithm and the experimental evaluation was done by Rohit
Kumar (Section 6.1-6.3). The Qualitative experiment (Section 6.4) was done
by Muhammad Aamir Saleem.

89

Chapter 4. Location Influence in Location-based Social Networks

90

Chapter 5

2SCENT: An Efficient
Algorithm for Enumerating
All Simple Temporal Cycles

The paper is under revision for publication in the 44th International Confer-
ence on very large data bases (VLDB), 2018.

Abstract

In interaction networks nodes may interact continuously and repeatedly. Not only
which nodes interact is important, but also the order in which interactions take place
and the patterns they form. These patterns cannot be captured by solely inspecting the
static network of who interacted with whom and how frequently, but also the temporal
nature of the network needs to be taken into account. In this paper we focus on one
such fundamental interaction pattern, namely a temporal cycle. Temporal cycles
have many applications and appear naturally in communication networks where one
person posts a message and after a while reacts to a thread of reactions from peers
on the post. In financial networks, on the other hand, the presence of a temporal
cycle could be indicative for certain types of fraud. We present 2SCENT, an efficient
algorithms to find all temporal cycles in a directed interaction network. 2SCENT
consist of a non-trivial temporal extension of a seminal algorithm for finding cycles
in static graphs, preceded by an efficient candidate root filtering technique which
can be based on Bloom filters to reduce the memory footprint. We tested 2SCENT
on six real-world data sets, showing that it is up to 300 times faster than the only
existing competitor and scales up to networks with millions of nodes and hundreds
of millions of interactions. Results of a qualitative experiment indicate that different
interaction networks may have vastly different distributions of temporal cycles, and

91

Chapter 5. 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal

XA
\m/ N

(a) Temporal network with time
stamped edges

(i)1 b i (ii)1 b . (iii)
aiidaiid N,

(iv) (vi) c

NN, T
ENVAREN

e

10

(b) Instances of Simple Temporal cycles for w = 10
(§1] . b 5 (ii)7 b . (i) b s
N e N L
a d a -~ d 13 ~¢ g |10
N 4 N

(c) Instances of patterns which are not Simple Temporal cycles
for w = 10

hence temporal cycles are able to characterize an important aspect of the dynamic
behavior in the networks.

1 Introduction

Analyzing the temporal dynamics of a network is becoming very popular. In
2011, Pan et al. [92] studied temporal paths in empirical networks of human
communication and air transport, and came to the conclusion that the tem-
poral dynamics of networks are poorly captured by their static structures:
“Nodes that appear close from the static network view may be connected via slow
paths or not at all.” This observation motivates research into temporal pat-

92

1. Introduction

terns in dynamic graphs as an addition to the abundance of works that char-
acterize networks based on their static structures and motifs only. Recently,
Paranjape et al. [93] introduced an algorithm for counting the number of oc-
currences of a given temporal motif in a temporal network. In their paper
the authors show that datasets from different domains have significantly dif-
ferent motif counts, thus observing that temporal motifs are able to capture
differences in the dynamic behavior of temporal networks. Inspired by this
line of work, our paper extends this work to temporal cycles of any length.
Cycles appear naturally in many problem settings. For instance, in logistics
the interactions may represent resources being moved between facilities, and
a cycle could indicate an optimization opportunity by reducing excessive re-
location of resources; in stock trading, cyclic patterns could indicate attempts
to artificially create high trading volumes; in financial transaction data, spe-
cific types of fraud lead to cycles in the interactions [57], and recently, Giscard
et al. [48] used simple cycles to evaluate balance in social networks.

Figure 5.1b illustrates our notion of a temporal cycle in the temporal graph
given in Figure 5.1a. To avoid spurious cycles stretched out over time we
bound the window in which a cycle has to occur to w = 10. Figure 5.1c
contains some examples of cycles in the static graph which are not considered
as they either (i) extend over a too long time window, (i) the interactions do
not respect temporal order, or (iii) the cycle is not simple in the sense that
there are repeated vertices. For enumerating all simple temporal cycles, we
first looked into the vast literature on enumerating cycles in static graphs
from the early 70s [109, 62, 111]. The algorithms proposed in these works,
however, are not directly applicable to temporal networks. The same holds
for recent methods [41, 104, 108]; these approaches focus on a different model
in which the dynamics are captured by considering a sequence of snapshots
of the network. Therefore, in this paper, we propose a new efficient algorithm
(2SCENT) for enumerating all simple temporal cycles of bounded timespan.
2SCENT proceeds in two phases. In the first phase, called the Source Detection
Phase, we gather candidate root nodes for cycles. The root node of a temporal
cycle is the unique node in which the cycle starts and ends. For instance, for
the simple cycle shown in Figure 5.1b(iv), the root node is a. Surprisingly,
finding root nodes of cycles can be done very efficiently in one pass over the
data. As a side-result we also get for each cycle its start and end time and a
superset of the nodes that appear in the cycle.

In the second phase, for every quadruple of root node, start time, end
time, and set of candidate nodes, we run a constrained Depth First Search
(cDFS) algorithm. This algorithm is inspired by the seminal algorithm of
Johnson [62]. cDFS performs a depth-first search with backtracking, start-
ing from the root node. In order to avoid unnecessary multiple explorations
of the same parts of the interaction graph, for every visited node a so-called
closing time is maintained that allows to prune previously unsuccessful depth-

93

Chapter 5. 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal
Cycles

first traversal paths. In this way we can output all simple cycles rooted at the
given node in time O(c(n + m)) where c is the number of cycles and n and
m are respectively the number of nodes in the candidate set of the root node
and the number of interactions among these nodes in the given time inter-
val. Also this phase sometimes suffers from the peculiarities of interaction
networks. To handle the special case of networks with multiple, highly repet-
itive activities resulting in many similar cycles only differing in a few time
stamps, we introduce so-called path bundles. A path bundle maintains multi-
ple temporal paths between the same nodes. The cycle finding algorithm is
adapted to deal with these path bundles directly, instead of with each of the
paths in the bundle individually. In this way we can reduce the number of
depth-first traversal paths with a factor exponential in the size of the paths.

We ran extensive experiments with our new algorithm. The experiments
show consistent performance improvements by the extensions and an im-
provement of two orders of magnitude over the algorithm of Kumar and
Calders [70]. We used 6 real world data sets in the experiments. We also
present a qualitative analysis concerning the distribution of frequency and
size of simple cycles in different kinds of interaction networks. We find that
cycles of higher length are more frequent in data sets such as twitter as com-
pared to SMS or Facebook data sets. This observation hints that different
kinds of information exchange patterns occur in open social networks where
people can interact with anyone without a friendship link as compared to
closed social network where only friends interact. Cycle detection is able to
quantify these differences.

2 Related work

Simple Cycles in a Static Graph. The classical problem of enumerating all
simple cycles in a graph has been studied since the early 70s [97, 86, 116,
95, 123, 109, 62, 111]. One algorithm that stands out both in elegance and
efficiency is that of Johnson [62]. Johnson’s algorithm explores a directed
graph depth-first but at the same time uses a combination of blocking and
unblocking of vertices to avoid fruitless traversal of paths which will not form
a cycle for the currently traversed path. For instance, if during a depth-first
exploration to find cycles rooted at g4, it is found that there is no path from
b to a, b can be blocked such that in other depth-first explorations the paths
originating from b are not explored in vain. When backtracking, however,
some nodes can become unblocked again. Johnson’s algorithm [62] is based
upon postponing the unblocking of a node as much as possible. Using an
ingenious system of cascading unblocking operations, Johnson’s algorithm is
able to guarantee a worst case complexity of O((n +m)(c + 1)) for enumerat-
ing all cycles in a directed graph, where 7, m, and c denote respectively the

94

2. Related work

number of nodes, the number of edges, and the number of simple cycles in
the graph. Up to the current date, Johnson’s algorithm is one of the most ef-
ficient algorithms for directed graphs. For undirected graphs, recently, Ferreira
et.al [17] presented a more optimal algorithm to enumerate all simple cycles.
These algorithms work very well for static graphs but cannot be used di-
rectly on interaction networks. First of all, cycles in interaction graphs need to
respect the temporal order of the interactions, which leads to more complex-
ity.In this paper we provide an extension of Johnson’s algorithm for an in-
teraction network. Furthermore, in static networks edges are never repeated
while in interaction networks repetitions of interactions are very common.
Not taking this aspect of interaction networks into account leads to highly
inefficient solutions, a problem we handle by using so-called path bundles.
Patterns in temporal graphs. Temporal graphs, also know as interaction
networks [72, 102] or temporal networks [58], are being studied using mul-
tiple approaches. One approach is to extend global properties from static
graph theory such as page rank [59, 101], shortest path [92, 106, 118], or
centrality measures [16, 99] to temporal networks and to introduce efficient
algorithms to compute them. Other works focus on better understanding the
nature and evolution of such temporal graphs. Recent studies use temporal
motifs [69, 93] and their frequency distributions to analyze and character-
ize temporal graphs. The algorithms in these two papers, however, cannot
be used directly for our cycle detection algorithm. For the first paper by
Kovanen et al. [69], motifs are considered at a higher level of abstraction.
Whereas in our setting all sequences of interactions that form temporal cy-
cles are enumerated, Kovanen et al. [69] would consider a generic temporal
cycle of length k as a pattern and count the number of embeddings of this
generic pattern. The second paper by Paranjape et al. [93] on the other hand,
assumes the same setting as we do. Their work, however, concentrates on
efficiently counting the frequency of a specific given pattern. In order to ap-
ply their algorithm for finding cycles, we would have to run it once for each
cycle length. Whereas this is certainly possible in theory, it has a number
of disadvantages, such as not knowing for which lengths we need to run
the algorithm on the one hand, and the fact that the algorithm of Paranjape
et al. [93] requires to first find all embeddings of the pattern in the static
graph, without any temporal order or window being considered. A head-to-
head comparison with our algorithm, however, would not be fair; the authors
are well-aware of this deficiency and for several special cases, such as trian-
gles Paranjape et al. propose efficient adaptations avoiding this costly first
step. For cycles, however, no such optimization is described and there is no
straightforward solution. The closest to our work is the work by Kumar and
Calders [70], who study the same problem, and propose the idea of using
simple temporal cycles and their frequency distribution to characterize the
information flow in temporal networks. Kumar and Calders [70] introduce a

95

Chapter 5. 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal
Cycles

naive algorithm which enumerates all possible temporal paths in a window
to find cycles. The key idea behind the algorithm is to maintain an indexed
list of all valid temporal paths. A temporal path is considered valid at time ¢
if the first interaction in the temporal path is within t — w duration where w
is the time window. When an interaction (u, v, t) is processed, all temporal
paths with last node u are extended to create a new path if v is not already
present in the path. This algorithm, however, does not scale well for large
graphs. In the empirical evaluation we present in the experimental section,
2SCENT outperforms the algorithm of [70] by a factor of 300 in terms of time
needed to enumerate all cycles.

3 Preliminaries

Let V be a given set of nodes. An interaction is defined as a triplet (1, v, f),
where u,v € V, and t is a strictly positive natural number representing the
time the interaction took place. Interactions are directed and could denote,
for instance, the sending of a message in a communication network. Please
note that multiple interactions can appear at the same time. A temporal
network G(V, £) is a set of nodes V, together with a set £ of interactions over
V. We will use n = |V| to denote the number of nodes in the temporal graph,
and m = |€] to denote the total number of interactions.

Definition 14
A temporal path between two nodes u,v € V is a sequence of interactions
p = {(u,ny1,t1),(n1,ny,t2), .., (ng_1,v,tx)y such that ; < tp < .. < t; and all

. t
interactions in p appear in £. Often we use the more compact notation u >

t t
ny -5 ny... -5 v to represent a temporal path from u to v. dur(p) := t, — t

denotes the duration of the path, len(p) := k its length.

A temporal path p is called a simple temporal path if no node appears more
than once in p. p is valid for a given time window w if dur(p) < w. The start
time ts(p) := t1 and end time t.(p) := t; of path p are given by the time stamps
of the first and last interactions in the path.

For example, in the temporal graph shown in Figure 5.1a, the path b >

i eB8cBdisa temporal path, but it is not a simple temporal path

as node d appears more than once in the path. The duration of the path is
11-5=6. On the other hand, b > d > e B cisa simple temporal path with
duration 5.

Definition 15

A temporal cycle with root node u is a temporal path from u to itself. The cycle
is called simple if each internal node in the cycle occurs exactly once. More
specifically, a simple temporal cycle ¢ with root node u consist of a simple

96

4. Source Detection Phase

b

temporal path u LN ny... 5! o followed by an interaction (v,u,t;) with
tx > tx_1. We consider a simple temporal cycle to be valid for time window w
if the duration of the cycle is less than or equal to w.

For example, the cycle in Figure 5.1c(i) is a simple temporal cycle but is not
valid for w = 10. Please note there could be multiple cycles with the same
root node of different length and duration. For example, Figure 5.1b (i)-(iv)
represents 4 different temporal cycles with the same root node a of the same
length but with different durations. The cycles in Figure 5.1b (ii) and (iii)
have the same duration and length but still represent different cycles.

Definition 16

Simple Cycle Enumeration (SCE)

Given a temporal network G(V,£) and a time window w, enumerate all sim-
ple temporal cycles C with dur(C) < w.

For the temporal graph given in Figure 5.1a, the solution of the SCE prob-
lem for w = 10 is given by the cycles in Figure 5.1b plus the cycles b 2 a8y
and b > d = b.

4 Source Detection Phase

In this and the next two sections, we will address the problem of efficiently
finding all simple temporal cycles in a given temporal network. As temporal
networks are generally very large graphs, performing a DFS (Depth First
Search) or BFS (Breadth First Search) scan for every node in the network
would be very time consuming. Hence, we present a two-phase approach
to efficiently find all simple cycles. In the first phase, we pass once over
the interactions of the given temporal network to identify the root nodes
and the start and end times of all cycles. We also get a set of candidate
nodes which form a superset of the nodes present in the cycle. We call this
phase the Source Detection phase. The details of this phase are given in this
section. We also present a memory efficient variation of the source detection
phase using Bloom Filters, which requires two passes over the data but is
more memory and time efficient for particular cases in which there are many
temporal paths. In the second phase, which we will discuss in Section 5,
we use the identified root nodes from the first phase to find temporal cycles
using a constrained DFS. The details of this phase are given in Section 5.
Finally, in Section 8 we present an optimization of our two-phase algorithm
for special cases with many repeated interactions.

97

Chapter 5. 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal
Cycles

Algorithm 10 GenerateSeeds

Input: Threshold w, interactions £
Output: All nodes s, time stamps t; and ¢,, and a set C such that there exists
a loop from s to s using only nodes in C starting at t; and ending at t,.

1: function GENERATESEEDS(w, &)

2 for (a,b,t) € £, ordered ascending w.r.t. t do
3 if S(b) does not exist then

4 S(b) < {}

5: end if

6 S(b) < S(b) u {(a, 1)}

7 if S(a) exists then

8 S(a) < S(a)\{(x,ty) € S(a) | tx <t —w}
9: S(b) < S(b) u S(a)

10: for (b, 1) € S(b) do

11: C<—{c|(c,t;)eS(a)t.>ty}u{b}
12 Output (b, [t,t],C)

13 S(b) — SO\ (b, 1)}

14: end for

15: end if

16: if time to prune then

17: for all summaries S(x) do

15 S(x) — SN ty) € S() [ty < t— w)
19: end for
20: end if
21: end for

22: end function

4.1 Reverse Reachability Summary

We find the source node and candidate sets by maintaining a so-called reverse-
reachability summary S(u) for all u in V. The reverse reachability summary of
u at time ¢, denoted S;(u), is defined as the set of pairs (x,ty) such that
there is a temporal path p from x to u starting at time t, and with ty > t —w
within the set of interactions up to time stamp f. Maintaining the summary is

straightforward; whenever an interaction a Lbis processed we add (4, t) to
S(b) as it captures the path of length 1 due to this new interaction. Also, every
path to a is now extended to b, hence we add all pairs in S(a) to S(b). We
remove paths which are older than w; that is, pairs (x, ty) such that t, < t —w
We call this old path pruning. Whenever there is a path from b to b after

processing the new interaction a L, b; that is, there is a pair (b, t,) € S(a), we
know there is a cycle with b as source node, that starts at ¢, and ends at ¢.

98

4. Source Detection Phase

Furthermore, every node x in this cycle which was completed by a Lobis
connected to 2 and hence there must be a pair (x,ty) € S(a). In this way we
can also construct a candidate set {x | 3(x, tx) € S(a) | t;, < tx < t}.

Example 18

Consider the interaction in the example Figure 5.1a. Before processing the
interaction (d, 4, 8), the summaries of nodes a and d are S(a) = {} and S(d) =
{(a,1), (b,5)} respectively. While processing (d,a,8) the summary of a is up-
dated to S(a) = {(b,5),(d,8)} and as there is (a,1) in the summary of 4 it
generates a seed candidate as (a,[1,8], {b,d}). This seed candidate actually
corresponds to the simple cycle in Figure 5.1b(i).

The details of the algorithm are given in Algorithm 10. One detail that
still needs clarification is the inactive node pruning (steps 13-15). In this step,
at regular time instances all pairs (x, ty) such that ¢y <t — w is removed from
the memory. In this way we ensure that memory does not get filled with
summaries of nodes which are no longer active. In all our experiments we
noticed that the overhead of this step was negligible because when executed
regularly, only nodes which were active within the past window of size w
will have a summary, but the memory saving were huge.

Theorem 2. Algorithm 10 generates one tuple (a,ts, te,C) for each cycle ¢ that
starts and ends in a with respectively an interaction at time ts and one at time
te. All nodes of the cycle are in C. Furthermore, for each tuple (a, t;, te, C) output by
the algorithm, a corresponding cycle exists.

Proof. By induction on the prefixes of sequence of interactions we can show
that at time ¢, S(x) contains at least all pairs (y, t;) such that (i) t — t; < w and
(ii) there exists a temporal path from y to x that starts with an interaction at
time fs. Furthermore, (iii) if (y,ts) € S(x) then (ii) holds (but not necessarily

(i)). If there is a valid temporal cycle a b (4 B .. % 4, then there is
t bn— .
such a temporal path a = v, B gt v,_1 (a,t]) at time t, and hence

(a,t1) € S(v,_1) when interaction v,, 4 LIPS processed. Therefore, the cycle
is detected and reported, and because of (iii), the set C will contain at least
all {a,v1,...,v,}. Because of (ii) only cycles are reported and it is easy to see
that due to line 7, all reported cycles are valid. O

Theorem 3. Let m = |E|, n = |V|, W be the number of interactions in a window
of size w, and c the number of valid temporal cycles. The time complexity for han-
dling one interaction is bounded by O((m + c)W), and the memory complexity is
O(min(n, W)W) assuming the pruning is done every O(w) steps.

Proof. For the proof it suffices to notice that because pruning is done every
O(w) steps, there are at most O(W) interactions that need to be taken into

99

Chapter 5. 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal
Cycles

account to determine the size of the summaries (pairs resulting from older
interactions are removed in the pruning step). Therefore there are at most
O(min(W, n)) summaries maintained holding each at most O(W) entries.
Merging two summaries takes linear time. For each cycle we need to output
the set C which has size at most W. O

4.2 Improvements using Bloom Filters

Despite the regular pruning, the summaries may still grow very large for
large window lengths or large networks, causing out-of-memory problems.
This problem occurs for instance when there are many long temporal paths
within the window of length w. Therefore, for such extreme cases, we further
refine the source detection phase by using a Bloom filter [18] as summary. A
Bloom filter is a compact data structure for representing sets which allows
for membership queries. It consists of an array B of g bits and uses k inde-
pendent hash functions h;y, ..., Iy that hash the elements to be stored in the
set uniformly over the set of valid indices 1...q for B. Initially all bits in the
bitmap index are 0. Whenever a new element a arrives, all bits hy(a), ...,
hi(a) are set to 1. Whenever we need to know if an element x is in the set
represented by B, we test if all entries h1(x), ..., hx(x) are 1. If x was added
to the Bloom filter at some point, for sure these bits must all be 1. Notice that
there may be false positives if the combined bits set to 1 by the other elements
in the set cover all the bits for x. False negatives, however, are impossible.
For the exact details on the Bloom filter and how to select optimal values for
g and k in function of the number of elements to store in the set and the false
positive probability, we refer to [18]. If we have two Bloom filters represent-
ing sets S1 and Sy, we can construct the Bloom filter for their union by taking
the bitwise OR of the two Bloom filters. Taking the intersection of two Bloom
filters can be done by taking the bitwise AND. In contrast to the union, how-
ever, the Bloom filter for the intersection cannot be constructed exactly with
this construction. We will denote the bitwise AND (respectively OR) of two
Bloom filters By and By with By n B (respectively B; u By).

S(a) will hence be replaced by a Bloom filter B(a), that represents the set

of all nodes that can reach 4. Whenever an interaction a Lp is processed, we
test if b is a hit for the Bloom filter of a. If so, b will be listed as a potential
cycle source node. Then we union the Bloom filter of B(a) with that of B(b) to
get the new Bloom filter for b. Using the Bloom filter approach we guarantee
that all summaries have equal (restricted) length and cannot grow unbound-
edly. Notice, however, that this schema has a number of disadvantages as
well. We list them in increasing order of severity: (1) There may be false pos-
itives when we test for b € S(a). This will incorrectly lead to the conclusion
that there is a cycle rooted at b. These spurious root nodes, however, will be
eliminated in the second phase of the algorithm that will be discussed later.

100

4. Source Detection Phase

False positives do not affect the correctness of the complete 2SCENT algo-
rithm although they will affect the efficiency. (2) we can no longer apply the
old path pruning because the Bloom filter does not contain the information
when elements were added to it.

We handle this problem by inactive nodes pruning. In inactive nodes prun-
ing, we keep for every node a the last time, denoted Last(a), that B(a) was
updated. In this way we can prune all nodes that have not been active within
the current window. This pruning mechanism is less effective, but at least
bounds the number of summaries that simultaneously need to be held in
memory. (3) The last, most severe disadvantage is that because of the use of
a Bloom filter we are no longer able to capture the starting time of cycles.
Indeed, where S(a) contains pairs (b, t), B(a) can only be used to test if there
is a pair (b,?) in S(a). This problem can be resolved with an additional pass
through the data. This additional pass is based on the observation that every
cycle rooted at node v that starts at t; and ends at ¢, becomes the root node
of a cycle starting at t, and ending at ¢; if we reverse time and the direction

of all interactions. For instance the temporal cycle a L b3 ¢ > abecomes

the inverse temporal cycle a 3 ¢35 b . In the end we generate candidates
by combining the inverse temporal cycle roots with the normal cycle roots.

Combining these elements we get Algorithm 11. The function processEdge
is similar to the function GenerateSeeds in Algorithm 10 with a difference that
instead of the exact set summary S(a), a bloom filter B(a) is maintained and
updated. Also, instead of pruning individual nodes in the summary set of
S(a) based on the time of addition in the set we reset the bloom filter B(a) if it
has not been updated in a window of size w. As processEdge is used for both a
forward scan and a backward scan while checking for last update we take an
absolute difference of current time and update time in steps 11, 15, and 21. In
the end, to find all root nodes with start time, end time, and the bloom filter
consisting of the candidate nodes, the interactions are scanned both forward
and backwards. In steps 2-4 the forward scan is performed by processing
every interaction (4, b, f) to find the end time, root nodes, and candidate sets
of all cycles, which are stored in fwSeeds. Then in steps 6-9 a backward scan
is performed by processing edges in reverse to find the start time, root node,
and candidate set for each cycle, which are stored in bwSeeds. Finally, in step
9 we merge fwSeeds and bwSeeds to generate the final seed candidates.

Example 19

Consider again the example of Figure 5.1a. After the initial forward scan, we
will have candidate roots with end time and a Bloom filter for the candidates.
For this simple example, fwSeeds will contain at least the following candi-
dates: {(a,8,B4),(a,10, Bs), (4,12, B¢), (d,11, By)}. After the subsequent back-
ward scan the set of backward seeds will be {(a,1,B1),(a,7,B,),(d,8,B3)}.

101

Chapter 5. 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal
Cycles

The next table lists the compatible pairs and the resulting candidate set:

nr | fwSeeds bwSeeds Candidate

1 (Q,S, B4) (11, 1, Bl) (11, [1,8],31 N B4)
2 | (a,8Bs) (a,7,By) (a,[7,8],BynBy)
3 | (a,10,Bs) (a,1,B1) (a,[1,10], By n Bs)
4 | (a,10,Bs) (a,7,By) (a,[7,10], By n Bs)
5 | (a,12,Bs) (a,7,B2) (a,[7,12], By n Bg)
6 |(d,11,B;) (4,8,B3) (d,[8,11],B3n By)

In the second step of our algorithm the candidates will generate the follow-
ing cycles of Figure 5.1b: Candidate 1 generates (1), candidate 2 is a false
positive due to the merging operation and will not generate any cycle (issue
(3) mentioned above). Candidate 3 generates (ii) and (iii), candidate 4, (iv),
candidate 5, (v), and finally candidate 6, (vi).

Theorem 4. Let q be the size of the bloom filters, W be the maximal number of
interactions in a window of size w. The complexity of processing one interac-
tion with PROCESSEDGE is O(q). The time complexity of GENERATESEEDSBLOOM
is O(q(m + ")) where ¢" denotes the number of cycle candidates that are gener-
ated by the merge of forward and backward candidates. The memory complexity is
O(qmin(W, n)).

Proof. The argument of the proof is similar as for Theorem 3, but with the
maximal size W of the summaries S(a) replaced by the fixed size g of the
Bloom filters B(a). For merging the forward and backward seeds it suffices
to notice that the forward and backward candidates are generated in order,
and hence we can merge in linear time. Additionally, For each candidate
cycle we have to intersect two Bloom filters. O

102

4. Source Detection Phase

4.3 Combining Root Node Candidate Tuples

An essential last step before we can proceed to the exact cycle finding, is
combining seeds for efficiency, and avoiding overlapping seeds. Suppose for
instance that there exist 3 cycles rooted at 4, with start and end times respec-
tively [100,110], [106, 110], and [105, 120]. GENERATESEEDS will produce three
seeds (s,[100,110],Cy), (s, [106,110],C;), and (s, [105,120], C3). The second
cycle, however, is included in all three seeds and will be generated three times
by the cDFS algorithm we will introduce in the next section. Furthermore, we
can merge some of the highly overlapping candidates. Consider again the ex-
ample of Figure 5.1a. For all the cycles rooted at a Figure 5.1b(i)-(v), the corre-
sponding seeds are (a,[1,7],{b,d}), (a,[1,10],{b,d,e, f}), (a,[7,10],{b,d,e, f}),
and (a,[7,12],{b,d, e, f}). The first three seeds could be combined into a sin-
gle seed (a,[1,10] ,{b,d,e, f}) and a cDFS run on this seed will generate all
the cycles rooted at 4; i.e., cycles 5.1b(i)-(iv), by considering interactions only
in interval [1,10] between the candidate nodes {b,d, ¢, f}. Furthermore, addi-
tionally we will also record the starting time of the next seed with the same
root and add this information in the seed nodes to obtain the extended candi-
dates: (a,[1,10],7,{b,d,e, f}) and (a,[7,12],12,{b,d,e, f}) (The value 12 in the
second seed is a dummy value as there is no next seed). cDFS will use these
extended candidates (s, [fs, t.], ts, C) to generate exactly those cycles rooted at
s, consisting only of vertices in C, starting in the interval [, t,[, and ending
the latest at time t,. By adding the restriction on ¢, we avoid duplicate cycle
generation. The algorithm to combine seeds rooted at a single node s is given
in Algorithm 12. It starts with sorting all candidates on start time ascending
and end time descending. Subsequently it gets the first non-merged candi-
date and merges it with all following compatible candidates. This procedure
is repeated until all candidates have been processed. In this way we are often
able to compress the list of candidates considerably.

Theorem 5. Algorithm 12 ensures that for every temporal cycle rooted at s and
starting and ending at times ts; and t, respectively, there is exactly one extended
seed (s, [t}, 1], tn, C) that contains the cycle; that is: all nodes of the cycle are in C,
ts € [th, tnl, and t. € [t).

Proof. GENERATESEEDS generates a seed for each cycle. In the definition of
Compatible it is guaranteed that all elements that are removed from C are
contained in the extended cycle that is output. Furthermore, it is easy to see
that the intervals [#, t,[for all generated extended seeds are disjoint, as t, is
the starting point t} of the first seed that is not contained in Combined. O

103

Chapter 5. 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal

Cycles

Algorithm 11 GenerateSeedsBloom

Input: Threshold w, interactions £

Hash functions hy, ..., h, Bloom filter size q.

Output: Candidate root nodes s with start and end time of the cycle and a

1:
2
3
4:
5:
6
7
8
9

10:
11:

bloom filter representing the candidate set. It is guaranteed that for each
temporal simple cycle there will be such a four-tuple.
function GENERATESEEDSBLOOM(w, &)

fwSeeds «— &

for (a,b,t) € £, ordered ascending w.r.t. ¢ do
fwSeeds < fwSeedsu PROCESSEDGE(a,b,t,w)
end for
Remove all bloom filters
bwSeeds — &
for (a,b,t) € £, ordered descending w.r.t. t do
bwSeeds «— bwSeedsu PROCESSEDGE(b,a,t,w)
end for
Output all (a, [ts, te], (Bf N Bp)) s.t. there exists (a, t., Bf) € fwSeeds and

(a,ts, Bp) € bwSeeds with 0 < t, — t; < w
end function

13: function PROCESSEDGE(a,b,t,w)

32:

seeds « {}
if B(b) does not exist or |Last(b) — t| > w then
B(b) < [0,...,0] > Empty bloom filter
end if
Set bits hq(a),...hg(a) to 1 in B(b)
Last(b) <t > Update last modified time stamp

if B(a) exists and |Last(a) — t| > w then
if hi(D), ..., h(b) all 1 in B(a) then
seeds «— {(b,t, B(a))}
end if
B(b) « B(b) u B(a) = Bitwise or
end if
if time to prune then
for all summaries B(x) do
if |Last(x) —t| > w then remove B(x)
end if
end for
end if
return seeds

33: end function

104

5. Constrained Depth-First Search

Algorithm 12 Combining Root Node Candidate

Input: List of cycle seeds C for a root node s. Each seed is of the form
(s, [ts, te], C), window length w
Output: Combined candidates
1: function CoMBINESEEDS(C,w)

2: Sort C on t; ascending, then f, descending.

3: while C not empty do

4: Let (s, [ts, te], C) be first in C

5: Let Compatible be the maximal prefix of C such that for all
(s, [t., 5], C") € Compatible it holds that t, < t; + w

6: C « C\Compatible

7: if C is empty then t, — t; + w

8: else

9: Let (s, [t.,t,],C') be first in C

10: ty « th

11: end if

12: tmax < max{t, | (s, [t.,t,],C") € Compatible}

13: Car < U{C" | (s, [t, 1], C") € Compatible}

14: Output (s, [ts, tmax], tn, Cair)

15: end while

16: end function

5 Constrained Depth-First Search

After finding candidates, we want to find the exact cycles for all candidates.
For each extended candidate (s, [ts, te], tn, C) we will run our constrained
Depth-First Search to find all cycles represented by this candidate. Algo-
rithm 15 gives the complete procedure. We will now step by step describe
how this procedure works.

We apply a depth-first procedure to find all temporal paths in a dynamic
graph. If the path reaches a node which is the same as the start node, we
output it as a cycle. We start with a given node s and a start time t;. All
edges that branch out of s at this time stamp are now recursively explored.
A pure depth-first exploration, however, has the disadvantage that some un-
successful paths will be explored over and over again. Consider for instance
the example in Figure 5.1. As there exist 2 paths from a to ¢, an exhaustive
depth-first exploration of all paths will visit node c two times, and each time
the subgraph formed by £, j, and k will be explored again. In order to avoid
such fruitless repeated explorations, we will keep track of the success status
of different nodes in earlier depth-first explorations of the dynamic network.
This information is stored in the form of a so-called “closing time” of a node.

105

Chapter 5. 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal
Cycles

Algorithm 13 Unblock

Input: Node v that gets a new closing time t;.
Global: interactions &, closing times cf(v) and unblock list U(v) for all
nodes v e V.

Output: Recursive unblocking of the nodes.

1: function UnBLOCK(Node v, time stamp t;)

2 if t; > ct(v) then

3 ct(v) « ty

4 for (w, ty) € U(v) do

5: if t;, < t, then

6 U(v) « U(o)\{(w, tw)}

7 T[w,v] ={t| (w,v,t) e &}

8 T —{teT[w,0]|t, <t}

9: if T # J then

10: U(v) « U(v) u {(w, min(T))}
11: end if

12: tmax < max{t € T[w,v] | t < t,}
13: UNBLOCK(W, tpax)

14: end if

15: end for

16: end if
17: end function

Intuitively, node v having closing time ct(v) indicates that there do not exist
paths back to a from node v that start at time ct(v) or later. Hence, if during
the depth-first exploration, we arrive at a node on or after its closing time,
then we can abort our search. So, while exploring node #, arriving there at
11, we will notice that there are no paths from 1 back to a and hence its clos-
ing time will become 11 and / will never be expanded again. Similarly, after
the first time we visit node ¢, we will notice that the last path from c back to
a starts at 7, so its closing time will become 7 and any depth-first exploration
of ¢ will be aborted from timestamp 7 on.

Let’s illustrate the principle with our example graph. For the subsequent
steps we will show how the closing times of the nodes evolve and how this
saves us costly repetitions of useless explorations. For now the reader does
not need to worry about how the closing times are affected by backtracking
to find additional solutions as this will be treated in detail right after the
example.

cabb ct(b) becomes 1 and this nodes cannot be used to extend the
path without violating the simplicity condition;

106

5. Constrained Depth-First Search

Algorithm 14 Add to unblock list

Input: Unblock list U(v) of node v, pair (w, t) to be added
Output: New unblock list U(v) with (w, f) added.

1: function ExTenp(U(v),(w, t))

2 if there is an entry (w,t’) € U(v) then

3 if ' > t then U(v) < U(v)\{(w, ')} U {(w,t)}
4 end if

5: else

6 U(v) < U(v) u {(w, 1)}

7 end if

8: end function

/. >// N

Fig. 5.1: Example temporal network with simple cycles

¢ b3c ct(c) becomes 5;

* We explore recursively all paths that start with c B h No paths are
found, hence during this recursion ct(h), ct(j), and ct(k) become re-
spectively 11, 13, and 14;

* Via recursive calls we find a path from c that start with c L eandc S d.
We hence derive that the latest path leaving c starts at time 7. Hence,
when backtracking, ct(c) becomes 7. Similarly, during the recursive
calls, the closing times of the other nodes have been updated as well.

In order to find additional paths, we backtrack and find the next solution.
Suppose now that we already explored the subspace of all cycles that start

107

Chapter 5. 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal
Cycles

with a - b. At this point in time the closing times are as follows:

alblcldle | f|h|]j |k
—|5|7|8(10 (12|11 |13 |14

e a3 ccanbe explored next, because 5 < ct(c) = 7.
* From ¢ we cannot go to node h because 11 <« ct(h).
* From there on we continue to find our last 2 paths.

So far so good, but until now we have been ignoring a major problem with
the closing times when backtracking to find the next solution: while back-
tracking, the path becomes shorter again, and nodes become available again
which on its turn may affect the correctness of the closing times. We illus-
trate this problem by slightly extending the example in Figure 5.1. The new
interactions are marked by dotted lines:

When exploring all paths starting with the edge a L b, the node b tem-
porarily gets ct(b) = 1 to force that our cycles are simple. As a result, when

recursively exploring all paths with prefix a L b > ¢, we will conclude there
is no path from h, k, and j back to 2 and set their closing times to 11, 13,
and 14 respectively. As a result, later on, when exploring all paths with pre-

fixa >b 5 canda B b8 ¢, we will correctly abort exploration of the
branch below h. However, when the search continues, at a certain point we

will have explored all paths starting with a L, b, and we are back at node
a. The closing time of b is set to 17 because of the cycle a Lo %4 we

continue exploring all paths that start with a 3, . Tt is at this very moment
that things start becoming ugly. Indeed, at this point in time, we do have

108

5. Constrained Depth-First Search

Algorithm 15 Dynamic Depth-First Simple Cycle Search

Input: Source nodese V
Global: Interaction network G(V,£); closing time ct(v) and unblock list
U(v) for all nodes v € V; Timestamp ts,t, and f,; Set of candidates C € V
Output: All simple temporal cycles in € rooted at s starting in interval [, t,[
and ending before t,, using only vertices of C.

1: function CyCLE(s)

2 E—{(uwvt)eE|uveC,tets,t.]} = Reduce the interaction graph
3 VC

4: for x e C do

5: ct(x) « oo, U(x) « &

6 end for

7 for (s,x,t) e E|t < t, do

8 ALLPATHS(s 4 X)

9: end for
10: end function

to explore the branch below h, because now there is a cycle that involves £,

1 11 13 . 16 17 '
namelya —»c—>h=>j>b->al

So, what went wrong? The first time we visited node &, node b was
blocked as it appeared on the path from a to h. Therefore, we correctly
concluded that /& should be blocked, too. This situation remained until the
point that b became unblocked because of backtracking. At that point, in
fact, the closing time of & should have been reconsidered. The mechanism
to realize the correct update of the closing times is as follows: whenever we
limit the closing time of a node, at the same time we also evaluate under
which conditions the closing time of the node can increase again. In the case
of node j, we see that there is an outgoing edge with time stamp 16 to node
b with closing time 1. Hence, from the moment on that the closing time of
b increases to above 16, the closing time of j should increase to 16. For this
purpose, we add for every node an “unblock list” U(v) that contains a list
of nodes and thresholds (w,t). From the moment on that the closing time
of v exceeds again the threshold ¢, for each pair (w,t) in U(v), the closing
time of node w will have to be adapted as well. In our example this amounts
to adding (j,16) to U(b). Whenever we increase the closing time of any
node v in the graph, we will go over its unblock list and unblock the other
nodes as needed. Notice that unblocking a node may result in a cascade of
unblock operations; indeed, in our example, unblocking b causes j to become
unblocked, which on its turn causes & and k to become unblocked. The
pseudo code of the algorithm is given in Algorithms 13, 16, and 15.

109

Chapter 5. 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal
Cycles

6 Proof of Correctness for Constrained Depth-First
Search

CycirE(s) calls ALLPATHS(s 4 x) multiple times, once for each interaction
s 5 x. We will show that CycLE(s) generates all cycles with root s. During the

execution of ALLPaTHS(pr), ALLPATHS(pr by x) is recursively called. Notice
that in ALLPATHS(pr) there is no order specified in which the neighbors of
Ucyr are considered in the for-loop that starts at line 7. This arbitrary order of
the for-loop is, however, not a problem for the correctness of the algorithm.

It is easy to see that regardless of the order in which the for-loop runs
through the interactions, the call tree of CycLE(s) that contains the different
calls ALLPATHS(pr) satisfies the following conditions:

Lemma 9

Consider the call tree formed by the call CycLE(s) and containing all (direct
and recursive) calls ALLPATHS(pr). Let the root node that corresponds to the
call to CycLE(s) be labeled with the empty path, and let the other nodes of
the call tree be labeled with the argument passed for parameter pr in the call
ArLPatHs(pr). This tree satisfies the following properties:

1. Every non-root node has a valid simple temporal path rooted at s as
label;

2. For every non-root node it holds that its label is the label of its parent
extended with one interaction;
3. There are no two nodes with the same label.

Proof. ALLPATHS(.) explores paths in depth-first order. Every path s b, (2 =t

. . t t . .
Uk_1 is generated only in ALLPATHS(s A v1... 5 v), and no edge is consid-
ered twice for extending the prefix as N and Out are sets. All paths are tem-

poral because in a call ALLPATHS(s h ... LY v) only interactions vy Lox
are considered with ¢ > t;. All paths are simple, because ct(vy) is set to tj
before all recursive calls, and hence the if-condition on line 16 will fail for all
nodes x that are already in the path pr. O

This implies that we can refer to a specific call ALLPATHS(pr) in a run of
CycrE(s) with the unique value of the argument for parameter pr.

6.1 Soundness

Lemma 10 , , ,
If a cycle s -5 vy ... =5 v, 5 s is output, then it is output in ALLPATHS(s >

t t
v1... 5 v)and vy > s€ €.

110

6. Proof of Correctness for Constrained Depth-First Search

Algorithm 16 Algorithm AllPaths

Input: Prefix path s b (%) ook vy that starts in target node s.

Output: All simple temporal paths in G(V, £) from v; to s, starting with the
given prefix are output. The return value is false if no such path exists,
otherwise it is true.

1: function ALLPATHS(pr = s b (I 3 k)
2 Vcur < U, teur < Bk

3 ctH(Veur) < teur, lastp < 0

4: Out — {(veur, x,t) € E | teur < t}
5: N — {x e V| (veur, x,t) € Out}
6 if s € N then

7 for (vcyr, s, t) € Out do
8 if t > lastp then

9

lastp « t
10: end if
11: Output pr - {(veur, s, 1))
12: end for
13: end if
14: for x € N\{s} do
15: Tx < {t | (Veur, x,t) € Out}
16: while Ty # & do
17: tm — min(Ty)
18: pass < False
19: if ct(x) < t, then pass «— False
20: else pass «— ALLPATHS(pr - {(Vcur, X, tm)))
21: end if
22: if not pass then
23: T, — O
24: ExteND(U(X),(Vcur, tm))
25: else
26: Ty «— Te\{tm}
27: if t,, > lastp then
28: lastp — ty,
29: end if
30: end if
31: end while
32: end for
33: if lastp > 0 then UNBLOCK(v¢yr lastp)
34: end if

35: return (lastp # 0)
36: end function

111

Chapter 5. 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal
Cycles

As a direct result of Lemma 9 and Lemma 10, we get the following corol-
lary.

Corollary 1. Every cycle generated by AllPaths is a simple temporal cycle, and no
cycle is generated more than once.

6.2 Completeness
For notational convenience, we start by introducing some new notations.

Definition 17
An interaction x - y is called blocked if ct(y) < t. An interaction that is not
blocked is called free.

Letp = s b (T Y v be a temporal path; V(p) denotes the set of

vertices on the path p. Let vy Loxe & witht > te. p £, x denotes the

t t t
temporal path s = v;... 5 v — x.

We will use U(y) < (x,t) to denote that there exists a pair (x,t') € U(y)
with ¢/ < t.

A key property in the proof of completeness of our algorithm will be
that an interaction becomes unblocked if and only if a path starting from
that interaction to the root s becomes available using only available nodes;
i.e., nodes that are not in pr. This happens only when we return from a
call ALLPaTHS(pr) and has to be implemented in UNBLOCK(7, f,) on line 27.
consistency will be the notion expressing that a call to UNBLOCK(7, ;) is well-
behaved. The paths that become available are those using no nodes from pr,
except the root node s, and the node v, that will become available again
when we return from ALLPATHS(pr).

Definition 18
Consistency of Unblock
We say that the call UNBLOCK(vcyr, last) in ALLPATHS(pr) is consistent if the

following holds: an interaction x 4 y that is blocked just before the call
changes status from blocked to free if and only if there exists a temporal path

Px—ss from x to s that starts with x 4 y and with V(pr) n V(px—s) € {s, veur}-

Consistency Implies Completeness

Lemma 11
Let G(V, &) be an interaction graph and consider a run of cs. As long as
all finished calls to UNBLOCK are consistent, the following holds: if at the

start of ALLPATHS(pr), interaction x 4 y is blocked, then there doesn’t exist a

temporal path from x to s that starts with x 4 y and intersects pr only at s.

112

6. Proof of Correctness for Constrained Depth-First Search

pr

AN

,,@4040»@

Fig. 5.2: Illustration for proof of Lemma 11.

Proof. We prove by contradiction. Check the illustration given in Figure 5.2

for more clarity. Suppose there is a ALLPATHS(pr) in which at the start x - y
is blocked while at the same time there exists a path py_,s from x to s that

starts with x - y and intersects pr only in s, and all UNBLOCK operations
up to that point were consistent. Then, there must have been a previous

call ALLPATHS(ppock) in which x 4 y got blocked, which means that ct(y)
decreased from above t to lower than or equal to . ct(y) only gets lower
inside a call in which v¢,r = y, hence ppjocr is a path that ends in y. Since
y € V(pxos) and V(px—s) n V(pr) = {s}, y cannot be in pr, and hence pyjock
is not a prefix of pr. Since we are at the start of ALLPAaTHS(pr), neither is
pr a prefix of pyjock- Let now pjyins be the longest common prefix of pr and

/
Poiock, and consider the first interaction a 5 bin Polock after pjoins. Since
7
ALLPATHS (ppock) Was executed before ALLPATHS(pr), and pjoint - 4 Lbisa
!
prefix of pyjock, ALLPATHS(Pjoint - @ LN b) finishes after ALLPATHS(pyjock) does,

and before ALLPATHS(pr) starts. So, UNBLOCK in ALLPATHS(pjoint - @ L b) is
consistent according to our assumptions at the start of the proof. This implies
that after this UNBLOCK, x > y must be free because of the path p,_,s that
intersects pjoint - 4 LA b in at most b and s. We have reached a contradiction,
because we considered an arbitrary call ALLPATHS(ppock) that blocks x 4 Yy
and precedes ALLPaTHS(pr), and have proven that it x 4 y will be freed in

between ALLPATHS(pplock) and ALLPATHS(pr). As such, x 4 y cannot be
blocked at the start of ALLPATHS(pr), a contradiction with our assumptions

113

Chapter 5. 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal
Cycles

at the start of the proof. O

Lemma 12
Let G(V, £) be an interaction graph. If in an run of CycLE(s) all calls UNBLOCK
are consistent, then CYCLE(s) generates all simple cycles rooted at s.

Proof. We will prove the lemma by contradiction. Suppose cycle s b, vy LY

to. : t t .
vx — s is not output. This means that ALLPATHS(s —> v;... - v;) is never

t t . .
executed. Let p; denote s ool S vj, and let i be the smallest index

such that ALLPATHS(p;) is not executed. This means that before we reach
. . . . t;
line 19 in AriPatHS(p;_1) for x = v; and t, = ¢t;, the interaction v;_1 = v;

ti
is blocked. Because of Lemma 11, v;_; > v; was not blocked at the start
of ALLPATHS(p;_1). On the other hand, neither can any recursive call inside

ti

. —1 .
ALLPATHS(p; 1) return with v; 1 — v; blocked, because such a recursive

. . . . tiq
call ends with a consistent UNBLOCK which must end with a free v;_; S v;

t t t ti—q
because of the temporal path v; = v;,1... - v > s. Therefore, v;_1 = v

will be considered at some point and ALLPATHS(p;) is executed. This is in
contradiction with our initial assumption and hence proves the lemma. O

Helper Lemmas: Relation Unblock Sets and Blocked Interactions

Lemma 13
Let G(V, &) be an interaction graph and consider a run of CycLE(s). Just
before and after the call UNBLOCK in any ALLPATHS(pr) that is executed, the

following holds: if U(y) < (x,t), then x 4 y is blocked.

Proof. Consider the call to Unblock in ALLPATHS(pr). (Vcur, tm) is added to
U(x) in line 22 of the algorithm only if ALLPATHS(pr by x) fails. Hence, only

if at the end of ALLPATHS(pr b x), lastp = 0. As a result, ct(x) will be ¢t
right after the call which coincides with the moment that (v¢yr, t,) is added
to U(x). The only other place where pairs are added to unblock lists is in line
10 of unblock, and here it is easy to verify that if (w, f,,;,) is added to U(v),
then cf(v) < ty;,. Hence we have already proven that whenever a pair (x, t)

is added to an unblock list U(y), x 4 y is blocked. We still need to show

that whenever an edge x 4 y becomes unblocked, any (x,t') with ¢/ <t
gets removed from U(y). This is straightforward, as the only place where
interactions become free is in line 3 of UNBLOCK, where cf(v) is raised to f;.
Now any pair (w, t,) € U(v) with t;, < t, needs to be removed from U(v) to
maintain the lemma, what happens right after in steps 4-6 of UNBLOCK. So,
only during the execution of Unblock, the lemma may be temporarily broken,
but just before and just after it holds. O

114

6. Proof of Correctness for Constrained Depth-First Search

Lemma 14
Let G(V,€) be an interaction graph and consider a run of CycrE(s). Just

before any call to UNBLOCK, the following holds: if x 4 y is blocked, then
either y € V(pr) or for each interaction y Y, 2z with # > t it holds that
(y,t') <U(z) and y %, 2 is blocked as well.

Proof. Consider ALLPaTHS(pr) for which x > y is blocked at the start of
UnBLock, and y ¢ V(pr). Furthermore, assume that for every preceding

call to Unblock the lemma held.Let ALLPATHS(py) be the last preceding call

t
that lowered cl(y) to t or below. Hence, p, ends with an interaction a Sy

with t, < t, and during ALLPATHS(py), lastp never exceeds t. This implies
/ "
that for all edges y L, z with # > t there exists an interaction Yy L z with

"
t” < t' such that ALLPATHS(p, L, 2) returns unsuccessfully. As a result

/

7
ct(z) becomes t"” < t, and thus y L, 2 blocked. At the same time, because

ALLPATHS(py Lt z) returns unsuccessfully, (v, t") is added to U(z) and hence
U(z) < (y,t'). As lastp in call(p,) remains less than or equal to ¢, the call to

UNnBLOCK at the end of ALLPATHS(p, L z) does not unblock any of the edges
yizwitht’>t.

Suppose now that before the start of UNBLOCK in ALLPATHS(pr), one of
the edges v Y, 2 with ¥ > t becomes unblocked or U(z) < (y,t') becomes

false. It is easy to see that y *, 2 becomes unblocked implies U(z) < (y,)
becomes false and vice versa, as both occur in a call UNBLOCK(z, ") with
" > t'. This on its turn implies that (y,t') € U(z) will trigger UNBLOCK(y, t')
and ct(y) will be raised to at least t' > t, which is in contradiction with the
fact that ALLPATHS(p,) was the last preceding call that lowered cl(y) to t or
below. Hence the lemma still obtains at the moment we reach UNBLOCK in
ALLPATHS(pr). O

6.3 Main Result

Lemma 15
Let G(V,) be an arbitrary interaction graph and consider a run of CYCLE(s).
Every execution of UNBLOCK during that run is consistent.

Proof. We prove the lemma by contradiction. Suppose there is at least one
call to Unblock that is not consistent. Let the first call in the run that is not
consistent be the Unblock operation in ALLPATHS(p4;). The lemma can fail
for two reasons: either an interaction that needs to be unblocked isn’t, or one
that shouldn’t, is. We show that both cases lead to a contradiction.

115

Chapter 5. 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal
Cycles

Case 1: An interaction x - y that is blocked just before the call changes status
from blocked to free but there does not exist a simple temporal path p from x to s that

starts with x 5 y and with V(pr) n V(p) S {s, Vcur}. As x 4 y gets unblocked,
there must be a sequence y = y1,¥2,...,¥n = Ueyr such that right before the
call to UNBLOCK in ALLPATHS(p 1) starts, (yi, t;) € U(y;v1) fori=1...n-1,
with ct(y;) < tj,and t < tp < ... < t,_1 < lastp. Furthermore, as lastp > 0,
there is a temporal path py,,,—s from vy, to s that does not intersect pr except
in vy itself and s.

We first show that fori =1,...,n—1, y; ¢ V(pg). Suppose for the sake
of contradiction there is at least one y; € V(ps,;;). We can assume without
loss of generality that y; is the first such node on the path py,;. Let p; be the

prefix of ps,; that ends in y;. According to Lemma 11, y; LA Yi+1 cannot be

blocked at the start of ALLPATHS(p;) because of the temporal path y;;q i)

Yito ... Iy Yn * Poas—s that does not intersect p; except in s. Hence, because
of Lemma 13, U(y;11) ¥ (i, t;) at the start of ALLPATHS(p;). Furthermore,
(yi, t;) cannot have been added into U(y;.1) in ALLPATHS(p;) because of the
existence of the temporal path y; 4 Yig1 - Iy Yn * Poas—s- This implies that
(yi, ti) ¢ U(yiy1); a contradiction.

Hence, y1 b Yo... Iy Yn " Poo,—s 18 @ path from y; to s that intersects p 4
only in s and v¢,,. This contradicts our assumption at the start of case 1 that
no such path exists.

Case 2: Interaction x > y remains blocked throughout the call to Unblock even

though there exists a simple temporal path py_.s from x to s that starts with x 4 Yy
and with V(pr) n V(p) € {s, vcur}. Note that this implies that y ¢ V(psai1)-

Since x 5 y is blocked before the execution of UNBLOCK in ALLPATHS(p f41),
at some point earlier in the run, this interaction got blocked. Consider the
last time this happened, and let p, be the prefix at that point in time. We
show now that py,; must be a prefix of p,. Refer to Figure 5.3 for clar-
ity of this case. Indeed, suppose it isn’'t, then pg,;; and p, have a shared

prefix pjoint and py # pjoint- Let a 4 b be the first edge after pji; in
py- ALLPATHS(py L8 b) hence ended before ALLPATHS(pf,) started and

UNBLOCK() in ALLPATHS(py LA b) is consistent and therefore unblocks x 4 y
if it is still blocked, because of the existence of the path from b to y (the con-
tinuation of py) followed by the path from y to s that intersects py,; only at

Ocur- This path hence intersects pjoins LA b at most in b and s.
So, we have established that py,; is a prefix of p,. Consider the path

Py—s that is obtained by removing x LN y from the start of py_,s; that is:

Pxos = X 4 Py—s- Py—s intersects py, at least in v¢y,, but potentially also in

116

6. Proof of Correctness for Constrained Depth-First Search

Psail

Fig. 5.3: Illustration for proof of Lemma 15 case 2.

other nodes thereafter as shown in case Figure 5.4.
Let v be the first such node on py—,s and let p, be the prefix of p, that

ends in v, and py—.y be the prefix of p,_,s that ends in v. Let py—, = by b,

by... 5 by; b1 = y and b, = v. Because x 4 y got blocked in ALLPATHS(py)
and remains blocked all the time until ALLPATHS(p), after UNBLOCK in

ArLPatHS(py), X 4 y is still blocked. By repeated application of Lemma 14
we can show that U(by) < (b1, t1) = (y,f1), b1 LA by is blocked, U(b3) <
(by, t2), by 2> by is blocked, etc., until U(0) = U(by) < (b1, tn1), bu_1 2

by is blocked. We call this sequence py—, an unblock chain from (v, ty) till
(y,t1). This implies that any call UNBLOCK(v, ;) will cause eventually a call
to UNBLOCK(y, t1).

If there is a second intersection v* on p, and p,—s in between v and
veur as shown in Figure 5.5, then we can follow the same construction and
derive an unblock chain from (v*,t*) till (v,t,). This unblock chain can be
composed with the first one to form an unblock chain from (v*, t*) till (y,).
In this way we can continue until we have an unblock chain from (vcyr, tast)

. . . s
till (y,1). t1st is the timestamp such that u %' v, is the interaction arriving

in veyr of py—s. The next interaction on p,,s leaves v, and we denote it

Fre .
Vowr 8" w. toy must be smaller than #,.y, because py—s starts after time ¢,

py blocks x 4 y and hence ends before or at f, and pyj,c is a prefix of py,.
Hence, for sure t.,, < t, and t,ex¢ > t. Hence, at the start of UNBLOCK in

117

Chapter 5. 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal
Cycles

Fig. 5.4: [llustration for proof of Lemma 15 case 2 when p,_,s intersects p, at another node v
other than vy,

<@ Lo PR A
) tnext I / \ y=v

t*l t'll | R

tIast “— PV—>V*

N @"V J

Py

Fig. 5.5: [llustration for proof of Lemma 15 case 2 when py_,s intersects p, at more nodes other
than v, such as v and v*.

118

7. Complexity of constrained Depth-First Search

ALLPATHS(Pprock), lastp = tnext as we have a path back from vy, to s (the
remainder of py;). Therefore, the call UNBLOCK(vcyr, lastp) is made with

lastp > ppext, which will trigger our unblock chain, causing in the end x 4 y
to be unblocked by the call UnBLoCK(y,t1). This means x 4 y becomes
unblocked, a contradiction and hence proved. O

Theorem 6. CyCLE(s) returns all simple cycles.

Proof. This follows directly from the combination of Lemma’s 12 and 15. O

7 Complexity of constrained Depth-First Search

The proof of complexity revolves around the observation that on the one
hand, in order to unblock an interaction, a cycle needs to be output, and
on the other hand every cycle that is output unblocks an interaction at most
once. To prove the validity of this observation we first establish a more strict
condition than consistency that the Unblock operations obey.

Lemma 16 , ,
For each call to UNBLOCK in ALLPATHS(pr = 5 <> 01 3 ... 2 ©,,) the following

holds: if an interaction x > y is blocked before the execution of UNBLOCK and
free afterwards, then there exists a temporal path p,_,s from x to s such that
V(px—s) n V(pr) = {s,v,} and there does not exist any path p/_,, such that

V(pimss) 0 V(pr) = {s}.

Proof. The existence of the temporal path p,_,s is already established by
Lemma 15. Here we will show that if there exists a path p)_,; such that
V(ph_s) nV(pr) = {s} then x 4 y cannot be blocked at the start of UNBLOCK
in ALLPATHS(pr). According to Lemma 11, x 4 y cannot be blocked at the
start of ALLPATHS(pr). Suppose x 4 y becomes blocked during ALLPATHS(pr).
This must then occur during the execution of ALLPATHS(pr - py,—y), Where
Pu,—y is a path from v, to y that starts after t,. Let vy, fngt Uy41 be the
first interaction on that path py,—,. As UNBLOCK in ALLPATHS(pr i< Upt1)
is consistent and p}_,, is a path from x to s that starts with x 4 y and
intersects pr i1 Uy41 Iin at most s and possibly v,1, after UNBLOCK in
ArLPatHS(pr jas Upt1), X 4 y will be free. Hence, after any recursive call

from ALLPATHS(pr) returns, x 4 y is free and hence it will be free at the start
of UNBLOCK in ALLPATHS(pr), which establishes our lemma. O

Lemma 17
In between two cycles being output every interaction can get unblocked at
most once.

119

Chapter 5. 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal
Cycles

Proof. The only way an interaction can get unblocked is by a call to Unblock,

which is only called when a cycle was found and output. Suppose a cycle s b

(4] B By, Bsis output. This cycle can only be output by ALLPATHS(s b

t t i . hoot
v1 > ... 5 v,) and will trigger UNBLOCK operations in ALLPATHS(s — v -

A v;), foralli = 1...n. Let p; = s h U1 o4 v;. Suppose that

there is an edge x 4 y which gets unblocked twice as a result of this found
cycle. Because of Lemma 16 this is however impossible, as any temporal path
intersecting p; only in s and v; is a path intersecting pr; only in s for all j <i.
So, if an interaction gets unblocked in ALLPATHS(pr;), it cannot get unblocked
in ALLPATHS(pr;) for j <. O

With the last lemma we have almost reached the complexity result we are
aiming at; blocked edges do not need to be explored, or at least not after
unblock lists have been properly updated. Hence the last hurdle to be taken
is showing that once a blocked interaction x 4 y was considered, we do not
ever have to consider it again

Theorem 7. Let m = |E| and n = |V|. We can implement CYCLE(s) in such a way
that in between two cycles being output, CYCLE(s) takes at most O(m + n) steps.
Proof. We consider the time in between two cycles being output. By Lemma 17

any edge gets unblocked at most once. We say that an edge x 4 y is con-
sidered in a step of the algorithm whenever its existence or non-existence

matters for the execution of that step. An edge x 4 y is only considered
in calls ALLPATHS(pr) where pr ends in x. Suppose now that x 4 Yy was
considered and found blocked at that time, did not become free in between,
and is considered again. Then, any edge x N y with #' > t does not need to
be considered anymore until x 4 y becomes unblocked again. Indeed, the
first time x —> y is considered, and no cycle found, ct(y) gets lowered to at
most t and (x,t) added to U(y) unless already U(y) < (x,y). Should x LN y

with # > t be considered, and there wasn’t an unblock operation of x 4 yin
between, ct(y) is still at most f and the interaction will not have any effect (no
recursive calls because of it, lastp does not get influenced). We can achieve
the complexity bound by using a data structure that allows to consider only

interactions vy L y such that never before an interaction vy, 1» Yy was con-
sidered and blocked without being freed in the meantime, and ¢ > t.,. For
this, we will keep for each pair of nodes (x,y) such that there exists an inter-
action x - y an ordered list of timestamps t; < t; < ...t, of all interactions
that took place between x and y, and a pointer to the last timestamp that
wasn’t considered yet. As, in a call ALLPATHS(pr) we can ignore all inter-
actions (vcur, Y, t) with t <ty and all interactions (veyr, y,t) where t comes

120

8. Path Bundles

AN
N~

13

Fig. 5.6: Example temporal network with simple cycles having multiple repeated edges

after the pointer position, we can identify all interactions to be considered in
linear time in the number of interactions. If a cycle is output, the complexity
is trivially satisfied and we reset the pointer to last timestamp. Otherwise, the
pointer will decrease to the last timestamp lower than t,,. Hence, in a subse-
quent call none of the edges considered will be reconsidered. In this way, as
long as there is no cycle output, any interaction get unblocked at most once,
and hence any interaction will be considered at most twice. This gives us a
total time complexity in between two cycles being output of O(|V| + |£]). The
term |V| comes from generating all unblock lists and closing time variables
at the start of the algorithm. O

8 Path Bundles

The algorithm presented in the last section still has one big disadvantage:
especially in the presence of repeated edges the same paths and cycles can
be explored over and over again. Consider for instance the example in Fig-
ure 5.6. In this example there are 3° = 729 cycles and each of them will be
generated separately. There will be one call starting with a, 3 fora — b, 9 for
a — b — ¢, etc. Alot of this work could be avoided though by combining the
computations for multiple edges and paths. It is exactly for this purpose that
we introduce the following notion of a path bundle.

Definition 19
A path bundle B in an interaction network G(V, £) between nodes v; and vy 1
consists of a sequence of vertices vy, ..., v 1, and sets of timestamps T7, ...,

Ty such that for all i = 1...k, t € T; it holds that (v;,v;.1,t) € £. We will

denote the path bundle B by v; Kt (%) ook Vka1-

121

Chapter 5. 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal
Cycles

The set of temporal paths represented by B, denoted P(B) is defined as:

P(B) = {0 E)Uz...ivk_‘_l |Vi:tie Trand t; <... <t}
A path bundle is called minimal if for alli = 1...k, t € T; it holds that

T, T\{t T T T; T
P(vq =2 R l)} —k>7Jk+1) < P(vy = LD —k>0k+1)
Lemma 18
Let B be a path bundle. There exists a unique minimal path bundle B’ such
that P(B) = P(B’)

T T Tic . ' b

Proof. Suppose B = v1 — vy = ... = vj4q. Letfori=1...k T/ :={t; | Jo; —
¢ ¢ T! T! T!)

vy 5 ... 5 v, eP(B)). B =0, vy 3 ... 5 v, is now the requested

unique minimal path bundle. Indeed, P(B’) € P(B) is trivial, since T/ < T;

foralli = 1...k. On the other hand, let p = v; 4 () Bk vk+1 € P(B).
Then, by definition of T/, v; € T|, for all i = 1...k. Hence, p € P(B'). As
p was chosen arbitrarily, this established the other direction of the inclusion,
namely that P(B) < P(B’). B’ is clearly minimal as every t; € T/ is there

. ti . .
because of a path having v; & v;,1; removing #; from Tl-’ would result in
remove at least that path from P(B’).

T//
Suppose now that there exists another minimal path bundle B” = v; -

Tl/ Tll
vy 3 ... 5 vy such that P(B”) = P(B). Since B” is minimal and different

from B’, there must be at least one i = 1...k and one t € T/ such that ¢ ¢ T
However, via a similar argument as for the minimality of B/, this would imply
that there is a path p € P(B’) which is not in P(B”). Therefore P(B") #
P(B’) = P(B), which is in contradiction with our assumptions. This proves
that a minimal B’ always exists and is unique. O

For the above example, all cycles could be represented by a single path

123, 456 789 ,1011,12 13,1415 ,16,17,18
bundle:a =5 b5 c~5d —S"¢ 5 d = a.

8.1 Expanding a Bundle

In order to extend our algorithm to work with path bundles instead of in-
dividual paths, we need to extend all operations performed on paths in the
algorithm to bundles. The first operation we consider is extending the path
with an extra edge. This operation is easy enough, as we can just add the
edge with all its timestamps to the bundle. We do want, however, to keep
the bundles minimal for efficiency reasons. Algorithm 17 does exactly that;
it extends a bundle with an edge while maintaining the minimality of the
bundle.

122

8. Path Bundles

Algorithm 17 Extending a path bundle with an edge bundle

T,
Input: Minimal path bundle B = v; L.k Uk+1, edge bundle E = vy ¢ LSS

Uk+2
Output: Minimal path bundle with all valid paths composed of B and an
edge of E.

. T T T
1: function EXPAND(v1 = ... =5 01,0001 ' U p0)
2: T! “«— {t € Tk+l | t> mm(Tk)}

. k+}
3: if T, = then
4: return (v; 4 c .0 4 4 Vgs2)
5: end if
6: fori =k down to 1 do
7: T ={teT;|t <max(T{)}
8: end for)
T! T/ T,
9: return (v = ...0; = ... LSS Vk12)

10: end function

Let’s illustrate with an example. Suppose we have a path bundle a 27

b 23 ¢ which we want to extend with the edges c *47 4. Since there is no edge
from b to c earlier than timestamp 3, we can prune away 2 from the paths
between ¢ and d. Furthermore, the last edge between c and d has timestamp
7, so all edges between b and c later than 7 should be removed. Only the edge
with timestamp 3 remains between ¢ and d which causes the timestamps 5
and 7 between a and b to be removed. Hence, the result of the extension is:
a b3 cHa

Lemma 19

Given a minimal bundle B between 1 and v and a bundle v 5 w, Algo-
rithm 17 returns a minimal bundle B’ such that P(B’) consists of all temporal
paths from u to w that can be constructed by extending a path from P(B)

with an edge from v Low.

T; Tj .
Proof. Suppose B = v; = ... -5 v 1 with v; = u and v;; = v. We need

to construct a path bundle that contains exactly the paths P = {u ook
v 5w | u b % v ePBandt > ty and t € T}. Since B is minimal,
from the proof of 18, we learn that for t;inT} if and only if there exists a path
u...Soe ‘P(B). Hence, there exists a path in P(B) with the last interaction

at time t,,;, = min(Tj). This path can be extended by any v L wwitht > Ein
and t € T. Hence, for each t € Tj,; := {t € T | t > ty;,} there is a path in
P with the last interaction at timestamp ¢. Also the opposite direction holds;

123

Chapter 5. 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal
Cycles

if there is a path in P, then it ends at a timestamp ¢ in T;_; as it extends a
path in PB and hence the last interaction needs to come after the t,,;,,. The
minimality of the other T} can now be shown by induction. Suppose that T},
has the property that t € T/ ; if and only if there exists a path in PP for which
the i + 1st timestamp is t. Then it is easy to show via a similar argument as
above for T}, that T} are exactly those timestamps for which there exists a
path in P with that ith timestamp. From the proof of 18 it follows now that
the resulting bundle as constructed in Algorithm 17 is minimal. O

8.2 Extending the Algorithm to Bundles

By directly manipulating path bundles instead of individual paths we can
significantly reduce the number of recursions needed as well as output the
cycles much more compactly. In algorithm 18 we provide extensions of the
algorithm presented in 16 to consider the path bundle notion. There is not
much change in algorithm 15 except at step 7 where instead of looking for
path from x to the root node s using algorithm 16, a path bundle is searched
using algorithm 18. The output of the algorithm 18 is not all the simple
temporal cycles as we required, but a more compact representation of cycles
using the path bundles.

8.3 Counting the Number of Paths in a Bundle

For some applications we need the exact number of paths represented by
a bundle. This number, however, is not entirely straightforward to obtain
efficiently. Indeed, we may easily come up with a recursive procedure that
generates all valid combinations of the timestamps, but that would somewhat
defy the purpose of the bundles, which is exactly to avoid such costly indi-
vidual treatment of the paths. Luckily, Algorithm 19 comes to the rescue. In

Algorithm 19, we compute the number of paths in a bundle v, L Vkt1
by iteratively considering all the prefixes of the bundle in increasing length.

For each prefix P; = v; K} i} vi+1, the number of paths are stored on a
heap H;. For each end time f of a path in P;, the number of paths n ending at
that time or earlier is stored as a pair (f,7) on the heap. The heap H;;1 can
easily be computed based on T; and H;. We illustrate the algorithm with an
example.

Consider the path bundle a L7y 488 213

c—>d.

* The heap for the length 0 prefix Py contains just one pair (0, 1), indicat-
ing that there is one path of length 0 that ends at timestamp 0.

e ForP; =a L7, we go over the timestamps from small to large and for
each of the timestamps f we look how many paths in Py it can extend.

124

8. Path Bundles

Algorithm 18 Algorithm AllBundles

Input: Prefix bundle B starting in node s
Global: Interaction network G(V, £), closing times ct(v), unblock list U(v)
for all nodes v € V, latest timestamp t, in £.

Output: All simple temporal paths in G(V,€) from x to v,, prefixed with
path.

1: function ALLBUNDLES(B = s 5 1 5 e U k)
2 toyr < MiIn Ty, Ugyr < Uy

3 ct(Veur) < teur, lastp < 0

4: Out — {(veur, x,t) € E | teyr < t < ct(x)}

5: N —{x e V| (veur, x,t) € Out}

6 if s € N then

7 T < {t| (vcur,s,t) € Out}

8 t — max(T)

9 if t > lastp then

10: lastp <t

11: end if

12: Output Expand(B, vcyy L s)

13: end if

14: for x € N\{s} do

15: Ty « {t | (veur, x, t) € Out}

16: T, — {te Ty |t <ct(x)}

17: if T, # & then

18: lasty «— AllBundles(s, Expand(B, vcyr I X))
19: if lasty > lastp then

20: lastp « lasty

21: end if

22: tm — min{t € Ty | t > last,}
23: ExTeND(U(X),(Vcur, tm))

24: end if

25: end for

26: if lastp > 0 then

27 UNBLOCK(V¢yr lastp)

28: end if

29: return [astp

30: end function

This number is computed by popping off elements from the heap until
the head of the heap contains a timestamp larger than t. The last pair
we popped off contains the number n we need. In order to compute the

125

Chapter 5. 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal
Cycles

total number of paths ending at ¢ or an earlier timestamp, we add to n
the number of paths we already gathered. So, for Pj, the content of the
variables and the pair pushed on the heap H; evolve as follows:

t Hy n prev pushed in Hy
1 <0,1)) 1 1 (1,1)
3 O 1 2 (3,2)
7 O 1 3 (7,3)

In the end H; will be: {(1,1),(3,2),(7,3)). Recall that (7,3) on H; means
that there are 3 paths in P(P;) that end at timestamp 7 or earlier. In-

deed, these three paths are: a N b, a 3 b, and a b

* Now we proceed to P, = a 37 B2 0 We will compute H, by
combining T, with Hj. Again we iterate from small to large over T5.
For t = 4 we need to compute how many of the paths in P(P;) it can
complete. For this purpose, as long as t' < t, we pop off the pairs (¥, 1)
from Hj. The last pair (', 1) we pop off contains the number of paths
with which we can combine. This is (3,2), hence n becomes 2. We push
(4,2) on the heap Hp. So, for P,, the content of the variables and the
pair pushed on the heap H, evolve as follows:

t H; n prev pushed in Hy
4 {(1,1),(3,2),(7,3) 2 2 (4,2)
8 {(7,3)) 3 5 (8,5)
12 O 3 8 (12,8)

In the end H, will be: {(4,2),(8,5),(12,8)).

* We continue the same procedure for P3 and iteratively get the following

evolution:
t H; n prev pushed in Hj
7 (42),(85),(12,8) 2 2 72
13 {(8,5),(12,8)) 8§ 10 (13,10)

Hence, H; ends up to be : {(7,2),(13,10)). The final answer is in the
tail of H3 and is 10.

The reason that we went for the complication of having a heap is because
it allows us to compute H; in time proportional to |H;_q| + |T;|. Since |H;| =
|T;|, we get as total time complexity O(Zé{:l |Ti]). This is much more efficient
than iterating over all paths which in worst case takes time | [/_, |T;|. This
complexity occurs when foralli=1...k -1, max(T;) < min(T;11).

126

9. Experiments

Algorithm 19 Counting the number of paths in a bundle

, T,
Input: Path bundle B = v; Lt .0 it .5 Vga1

Output: The cardinality of P(B)
1: Let Hy be an empty heap
2: Push (0,1) on Hy
3: fori=1...k do
4: Let H; be an empty heap

5: n<20

6: prev « 0

7: for t € T; sorted ascending do
8: if H; 1 is not empty then
9: (t',n') « head(H;_1)
10: while t/ < t do
11: Pop (#,n') from H; 4
12: nen

13: (t,n") « head(H;_,)
14: end while

15: end if

16: Push (¢, prev + n) on H;

17: prev <« prev +n

18: end for

19: end for

20: Let (¢, n) be the tail of Hy
21: return n

9 Experiments

We evaluated the performance of our algorithms on 6 different real world
temporal networks. The performance results presented in this section are
for a C++ implementation of our algorithm. All experiments were run on
a simple desktop machine with an Intel Core i5-4590 CPU @3.33GHz CPU
and 16 GB of RAM, running the Linux operating system. The code and
instructions to run the experiments are available online (https://github.
com/rohit13k/CycleDetection).

9.1 Dataset

All datasets except SMS [120], Facebook [114] and USElection [71] were ob-
tained from the SNAP repository [75]. The characteristics of the datasets
are given in Table 5.1. While running the experiments we choose smaller
windows for the high frequency dataset SMS, Facebook, USElection, and

127

https://github.com/rohit13k/CycleDetection
https://github.com/rohit13k/CycleDetection

Chapter 5. 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal
Cycles

Higgs whereas for the low frequency datasets Stackoverflow and Wiki-talk
a higher window of 1 day and 1 week were considered.

Dataset n[.10%] | m[.10%] Days
Facebook 46.9 877.0 1592
SMS 44.1 545 338
Higgs 304.7 526.2 7
Stackoverflow | 2464.6 | 16266.4 2774
Wiki-talk 1140 7833.1 2320
USElection 233.8 1000 | 10 hours

Table 5.1: Characteristics of interaction network along with the time span of the interactions as
number of days.

9.2 Performance Evaluation

Effect of bloom filter: The efficiency and effectiveness of the bloom filter de-
pends on the Bloom filter size and the number of hash functions used. For
our experiments, we used a projected element count of 500 and false positive
probability of 0.0001, which results in a filter of size 9592 using 13 hash func-
tions. Using the bloom-filter-based approach for the SD phase is not always
efficient. This is mostly because of two reasons: (1) in the Bloom Filter ap-
proach we have to scan the data twice; and (2) creating bloom filters for data
sets where the candidate set is very small is an overkill. Hence, as long as the
candidate set size is not getting so large that it stresses memory usage and
set operations like union and cardinality test, the set-based approach is faster
than the bloom-filter-based approach. The summary set size becomes very
large for interaction networks in which the ratio of the number of interactions
over the number of nodes is high. This is the case for Higgs and USElection
with w set to 10 hours. In this case, the Bloom-filter-based approach is the
best approach because of the time and memory savings it provides. In our ex-
periments, for USElection, the Exact-set-based approach ran out of memory
after 18 minutes, whereas the Bloom-filter-based approach finished within 27
seconds taking only 700 MB of space. More results for time and memory
consumption in the SD phase are shown in table Table 5.2. The best results
are shown in bold.

Effect of Pruning: We also tested the effect of inactive node pruning in
the SD Phase. We ran pruning after processing every batch of 100,000 interac-
tions. As expected, pruning has a huge impact on the memory requirements
of the SD Phase. For instance, the memory requirements reduced by a factor
of 55 in case of Stackoverflow for a 1 day window. This is because there are
too many source nodes and most of them become inactive very quickly. As
such, removing their summaries from the memory resulted in a huge gain

128

9. Experiments

Time(seconds) Memory(MB)

Dataset w
Exact Bloom Exact Bloom

Facebook 1 hour 4 12 20 225
aceboo 10 hours 6 17 24 375
M 1 hour 12 40 27 730
10 hours 50 59 112 972
i 1 hour 4 8 114 170
18es 10 hours 45 10 3048 325

1 day 78 399 26 1578

Stackoverflow | ok 138 454 346 2309

. 10 hours 66 223 98 3541

Wiki-talk lday 147 344 269 5675
. 1 hour 20 21 157 315
USElection 10 hours - 27 - 700

Table 5.2: Time and Memory Comparison between Exact set based and bloom filter approach
to find root candidates.

Time(sec) Memory(MB)
P NP P NP

1 hour 3.9 4.1 9 25
10 hours 4.9 5.1 11 28

1 hour 11.6 12.1 16 51
10 hours 45.6 46.1 41 90

Hi 1 hour 4.1 3.8 103 177
1egs 10 hours 443 41.6 3037 3295

1 day 797 974 26 1441
1 week 112.3 130.8 343 2184

10 hours 58.5 62.5 98 1231
1 day 129 1335 269 3174

DataSet w

Facebook

SMS

Stackoverflow

Wiki-talk

Table 5.3: Effect of pruning (P) versus no pruning (NP) on Time and Memory usage.

in memory usage and runtime. In the case of Higgs, however, the number
of source nodes is very low and they remain active throughout the whole
duration of the dataset resulting in much less memory savings and a modest
increase in runtime. In all other cases, however, there are significant memory

129

Chapter 5. 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal

Cycles
Dataset w Without Bundle With Bundle
1 hour 4.7 3.9
Facebook 10 hours 9.4 7.3
SHS 1 hour 24.5 10.3
10 hours 104.6 21.34
Hi 1 hour 2.65 2.26
18es 10 hours 15265 136.6
1 day 62.7 63.3
Stackoverflow | lek 1477 118.4
. 10 hours 693.9 320.2
Wiki-talk lday 2356 828

Table 5.4: Time comparison (in seconds) to find cycles using Bundle path and without Bundle
path.

and time savings due to regular pruning. The results are shown in Table 5.3.

Effect of Bundling: As expected, using the path bundle approach is never
slower than using the simple path approach. On the other hand, in cases
where there are multiple repeated edges such as Higgs for a window of 10
hours, we get a speedup of up to 12 times thanks to the path Bundles. The
results are shown in Table 5.4.

Runtime for Complete Cycle Enumeration. Finally, we also compare the
total runtime of finding all cycles using 2SCENT with exact set and path
bundles to the algorithm presented by Kumar and Calders [70] (Naive algo-
rithm). As 2SCENT is a two-phase algorithm we compare the combined time
taken by both phases with the runtime of the Naive algorithm. We observe
that for small networks with less frequent interactions, such as Facebook,
or for medium-sized networks with a small window length w, such as SMS
with a window of 1 hour, or for large networks with very infrequent inter-
actions, such as Mathoverflow with a 1 day window, the Naive algorithm
outperforms 2SCENT and its variants. This is because in these cases there
are only few temporal paths to be enumerated which easily fit in memory.
Hence a brute force approach as proposed in [70] is feasible. But when we
run on larger interaction networks or with larger window lengths, 2SCENT
outperforms the Naive algorithm with respect to runtime by a factor of up to
300. The massive gain in performance is due to the fact that the Naive algo-
rithm maintains and updates all temporal paths whereas 2SCENT needs to
enumerate only paths which will contain a cycle. For some datasets such as
Higgs, Stackoverflow, and Wiki-talk, for higher window length, the Naive
algorithm crashes due to the high number of temporal paths it is maintaining

130

9. Experiments

DataSet w Naive 2SCENT
Facebook 1 hour 6.5 sec 12.2 sec
10 hours 9.3 sec 18.2 sec
SHS 1 hour 21.1 sec 34.8 sec
10 hours 15.7 hours 2.1 min
Hi 1 hour 10.6 min 10.7sec
18es 10 hours Crashed 3.6 min
1 day 3.2 min 3.7 min
Stackoverflow 1 week Crashed 6.6 min
Wiki-talk 10 hours Crashed 7.5 min

1 day Crashed 19 min

Table 5.5: Time Comparison between Naive and 25CENT to find all cycles.

in memory. The results are presented at Table 5.5.

Effect of Window Length: We also study the effect of increasing the win-
dow length on processing time and cycle count. We present the results for the
SMS dataset in Figure 5.7. We make two observations; first, as expected, the
processing time and count of simple cycles increases with an increase in win-
dow length, but after a certain window length both become constant. This is
because when the window is large enough, the temporal characteristic of the
network do not change any more. In case of the SMS data set, this happens
at a window length of 70 hours. Second, we see that the processing time
increases at first and then decreases slightly again before becoming constant.
This decrease in processing time is the result of the higher compression of
candidate nodes for larger windows, resulting in fewer root candidates, but
each with a higher number of cycles, found in one cDFS scan.

9.3 Qualitative Evaluation

Cycle Frequency Distribution: In figure 5.8, we present the frequency dis-
tribution of the number simple cycles by cycle length for the Facebook, SMS
and Higgs data sets for a window of 10 hours. The maximum cycle length
is 5 and 11 respectively for the Facebook and SMS data set, and the number
of triangles is very high as compared to the number of longer cycles. In
the Higgs data set, however, the maximal cycle length is 20 and the cycle
count distribution is very different. We think this could be because the SMS
and Facebook data sets capture interactions between friends whereas Higgs
is an open interaction platform with interactions among unknown followers
interested in similar topic of discussion.

131

Chapter 5. 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal

Cycles
40 S e e e 30
cDFS Time —e—
35 1 #Cycles == p n [l 25
—
N 30+
2 {20 &
(@) 25 —4 4 —¢ o
O _ o
Q 20 ¢+ 115 £
L) 5 >
o 15+t] o
= 100
= 10 ¢
sl |,
B 0
o O O
SR IR

o O O O O
N O© ™~ 0 o

100

window

Fig. 5.7: Effect of window length on processing time and cycle count for SMS data set

10 ——mM@m@m™ ™M
90 t
80
70
60
50
40
30
20
10

O —e—e PN P o ® 1 1 1 1

#Cycles/Total Cycles

MITOLON~MNOVOOANMITL OO
S B B B B B B B B |

20

length

Fig. 5.8: Distribution of simple cycle count and length for w = 10 hours.

132

10. Conclusion

10 Conclusion

We addressed the problem of enumerating simple temporal cycles that do not
exceed a given time window length w in an interaction network. One of the
applications we proposed and explored in the paper is using the number and
length distribution of temporal cycles to characterize (part of) the dynamic
behaviour of the temporal network. This is similar in spirit to using metrics
such as clustering coefficient or diameter to characterize static networks. In
order to visualize this distribution, it is necessary to enumerate, or at least
count the number of cycles of all lengths. We presented an efficient algo-
rithm, 25CENT, which consists of two phases. In the first phase all sources of
cycles are detected, which are then further expanded into the full cycles in the
second phase. The base version of 2SCENT was extended in two important
ways: first, we introduced the use of Bloom filters to reduce the memory con-
sumption of the source detection phase by replacing the reverse reachability
set by a reverse reachability filter. The second extension, using path bundles,
handles the common case of repeated interactions leading to an explosion in
the number of cycles. In experiments, we found that 2SCENT with its ex-
tensions runs up to 300 times faster than the only existing competitor. The
experiments show that the algorithm could scale to millions of nodes and
interactions using only commodity hardware. While the focus of this paper
was more on algorithms and general aspects of temporal cycle enumeration,
we also presented a qualitative analysis of cycles in temporal networks and
analyzed the temporal nature of different real-world networks using the cy-
cle count frequency distribution. For closed versus open friendship networks
we could observe different cycle distributions, indicating different dynamic
behaviours in these networks.

We consider two important avenues for future work. First, more research
is required to definitely answer the question whether or not the temporal cy-
cle distribution is a good way to represent dynamic behaviour in networks.
Related to this is the evaluation of the usefulness of the cycles in applica-
tions such as fraud detection. For the datasets used in this paper, we did
not have access to the actual content of the interactions such as the tweets
on the Twitter network. A qualitative study of the cycles found and their
significance from an application perspective are of great interest. Secondly,
it is also important to take into account the frequency of interaction between
nodes when assessing the significance of the cycles found. Indeed, for nodes
that are closely collaborating and interacting frequently, it is likely that ac-
cidental cycles may emerge. Therefore, methods need to be developed to
measure the probability of temporal cycles emerging by chance. Only in this
way we can properly assess the significance of the cycles found.

133

Chapter 5. 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal
Cycles

134

Chapter 6

Cost Model for Pregel on
GraphX

The paper has been published in the Proceedings of the 21st European Con-
ference on Advances in Databases and Information Systems (ADBIS), 2017.
The layout of the paper has been revised.

DOI: https://doi.org/10.1007/978-3-319-66917-5_11

Abstract

The graph partitioning strategy plays a vital role in the overall execution of an algo-
rithm in a distributed graph processing system. Choosing the best strategy is very
challenging, as no one strategy is always the best fit for all kinds of graphs or algo-
rithms. In this chapter, we help users choosing a suitable partitioning strategy for
algorithms based on the Pregel model by providing a cost model for the Pregel im-
plementation in Spark-GraphX. The cost model shows the relationship between four
major parameters: 1) input graph 2) cluster configuration 3) algorithm properties
and 4) partitioning strategy. We validate the accuracy of the cost model on 17 differ-
ent combinations of input graph, algorithm, and partition strategy. As such, the cost
model can serve as a basis for yet to be developed optimizers for Pregel.

1 Introduction

Large graphs with millions of nodes and billions of edges are becoming
quite common now. Social media graphs, road network graphs, and rela-
tionship graphs between buyers and products are some of the examples of
large graphs generated and processed regularly [31]. With the increase in size

135

Chapter 6. Cost Model for Pregel on GraphX

of these graphs, the classical approach of graph processing is becoming insuf-
ficient [72, 71]. Hence, to address these shortcomings, vertex-centric program-
ming models [82] have been proposed to transform the way graph problems
are managed. Pregel [84] is one such programming models which supports
distributed (parallel) graph computations. Many distributed graph comput-
ing (DGC) systems like PowerGraph [49] and Spark-GraphX [122] provide
implementations of the Pregel model for graph computations. DGC systems
distribute the graph computation by partitioning the graph over different
nodes of a cluster.

There are many partitioning strategies proposed in literature [121, 94, 49]
for performing efficient graph computations on DGC systems. Most of the
DGC systems provide the same programing model and offer similar features
and strategies to use. Depending on the internal implementation of these
strategies and algorithms, the systems can give different performance. Even
once a user has decided a system to use, there are not enough guidelines
on which partitioning strategy to use for which application or graph. Verma
etal. in [113] attempts to address this question with an experimental com-
parison of different partitioning strategies on three different DGC systems
resulting in a set of rules. However, there is no clear theoretical justification
of why one partitioning strategy performs better than another depending on
a particular combination of graph and algorithm. Moreover, the paper does
not consider the cluster properties which according to our cost model, is one
of the parameters in deciding the best partitioning strategy. In this chapter,
we address this question by providing a cost model for the Pregel implemen-
tation in GraphX. Cost models are used in the database community for query
plan evaluation. We contend that DGC systems should be able to choose the
best partitioning strategy for a given graph and algorithm using our cost
model in iterative graph computations.

Concretely, in this chapter, we make the following contributions: (i) we
formulate a cost model to capture the different dominating factors involved
in the Pregel model (Section 3); (ii) we validate our cost model on GraphX by
estimating the computation time and comparing it with real execution time
(Section 7). To the best of our knowledge this is the first work in which a
cost model based approach has been proposed for Pregel to help users to
choose the best partitioning strategy. Similar cost models could be obtained
for Pregel on other DGC systems.

2 Background

In this section, we present background information on (1) the Pregel model,
and (2) the different partitioning strategies we used in the experiments.

136

2. Background

2.1 Pregel Model

In order to render graph computations more efficient, new graph program-
ming models such as Pregel have been introduced [84]. In Pregel, graph
algorithms are expressed as iterative vertex-centric computations which can
be easily and transparently distributed automatically. We illustrate this prin-
ciple with the following graph algorithm CC for computing connected com-
ponents in a graph: we start with assigning to each vertex a unique identifier.
In the first step each vertex sends a message with its unique identifier to all
its neighbors. Subsequently, for each vertex the minimum is computed of
all incoming identifiers. If this minimum is lower than its own identifier,
the vertex updates its internal state with this new minimum and sends a
message to its neighbors to notify them of its new minimum. This process
continues until no more messages are sent. It is easy to see that this iteration
will terminate and that the result will be that each vertex holds the minimal
identifier over all vertices in its connected component, which can then serve
as an identifier of that connected component.

As we can see in this example, a user of Pregel only has to provide the
following components:

e Initialization: one initial message per vertex. In the case of CC, this
initial message contains the unique identifier of that vertex;

¢ Function to combine all incoming messages for a vertex. In our exam-
ple, the combine function takes the minimum over all incoming identi-
fiers.

* A function called the vertex program to update the internal state of
the vertex if the minimum identifier received is less than the current
identifier of the vertex.

* A function to send the vertex current identifier to its neighbors. In CC,
the internal state of a vertex is updated only if the vertex receives a
identifier smaller than it is already storing. Only in that case messages
are sent to its neighbors with this updated minimum.

Figure 6.1 illustrate this programming model; every iteration of running the
vertex program and combining the messages that will be input for the next
iteration is called a super-step. In the first super-step every vertex is activated
and executes its vertex program. In Figure 6.1, the vertex programs are called
“tasks" and the blue lines represent messages sent between vertices. In the
second super-step in this figure, vertex 1 does not receive any message and
hence will not be active in super-step 2. Vertex 2 receives two messages
which are combined and the vertex program is executed. Similarly, vertex 3
receives one message and executes its vertex program. The time it takes for

137

Chapter 6. Cost Model for Pregel on GraphX

£ Active Vertex O Non-Active Vertex — > Message

- ® 1= e e

Barrier 1 Barrier 2 Barrier 3 Barrier 4
Super Step 1 Super Step 2 Super Step 3 Super Step 4
Time

Fig. 6.1: An example of Pregel model consisting of three vertices.

each task could be different and hence there is a synchronization barrier after
every super-step. Finally, in super-step 4 no messages are generated and the
computation stops.

The main benefit of the Pregel programming model is that it provides a
powerful language in which many graph algorithms can be expressed in a
natural way. At the same time, however, the programs are flexible enough to
allow for automatically and transparently distributing their execution as we
will see in next section.

2.2 Partitioning

There are two kinds of partitioning strategies for distributed graph process-
ing: 1) vertex-cut [49] and 2) edge-cut [63, 12]. In vertex-cut partitioning the
edges are assigned to partitions and thus the vertices can span partitions i.e
vertices are replicated or mirrored across partitions. In edge-cut, the vertices
are partitioned and the edge can span across partitions i.e edge is replicated
or mirrored across partitions. GraphX utilizes the vertex-cut partitioning
strategy. In vertex-cut partitioning, the goal of a partitioning strategy is to
partition the edges such that the load (number of edges) in every partition
is balanced and vertex replication (number of mirrors of vertex) is minimum.
Average replication factor is a common metric to measure the effectiveness of
vertex-cut partitioning.

The simplest vertex-cut partitioning strategy is to partition edges using
a hash function. GraphX [122] has two different variants for this: Random
Vertex Cut (RVC) and Canonical Random Vertex Cut (CRVC). Given a hash
function h, RVC assigns an edge (u,v) based on the hash of the source and
destination vertex (i.e. A(u,v) = h(u,v) mod k). CRVC partitions the edge
regardless of the direction and hence an edge (#,v) and (v, u) will be assigned
to the same partition. CRVC or RVC provides a good load balance due to the

138

3. Cost Model for Pregel GraphX

randomness in assigning the edges but do not grantee any upper bound on
the replication factor. There is another strategy which uses two-dimensional
sparse matrix and is similar to grid partitioning [61], EdgePartition2D [24]. In
EdgePartition2D partitions are arranged as a square matrix, and for an edge
it picks a partition by choosing column on the basis of the hash of the source
vertex and row on the basis of the hash of the destination vertex. It ensures
a replication factor of (24/N — 1) where N is the number of partitions. In
practice, these approaches result in large number of vertex replications and
do not perform well for a power-law graphs.

Recently, a Degree-Based Hashing (DBH) algorithm [121] was introduced
with improved grantees on replication factor for power-law graphs. DBH
partitions edges based on the hash of its lowest degree end point thus forc-
ing replication of high degree vertices. GraphX does not provide an im-
plementation for this strategy. Thus, we implemented DBH and used it in
our experiments to compare with other partitioning strategies provided in
GraphX.

3 Cost Model for Pregel GraphX

In section 3.1, we present the implementation details of the Pregel model in
GraphX with the help of a Business Process Model and Notation (BPMN)
diagram. Then in Section 3.2, we use the BPMN diagram to derive the cost
model for the Pregel model in GraphX.

3.1 Pregel Model in GraphX

GraphX is built on top of Apache Spark which uses a distributed data struc-
ture called Resilient Distributed Datasets (RDD) [124]. A graph in GraphX
is represented as a pair of vertex and edge property collections namely Ver-
texRDD and EdgeRDD. The VertexRDD contains all the vertices of the graph
and acts as the master copy, which runs the UPDATEVERTEX program. The
EdgeRDD contains all the edge attributes and the vertex ids of the source
and destination vertices. During Pregel execution, a materialized view (Ed-
geTripletRDD) is created by joining VertexRDD and EdgeRDD for the set of
active vertices. The RDDs are partitioned across the cluster nodes and the
computation happens in a shared-nothing architecture. The VertexRDD is
partitioned randomly based on the hash of the vertex id and the EdgeRDD is
partitioned using the graph partitioning strategy provided (vertex-cut strate-
gies discussed in Section 2.2). EdgeTripletRDD is partitioned using the same
partitioner used by EdgeRDD.

The Pregel computation in GraphX consists of four phases: Initializa-
tion, Apply, Gather and Reduce. The Initialization happens only once and

139

Chapter 6. Cost Model for Pregel on GraphX

Super-Steps

1. Initialization 2. Apply Phase 3.Gather Phase

1.BroadCast 2 1 Run Vertex 2 2 erle
Initial msg to all Program on
vertices active vertex \ueruces Ioca\ly

3.1 Fetch the 3.2 Run Send msg 3.3 Run Merge

"3‘}2,5‘};’59{;?‘ Program for updated | |Msg program on 3.4 Write
vertices and Generate| 10 combine mesasges

every mirror ki
of updaled Msg for destination Msgs b‘évsr[ex locally.

vertex.

4. Reduce Phase

if msg count >0

4.1, Fetch Msgs to Vertex
if max number of Partition and reduce
uper-step not reached. message for the same

Fig. 6.2: BPMN diagram representing the Pregel computation model.

the other three repeat in a loop until the program stops or a given maximal
number of super-steps is exceeded. The Initialization phase, is executed by
the driver/master as a single instance. The other three phases run in multi-
ple instances. Each instance is processing of one partition of either the Ver-
texRDD or EdgeRDD. After the Initialization phase the Apply phase runs one
instance per partition of the VertexRDD and updates the vertices state. Then
the Gather phase runs one instance per partition of the EdgeRDD to fetch
the latest copy of the vertex state from VertexRDD and generate messages for
next super-step. The Gather phase does a local reduce of the messages as
well by combining all the messages generated for the same vertex on each
instance. Finally, the reduce phase does a global reduce by combining of all
the messages generated for the same vertex at vertex partitions. The reduce
phase runs one instance per partition of the VertexRDD. Figure 6.2 shows
all the phases and precedences. Please note, unlike the ideal Pregel model
where every vertex could execute the vertex program in parallel and send
and receive messages in parallel, in GraphX the parallelization is at the level
of an instance or partition. For example, the vertex program of Connected
Component algorithm in GraphX will run during the Apply phase in parallel
for every partition of the VertexRDD. Inside one partition of a VertexRDD, the
vertex program will run in sequence for all the vertices.

The purpose of the proposed cost model is to find the most dominating
factors in the Pregel Job execution to help choose a better partitioning strategy
to balance the dominating factor. The aim of our cost model is not to do an
exact estimate of the Job run. Hence, the above assumptions are fair for the
purpose. Under the above mentioned assumptions, in Section 3.2, we model
all the phases in order to estimate the cost of execution of a Pregel job in
GraphX.

140

3. Cost Model for Pregel GraphX

Table 6.1: List of constants in the cost model and their respective abbreviations.

Abbreviations Details

|Pe] Number of edge partitions

| Pyl Number of vertex partitions

N Number of nodes in the cluster

C Number of cores in a node of the cluster

X1, 00,03 Constants to capture an estimate of housekeeping cost by Spark
for each phase

Buw CPU cost to write the data per block

Br Network cost to fetch data remotely per byte

0% Cost to update the Spark’s AppendOnlyMap per record

B; Disk block size

3.2 The Cost model formulation
For the sake of simplicity of the cost model we make following assumptions:

1. All the nodes in the cluster have the same characteristics, i.e. they have
same processing speed, 10 and network bandwidth. This assumption
does not reduce the applicability of the model, since extending it to
heterogeneous nodes is straight forward.

2. Resource scheduling is not considered and hence, we assume all the
instances run in parallel. This assumption is a natural choice to maxi-
mize performance as it offers maximum parallelization. To ensure this
we just need to make sure that we keep the number of partitions to be
equal to the number of available workers in the cluster.

In Table 6.1, we list all the constants for the cluster configuration. In
Table 6.2, we list all the variables and functions along with their definitions,
which we use to determine the execution cost. For every variable/function,
we also show if it depends on input Graph data properties (D), the Algorithm
characteristics (A), Edge Partition strategy (P,), Vertex Partition strategy (Py).

From the BPMN diagram in Figure 6.2, it is clear that the cost of the Pregel
job is the sum of the costs of four phases. We represent the cost of the Ini-
tialization phase as a function cInit which depends on: the vertices (V), the
algorithm (A) which determines the cost of creating the initial message and
its size, and finally, the number of vertex partitions to which the initial mes-
sage will be sent. We combine the remaining three: Apply, Gather and Re-
duce phases, in function cSuperStep, representing the cost of the subsequent
super-steps. Let s be the number of super-steps. Hence, we can represent the
cost of the Pregel model (cPregel) as shown in Equation (6.1). For a super-
step i the cost cSuperStep depends on: currently active vertices (V;), currently

141

Chapter 6. Cost Model for Pregel on GraphX

Table 6.2: List of variables in the cost model and their respective abbreviations. It also shows if
the variable depends on input Graph data properties(D), the Algorithm property (A), Edge

Partition strategy(P,), Vertex Partition strategy(Py).

Abbreviations Details Dependence

14 Set of vertices in the graph D

E Set of edges in the graph D

s Number of super-steps A

Vl.q Set of active vertices at super-step i in vertex | D, A, P,
partition g

Vi Set of all active vertices (i.e, | J q Viq) D

Vi*q Set of active vertices at super-step i in vertex | D, A, P,
partition g which updated their state (Vi*'7 c
V)

v Set of all active vertices which got updated | D, A
(e, U, V)

E;‘ Set of active edges on a partition k at super- | D, A, P,
step i

Vl-k Set of vertices at super-step i in edge parti- | D, A, P,
tion k which is either a source vertex or des-
tination vertex of an active edge

MK (o) Set of messages generated in super-step i in | D, A, P,
edge partition k for vertex v

Mf‘ Set of messages generated in super-step i in | D, A, P,
edge partition k, U,Uevik MK (o)

Mf‘ Set of messages after reducing messages for | D, A, P,
same vertex from Mf (MZ-C c Mf)

M?(v) Message received in super-step i in vertex | D, A, P, P,
partition g for vertex v

Mlq Set of messages received in super-step i in | D, A, Py, Pe
vertex partition g, | J ¢\ M!(v)

MP Set of messages per block received at the Re- B
duce Phase

sizeOf (x) Size of an object x in bytes (x could be a ver- | A
tex or message)

mirrorOf(v) number of edge partitions which has a mir- | D, P,

ror of vertex v as source or destination vertex

142

3. Cost Model for Pregel GraphX

active edges (E;) and the messages (M;_1) generated in previous super-step.
How a vertex or an edge becomes active depends on the algorithm (A). We
define A,, As, and A,, as three functions for UPDATEVERTEX, SENDMsG, and
MERGEMSG programs respectively. Additionally, cSuperStep also depends on
how V; and E; is partitioned (i.e., vertex partitioning strategy (P,) and edge
partitioning strategy (L)).

cPregel(V,E,s, A, P, Py) := cInit(V, A, |Py))
s (6.1)
+ Z cSuperStep(V;, Ei, A, M;_1, P, Py)
i=1

The Apply, Gather and Reduce phases run in sequence and hence the
cost of one super-step is the sum of the cost of each phase. But, as shown
in the BPMN diagram there are multiple instances of each phase. As per
our assumption, we have all the instances running in parallel in the cluster.
Hence, we denote the cost of running one phase as the maximum cost among
all the instances of that phase. There are tasks inside each phase which run
sequentially except in the case of Reduce phase where there is only one task.
Let |Py| and |P.| be number of vertex and edge partitions respectively, and
g0 <gq < |P])and k (0 < k < |PJ) as corresponding index of vertex
or edge partition. We define, Eff c E; as set of active edges on a partition
k; Vik as set of vertices at super-step i in edge partition k which is either a
source or destination vertex of an active edge Ef-‘; Viq c V; as set of active
vertices in vertex partition g; Mf as set of messages generated in super-step
i in edge partition k; Mf c M; as set of messages received in super-step i
in vertex partition 4. We represent the cost of each super-step as shown in
Equation (6.2).
cSuperStep(V;, E;, A, M;_1, P, Py) := 0<m2\)§3 |{cApply(Vi‘i, M?,lev/ P, Py)}

<g<|Py

+ max {cGather(EX, M}, VK, As, A, P2)}

0<k<|P|

+ max {cReduce(M?, Viq, Am, Pe, Py)}

0<g<|Py|

(6.2)
As shown in Figure 6.2, the Apply phase has two tasks:

* The first task is to run the UPDATEVERTEX program on the active ver-
tices. It runs sequentially for every vertex in the local partition. Hence,
the total cost of the first task is defined as the sum of the cost of run-
ning the UPDATEVERTEX program for every active vertex in the partition,

143

Chapter 6. Cost Model for Pregel on GraphX

which depends on the vertex state, the input message and the algorith-
mic characteristics. We capture all this as a function cVertexProg and
assume its cost is known to the user defining the algorithm.

* The second task is to write the updated vertex attributes to file so that it
can be sent to required edge partitions. It consists of creating |P,| differ-
ent file segments, one for each edge partition. The writing is buffered,
so each write task writes in an internal memory buffer of size B;, and
when the buffer is full, the content is flushed to the file segment. For
example, in Figure 6.3a the mapper node having the vertex partition 1
with vertices a, b, c,d will create two files. As one vertex can have its
replication in more than one edge partition, it needs to be written in
more than one file segment. Let Vl-*q - Viq be the set of vertices which
updated their state after the first task. We define replication(v) as the
number of replication of vertex v in edge partitions and sizeOf (v) as the
size of vertex object v in bytes. Hence, the total blocks written would
be equal to the size of every vertex object times its replication. Let By,
be the cost of writing one block and B; be the size of one block, hence

the total cost for this task would be B, x %W.

Apart from the cost of the above mentioned task we define a; as a constant
to capture some housekeeping tasks done by Spark (like task scheduling) for
this phase. We use ay and a3 as separate constant costs for the other two
phases. The cost of Apply phase is given as the sum of the cost of the two
task and the constant a7 in Equation (6.3).

cApply(Vﬁ,M?fl,Av,Pg,Pv) = Z cVertexProg(v,M?fl(v),Av)
veVﬁ
2pey i 5izeOf (v) x replication(v)
Bs

+ Bw + a1

(6.3)
The Gather phase consists of four tasks :

* The first task consists of reading the file segments created in the previ-
ous phase. For simplicity, we focus only on the remote reads as local
reads are quite fast and do not affect the overall cost significantly. Each
file will be read and deserialized to create or update an AppendOn-
lyMap (an internal data structure used by Spark to create an RDD). In
this case there is only one key in the map (the partition id) and the
value is a list with vertex attributes. For example, as shown in Fig-
ure 6.3a there is only one record in the map with key “1" and value
a list of vertex attributes of a, b and c. The AppendOnlyMap is then

144

3. Cost Model for Pregel GraphX

aoermoder . oo —— 1 Mappernode T
Mapper node 1 VertexRDD Partition 1 r Mapper node 1 1 |_Mapper node 2 1
| @ @ | | Message RDD partition 1 | | Message RDD partition 2 |
@ @ a amsq1 a Amsg2
| A | | b Dbrmsg1 | | d Amsg2 |
___________ e, c Crmsg1 e emsq1
| | Buffer o hRlY ' | | d Amsq1 | | |
i |_ Bucket 1 | | Bucket 2 | i
Fe— - — = R FmmmAmmm -
1 ! 1Buffer p Il 1Buffer p 4 1
R W I Nk |
.| Bucket 1 ” Bucket 2 |. 1| Bucketl || Bucket 2 |.
L 1 1 1
| 1 | ab.cattributes in 5 | acdattributes in | ""* """" *"" | h--* ------- *---‘l
list list a| amsq1
= | e =
Shuffle file 1 Shuffle file 2 o] Comsa msql
Shuffle file 1 Shuffle file 2 Shuffle file 1 Shuffle file 2
- et s ufletie? |
) r— - __—'__'__M._ ___?5: [
| T — | I - — H emory Buffer H
| 1 | a,b,c attributes in list ! 2 | a,c,d attributes in list | e |
. A
| R | | RDD | a_| mergeMsg(amsg1amsg2)
|AppendOnlyMap b Drmsgr
| I o= || | : |
| | | . . | | Message RDD partition 1 | |
Edge RDD partition 1 it
_| |_Reducerr Node 2 _, |_Reducer node 1 (containing the vertex RDD with vertex a, b and c) 1

|_Reducer node 1

(a) Apply - Gather Phase (b) Gather - Reduce Phase

Fig. 6.3: Data shuffle between the phases. Dashed arrows represent in-memory data transfer,
Solid arrows represent memory to local disk write and dotted arrows represent remote disk to

memory read.

converted into an RDD and combined with EdgeRDD to generate Ed-
geTripletRDD. As the number of records in the map is just one, the cost
of this task is due to the size of the list. Let V;* be the set of all vertices
which got updated in previous phase, then the list of vertices read in
this task is given as V¥ n V*. We represent the total cost of this task as
total bytes read multiplied by the cost of reading and deserializing one

byte (8,).

The second task consists of running the SENDMsG program on every
active edge. It depends on the attributes of the source and destination
vertices and the algorithm definition As. We capture this cost as a func-
tion cSendProg. Hence, the total cost for this task is given as the sum of
running the cSendProg for every active edge.

The third task consist of running the MERGEMSG program to combine
all the messages generated for a vertex v € Vik . We define the cost of run-
ning MERGEMSG program which combines two messages as cMergeProg.
It depends on the algorithm definition A,,. We define M¥(v) as the set
of messages generated for a vertex v. MERGEMSsG will run |Mf.‘(v)| -1
times.

* The final task is the shuffle write task, which consists of writing to

145

Chapter 6. Cost Model for Pregel on GraphX

disk the final list of reduced messages M¥ as shown in Figure 6.3b.
The writing will be buffered as in the Apply phase, but the number of

records written will be equal to the number of final messages (|M¥)).
One message can belong only to one shuffle file, hence the total blocks
written would be size of all messages divided by the block size.

The cost of the Gather phase is defined as the sum of the cost of the four
tasks and the constant a, given in Equation (6.4).

cGather(E;‘, Mf.‘, Vik, As, A, Pe) 1= B Z sizeOf (v)
veVikal.*
+ Z cSendProg(u,v, As)
(u,v)eEf.‘ (6.4)
+ cProcess(Mf, Vik, Am)
{Zme@(sizeOf (m)
+ Bw % !
Bs

+ an

Where,

cProcess(Mf-‘, Vl-k, Am) = Z (|Mf‘(v)| - 1) x cMergeProg(Am) (6.5)

veVik

The Reduce phase consists of only one task which is to fetch the messages
generated in the previous phase and reduce the messages for the same vertex
into one message. For example, as shown in Figure 6.3b Amsg1 and dpsgr are
fetched from two mappers and reduced into one message for vertex a. Unlike
the read in the Gather phase, in this phase the number of records in the
AppendOnlyMap will be equal to the numbers of messages. For example, as
shown in Figure 6.3 there is one record in the shuffle file for the Gather phase
where as upto 3 records in the shuffle file for the Reduce phase. The size of
each message record is constant, hence the cost of the read is dominated
by the number of records and not the size of the record. We define y as
the constant cost of reading and updating the AppendOnlyMap per record.
Thus, we can define cost for the read task as 9 times number of records
fetched. The reducing of the messages can start as soon as there are two
messages for the same vertex. As Spark uses parallel threads to read data
and process data, there will be an overlap in the execution of these tasks.
Hence, in a multi-core system, as soon as first block of messages is read, it
can start processing the messages while in parallel keep fetching remaining
blocks. Let C be the number of cores in a cluster node; hence C threads can
fetch data in parallel. Let b be the number of blocks of messages received in

146

4. Experimental Validation of the Cost Model

this phase and MY represent the set of messages in the b*" block. Then, the
overall cost of this phase is given as the sum of the cost of fetching the first
block plus the cost of processing all messages (if processing is slower than
fetching) or the cost of fetching remaining blocks plus processing the last
block (if fetching is slower than processing) as expressed in Equation (6.6).

cReduce(M?, Viq,Am,Pe, Py) =y x |M1|
+ max {cProcess(M?, Viq, Am),

% x Z |M/| 4+ C x cProcess(Mb,Viq,Am)}
2<<b
+ a3
(6.6)

For a single core node, the fetching of data and processing can not run in
parallel, hence Equation (6.6) simplifies to the sum of the cost of fetching all
messages and processing them as given in Equation (6.7).

cReduce(M!, V1, A, Pe, Py) := 7y x [M]|

. 6.7)
+ cProcess(M;, V!, Ap) + a3

4 Experimental Validation of the Cost Model

In this section, we describe the experimental setup to obtain the cluster spe-
cific variables (a1, a2, &3, By, Bw and %) in the cost model and then share the
results of the validation of the cost model on different configurations.

4.1 Experiment Configuration and Setup

There are four main parameters which affect the execution of a GraphX
Pregel job: 1) Cluster setup, 2) Input Graph, 3) Partitioning Strategy, and
4) Graph Algorithm to be executed. In our experiments, we always keep the
cluster setup constant and vary the other three. All experiments are done on
a cluster with a master node and 5 worker nodes. All nodes are Linux sys-
tems with Intel Xeon E5-2630L v2 a 2.40 GHz processor, 1 TB SATA-3 Hard
disk, 128 GB RAM, and 4 GB Ethernet. We deployed Spark 2.0.2 in cluster
mode with each worker node having 1 executor with 1 thread and 45 GB
RAM assigned to it.

Input Graph: We used three real world datasets: the Facebook network is
a directed graph of messages sent between users on a Facebook-like platform
at UC-Irvine; Higgs activity time (Higgs) is a dataset which provides infor-
mation about activity on Twitter during the discovery of the Higgs boson
particles (both datasets were taken from the SNAP repository [75]); Apart

147

Chapter 6. Cost Model for Pregel on GraphX

from this, we also use a re-tweet network collected from information about
activity on Twitter during the Punjab Election 2017 (Higgs) in India collected
by ourselves for 3 days.

Partitioning Strategy: We use three partitioning strategies in the experi-
ments: EdgePartition2D; Canonical Random Vertex Partitioning(CRVC) (both
strategies provided by the default GraphX API) and our own implementa-
tion of Degree Based hashing (DBH). As explained earlier, these partitioning
strategies only partition the EdgeRDD. For VertexRDD we used the default
random Hash Based partitioner provided by Spark. The number of parti-
tions was equal to 5 in all experiments.

Graph Algorithm: We used the classical PageRank and Connected Com-
ponent algorithms in our experiments.

4.2 Estimating «q, ap, a3, B, fw and 7y

Monitoring the factors in the cost model is not straightforward. Hence, we
applied following simplifications to approximate the value of the constant
parameters:

1. We used the same code provided in GraphX for the Page Rank and
Connected component algorithms but just added additional counters
on each of the three GraphX functions to keep a count of how many
times the UPDATEVERTEX, SENDMsG and MERGEMSG programs were exe-
cuted in each task of a super-step.

2. The execution time of the three functions is very small and difficult
to monitor precisely. A more accurate measurement of these functions
allows for a more accurate estimation of the cluster constants in the
formula, hence we introduced a constant time delay of 1 millisecond
in all three functions. This constant time delay is only for accurate
estimation of the cluster parameters and does not affect the cost model
accuracy. Let count(f) be the number of times a program f is executed
in an instance. This enables us to approximate:

e > cVertexProg(v, M?ﬁl(v),Av) = count(UPDATEVERTEX) x 1 msec

® > cSendProg(u,v, As) = count(SENDMsG) x 1 msec

LY (|M5‘(v)| - 1) x cMergeProg(A,) = count(MERGEMSG) x 1 msec
3. We kept the number of edge partitions, vertex partitions and number of

nodes in the cluster equal, so that every node in the cluster is processing
only one partition of the VertexRDD and EdgeRDD (i.e || = |Py| = N).

4. Every node has only one core assigned to it (i.e C = 1), hence we can
use Equation 6.7 for the reduce phase.

148

4. Experimental Validation of the Cost Model

We used Higgs graph data with the CRVC partitioning strategy and the Page
Rank algorithm to estimate the constants aq, a2, &3, B+, B and 7y of the cost
model. We used the SPARK UI API (a monitoring service provided by Spark)
to get the run time of each phase separately and other factors of the cost
model. Since we used a shared cluster while running the experiments, we
repeated the experiments 10 times and took the minimum execution time
of a super-step as the baseline cost of that super-step, assuming that higher
time to execute the same super-step is due to the interferences with parallel
executions of other processes on the cluster. clnit is a constant one time
cost for a graph and algorithm and do not change based on the partitioning
strategy hence we do not estimate this cost for every partitioning strategy.

We estimated the value of &1 and f;, from Equation 6.3 by substituting the
values of all other factors. For every super-step, we replaced cApply by the
execution time of the phase, > cVertexProg(v, Miqfl (v), Ay) by count(UPDATEVERTEX)
and the number of blocks written by total bytes written divided by 32 MB (the
default value of B in Spark), for the task which took the maximum time for
this phase. Substituting these values, results in a linear equation of the form
Y = Bw x X+ a1 where Y = cApply — count(UPDATEVERTEX) and X is the
number of blocks written. We got the value of X and Y for all the super-steps
and obtained a7 and B by ordinary least square (OLS) method. The result
of the linear curve fitting is show in Figure 6.4a. We get a1 = 1.366 msec
and B, = 100.77 msec/block with a R-squared value of 0.9815. We believe
the deviation(outliers) from the line is due to discretization of the write bytes
into number of buckets as for some cases the last bucket would be almost full
and for some it will be almost empty resulting in different write time. Simi-
larly, we estimated ap and B, from Equation 6.4 by replacing S, with 100.77;
cGather by the stage execution time. For the right hand side parameters
of the equation we substituted values for the longest running task. Hence,
we replaced ZUE‘,{k AV sizeOf(v) by the volume of remote bytes read by the
task, cProcess(Mff, Vik, Am) by count(MERGEMSG), Z(u,v)eE’F cSendProg(u,v, As)
by count(seNDMsG) and the number of blocks written b}; the volume of total
bytes written by the task divided by 32 MB. Substituting these values, re-
sults in a linear equation of the form Y = f, x X + ap, where Y = cGather —
count(MERGEMSG) — count(SENDMsG) — By x #blocks and X is remote bytes
read. After applying OLS we get ap = 43.214 msec and 3, = 0.012 msec/byte
with a R-squared value of 0.953 as shown in Figure 6.4b. Similarly, from
Equation 6.7 we get a linear equation of the form Y = 7 x X + a3z where,
Y = cReduce — count(MERGEMSsG) and X is the number of message records.
We get a3 = 17.367 msec and = 0.0405 msec/record with R-squared value
of 0.993 as shown in Figure 6.4c.

149

Chapter 6. Cost Model for Pregel on GraphX

801 Y =100.77X+ 1.366 3000

Y =0.012X+43.214
™| R=09815 0.012X+ 43

R?=0.953

2500

2000

1500

Yeather

1000

500

o 1 2 3 4 5 6 7 o 50000 100000 150000 200000 250000
X = #blocks X = Bytes read

(a) Apply Phase (b) Gather Phase

Y = 0.0405X + 17.367
R?=0.993 2

o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
X = Records Read

(c) Reduce Phase

Fig. 6.4: Using Linear curve fitting to estimate the variables in the cost model

4.3 Cost model validation

We used 3 different graph data, 3 different edge partitioning strategy and 2
different graph algorithms in our experiments resulting in 18 different combi-
nations of graph, partitioning strategy and algorithm. In order to validate the
cost model, we estimated the cluster constants «q, ap, a3, Br, Bw and 7 in the
cost model for graph= Higgs, partitioning strategy=CRVC and algorithm=
Page Rank (Section 4.2), then we used other 17 combinations of graph, par-
titioning strategy and algorithm to estimate the execution cost. We replace
the values of a1, a2, a3, By, Bw and v in the cost model and predict the job ex-
ecution time by measuring other attributes required by the cost model. Then
we estimate the accuracy of the cost model by comparing with the actual
execution time of all the super-steps. We report the prediction accuracy in
Table 6.3. We get 96.9% average accuracy in predicting the job execution time
in 17 different combination with minimum accuracy of 94.6% and maximum
accuracy of 99.8%.

5 Concluding remarks
We presented a cost model to estimate the execution cost of Pregel-based al-

gorithms on Spark GraphX and evaluated on different combinations of input
graph, algorithm and partitioning strategy. We see from the cost model that

150

5. Concluding remarks

Partition Strategy
Dataset Algorithm EdgePartition2D CRVC DBH
PageRank 96.4 97.9 97.7
Facebook CC 97.6 96.1 96.7
PageRank 97.7 - 99.3
Higgs cC 98.9 98.7 97.1
PageRank 94.6 97.2 99.8
Higgs CC 97.9 95.9 94.9

Table 6.3: Prediction accuracy(%) of the cost model for different combinations of dataset,
partitioning strategy and graph algorithm.

the overall execution time depends on different factors such as: the execu-
tion time of each function (i.e., UPDATEVERTEX, SENDMsG and MERGEMSG); the
cluster configuration (such as data transfer between different nodes). The
cost model depends on many variables which are not known before hand
and hence, for an optimizer, they will need to be estimated. In future work,
we will experiment by varying the different dominating factors in the cost
model, to see how they determine the best partitioning strategy.

151

Chapter 6. Cost Model for Pregel on GraphX

152

Chapter 7

Conclusions and Future
Directions

Abstract

In this chapter, we summarize the main results of this PhD thesis, presented in
Chapters 2 - 6. In addition, we propose several promising future directions stemming
from this thesis work.

1 Conclusions

In this PhD thesis, we provided different approaches to study and analyze
the evolution of interaction networks and their possible application in some
real-world applications like viral marketing, outdoor marketing, fraud detec-
tion and event detection. We introduced new notions like the r-neighborhood
profile and Influence reachability set to determine interesting nodes in a time-
evolving interaction network. We also provided both exact and approximate
algorithms to efficiently compute these new metrics for all nodes in the net-
work. For the approximate versions, we either used an already existing prob-
abilistic data structure used in the domain of stream mining or provided
an extension of these data structures for time and window sensitivity as re-
quired by our algorithms. We introduced new algorithms to efficiently find
and enumerate temporal cycles in a temporal network. We also looked into
distributed graph processing and provided a new approach to address the
problem of deciding graph partitioning.

The thesis is composed of five conference papers included as chapters
from chapter 2-6 and the contribution of each paper is summarized as fol-
lows:

153

Chapter 7. Conclusions and Future Directions

¢ In Chapter 2, we studied the problem of maintaining the r-neighborhood
profile of all nodes in a sliding window in a temporal network. We pro-
vided an incremental algorithm to maintain r-neighborhood profiles of
all the nodes for a stream of interactions. One desirable property of the
algorithm is that it is independent of the time window and the time
window could be provided at query time. Hence, we do not need to a
maintain separate neighborhood profile for separate windows.

¢ In Chapter 3, we introduced a new measure called Influence Reachabil-
ity Set to determine the influence of every node in an interaction net-
work. We provided a one-pass algorithm to calculate Influence Reach-
ability Set for every node using both an exact and approximate algo-
rithm. For the approximate algorithm, we created a new variation of
the hyperloglog sketch called the versioned hyperloglog sketch. We
also provided a greedy algorithm to find top-k influential nodes given
the Influence Reachability Set of all the nodes. To compare the influence
spread of the top-k nodes, we also proposed a new Time Constrained
Information Cascade Model for interaction networks derived from the
Independent Cascade Model for static networks. We did a qualitative
analysis of our approach by comparing the top-k nodes found using
other states of the art baseline approaches under Time Constrained
Information Cascade Model. We concluded that for smaller window
length when the network is evolving more rapidly our approach is best
to find top-k nodes. We also tested the scalability of the algorithm on
very large interaction networks with millions of nodes and interactions.

* In Chapter 4, we proposed a new approach to model location-location
interaction network based on the location-based social network data.
We defined the influence of a location based on its capacity to spread its
visitors to different locations in a given time window. We used this new
definition to provide two influence spread models namely, the absolute
influence model and the relative influence model. We proposed an
efficient algorithm to calculate the influence of all the locations based
on these models and also proposed a greedy algorithm to find top-k
influential locations. We further tested the effectiveness of our model
on three real-world data sets by comparing the influence spread of top-
k locations fetched by our approach with that of a naive approach.

¢ In Chapter 5, we studied the problem of enumerating simple temporal
cycles in an interaction network. We presented an efficient 2 phase algo-
rithm to enumerate all temporal cycles in a given interaction network.
For the first phase of detecting source root node and the candidate set
of cycles, we presented an efficient extension by using bloom filters
instead of exact sets. For the 2nd phase, we extended the seminal al-

154

2. Future Directions

gorithm of Johnson [62] to find simple temporal cycles in a temporal
network. We also provided a more efficient extension of the 2nd Phase
algorithm by considering path bundles instead of simple paths. We also
tested all the algorithms and their efficient extensions on 7 different
real-world data sets and discussed the advantages and disadvantages
of the extensions. We further used the cycle detection algorithm to find
the cycle frequency distribution with respect to cycle length and used it
to characterize different temporal networks.

e Finally, in Chapter 6, to address the problem of determining the best
partitioning strategy for distributed graph processing, we presented a
cost model for Pregel in GraphX. We tested the accuracy of the cost
model on 17 different combinations of input graph, graph algorithm,
and partitioning strategy. We contest the cost model could be used to
explain the reason why one partitioning strategy performs better than
other for a given graph and algorithm and also could be used to mine
new rules from the insights gain thereof.

2 Future Directions

Based on our research in this PhD thesis there are several possible research
directions for future work in Temporal graph mining and distributed pro-
cessing.

In the context of information flow mining, we provided a new measure
called Influence reachability set. We considered the temporal sequentiality of
interaction as an information channel in a time window. The work could be
extended by considering the frequency of interactions as well to give more
weight to information channels that are used more often. The IRS algorithm
we presented is a one pass algorithm but is not a streaming algorithm. Future
work could focus on finding an incremental streaming algorithm to find in-
fluence reachability sets at real time. Another possible extension of the work
would be to do a reverse traceability set to identify the source of an informa-
tion flow given a set of influenced nodes. For example, in case of a sensitive
information leak identified in a network identify the possible source nodes
which originated the leak based on the analysis of all the interactions in the
network.

Our work on LBSN data analysis to generate location-location interaction
is currently context unaware. There are multiple parameters which could be
considered to make it more context aware. For example, currently, we do not
consider the amount of time a user spent on a location. Also, another user
characteristic could be considered such as her age, sex, hashtags or messages
the user post along with her geo-location in the LBSN network to do a more
context-aware modeling of the user movements. Context-aware modeling

155

Chapter 7. Conclusions and Future Directions

will help in a more targeted advertisement for a specific interest group of
people traveling between locations.

For the Influence maximization problem both in the user-user interaction
network and in the location-location network we currently just consider the
influence set of each node and assume that the cost of the initial influence of
the seed nodes to be equal for all seed nodes. The problem could be extended
to a more complex optimization problem if the cost of influencing the seed
node is not equal. For example, consider the case of outdoor marketing, if
along with the influence set of all the locations derived from our model a
cost of advertising on that location is also provided. Then the Influence Max-
imization problem needs to maximize the combined influence while trying
to minimize the total cost of seed locations.

Continuing the work on cyclic pattern detection in temporal networks,
an interesting research direction would be to analyze the significance of the
cycles found. For example, if there multiple interactions between a group of
people the chances they will form few temporal cycles is high. But if there are
only a few interactions and all of them are part of a cycle then it represents a
more significant cyclic pattern of communication. Calculating a threshold of
the expected number of cycles in an interaction network and using it to differ-
entiate between significant and nonsignificant cycles is an interesting future
research work. Some other interesting future research directions are, analysis
of the content of the messages to determine the meaning of the cyclic pattern
and topics or sentiments which are cyclic in nature, finding root nodes which
are present in most of cycles or pairs of root nodes which share a lot of com-
mon candidate nodes in the cycle could be used to determine fraud or spam
behavior.

In the context of our work on distributed graph processing, the cost
model-based approach we presented for GraphX could be easily extended
using similar principles on different DGC systems. The main future research
direction would be to use the cost model to devise a dynamic distributed
graph processing system. The system will do the initial partitioning based on
some heuristic-based rules and monitor the parameters required by our cost
model for every new snapshot of the graph. If the cost of another partitioning
scheme predicted from the cost model is less than the current partitioning
scheme the system could automatically change the partitioning scheme for
the new snapshot of the graph.

156

Bibliography

References

[1] 9th DIMACS Implementation Challenge - Shortest Paths. http://
www.dis.uniromal.it/challenge9/format.shtml#graph. [Online; ac-
cessed 12-Sep-2016].

[2] Apache giraph. http://giraph.apache.org/.

[3] K. Ahn and S. Guha. Graph sparsification in the semi-streaming model.
In Automata, Languages and Programming, pages 328-338, 2009.

[4] K.]J. Ahn, S. Guha, and A. McGregor. Graph sketches: sparsification,
spanners, and subgraphs. In Proceedings of the 31st ACM SIGMOD-
SIGACT-SIGAI symposium on Principles of Database Systems, pages 5-14.
ACM, 2012.

[5] L. Akoglu, H. Tong, and D. Koutra. Graph based anomaly detec-
tion and description: a survey. Data Mining and Knowledge Discovery,
29(3):626—688, 2015.

[6] A. AlDwyish, E. Tanin, and S. Karunasekera. Location-based social
networking for obtaining personalised driving advice. In SIGSPATIAL,
2015.

[7] A. Arasu and G. Manku. Approximate counts and quantiles over slid-
ing windows. In PODS, pages 286-296, 2004.

[8] S. Asur, B. A. Huberman, G. Szabo, and C. Wang. Trends in social
media: persistence and decay. In ICWSM, 2011.

[9] B. Babcock, M. Datar, and R. Motwani. Sampling from a moving win-
dow over streaming data. In SODA, pages 633-634, 2002.

[10] B. Bahmani, R. Kumar, M. Mahdian, and E. Upfal. Pagerank on an
evolving graph. In KDD. ACM, 2012.

[11] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming
algorithms, with an application to counting triangles in graphs. In
SODA, pages 623-632, 2002.

[12] S.T. Barnard. Parallel multilevel recursive spectral bisection. In Proceed-
ings of the 1995 ACM/IEEE conference on Supercomputing, page 27. ACM,
1995.

[13] O. Batarfi, R. El Shawi, A. G. Fayoumi, R. Nouri, A. Barnawi, S. Sakr,
et al. Large scale graph processing systems: survey and an experimen-
tal evaluation. Cluster Computing, 18(3):1189-1213, 2015.

157

http://www.dis.uniroma1.it/challenge9/format.shtml#graph
http://www.dis.uniroma1.it/challenge9/format.shtml#graph
http://giraph.apache.org/

References

[14] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient semi-
streaming algorithms for local triangle counting in massive graphs. In
KDD, 2008.

[15] H. Becker, M. Naaman, and L. Gravano. Beyond trending topics: Real-
world event identification on twitter. Icwsm, 11(2011):438—441, 2011.

[16] E. Bergamini, H. Meyerhenke, and C. L. Staudt. Approximating be-
tweenness centrality in large evolving networks. In 2015 Proceedings
of the Seventeenth Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 133-146. SIAM, 2014.

[17] E. Birmelé, R. Ferreira, R. Grossi, A. Marino, N. Pisanti, R. Rizzi, and
G. Sacomoto. Optimal listing of cycles and st-paths in undirected
graphs. In Proceedings of the twenty-fourth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 1884-1896. Society for Industrial and
Applied Mathematics, 2013.

[18] B. H. Bloom. Space/time trade-offs in hash coding with allowable er-
rors. Communications of the ACM, 13(7):422-426, 1970.

[19] P. Boldi, M. Rosa, and S. Vigna. Hyperanf: Approximating the neigh-
bourhood function of very large graphs on a budget. In WWW, pages
625-634, 2011.

[20] L. Bordino, D. Donato, A. Gionis, and S. Leonardi. Mining large net-
works with subgraph counting. In ICDM, pages 737-742, 2008.

[21] P. Bouros, D. Sacharidis, and N. Bikakis. Regionally influential users in
location-aware social networks. In SIGSPATIAL, 2014.

[22] R. R. Braam, H. FE Moed, and A. F. Van Raan. Mapping of science:
Critical elaboration and new approaches, a case study in agricultural
biochemistry. In Elsevier:Informetrics, 1988.

[23] L. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and
C. Sohler. Counting triangles in data streams. In PODS, pages 253-
262, 2006.

[24] U. i. t. V. Catalyiirek, C. Aykanat, and B. Ugar. On two-dimensional
sparse matrix partitioning: Models, methods, and a recipe. SIAM Jour-
nal on Scientific Computing, 2010.

[25] Y. Chabchoub and G. Hébrail. Sliding hyperloglog: Estimating cardi-
nality in a data stream over a sliding window. In ICDM Workshops,
2010.

158

References

[26] R. Chen, J. Shi, Y. Chen, and H. Chen. Powerlyra: Differentiated graph
computation and partitioning on skewed graphs. In Proceedings of the
Tenth European Conference on Computer Systems, page 1. ACM, 2015.

[27] W. Chen, W. Lu, and N. Zhang. Time-critical influence maximization in
social networks with time-delayed diffusion process. arXiv:1204.3074,
2012.

[28] W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for
prevalent viral marketing in large-scale social networks. In Proceedings
of the 16th ACM SIGKDD, pages 1029-1038. ACM, 2010.

[29] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in
social networks. In Proceedings of the 15th ACM SIGKDD, pages 199-
208. ACM, 2009.

[30] W. Chen, Y. Yuan, and L. Zhang. Scalable influence maximization in
social networks under the linear threshold model. In ICDM, 2010.

[31] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan.
One trillion edges: Graph processing at facebook-scale. VLDB, 2015.

[32] E. Cho, S. A. Myers, and]. Leskovec. Friendship and mobility: User
movement in location-based social networks. In KDD, 2011.

[33] E. Cohen. Size-estimation framework with applications to transi-
tive closure and reachability. Journal of Computer and System Sciences,
55(3):441-453, 1997.

[34] E. Cohen. All-distances sketches, revisited: HIP estimators for massive
graphs analysis. In PODS, pages 88-99, 2014.

[35] E. Cohen, D. Delling, T. Pajor, and R. F. Werneck. Sketch-based in-
fluence maximization and computation: Scaling up with guarantees.
In Proceedings of the 23rd ACM International Conference on Conference on
Information and Knowledge Management, pages 629-638. ACM, 2014.

[36] G. Cormode and S. Muthukrishnan. An improved data stream sum-
mary: the count-min sketch and its applications. Journal of Algorithms,
55(1):58-75, 2005.

[37] M. Crouch, A. McGregor, and D. Stubbs. Dynamic graphs in the
sliding-window model. In ESA, pages 337-348, 2013.

[38] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream
statistics over sliding windows. SIAM Journal on Computing, 31(6):1794—
1813, 2002.

159

References

[39] P. Domingos and M. Richardson. Mining the network value of cus-
tomers. In Proceedings of the seventh ACM SIGKDD, pages 57-66. ACM,
2001.

[40] N. Du, L. Song, M. Gomez-Rodriguez, and H. Zha. Scalable influence
estimation in continuous-time diffusion networks. In Advances in neural
information processing systems, pages 3147-3155, 2013.

[41] D. M. Dunlavy, T. G. Kolda, and E. Acar. Temporal link prediction
using matrix and tensor factorizations. ACM Transactions on Knowledge
Discovery from Data (TKDD), 5(2):10, 2011.

[42] M. Durand and P. Flajolet. Loglog counting of large cardinalities. In
ESA, 2003.

[43] D. Eppstein, Z. Galil, and G. Italiano. Dynamic graph algorithms. CRC
Press, 1998.

[44] L. Ferrari, A. Rosi, M. Mamei, and F. Zambonelli. Extracting urban
patterns from location-based social networks. In SIGSPATIAL, 2011.

[45] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier. Hyperloglog: the
analysis of a near-optimal cardinality estimation algorithm. DMTCS
Proceedings, 2008.

[46]]J. Gama. Knowledge discovery from data streams. CRC Press, 2010.

[47] H. Gao,]. Tang, and H. Liu. Exploring social-historical ties on location-
based social networks. In AAAI, 2012.

[48] P-L. Giscard, P. Rochet, and R. C. Wilson. Evaluating balance on social
networks from their simple cycles. Journal of Complex Networks, page
cnx005, 2017.

[49]]. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph:
Distributed graph-parallel computation on natural graphs. In OSDI,
2012.

[50] A. Goyal, E. Bonchi, and L. V. Lakshmanan. Discovering leaders from
community actions. In Proceedings of the 17th ACM conference on Infor-
mation and knowledge management, pages 499-508. ACM, 2008.

[51] A. Goyal, E. Bonchi, and L. V. Lakshmanan. Learning influence proba-
bilities in social networks. In WSDM, 2010.

[52] A. Goyal, F. Bonchi, and L. V. Lakshmanan. A data-based approach
to social influence maximization. Proceedings of the VLDB Endowment,
5(1):73-84, 2012.

160

References

[53] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. A data-based approach
to social influence maximization. In PVLDB, 2011.

[54] N. T. Hai. A novel approach for location promotion on location-based
social networks. In RIVF, 2015.

[55] M. Henzinger and V. King. Randomized fully dynamic graph algo-
rithms with polylogarithmic time per operation. Journal of the ACM,
46(4):502-516, 1999.

[56] M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data
streams. In DIMACS Workshop External Memory and Visualization, vol-
ume 50, 1999.

[57] F. Hoffmann and D. Krasle. Fraud detection using network analysis,
2015. EP Patent App. EP20,140,003,010.

[58] P. Holme and J. Saramidki. Temporal networks. Physics reports,
519(3):97-125, 2012.

[59] W. Hu, H. Zou, and Z. Gong. Temporal pagerank on social networks.
In International Conference on Web Information Systems Engineering, pages
262-276. Springer, 2015.

[60] Z. Huang, X. Li, and H. Chen. Link prediction approach to collabora-
tive filtering. In Proceedings of the 5th ACM/IEEE-CS joint conference on
Digital libraries, pages 141-142. ACM, 2005.

[61] N. Jain, G. Liao, and T. L. Willke. Graphbuilder: scalable graph etl
framework. In GRADES, 2013.

[62] D. B. Johnson. Finding all the elementary circuits of a directed graph.
SIAM Journal on Computing, 4(1):77-84, 1975.

[63] G. Karypis and V. Kumar. Multilevel graph partitioning schemes. In
ICPP (3), 1995.

[64] G. Karypis and V. Kumar. Multilevelk-way partitioning scheme for
irregular graphs. Journal of Parallel and Distributed computing, 1998.

[65] D. Kempe, J. Kleinberg, and A. Kumar. Connectivity and inference
problems for temporal networks. In Proceedings of the thirty-second an-
nual ACM symposium on Theory of computing, pages 504-513. ACM, 2000.

[66] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influ-
ence through a social network. In Proceedings of the ninth ACM SIGKDD,
pages 137-146. ACM, 2003.

161

References

[67] M. Kim and K. S. Candan. Sbv-cut: Vertex-cut based graph partitioning
using structural balance vertices. Data & Knowledge Engineering, 72,
2012.

[68] J. Kleinberg. The flow of on-line information in global networks. In
Proceedings of the 2010 ACM SIGMOD, pages 1-2. ACM, 2010.

[69] L. Kovanen, M. Karsai, K. Kaski, J. Kertész, and J. Saramé&ki. Tempo-
ral motifs in time-dependent networks. Journal of Statistical Mechanics:
Theory and Experiment, 2011(11):P11005, 2011.

[70] R. Kumar and T. Calders. Finding simple temporal cycles in an in-
teraction network. In Proceedings of the Workshop on Large-Scale Time
Dependent Graphs (TD-LSG 2017) co-located with the European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML PKDD 2017), Skopje, Macedonia, September 18, 2017.,
pages 3-6, 2017.

[71] R. Kumar and T. Calders. Information propagation in interaction net-
works. In Proceedings of the 20th International Conference on Extending
Database Technology, EDBT 2017, Venice, Italy, March 21-24, 2017., pages
270-281, 2017.

[72] R. Kumar, T. Calders, A. Gionis, and N. Tatti. Maintaining sliding-
window neighborhood profiles in interaction networks. In Machine
Learning and Knowledge Discovery in Databases, pages 719-735. Springer,
2015.

[73] J. Kunegis. Konect: the koblenz network collection. In Proceedings of the
22nd international conference on World Wide Web companion, pages 1343—
1350. International World Wide Web Conferences Steering Committee,
2013.

[74] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance. Cost-effective outbreak detection in networks. In Proceedings
of the 13th ACM SIGKDD, pages 420-429. ACM, 2007.

[75] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

[76] J. Leskovec, M. McGlohon, C. Faloutsos, N. S. Glance, and M. Hurst.
Patterns of cascading behavior in large blog graphs. In SDM, volume 7,
pages 551-556. SIAM, 2007.

[77] G. Li, S. Chen,]J. Feng, K.-1. Tan, and W.-s. Li. Efficient location-aware
influence maximization. In SIGMOD, 2014.

162

http://snap.stanford.edu/data

References

[78] B. Liu, G. Cong, D. Xu, and Y. Zeng. Time constrained influence max-
imization in social networks. In Data Mining (ICDM), pages 439-448.
IEEE, 2012.

[79] Q. Liu, M. Deng, Y. Shi, and J. Wang. A density-based spatial clustering
algorithm considering both spatial proximity and attribute similarity.
In Computers & Geosciences, 2012.

[80] L. LovaSz. Review of the book by alexander schrijver: Combinatorial
optimization: Polyhedra and efficiency. In Oper. Res. Lett., 2005.

[81] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein. Distributed graphlab: a framework for machine learning
and data mining in the cloud. Proceedings of the VLDB Endowment, 2012.

[82] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry. Challenges in
parallel graph processing. Parallel Processing Letters, 2007.

[83] H. Ma, L. King, and M. R. Lyu. Mining web graphs for recommenda-
tions. IEEE Transactions on Knowledge and Data Engineering, 24(6):1051—
1064, 2012.

[84] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski. Pregel: a system for large-scale graph processing.
In SIGMOD, 2010.

[85] F. J. Mata and A. Quesada. Web 2.0, social networks and e-commerce
as marketing tools. In J. Theor. Appl. Electron. Commer. Res., 2014.

[86] P. Mateti and N. Deo. On algorithms for enumerating all circuits of a
graph. SIAM Journal on Computing, 5(1):90-99, 1976.

[87] R. R. McCune, T. Weninger, and G. Madey. Thinking like a vertex: a
survey of vertex-centric frameworks for large-scale distributed graph
processing. ACM Computing Surveys (CSUR), 48(2):25, 2015.

[88] O. Michail. An introduction to temporal graphs: An algorithmic per-
spective. arXiv:1503.00278, 2015.

[89] A. Mohammadi, M. Saraee, and A. Mirzaei. Time-sensitive influ-
ence maximization in social networks. Journal of Information Science,
41(6):765-778, 2015.

[90] S. Muthukrishnan. Data streams: Algorithms and applications. 2005.

[91] C. Palmer, P. Gibbons, and C. Faloutsos. ANF: A fast and scalable tool
for data mining in massive graphs. In KDD, pages 81-90, 2002.

163

References

[92] R. K. Pan and J. Saramaéki. Path lengths, correlations, and centrality in
temporal networks. Physical Review E, 84(1):016105, 2011.

[93] A. Paranjape, A. R. Benson, and J. Leskovec. Motifs in temporal net-
works. In Proceedings of the Tenth ACM International Conference on Web
Search and Data Mining, pages 601-610. ACM, 2017.

[94] F. Petroni, L. Querzoni, K. Daudjee, S. Kamali, and G. Iacoboni. Hdrf:
stream-based partitioning for power-law graphs. In CIKM. ACM, 2015.

[95] J. Ponstein. Self-avoiding paths and the adjacency matrix of a graph.
SIAM Journal on Applied Mathematics, 14(3):600-609, 1966.

[96] B. A.Prakash, D. Chakrabarti, N. C. Valler, M. Faloutsos, and C. Falout-
sos. Threshold conditions for arbitrary cascade models on arbitrary
networks. Knowledge and information systems, 33(3):549-575, 2012.

[97] V. B. Rao and V. Murti. Enumeration of all circuits of a graph. Proceed-
ings of the IEEE, 57(4):700-701, 1969.

[98] M. Richardson and P. Domingos. Mining knowledge-sharing sites for
viral marketing. In Proceedings of the eighth ACM SIGKDD, pages 61-70.
ACM, 2002.

[99] M. Riondato and E. M. Kornaropoulos. Fast approximation of between-
ness centrality through sampling. Data Mining and Knowledge Discovery,
30(2):438-475, 2016.

[100] M. G. Rodriguez and B. Scholkopf. Influence maximization in continu-
ous time diffusion networks. arXiv:1205.1682, 2012.

[101] P. Rozenshtein and A. Gionis. Temporal pagerank. In ECML-PKDD,
pages 674-689. Springer, 2016.

[102] P. Rozenshtein, N. Tatti, and A. Gionis. Discovering dynamic com-
munities in interaction networks. In Machine Learning and Knowledge
Discovery in Databases, pages 678—-693. Springer, 2014.

[103] M. A. Saleem, R. Kumar, T. Calders, X. Xie, and T. B. Pedersen. Location
influence in location-based social networks. In WSDM, 2017.

[104] K. Semertzidis and E. Pitoura. Historical traversals in native graph
databases. In Advances in Databases and Information Systems, pages 167—
181. Springer, 2017.

[105] B. Shao, H. Wang, and Y. Li. Trinity: A distributed graph engine on
a memory cloud. In Proceedings of the 2013 international conference on
Management of data. ACM, 2013.

164

References

[106] J. Tang, M. Musolesi, C. Mascolo, and V. Latora. Temporal distance
metrics for social network analysis. In Proceedings of the 2nd ACM work-
shop on Online social networks, pages 31-36. ACM, 2009.

[107] Y. Tang, Y. Shi, and X. Xiao. Influence maximization in near-linear time:
A martingale approach. In Proceedings of the 2015 ACM SIGMOD, pages
1539-1554. ACM, 2015.

[108] C. Tantipathananandh, T. Berger-Wolf, and D. Kempe. A framework for
community identification in dynamic social networks. In Proceedings of
the 13th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 717-726. ACM, 2007.

[109] R. Tarjan. Enumeration of the elementary circuits of a directed graph.
SIAM Journal on Computing, 2(3):211-216, 1973.

[110] E. Ted, H. G. Goldberg, A. Memory, W. T. Young, B. Rees, R. Pierce,
D. Huang, M. Reardon, D. A. Bader, E. Chow, et al. Detecting insider
threats in a real corporate database of computer usage activity. In Pro-
ceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1393-1401. ACM, 2013.

[111] J. C. Tiernan. An efficient search algorithm to find the elementary cir-
cuits of a graph. Communications of the ACM, 13(12):722-726, 1970.

[112] C. Tsourakakis, U. Kang, G. Miller, and C. Faloutsos. Doulion: counting
triangles in massive graphs with a coin. In KDD, pages 837-846, 2009.

[113] S. Verma, L. M. Leslie, Y. Shin, and I. Gupta. An experimental com-
parison of partitioning strategies in distributed graph processing. Proc.
VLDB Endow., 2017.

[114] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the evo-
lution of user interaction in facebook. In Proceedings of the 2nd ACM
workshop on Online social networks, pages 37-42. ACM, 2009.

[115] X. Wang, Y. Zhang, W. Zhang, and X. Lin. Distance-aware influence
maximization in geo-social network. In ICDE, 2016.

[116] J. T. Welch Jr. A mechanical analysis of the cyclic structure of undirected
linear graphs. Journal of the ACM (JACM), 13(2):205-210, 1966.

[117] Y.-T. Wen, P--R. Lei, W.-C. Peng, and X.-F. Zhou. Exploring social influ-
ence on location-based social networks. In ICDM, 2014.

[118] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu. Path problems
in temporal graphs. Proceedings of the VLDB Endowment, 7(9):721-732,
2014.

165

References

[119] H.-H. Wu and M.-Y. Yeh. Influential nodes in a one-wave diffusion
model for location-based social networks. In PAKDD, 2013.

[120] Y. Wu, C. Zhou, J. Xiao, J. Kurths, and H. J. Schellnhuber. Evidence
for a bimodal distribution in human communication. Proceedings of the
national academy of sciences, 107(44):18803-18808, 2010.

[121] C. Xie, L. Yan, W.-J. Li, and Z. Zhang. Distributed power-law graph
computing: Theoretical and empirical analysis. In Advances in Neural
Information Processing Systems, 2014.

[122] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica. Graphx: A
resilient distributed graph system on spark. In GRADES. ACM, 2013.

[123] S. Yau. Generation of all hamiltonian circuits, paths, and centers of
a graph, and related problems. IEEE Transactions on Circuit Theory,
14(1):79-81, 1967.

[124] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J]. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. USENIX
Association, 2012.

[125] C. Zhang, L. Shou, K. Chen, G. Chen, and Y. Bei. Evaluating geo-social
influence in location-based social networks. In CIKM, 2012.

[126] T. Zhou,]J. Cao, B. Liu, S. Xu, Z. Zhu, and J. Luo. Location-based
influence maximization in social networks. In CIKM, 2015.

[127] W.-Y. Zhu, W.-C. Peng, L.-J. Chen, K. Zheng, and X. Zhou. Modeling
user mobility for location promotion in location-based social networks.
In KDD, 2015.

166

	Front page
	Curriculum Vitae
	Abstract
	Abstracto
	Abstrait
	Contents
	Thesis Details
	1 Thesis Summary
	1 Background and Motivation
	1.1 Research Problems and Challenges

	2 Thesis Overview
	2.1 Efficient estimation of neighborhood profiles in a sliding window graph stream model
	2.2 User-User interaction in social networks
	2.3 Location-Location interaction in Location based social networks
	2.4 Cyclic pattern detection in interaction networks
	2.5 Distributed graph processing for temporal graphs

	3 Thesis Structure
	4 Summary of Contributions

	2 Maintaining sliding-window neighborhood profiles in interaction networks
	1 Introduction
	2 Preliminaries
	3 Problem statement
	4 Maintaining the exact neighborhood profile
	4.1 Summary for neighborhood functions
	4.2 Updating summaries

	5 Approximating neighborhood function
	5.1 Hyperloglog and sliding-window hyperloglog sketches
	5.2 Computation of neighborhood profiles based on sliding HLL

	6 Related work
	7 Experimental evaluation
	8 Concluding remarks

	3 Information Propagation in Interaction Networks
	1 Introduction
	2 Preliminaries
	3 Solution Framework
	3.1 The Exact algorithm
	3.2 Approximate Algorithm

	4 Applications
	4.1 Influence Oracle:
	4.2 Influence Maximization:

	5 Related Work
	6 Experimental Evaluation
	6.1 Datasets and Setup
	6.2 Accuracy of the Approximation
	6.3 Runtime and Memory usage of the Approximation Algorithm
	6.4 Influence Oracle Query Efficiency
	6.5 Influence Maximization

	7 Conclusion

	4 Location Influence in Location-based Social Networks
	1 Introduction
	2 Related Work
	3 Location-based Influence
	3.1 Location-Based Social Network
	3.2 Models of Location-based Influence
	3.3 Friendship-Based Location Influence
	3.4 Combined Location Influence
	3.5 Problem Formulation

	4 Solution Framework
	4.1 Influence Oracle
	4.2 Approximate Influence Oracle
	4.3 Influence Maximization

	5 LBSN Data Analysis
	5.1 Mobility analysis of friends
	5.2 Setting and

	6 EVALUATION
	6.1 Approximate vs. Exact Oracle
	6.2 Influence of and
	6.3 Influence Maximization
	6.4 Qualitative Experiment

	7 Conclusion
	8 Co-authoring Agreement

	5 2SCENT: An Efficient Algorithm for Enumerating All Simple Temporal Cycles
	1 Introduction
	2 Related work
	3 Preliminaries
	4 Source Detection Phase
	4.1 Reverse Reachability Summary
	4.2 Improvements using Bloom Filters
	4.3 Combining Root Node Candidate Tuples

	5 Constrained Depth-First Search
	6 Proof of Correctness for Constrained Depth-First Search
	6.1 Soundness
	6.2 Completeness
	6.3 Main Result

	7 Complexity of constrained Depth-First Search
	8 Path Bundles
	8.1 Expanding a Bundle
	8.2 Extending the Algorithm to Bundles
	8.3 Counting the Number of Paths in a Bundle

	9 Experiments
	9.1 Dataset
	9.2 Performance Evaluation
	9.3 Qualitative Evaluation

	10 Conclusion

	6 Cost Model for Pregel on GraphX
	1 Introduction
	2 Background
	2.1 Pregel Model
	2.2 Partitioning

	3 Cost Model for Pregel GraphX
	3.1 Pregel Model in GraphX
	3.2 The Cost model formulation

	4 Experimental Validation of the Cost Model
	4.1 Experiment Configuration and Setup
	4.2 Estimating 1, 2, 3, r, w and
	4.3 Cost model validation

	5 Concluding remarks

	7 Conclusions and Future Directions
	1 Conclusions
	2 Future Directions
	Bibliography
	References

