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Abstract

There is a clear correlation between data availability and data analytics, and
hence with the increase of data availability — unavoidable according to Moo-
re’s law, the need for data analytics increases too. This certainly engages
many more people, not necessarily experts, to perform analytics tasks. How-
ever, the different, challenging, and time consuming steps of the data analyt-
ics process, overwhelm non-experts and they require support (e.g., through
automation or recommendations).

A very important and time consuming step that marks itself out of the
rest, is the data pre-processing step. Data pre-processing is challenging but at
the same time has a heavy impact on the overall analysis. In this regard, pre-
vious works have focused on providing user assistance in data pre-processing
but without being concerned on its impact on the analysis. Hence, the goal
has generally been to enable analysis through data pre-processing and not
to improve it. In contrast, this thesis aims at developing methods that pro-
vide assistance in data pre-processing with the only goal of improving (e.g.,
increasing the predictive accuracy of a classifier) the result of the overall anal-
ysis.

To this end, we propose a method and define an architecture that lever-
ages ideas from meta-learning to learn the relationship between transforma-
tions (i.e., pre-processing operators) and mining algorithms (i.e., classification
algorithms). This eventually enables ranking and recommending transforma-
tions according to their potential impact on the analysis.

To reach this goal, we first study the currently available methods and
systems that provide user assistance, either for the individual steps of data
analytics or for the whole process altogether. Next, we classify the metadata
these different systems use and then specifically focus on the metadata used
in meta-learning. We apply a method to study the predictive power of these
metadata and we extract and select the metadata that are most relevant.



Finally, we focus on the user assistance in the pre-processing step. We
devise an architecture and build a tool, PRESISTANT, that given a classifi-
cation algorithm is able to recommend pre-processing operators that once
applied, positively impact the final results (e.g., increase the predictive accu-
racy). Our results show that providing assistance in data pre-processing with
the goal of improving the result of the analysis is feasible and also very use-
ful for non-experts. Furthermore, this thesis is a step towards demystifying
the non-trivial task of pre-processing that is an exclusive asset in the hands
of experts.
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Resumen

Existe una clara correlacién entre disponibilidad y anélisis de datos, por tanto
con el incremento de disponibilidad de datos — inevitable segiin la ley de
Moore, la necesidad de analizar datos se incrementa también. Esto definiti-
vamente involucra mucha mas gente, no necesariamente experta, en la real-
izacién de tareas analiticas. Sin embargo los distintos, desafiantes y tempo-
ralmente costosos pasos del proceso de andlisis de datos abruman a los no
expertos, que requieren ayuda (por ejemplo, automatizacién o recomenda-
ciones).

Uno de los pasos mds importantes y que mas tiempo conlleva es el pre-
procesado de datos. Pre-procesar datos es desafiante, y a la vez tiene un gran
impacto en el andlisis. A este respecto, trabajos previos se han centrado en
proveer asistencia al usuario en el pre-procesado de datos pero sin tener en
cuenta el impacto en el resultado del andlisis. Por lo tanto, el objetivo ha sido
generalmente el de permitir andlizar los datos mediante el pre-procesado y
no el de mejorar el resultado. Por el contrario, esta tesis tiene como objetivo
desarrollar métodos que provean asistencia en el pre-procesado de datos con
el tnico objetivo de mejorar (por ejemplo, incrementar la precision predictiva
de un clasificador) el resultado del anélisis.

Con este objetivo, proponemos un método y definimos una arquitectura
que emplea ideas de meta-aprendizaje para encontrar la relacién entre trans-
formaciones (operadores de pre-procesado) i algoritmos de mineria de datos
(algoritmos de classificacién). Esto, eventualmente, permite ordenar y re-
comendar transformaciones de acuerdo con el impacto potencial en el andli-
sis.

Para alcanzar este objetivo, primero estudiamos los métodos disponibles
actualmente y los sistemas que proveen asistencia al usuario, tanto para los
pasos individuales en andlisis de datos como para el proceso completo. Pos-
teriormente, clasificamos los metadatos que los diferentes sistemas usan y
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ponemos el foco especificamente en aquellos que usan metadatos para meta-
aprendizaje. Aplicamos un método para estudiar el poder predictivo de los
metadatos y extraemos y seleccionamos los metadatos mds relevantes.

Finalmente, nos centramos en la asistencia al usuario en el paso de pre-
procesado de datos. Concebimos una arquitectura y construimos una her-
ramienta, PRESISTANT, que dado un algoritmo de classificacion es capaz de
recomendar operadores de pre-procesado que una vez aplicados impactan
positivamente el resultado final (por ejemplo, incrementan la precision pre-
dictiva). Nuestros resultados muestran que proveer asistencia al usuario en
el pre-procesado de datos con el objetivo de mejorar el resultado del anélisis
es factible y muy atil para no-expertos. Ademds, esta tesis es un paso en
la direccién de desmitificar que la tarea no trivial de pre-procesar datos esta
solo al alcance de expertos.

Palabras Clave

pre-procesado de datos; aprendizaje supervisado; mineria de datos; meta-
aprendizaje;



Streszczenie

Jednym z gléwnych zagadnierr zwiazanych z analiza danych jest zapewnienie
poprawnych wynikéw analiz i wiarygodnych modeli predykcji. Na jakos¢
obu ma wielki wptyw jakos$¢ samych danych. Z tego wzgledu, wyzwaniem
badawczym jest odpowiednie wstepne przygotowanie danych do analizy.

W catlym procesie analizy danych wyréznia sie 4 nastepujace zadania:
selekcje danych (ang. data selection), przygotowanie danych (ang. data pre-
processing), analize / eksploracje danych (ang. data analysis / mining) i
interpretacje / ocene wynikéw (ang. interpretation / evaluation).

Selekcja polega na wyborze danych, ktére beda podlegaty analizie. Przygo-
towanie obejmuje: (1) czyszczenie danych (m.in., eliminowanie btedéw litero-
wych, uzupelnianie wartosci brakujacych, ujednolicanie wartosci), (2) elimi-
nowanie duplikatéw, (3) transformowanie danych do jednolitej struktury. W
procesie analizy / eksploracji stosuje sie modele statystyczne i uczenie maszy-
nowe do wydobywania wiedzy z danych, a ich wyniki ocenia sie w korku
interpretacji.

Z omoéwionych wyzej zadann w procesie analizy danych, jednym z na-
jtrudniejszych jest przygotowanie danych. Szacuje sie, ze zajmuje ono 50-80%
Tacznego czasu przeznaczonego na projekt przeptywu zadan analizy danych.
Ten problem jest przedmiotem badan wielu wiodacych osrodkéw naukowych
na $wiecie, jednak mimo wielu propozycji, zadanie to nadal bardzo czesto
wymaga asysty uzytkownika. Ponadto, istniejace na rynku komercyjne i ot-
warte narzedzia informatyczne nie wspieraja uzytkownika w procesie przy-
gotowania danych w sposéb wlasciwy dla zadanego problemu analitycznego.

W ramach niniejszej rozprawy koncentrujemy sie na uczeniu nadzorowanym
(ang. supervised learning) i wybranym jego mechaniZmie - klasyfikacji, jako
technice analizy danych, dla ktérej przeprowadzamy proces przygotowania
danych. W problemie klasyfikacji, wtasciwe przygotowanie danych do anal-
izy ma wplyw na jakos¢ (trafnos¢) modelu klasyfikacji.
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Poniewaz nie istnieja zadne rozwiazania umozliwiajace wyboér wiasci-
wego sposobu przygotowania danych, ktére uwzgledniatyby charakterystyki
statystyczne danych i docelowy model klasyfikacji, celem niniejszej rozprawy
jest opracowanie mechanizméw wspierajacych uzytkownika (analityka biz-
nesowego) w procesie przygotowania danych, w taki sposéb, aby zastosowane
metody czyszczenia i transformowania danych zwiekszyly trafnosé¢ modelu
predykgji (klasyfikacji). Wynikiem dziatania tych mechanizméw jest rank-
ing operacji transformacji danych, rekomendowany uzytkownikowi wraz z
predykgja jej wptywu na jakos¢ modelu klasyfikacji.

Zaproponowane w rozprawie mechanizmy bazuja na meta-uczeniu (ang.
meta-learning). Meta-uczenie polega na stosowaniu algorytméw uczenia
maszynowego na metadanych opisujacych eksperymenty obliczeniowe i bu-
dowaniu ogdlnego modelu reprezentujacego zaleznosci miedzy danymi ek-
sperymentalnymi a wynikami eksperymentéw. W naszym podej$ciu, model
ten opisuje zaleznosci pomiedzy charakterystykami statystycznymi analizo-
wanych danych, algorytmami klasyfikacji i jako$cia budowanego modelu
klasyfikacji. Zgodnie z nasza najlepsza wiedza, meta-uczenie wczesniej nie
byto proponowane jako mechanizm wspierajacy proces przygotowania danych
do analizy.

Cel rozprawy zostat zrealizowany w postaci nastepujacych zadan, stanow-
iacych kontrybucje naukowa rozprawy.

* Opracowano taksonomie metadanych wykorzystywanych w procesie
odkrywania wiedzy z danych i zidentyfikowano niezbedny zbi6ér meta-
danych, umozliwiajacy rekomendowanie wlasciwych technik wstep-
nego przygotowania danych do analizy. Zaprojektowano i zaimple-
mentowano architekture repozytorium metadanych.

* Opracowano nowe metody wsparcia analityka biznesowego w proce-
sie przygotowania danych do analizy. W tym celu, zastosowano kon-
cepcje meta-uczenia do wyboru takich metod przygotowania danych,
ktérych zastosowanie zwiekszy trafnos¢ wybranych algorytméw klasy-
fikacji, dla zadanych charakterystyk danych wejsciowych.

e Zaproponowano i zaimplementowano technike redukcji charakterystyk
wejéciowego zbioru danych, tylko do tych, ktére maja najwiekszy wplyw
na jako$¢ modelu klasyfikagji.

¢ Zaprojektowano i zaimplementowano architekture prototypowego sys-
temu wspierajacego analityka biznesowego w procesie przygotowania



danych. System ten, na podstawie charakterystyk danych wejsciowych
i zadanego algorytmu klasyfikacji, rekomenduje metody czyszczenia
i transformowania danych, uporzadkowane zgodnie z ich wplywem
(pozytywny, neutralny, negatywny) na jako$¢ modelu klasyfikacji.

Dokonano szczegétowej oceny eksperymentalnej prototypowego sys-
temu dla 5-ciu popularnych algorytmoéw klasyfikacji (tj. J48, Naive
Bayes, PART, Logistic, IBk) i w oparciu o ponad 500 zbioréw danych
testowych repozytorium OpenML.
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Introduction

1.1 Background and Motivation

Today, data is treated as a powerful asset. Therefore, there is an overall boost
in collecting it from everywhere and in any form. Data collection has reached
such extremes that according to some, currently, in two days we generate
more data than what we have generated from the dawn of civilization up
until 2003'.

In fact, data has been a valuable artifact for a long time (mainly for visu-
alization, e.g., see Minards Work 19th century [31]), yet its value has reached
the peak today, because only today we are able to generate more (actionable)
knowledge from it. Companies, using data, are able to predict the next hur-
ricane [25], the next maneuver of a human driver [62], the health diagnosis
of a patient [64], flight delays?, and many other things.

However, in general our capability of analyzing data, lags far behind the
capability of collecting it. This is due to the fact that data analytics consists
of several challenging and time consuming steps, which have been grouped
into the following [27]: data selection, data pre-processing, data mining, and in-

Thttps:/ /techcrunch.com /2010/08 /04 /schmidt-data
Zhttps:/ /www.nytimes.com/2018/02/13/travel /new-google-tips-and-tools-for-
travelers.html



Chapter 1. Introduction

Interpretation,
Evaluation

f Models/ - A

Patterns

selection

Data lake
(Raw data)

Target
data

Knowledge

Fig. 1.1: Data analytics process, sometimes synonymously referred to as knowledge discovery or
knowledge discovery in databases (KDD); adapted from [27]

terpretation/evaluation (cf. Figure 1.1).

Briefly, data selection represents the task of sifting out the data that may not
be relevant for the analysis. Data pre-processing represents the broad task of
cleaning/wrangling the data, such that it is ready for the analysis (e.g., min-
ing). Next, data mining is the task of applying a machine learning/statistical
modeling algorithm on top of the pre-processed data (e.g., supervised learn-
ing, unsupervised learning). Finally, interpretation is the task of interpreting
the results.

If we use the analogy of baking a cake, selection translates to the process
of picking the ingredients (from what is already available in the kitchen),
pre-processing includes the tasks of preparing the dough, the cream, and the
dressing. Mining is the process of baking, and finally, interpretation is the
process of tasting.

As one can imagine, one of the most time consuming steps and also the
one that has a heavy impact on the final result is the pre-processing step. Yet,
in contrast to baking, in data analytics, there are no clear and strictly defined
"recipes” for pre-processing the data, such that the final result is improved.
Hence, this step is generally performed by experts (i.e., chefs in our analogy).

But, given the availability of data (e.g., repositories like OpenML [92],
UCI?, and web APIs like, Twitter API*, Facebook API®), even non-expert
users want to participate in analytics tasks. However, the staggeringly large
amount of pre-processing options and mining (i.e., algorithms) alternatives,
overwhelm non-experts and they require support.

Many previous research efforts and practical solutions have tried to tackle
specifically the problem of user support in data pre-processing [44, 49, 66,

3https: / /archive.ics.uci.edu/ml/index.php
4htt’ps: / / developer.twitter.com/en/docs/api-reference-index
Shttps:/ /developers.facebook.com/docs/apis-and-sdks



1.2. Scope

76] — which is also the focus of this thesis, and generally the problem of
automating the whole data analytics pipeline [28, 70, 71, 89] — sometimes
referred to as AutoML. For data pre-processing, from the practical solutions
side, the overall goal has been to provide off the shelf tools and packages
(i.e., readily implemented algorithms) that facilitate the application of dif-
ferent techniques on top of data, yet still requiring user expertise (in our
analogy this would be the kitchen tools for chopping, mixing, baking, etc.).
From the research side, the overall goal has been to develop more sophis-
ticated methods for providing user support e.g., recommending alternative
pre-processing operators (in our baking analogy this translates to, for in-
stance, suggesting the use of an electric mixer instead of a manual one).

The latter types of user support are very much appreciated, however, they
lack in providing customized user support with the aim of improving the fi-
nal results. That is to say, what is missing is to recommend pre-processing
operators that would improve the final results of the analysis (in our anal-
ogy, that would be applying grandma’s tips to make more delicious cakes).
This implies dropping the assumption that only experts should analyze data
(i.e., not only chefs are baking cakes), and opening space for more effective
support, useful for non-experts.

1.2 Scope

It is almost a fact that data pre-processing consumes 50-80% of analytics
time [69]. This is mainly because data pre-processing encompasses a broad
range of complex activities.

There is sometimes ambiguity in the naming of the concept of data pre-
processing, since many different terms have been used in practice to refer to
the same process. Some of the concepts that have been interchangeably used
are the following: Extract-Transform-Load (ETL), data wrangling, data cook-
ing, data cleaning, data preparation, data transformation. There is no strict
line that clearly separates them (i.e., they overlap in functionality), hence the
confusion in naming.

Furthermore, the specific techniques used within this process have also
been referred to, in many ways, such as: data pre-processing operators, pre-
processing algorithms, transformations, filters.

To put things into perspective and to contextualize our use of the term,
in Figure 1.2, we depict the overlap that different pre-processing types may
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data
pre-processing

L] data
transformation .

i
___________ | e.g., filtering, encoding, deriving, |
| sorting, joining, aggregating, ) |
| transposing, splitting, disaggregating, !
1 validating, integrating .. ]

data data
cleaning wrangling

Fig. 1.2: The overlap of data pre-processing types in terms of functionality

have.

Such overlap is mainly within their functionality (i.e., the techniques they
use), hence they may differ along some other dimensions, such as the type of
users, the form of data they expect (e.g., structured, unstructured), their use
case, their goals, etc. However, the boundaries of the differences are quite
blurry, because they very much depend on the perspective of comparison
(i.e., subjective). Furthermore, because of the overlap in terms of function-
ality, different pre-processing types also have overlapping behaviour in the
light of data analysis. That is to say, they may all impact the results of data
analysis, even if in the first hand they are not applied with such an aim.
Moreover, the knowledge required to use such techniques may vary between
domain knowledge and expert knowledge. The line here is not very clear too.

For a better understanding, in Table 1.1, we attempt to classify different
pre-processing types along two main dimensions: i) the general characteris-
tics in the light of pre-processing itself, and ii) characteristics in the light of
the overall analysis (i.e., mining). The table does not aim to be exhaustive,
but it aims to convey the idea that different data pre-processing types have
no clear and sharp lines in terms of their differences, and they all, one way
or another may impact the analysis.

Throughout this thesis, we consider as data pre-processing operators all
the techniques that may have impact on the analysis, without distinguishing
their type or category and throughout this document, we interchangeably

refer to them as transformations.
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Table 1.1: Comparison/classification of pre-processing types

General data pre-processing characteristics Characteristics in the light of data
analysis
ETL/Data De_ata . Transform ek ite Obligatory or
q Expert scientists or the require format ;
transformation . Optional
IT users (reporting)
Business Make data more
Data wrangling Domain users appropriate and Optional
valuable n
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Datalcleaning Domain or D;ta _ Detect and clean Optional e
Expert scientists errors 2
©
a
Data _ Expert T users Combine and Obl_lgatory or
integration augment optional
Data Dz_ata . Convert from one Obligatory or
. Expert scientists or ;
conversion T users format to another Optional

Furthermore, within this thesis, the data mining (analysis) step refers to a
specific method of analyzing data, which is known as supervised learning [81].
The task of supervised learning is: given a training set of N example input-
output pairs (x1,y1), (x2,¥2), ---(xn,YNn), where each y; was generated by an
unknown function y = f(x), discover a function & that approximates the true
function f. Here x and y are variables (or synonymously referred to as features
or attributes) that can be of any type. Typically, x is a vector/set of variables
and they are called predictors or explanatory variables, whereas y is generally a
single variable that is called the response variable. Furthermore, when y is of
continuous type the problem is referred to as regression and in the case when
it is of categorical type the problem is referred to as classification. Indeed in
this thesis, we focus on classification problems, since they are more widely
used in practice.

1.3 Research Problems and Challenges

With the dramatic decrease of the price of data and the availability of off-the-
shelf tools for data analysis, the division line between data analysts (experi-
enced users) and everyone else (non-experienced users) is becoming thinner.
Everyone is getting more and more engaged in analyzing some kind of data.
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Take for instance a simple example of choosing the restaurant to go for din-
ner. You may go to the closest one, you may ask your friends on Twitter, or
you may end up reading plenty of reviews and different kinds of informa-
tion on different platforms (e.g., Yelp, TripAdvisor). Another example would
be that of choosing the journal for publishing an article. There are a lot of
journals and you can decide to retrieve more information (e.g., using the dblp
API® and the Scopus’ repository) about them in order to make your decision.
These are examples of simple available data, which in addition with the end-
less amount of publicly available repositories (e.g., Open data initiatives®),
bring all of us closer than ever to valuable data that one way or another can
be analyzed.

On the other side, complementary to data, there is the abundant set of
tools and languages (e.g. Weka, RapidMiner, R, python notebooks, Ama-
zonML), that assist users to perform the required analysis. Hence data and
tools together, engage even non-experts to perform analysis tasks. Therefore,
sooner than later most of the people who analyze data will not be statisticians
(i.e., experts). This revolution demands a new way of thinking and implies
that more time needs to be spend on automating — providing user support,
and building software.

At this point, the first research challenge is to assess what are the current
methods used to provide user support in the whole knowledge discovery process, and
to identify and classify the data (metadata) they use to enable such support? More-
over, whether the data/metadata used are complete or is there something unexploited?
Finally, how good such metadata are for providing user support in the analysis step?

Even in the presence of many tools that make it easier for non experts
to analyze their data, the data pre-processing step is still the one that con-
sumes most of the analytics time. The currently dominating methods with
respect to user support in data pre-processing either enable pre-processing
by providing the (readily implemented) necessary tools for applying differ-
ent techniques, or in the best case they provide recommendations that are
"syntactically” valid. That is, if the data is in a form that a data pre-processing
operator can be applied to it, provide it as an option/recommendation.

The problem with these approaches is that they assume the user knows
which pre-processing operators to apply. Hence, they are aimed towards
more experienced users, and they fail to provide support to users that do not

6h’ttps: / /dblp.uni-trier.de
7https: / /www.elsevier.com/solutions/scopus
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know how the data should look like (e.g., be transformed) in order to yield
better analysis.

Therefore, the second research challenge is to define methods that enable
data pre-processing support with the aim of improving the analysis. That is, not only
checking if operators are "syntactically” valid for a dataset, but also if they have some
positive impact on the final analysis.

1.4 Hypothesis

In a classification problem, pre-processing should be applied only as long as
it is useful for the analysis. However, since there are no clear recipes, there is
lack of user support in pre-processing with the aim of improving the classi-
fication performance (e.g., decrease the classification error). Our hypothesis
is that meta-learning [11] can be used to provide such support, where pre-
processing operators can be recommended according to their impact on the
final classification performance.

This hypothesis is supported by the fact that meta-learning has already
shown to be useful for different purposes [59]. For instance, in its inception it
has shown to perform well in the model-selection problem [10, 11, 46, 79], where
users are supported to select the best classifier for their problem at hand.
Next, it has shown to be useful in finding optimal workflows for the complete
data analytics process, and it has been referred to as meta-mining [40, 70].
Recently, meta-learning has also shown to provide good heuristics (i.e., to
find a good seed for the optimization problem) for finding the optimal hyper-
parameters in the CASH problem [28, 29, 78] — combined algorithm selection
and hyperparameter optimization problem.

However, we note that meta-learning has never been used before for pro-
viding user support specifically in the data pre-processing step.

1.5 Contributions

The first research challenge, as mentioned above, consisted of first identifying
and classifying the metadata that were used by different methods that aimed
at providing intelligent support along the knowledge discovery process, be
it as support for each step separately or the whole process altogether. Next,
the challenge was about studying how good this metadata were, and how to
select and extract only the most relevant metadata.
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As a response to this challenge, we assessed the currently available tools and
methods with respect to the type and scope of user support they provide. We thor-
oughly analyzed the metadata enabling such support, and we performed a compre-
hensive metadata classification, identifying important metadata that was overlooked
by the current tools. We developed a metadata repository to store such metadata.
Furthermore, in order to study the goodness of metadata, we applied a method for
analyzing their predictive power. Using this method we were able to select the most
relevant metadata for a given scenario. Finally, we developed a new way of visualiz-
ing the relationships between different metadata.

Our second research challenge was specifically related to the problem
of user support in the data pre-processing step. To be more precise, the
challenge was about defining new methods for providing user assistance in
data pre-processing. Therefore, our response was to develop a method with
such an aim. To this end, we developed a method that leveraging ideas from meta-
learning is able to provide support with the aim of improving the analysis (e.g, the
mining algorithm yields better results on the pre-processed dataset) and decreasing
the amount of time spent in pre-processing. It is a method that for the first
time does not aim at providing pre-processing support only for the sake of
pre-processing, but instead, it is oriented towards positively contributing to
the result of the analysis. We implemented a prototype, PRESISTANT, that
given a classification algorithm (i.e., a meta-model is built per classification
algorithm) recommends pre-processing operators that are ranked according
to their impact on the final result of the analysis, enabling even non-experts
to participate in the tedious task of pre-processing.
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1.6 Thesis Overview

The main focus of this thesis is to provide user support in the data pre-
processing step with the aim of improving the final results of classification
problems. Our method to provide such support is based on meta-learning,
which is the task of "learning on top of learning problems". Even though in
the meta-level, this is still a learning problem, which naturally involves all
the steps of the knowledge discovery process. Hence, in order to make it
work we had to carefully go through all the steps of knowledge discovery.
We use these steps to also guide the flow/structure of our thesis. Hence in
Figure 1.3, we show the structure of the thesis in the form of a knowledge
discovery process, where each phase (i.e., chapter) of our work corresponds
to a step of the knowledge discovery process.
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Chapter 5

Fig. 1.3: The structure of the thesis and how it maps to a knowledge discovery process

The main chapters (2-5) of this dissertation are based on the results re-
ported in the following publications:

P1. Besim Bilalli, Alberto Abell6, Tomas Aluja-Banet, Robert Wrembel. To-
wards Intelligent Data Analysis: The Metadata Challenge. In: Interna-
tional Conference on Internet of Things and Big Data, (IocTBD 2016). pp. 331-
338 [Short paper]. DOI: http://dx.doi.org/10.5220/0005876203310338

P2. Besim Bilalli, Alberto Abells, Tomas Aluja-Banet, Robert Wrembel. Au-
tomated Data Pre-processing via Meta-learning. In: International Con-
ference on Model and Data Engineering, (MEDI 2016). pp. 194-208. DOL
http://dx.doi.org/10.1007/978-3-319-45547-1_16

P3. Besim Bilalli, Alberto Abell6, Tomas Aluja-Banet, Robert Wrembel. In-
telligent Assistance for Data Pre-processing. In: Computer Standards &
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Interfaces, (CSI 2017). 57: 101-109. DOI: https://dx.doi.org/10.1016/
j.csi.2017.05.004

P4. Besim Bilalli, Alberto Abell6, Tomas Aluja-Banet. On the predictive
power of meta-features in OpenML. In: Applied Mathematics and Com-
puter Science, (AMCS 2017). 27(4): 697-712. DOI: https://dx.doi.org/
10.1515/amcs-2017-0048

P5. Besim Bilalli, Alberto Abelld, Tomas Aluja-Banet, Robert Wrembel. Learn-
ing based recommending assistant for data pre-processing. In: eprint
arXiv: https://arxiv.org/pdf/1803.01024.pdf [Under review].

P6. Besim Bilalli, Alberto Abell6, Tomas Aluja-Banet, Rana Faisal Munir,
Robert Wrembel. PRESISTANT: Data Pre-processing Assistant. To ap-
pear in: International Conference on Advanced Information Systems Engi-
neering, (CAiSE 2018) [Demo paper]. DOI: TBD

Each chapter corresponds to a publication. Chapter 2 corresponds to P1,
Chapter 3 corresponds to P2 and P3, Chapter 4 corresponds to P4, and Chap-
ter 5 corresponds to P5. The related work is performed for each chapter sep-
arately and included inside the respective chapters. In addition, Appendix A
corresponds to P6, where we discuss the implementation of our prototype
tool. Finally, in Appendix B we show additional results for the classifica-
tion algorithms that were considered but not reported in Chapter 5. In the
following, we provide an overview of each chapter.

1.6.1 Chapter 2: Towards Intelligent Data Analysis: The Meta-
data Challenge

The advances in data storage and data collection led to the need for develop-
ing languages and frameworks that enabled performing knowledge discov-
ery. Yet because of the intrinsic complexities and challenges faced during all
the phases of the knowledge discovery process, these frameworks fell short in
providing the required assistance. Therefore, there was need for developing
more sophisticated methods and tools that would make knowledge discovery
easier and more practical. Hence, the appearance of the concept of intelligent
data analysis, which referred to the methods that aimed at facilitating the ap-
plication of knowledge discovery.

In Chapter 2, we survey the different methods and tools that were devel-
oped to provide intelligent user support. The tools serving such a purpose
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are referred to as Intelligent Discovery Assistants [6], and in order to provide
the required support they make use of different meta information (metadata).
In this chapter, we identify and classify all the metadata used for providing
user support. We study the metadata with respect to their roles and types in
an IDA. Furthermore, we identify metadata that have been overlooked and if
used could provide further benefits, e.g., in the presence of metadata about
the domain one could have business understanding of the available data and
this may further be used by the system to assist users in easily selecting the
target data (i.e., support for the first step of the analysis). Moreover, we de-
velop a metadata repository that can store such metadata and we also provide
a first attempt for an architecture that exploits such a metadata repository to
further advance the user support in knowledge discovery. Therefore, the
work of this chapter basically corresponds to the first step of the knowledge
discovery process shown in Figure 1.3, with the only difference that instead
of data selection in this case we are concerned with metadata selection. Thus,
here we discuss all the possible metadata that can be used in the following
steps.

1.6.2 Chapter 3: On the Predictive Power of Meta-features in
OpenML

Different methods developed for providing user support in knowledge dis-
covery (i.e., data analytics) enabled that this process does not exclusively
remain in the hands of expert users, but that it can also be used by non-
experienced users.

One particular method that enabled user support, specifically in the data
mining step was meta-learning [11]. Assuming that users dealt with a classifi-
cation problem — i.e., for a given a dataset they had to choose a classification
algorithm and there is no best for every situation [94], meta-learning enabled
support by recommending a classification algorithm that would best fit in
the particular situation. In short, meta-learning enables support by collecting
dataset characteristics and performance measures of different algorithms on
datasets and learning a model (i.e., predictive model) on top of such histori-
cal metadata. This model is then used to provide support for newly arriving
datasets.

In Chapter 3, we use a method to perform exploratory analysis on top of
metadata used in meta-learning. As such, this chapter naturally maps to the
pre-processing step shown in Figure 1.3, and therefore is necessary for the
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next steps.

Our method consists of two phases, namely extraction and selection. In
the extraction phase latent concepts are generated out of metadata, and this
allows to study the metadata in a higher abstract level providing benefits
such as being more generic. In the second phase, exploring the relationship
between the latent concepts, the method selects the most relevant latent fea-
tures. This enables the reduction of the number of latent concepts that need
to be extracted and allows to have more robust models. Furthermore, in
this chapter we devise a new way of visualizing the relationships between
different metadata.

To put our method in practice, we first developed a tool that can retrieve
metadata from OpenML — one of the biggest repositories for such metadata,
and then on top of them we applied our method. We were able to study the
OpenML metadata in the latent level and the experiments showed that our
method was capable of selecting the metadata with more predictive power.
More precisely, with the selected metadata we were able to obtain better and
more robust predictive models in meta-learning, compared to the models
built without applying our method.

1.6.3 Chapter 4: Intelligent Assistance for Data Pre-processing

Several factors impact the success of a given analytics task. First of all, the
main important factor is the goodness (i.e., quality) of data. In a classifica-
tion problem, this would translate to having a dataset that consists of relevant
features/attributes and complete instances/rows. That is, features are engi-
neered using expertise from the domain, and the instances do not contain
missing values or other inconsistencies.

The second important factor determining the success of the analytics is the
mining algorithm used. In a classification problem, this would be the classi-
fication algorithm and its parametrization. Thus, given the right dataset and
the right mining algorithm, one can obtain good (i.e., optimal) results in an
analytics task. However, in practice this is rarely the case. Typically, either
the dataset is not in the proper shape or there is lack of expertise in applying
the right algorithm. The problem aggravates with non-experienced users. A
solution for such cases would be either to provide user support when select-
ing the classification algorithm, or providing assistance in transforming the
dataset (data pre-processing) such that it yields better results in the analysis.
For the former, in the previous chapter we argue that meta-feature extrac-
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tion and selection may help on building better models for assisting users on
choosing the right classification algorithms. For the latter, we propose a solu-
tion in this chapter. Hence, in this chapter, we specifically tackle the problem
of user support in data pre-processing.

Previous works have generally aimed at providing assistance in data pre-
processing, agnostically to its impact on the final result of the analysis. That
is, the goal has been to enable the analysis and not to improve it. In this chapter,
we discuss the possibility of providing user assistance in data pre-processing
with the only goal of improving the final analysis. To this end, we propose a
method and define an architecture that leverages ideas from meta-learning in
order to learn the relationship between transformations (i.e., pre-processing
operators) and classification algorithms. This, eventually enables proposing
transformations according to their relevance to the analysis.

Clearly this chapter maps to the learning (mining) step of the knowl-
edge discovery process, and because it is performed on top of metadata, it is
coined under the term meta-learning (i.e., meta-mining) in Figure 1.3. Specif-
ically, here the models are built/learned on top of meta-features (metadata)
selected using the method from the previous chapter. These meta-features are
extracted from transformed datasets and they are used as input for predicting
the performance of classification algorithms on the transformed datasets. The
performance of classification algorithms are evaluated using: predictive accu-
racy, precision, recall, and area under the roc curve (AUC). Hence, the predicted
values are of continuous type (i.e., numbers) and therefore our meta-learning
problem translates to a regression problem.

In this chapter, we evaluate our approach on hundreds of datasets re-
trieved from OpenML and show that as an initial approach, this method
provides promising results. The results obtained are statistically significant.
More importantly however, the achievement of this chapter is in showing that
it is possible to recommend data pre-processing operators that ultimately im-
prove the analysis. This means that for the first time data pre-processing is
not treated as an independent or isolated step within the knowledge discov-
ery process.

1.6.4 Chapter 5: Learning Based Recommending Assistant
for Data Pre-processing

The fact that data pre-processing impacts the results of the analysis is un-
questionable. However, there is not much empirical study on how different
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pre-processing operators impact the performance of different mining algo-
rithms (e.g., classification algorithms). Furthermore, it is very challenging,
yet very useful, to quantify the impact without explicitly applying the min-
ing algorithms on the transformed datasets. At best, this can be done roughly
by domain experts.

In this chapter, we build on top of our work explained in the previous
chapter, where we argue that meta-learning can be used to push the user
support in the data pre-processing step. This time in addition, we empirically
study the impact of data pre-processing operators on different classification
algorithms. Our study leads to a better understanding of the relationship
between data pre-processing operators and classification algorithms, which
in turn leads towards defining heuristic rules that can be used to reduce
the search space. We redefine our architecture in order to take into account
such rules, which can be further extended with expert rules, with the goal of
introducing some domain knowledge.

Differently from the previous chapter, this time the impact of pre-processing
operators is defined as the change induced on a performance measure of a
mining algorithm. That is to say, in classification problems we compute the
relative change that a transformation causes on the predictive accuracy of a
classification algorithm on a given dataset. This can be positive, negative, or
zero. Then, a predictive meta-model is learned to predict the impact, given
the characteristics of a transformed dataset. The predictions ultimately en-
able ranking the transformations and recommending the most relevant ones
to the user.

Since this time, the response feature (i.e., the feature to be predicted) is
the relative change, it can be encoded as a categorical variable (i.e., with
three categories: positive, negative, and zero) and thus, the meta-learning
problem translates to a classification problem. Another difference from the
previous chapter is that, this time, to the set of meta-features considered (i.e.,
dataset characteristics), we attach also the base performance of the classifi-
cation algorithm (i.e., the performance before the transformation is applied).
In addition, we add features that capture the difference between the meta-
features before and after transformations are applied. We call these features
delta meta-features. As a result, every meta-feature has its corresponding delta
meta-feature. Indeed, the additional computational cost that is induced be-
cause of the new features attached (i.e., the extraction cost increases), com-
pensates, because of the better results obtained by this approach in compari-

14



1.6. Thesis Overview

son to the previous, explained in Chapter 4.

We built a tool, PRESISTANT, to demonstrate our method and we exten-
sively evaluate its performance both from the meta-learning perspective —
how accurate predictions are, and the user perspective — what is the gain ob-
tained from the recommendations of PRESISTANT. Within this chapter only
results with respect to one algorithm (i.e., Nearest Neighbor) are shown. The
results obtained for the other algorithms (i.e., Decision Tree, Naive Bayes, Lo-
gistic, and PART) are described in Appendix B. Furthermore, details on the
implementation of PRESISTANT can be found in Appendix A.

We note that this chapter is a result of the interpretation and evaluation
performed, which required looping back to the pre-processing (i.e., metadata
pre-processing) step (cf. Figure 1.3) in order to design better features and
redo meta-learning by considering these new features too.
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Towards Intelligent Data Analysis: The
Metadata Challenge

Once analyzed correctly, data can yield substantial benefits. The process of analyzing
the data and transforming it into knowledge is known as Knowledge Discovery in
Databases (KDD). The plethora and subtleties of algorithms in the different steps of
KDD, render it challenging. An effective user support is of crucial importance, even
more now, when the analysis is performed on Big Data. Metadata is the necessary
component to drive the user support. In this chapter, we study the metadata required
to provide user support on every stage of the KDD process. We show that intelligent
systems addressing the problem of user assistance in KDD are incomplete in this
regard. They do not use the whole potential of metadata to enable assistance during
the whole process. We present a comprehensive classification of all the metadata
required to provide user support. Furthermore, we present our implementation of a
metadata repository for storing and managing this metadata and explain its benefits
in a real Big Data analytics project.
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2.1 Introduction

Our capability of gathering data has developed to the highest extents, whereas
the ability to analyze it, lags far behind. Storing huge volumes of data is
worth the effort only if we are able to transform data into knowledge. The
process of transforming data into knowledge is known as Knowledge Discov-
ery in Databases (KDD) — synonymously referred to as knowledge discovery
or data analytics, cf. Figure 1.1.

The need for knowledge discovery is rising mainly thanks to the low-cost,
distributed data storage and processing platforms (e.g., Apache Hadoop!).
They allow storing and processing huge datasets on large clusters of com-
modity hardware. A Data Lake, for instance, is an important component of
the data analytics pipeline in the world of Big Data. The idea is to have a
single store of all the raw data (e.g., structured and unstructured) that any-
one in an organization might need to analyze. However, the relevant data
over which the analysis is going to be performed needs to be selected from
the whole range of the available data. As the selection of data affects the
results of the analysis, data needs to be thoroughly tracked in order to jus-
tify the results (e.g., lineage). The representation and the quality of data also
affect the analysis. Raw data is often irrelevant, redundant, and incomplete
and requires pre-processing. Once the data is pre-processed, there comes
the difficult task of selecting the most adequate mining algorithm for a given
problem. Many different algorithms are available and their performance can
vary considerably. After data mining, the evaluation/interpretation step fol-
lows. The generated models need to be interpreted and/or evaluated to be
understood by the user.

All in all, the above mentioned steps indicate that knowledge discovery
in general is an inherently challenging task. Therefore, users need to be thor-
oughly supported. A lot of research has been done in this regard and systems
that aim at providing user assistance have been developed. These systems are
referred to as Intelligent Discovery Assistants (IDAs) [6]. The driving factor
for the user assistance is the metadata they consider. Yet, there is no agree-
ment on which kinds of metadata need to be gathered and stored in order
to provide user assistance. In this chapter we tackle the problem by study-
ing the types and roles of metadata. We observe that the meta knowledge
considered in IDAs is not complete (e.g., domain knowledge and lineage

https:/ /hadoop.apache.org
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is missing). Hence, we provide a classification of the metadata needed to
support the whole process and discuss the implementation of our metadata
repository.

Contributions. In particular, our main contributions are as follows.

* We identify and extend the metadata required for providing user sup-
port for the whole process of KDD including the very first step of data
selection and we provide a classification of these metadata.

* We implement a metadata repository with the aim of storing and man-
aging the metadata discovered and show its benefits in a real case sce-
nario.

The rest of the chapter is organized as follows. Section 2.2 presents an analy-
sis of IDAs and briefly discusses the differences between different categories
of these systems. Section 2.3 studies the metadata required for providing
user support and shows examples of systems using the respective metadata.
Section 2.4 contributes a classification of the metadata needed to support the
whole process of KDD. Section 2.5 shortly presents the implementation of
our metadata repository and its benefits in a real Big Data analytics project.
Section 2.6 discusses the related work. Finally, Section 2.7 concludes the
chapter.

2.2 Intelligent Discovery Assistants

The KDD process is challenging for novice users. As already stated in Sec-
tion 2.1, the most prominent works done in terms of providing helpful as-
sistance to the users are through IDAs. In order to complete our study on
the metadata needed for the user support we have to know how and to what
extent these metadata are used by different IDAs. Depending on the core
techniques and metadata used, IDAs can be divided into 5 broad categories
[82], namely: expert systems, meta-learning systems, case-based reasoning systems,
planning-based data analysis systems, workflow composition environments.

Expert systems (ES) are the earliest and the simplest systems to provide help
to the user during the data mining phase. Their main component is a knowl-
edge base consisting of expert rules, which determine the mining algorithm
to be used. Questions are posed to the user about a given problem and the
information provided as response is used by the system in order to assess
which rule is appropriate.
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Meta-learning systems (MLS) are more advanced. The rules that were stati-
cally defined by the experts in the previous category are dynamically learned
here. MLSs try to discover the relationship between measurable features of
the dataset and the performance of different algorithms, which is a standard
learning problem. The learned model can then be used to predict the most
suitable algorithm for a given dataset.

The idea behind case-based reasoning systems (CBR) is to store the successfully
applied workflows as cases, in a case base, with the only goal of reusing them
in the future. When faced with a new problem (i.e., dataset) provided by the
user, these systems return k previous cases from the case base according to
the level of similarity with the new problem. The selected workflow can then
be adapted to properly fit and solve the new problem. Their disadvantage,
as in MLSs, is that they can provide structured help only if a new problem is
similar to the problems seen so far.

Planning-based data analysis systems (PDAS) are able to autonomously design
valid workflows without relying on the similarity between different prob-
lems. In order to do this, the workflow composition problem is seen as a
planning problem, where a plan is built by combining operators that trans-
form the initial problem into accurate models or predictions. In order to
construct valid workflows, the input, output, preconditions, and effects of
each operator need to be known. Once the conditions are met, operators are
composed to form valid but not necessarily optimal workflows, which at a
later stage are ranked.

Workflow composition environments (WCE) do not provide automatic support
for data analysis, but facilitate the use of different data mining algorithms
providing nice graphical environments for quick workflow design and exe-
cution.

2.3 Metadata Challenge in KDD

In this section, we analyze what can be achieved by collecting metadata and
what kinds of metadata can be collected in a KDD environment.

2.3.1 The Role of Metadata

The generation and management of metadata can determine the type of sup-
port offered. We differentiate among the following.
Single-step support. It is an indication of the complexity of the advice of-
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fered. The single step for which some kind of user support or even automa-
tion is provided is usually the data mining step of the KDD process.
Multi-step support. Similarly, it indicates the complexity of the advice of-
fered. Metadata can be used to extend the support to several steps of KDD.
Variable selection support. It indicates whether a system provides user sup-
port in the very first phase of a KDD process. It is of crucial importance
when an analysis of raw data needs to be done (e.g., in a Big Data environ-
ment). Raw data in this context refers to data that is not offered in a form of
a datase, but it is stored in its original format. Hence, prior to analysis, the
data of interest needs to be selected and integrated into a unique dataset.
Explanations. It is easier for the user to design workflows when explanations
are present. Explanations can be on operators for facilitating a design process
as well as on results to help the user interpret them. This can be done, for
instance, by giving useful instructions about statistical concepts.

Reuse of past experience. Metadata can increase reliability by enabling the
reuse of workflows. The reuse of successful cases speeds up the process con-
siderably. It allows to build on prior work and facilitates deeper analysis. It
can enable truly collaborative knowledge discovery.

Automatic workflow generation. Metadata can drive the automatic compo-
sition and execution of the pre-processing and mining steps. This is the most
advanced type of user support but at the same time the most challenging
one.

Business understanding. Metadata can provide information about the mean-
ing of the data, the terminology and business concepts and their relationships
to the data. Metadata can provide information about the source of the data
(provenance) and the path followed from a source to the current site (lineage).

2.3.2 Types of Metadata

The main objects participating in a KDD process include: (1) a dataset that
needs to be analyzed, (2) operators used for pre-processing, and mining, as
well as (3) workflows, which are combinations of operators with data in the
form of directed acyclic graphs. In order to effectively support the user dur-
ing the analysis, metadata should be stored for every aforementioned object.
In addition, metadata that can boost the user support and which were not
considered in this context are (4) domain knowledge used to store information
for the concrete domain of data and (5) lineage metadata, relevant to justify the
results of an analysis.
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Metadata on the input dataset. The idea of characterizing a dataset has been
researched from the early inception of meta learning. A dataset that needs
to be analyzed - containing all the attributes that are relevant to the problem
at hand - is assumed to be selected in advance and is generally described by
the following groups of characteristics:

* General measures: include general information related to the dataset at
hand. To a certain extent they are conceived to measure the complexity
of the underlying problem. Some of them are: the number of instances,
number of attributes, dataset dimensionality, ratio of missing values,
etc.

e Statistical and information-theoretic measures: describe attribute statistics
and class distributions of a dataset sample. They include different sum-
mary statistics per attribute like mean, standard deviation, etc.

However, if the problem to be solved is a prediction problem, then, a variable
(or more) is defined to be a response variable. Once the response is defined,
further metadata measuring the association between the remaining (input)
variables and the response(s) (output) can be used to describe the dataset.
Hence, we can additionally have the following groups of dataset characteris-
tics:

* Geometrical and topological measures: this group tries to capture geomet-
rical and topological complexity of class boundaries [41]. It includes
non-linearity, volume of overlap region, max. Fisher’s discriminant ra-
tio, fraction of instance on class boundary, ratio of avg. intra/inter class
nearest neighbour distance, etc.

* Landmarking and model-based measures: this group is related to measures
asserted with fast machine learning algorithms, so called landmarkers,
and its derivative based on the learned models. It includes error rates
and pairwise 1 — p values obtained by landmarkers such as 1NN or De-
cisionStump as well as histogram weights learned by Relief or Support
Vector Machines (SVM).

Metadata on Operators. They are typically expressed in the form of semantic
information (e.g., ontology). By operators we mean all the different elements
that can operate on a dataset. These include: (1) different transformation
methods like normalization, discretization, etc., which are considered to be
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pre-processing operators and (2) different kinds of learning algorithms like de-
cision trees, support vector machines, etc., which are considered to be data
mining operators. Metadata on operators can be internal or external [82]. Exter-
nal metadata treat an operator as a black-box, which means they only con-
sider metadata with regard to the Input, Output, and some other properties
like Preconditions and Effects (IOPE). Internal metadata tear up the box by
considering metadata linked to an operator’s internal structure (e.g., parame-
ters or model type) or performance (e.g., speed, accuracy, model complexity).

Metadata on Workflows. The previously mentioned metadata are what sys-
tems need in order to provide assistance in terms of constructing valid work-
flows (e.g., all preconditions or input constraints of algorithms are met).
However, the generated workflows may not necessarily be optimal. More-
over, the number of generated workflows can reach thousands, given the vast
number of available data mining operators (e.g., Rapidminer, Weka). Thus,
there needs to be a way of ranking the workflows. One way to do this is to
keep track of metadata about workflows. In the eIDA system for instance, in
order to characterize workflows, they follow a process mining-like approach.
They extract generalized, relational, frequent patterns over the tree represen-
tations of the workflows [70].

Domain Knowledge. The effectiveness and need for domain knowledge in
knowledge discovery has been confirmed in past research efforts. It is rec-
ognized by [55] that there is a role for domain knowledge in all stages of a
KDD process. They demonstrate through examples how the domain expert
is needed to (1) help define the problem by, e.g., giving business rules on
what a failed transaction is or what is considered a problematic customer (2)
assist in the creation of the target dataset by, e.g., defining the structure of the
data and the semantic value of the data attribute values. However, in order
to make use of it, domain knowledge should be represented by models that
computers can understand. Ontologies are some of the successful knowledge
engineering advances that can be used to build and use domain knowledge
in a formal way. An ontology is an explicit specification of a conceptualiza-
tion. Normally, it is developed to specify a particular domain (e.g., genetics).
Such an ontology, often known as a domain ontology, formally specifies the
concepts and relationships in that domain. Note that domain knowledge
only partially appears in some IDAs in the form of expert rules, and it is
mainly with respect to the algorithms, so it can be alternatively called as ex-
pert knowledge. Yet, domain knowledge with respect to the data itself is not
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used by any of the IDAs in the literature.

Lineage Metadata. The KDD process can benefit from lineage metadata.
Lineage metadata is composed of steps used to derive a particular dataset.
It can be thought of as a recipe for creating data. The quality of the data
for the user’s analysis can be evaluated through the lineage of the dataset.
Data quality of the source is important because errors introduced tend to
inflate as the data propagates. This issue is even more critical when using
raw data available in data lakes. The level of detail included in the lineage
determines the extent to which the quality of the data can be assessed. If se-
mantic knowledge of the pedigree is available, it is possible to automatically
evaluate it based on quality metrics [83]. All in all, lineage metadata can be
used to understand and justify the results obtained during the analysis. This
kind of metadata is also not considered in IDAs.

2.3.3 Comparison of Metadata in IDAs

In Table 2.1, we show the types of metadata used by IDAs and the types of
the provided user support. For each cell in the table we put sign '+’ if the
system supports the particular concept described in the column and sign ’-’
if not. From the given table, we identify that many support limitations can
be explained with the lack of proper metadata. Moreover, note that systems
do not deal with the problem of variable selection (e.g., in a big data envi-
ronment, provide support in terms of which variables are important to select
for the analysis and combine them into a unique dataset) and none of the
systems provides support in terms of business understanding. These limita-
tions are due to the lack of appropriate metadata. We believe that domain
knowledge and lineage metadata could improve the systems in this regard.

Furthermore, from Table 2.1 and from IDAs in general we can conclude
the following:

— ES do not use external metadata on operators (e.g., IOPE), therefore are
not able to construct entire workflows.

— MLS use huge number of input metadata but they do not provide support
for automatically combining multiple steps.

— CBR similarly to MLS rely on historical data and therefore cannot provide
useful support when new cases, non-similar to the historical cases ap-
pear.
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— PDAS generate automatic workflows but they start from scratch every time.
They do not make use of the experience from previous data analysis.

- WCE:s allow to construct workflows but they do not provide much guid-

ance.
Table 2.1: Type and role of metadata in IDAs.
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2.4 Metadata Classification

The analysis in Section 4 showed that IDAs rely heavily on metadata in order
to provide user support. In order to classify the identified metadata, we de-
cided to extend the classification provided in [30] and later extended in [93].
Our classification can now capture the whole range of metadata required for
the KDD process.

The classification tree is given in Figure 2.1. Note that the shaded shapes
belong to the original classifications that consist of the following metadata
categories: Definitional, Data quality, Navigational, Lineage, and Ratings. Each
category contains its respective metadata artifacts again denoted as shaded
shapes in the figure. Nevertheless, in order to attach the required metadata
artifacts, change and extension in the taxonomy was required, note the non
shaded shapes. The imposed changes are the following: Definitional category
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is extended with a Domain Knowledge subcategory which is going to cover
metadata related to the domain, Data quality is renamed to Data characteristics
in order to better reflect the meaning of the participating artifacts. An addi-
tional category named Activity characteristics is added to capture active objects
(e.g., operators) in a knowledge discovery process. An additional category
Assessment is added with the aim of capturing the metadata artifacts with
respect to the output of the knowledge discovery process. Next, the Lineage
category is extended with three metadata artifacts discussed below. More-
over, additional artifacts belonging to different categories are further added.
For the purpose of our classification we clearly define all the categories and
respective metadata artifacts below. Note however that metadata artifacts
that belong to [30, 93] are not discussed extensively. The interested reader is
referred to those papers for further information.

The Definitional category contains metadata that conveys the meaning of
the data to the user or the system. From the original taxonomy in this cate-
gory there are the integration schema, user characteristics and a vocabulary of
business terminology. We extend the Definitional category with the Domain
knowledge subcategory which is going to contain different metadata with re-
gard to the domain. The idea is to enable a knowledge-rich data analysis.
However, the goal of a knowledge-rich data analysis is not to provide a pri-
ori all the knowledge that might be required but to support a feedback loop
by which a small amount of initial knowledge can be bootstrapped into more
knowledge by mining, which can in turn be complemented by more human-
supplied knowledge to allow further mining, etc. Hence, under the domain
knowledge we place the Vocabulary artifact from the original classification,
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this can be replaced or can easily represent the domain ontology discussed
in Section 2.3.2. Furthermore, we add Expert rules as metadata which can
represent some expert knowledge.

Data characteristics consists of artifacts that convey information about the
characteristics of data that are of crucial importance to a knowledge discovery
process. They advice the system about the completeness or even validity of
data. Metadata artifacts in this category are those detected in the analysis in
Section 2.3.2.

The Navigational category comes from the original classification and keeps
track of how the user explores and navigates through data. The metadata ar-
tifacts considered under this category can be useful for enabling user support
in a data selection phase prior to data mining (e.g., suggesting the user rel-
evant attributes using past experience). Metadata artifacts are: Query, Query
log, and Sessions.

The Activity characteristics category consists of metadata artifacts whose
expressiveness determines the degree of automation that can be achieved in
the process of knowledge discovery. These are the most important metadata
required in a KDD process. Note that these kind of metadata were not con-
sidered in the previous classifications. There are two main metadata artifacts
considered here, namely metadata on Operators and metadata on Workflows
(see Section 2.3.2).

Lineage consists of artifacts that model resources (e.g., data-sets) as Ar-
tifacts, Processes (e.g., actions or series of actions performed in artifacts or
caused by artifacts, and resulting in new artifacts) and Agents (e.g., contex-
tual entities acting as catalysts of a process, enabling, facilitating, controlling,
or affecting its execution) [67]. The aim of lineage metadata is to capture the
causal dependencies between the artifacts, processes, and agents.

The Ratings category comes from the original taxonomy and it contains
metadata such as user Preferences and usage Statistics. However, note that
the Preferences artifact is important with regard to knowledge discovery as
well. It can store different user goals, which can be used by the system
to design workflows optimizing some performance measure associated with
the user goal. Finally, Statistics relates to the data usage indicators. It can
keep evidence of which data are explored more.

The Assessment category consists of metadata artifacts with regard to the
output of a knowledge discovery process. They can be used to assess how
good the generated DM workflows are. This is defined by the Speed in ex-
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ecution and the Performance with respect to some evaluation criteria (e.g.,
predictive accuracy). These metadata can be used to list the best performing
workflow or rank all of the constructed workflows.

2.5 Metadata Repository

After having identified the metadata required, we turn on discussing how
these metadata can be stored and managed.

The best way to store metadata is to store them in a metadata repository.
However, usually metadata remain hidden in scripts and programs, with-
out being further reused. This is also what we realized was happening in
practice in a project we developed with a multinational company located in
Barcelona®.

The project aimed at improving the data analytics process in the com-
pany. The idea was to allow data analysts to easily select relevant variables
for their analysis and assist them during the data pre-processing and min-
ing. The company stores the variables or the data in a raw format in a Data
Lake in a Hadoop ecosystem. In order to allow an easy selection of variables
and provide user support during the pre-processing phase (e.g., recommend
pre-processing operations particularly suited for the domain) we created a
semantic repository with the aim of storing all the necessary metadata. The
variables in the Data Lake and their respective characteristics are mapped
to the corresponding concepts in the repository. In addition, different possi-
ble transformations (pre-processing operations; domain knowledge) are de-
scribed in the repository and they are linked to corresponding concepts. The
users are able to easily access the variables through the graphical interface
which is fed by the repository. After selecting the variables (e.g., their cor-
responding concepts) of interest proper transformations are recommended.
The information of which pre-processing operators are applied to a given
variable are deduced from the metadata repository. Hence, not everybody
in the need of analyzing the data needs to be an expert of the domain, as
happened to be the case previously in the company. Domain specific knowl-
edge is added once to the repository, and will be used repeatedly by everyone
wishing to analyze the data. A high level architecture of the system proposed
for the project is shown in Figure 2.2.

The software components accessing the repository are "bound" to the

Zhttps:/ /inlab.fib.upc.edu/en/big-data-analytics-lab
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Fig. 2.2: High level view of the proposed system

given metadata structure which is conceptually described by a schema shown
in Figure 2.3. The comprehensive schema proposed in this chapter proved to
be useful in the project.

The schema can be logically divided into three main parts. The first keeps

track of the domain knowledge, the second manages information with regard
to passive elements, and they fall under the IOObject class, and the third
manages information with regard to active elements and they fall under the
Operator class.
Implementation. We used Resource Description Framework (RDF) as a data
model for storing the metadata. In RDF, statements about resources can be
made in the form subject-predicate-object expressions and they are called
triples. Hence, our repository is defined as a triple store, where we used
OpenLink Virtuoso as a storage engine. The repository is provided as a Web
Service and an application for metadata management is built on top of it.
JavaServer Pages (JSP), Asynchronous JavaScript (AJAX) and XML are used
to implement the application and the graphical user interface.

2.6 Related Work

In [30], a taxonomy of the end-user metadata with respect to data warehous-
ing is given. This taxonomy is further extended in [93], where a metadata
framework is provided to support the user assistance activities in the con-
text of next generation BI systems. It provides a technical classification of
the metadata artifacts required to enable user assistance in retrieving and ex-
ploring the data. The focus is on automating certain user related tasks with
respect to queries (e.g., query recommendation). Whereas, we are studying
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Fig. 2.3: Conceptual schema of the metadata repository

and classifying metadata with the emphasis on how it can help the user dur-
ing the different steps of KDD.

Another work that can be seen as closely related to us is [82]. The authors
provide a comprehensive survey of the systems that make extensive use of
metadata to make the automation of knowledge discovery possible. The em-
phasis is put on explaining the architectures of the systems rather than on a
comprehensive classification of metadata.

Finally, Common Warehouse Metamodel [20] provides the necessary ab-
stractions to model generic representations of data mining models, however,
the metadata considered does not cover the whole range of KDD steps. It
is mainly focused on the metadata for the data mining step. Furthermore,
the metadata is considered from the perspective of data interchange, which
is how different systems can share and understand metadata with respect to
data mining.

2.7 Conclusions

The process of knowledge discovery is challenging. Data relevant to the anal-
ysis needs to be selected, pre-processed, mined and finally evaluated. Begin-
ners are alarmed by the myriad of operators and more experienced users
limit their activity to several known approaches. A thorough user assistance
is necessary. Therefore, systems with the aim of assisting the user during this
process are built. We studied these systems with the goal of identifying the
metadata used to enable the assistance. Hence, we identified the metadata
used to provide user support during the KDD process. We found out that
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important metadata such as domain knowledge and lineage which can fa-
cilitate data analysts have not been considered. We provided a classification
of the metadata found. We proposed a comprehensive metadata framework
that captures the complete range of metadata needed to assist the user dur-
ing the whole process of KDD. We showed the importance of such metadata
in a real project by implementing a metadata repository to store and manage
the whole range of metadata.
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On the Predictive Power of Meta-features in
OpenML

The demand for performing data analysis is steadily rising. As a consequence, people
of different profiles (i.e., non experienced users) have started to analyze their data.
However, this is challenging for them. A key step that poses difficulties and deter-
mines the success of the analysis is the data mining step (model/algorithm selection
problem). Meta-learning is a technique used for assisting non-expert users in this
step. The effectiveness of meta-learning, is however, largely dependent on the descrip-
tion/characterization of datasets (i.e., meta-features used for meta-learning). There is
need for improving the effectiveness of meta-learning by identifying and designing
more predictive meta-features. In this chapter, we use a method from Exploratory
Factor Analysis to study the predictive power of different meta-features collected in
OpenML, which is a collaborative machine learning platform that is designed to store
and organize metadata about datasets, data mining algorithms, models and their eval-
uations. We first use the method to extract latent features, which are abstract con-
cepts that group together meta-features with common characteristics. Then, we study
and visualize the relationship of the latent-features with 3 different performance mea-
sures of 4 classification algorithms on hundreds of datasets available in OpenML,
and we select the latent-features with the highest predictive power. Finally, we use
the selected latent-features to perform meta-learning and we show that our method
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improves the meta-learning process. Furthermore, we design an easy to use applica-
tion for retrieving different metadata from OpenML as the biggest source of data in
this domain.

3.1 Introduction

Recently, more and more non-experts are using data mining tools to perform
data analysis. These users require off the shelf solutions that will assist them
throughout the process. The process known as knowledge discovery or data
analytics is shown in Figure 1.1.

One of the key steps of the whole process is the data mining step. A
large number of alternative algorithms can be used in this step. Thus, non-
experienced users become overwhelmed and require support (e.g., to be rec-
ommended the algorithm to use). Various techniques have emerged [82] to
provide the required support. Among them, one that has been on the focus
of research for long, is meta-learning [8, 11, 59].

As we will show next, in short, meta-learning is a process that seeks to
find the performance of an algorithm on a given dataset. The ability of pre-
dicting the performance of different data mining algorithms allows one to
rank the algorithms and therefore provide user support in data mining. How-
ever, the success of meta-learning depends on many factors. One of the most
important factors is the set of meta-features used for meta-learning. Recall that
there are two main ingredients in meta-learning: 1) the dataset characteristics
or the meta features plus the performance measure of algorithms on datasets
or the meta response — these together define the mefadata, and 2) the meta-
learner. Yet, the primary source of determining the success of meta-learning,
are the chosen meta-features (dataset characteristics).

In this chapter, we provide a method for first extracting latent-features,
which basically group together meta-features with "common characteristics".
Given the latent-features, next, we study their correlation to the performance
measure that needs to be predicted. The reason to study the correlation at the
latent feature level rather than the meta-feature level, is that first, there is no
complete list of meta-features — so any analysis would lack completeness,
and second, even if there was such a list, the list would be so large that a
sound analysis would not be feasible. Another possibility would be to study
the relationship between a coarser group of meta-features and the different
performance measures, and make generalizations out of that. That is, for
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instance in [79] they study the relationship of the groups of meta-features
(e.g., statistical meta-features) with the performance measures. We believe
this kind of analysis hides the diversely significant relationships of different
subsets of meta-features within the same coarse group (i.e., statistical meta-
features). That is to say, some statistical features within the same group
may have more significant relationships with the performance measure rather
than some others in the same group. The analysis at this level, overlooks this
and hence the generalizations that all statistical features behave similarly may
be incorrect. That is why in this study we settle on a middle ground, where
we neither study the individual meta-features nor the groups of such coarse
granularity. We make the study in the latent feature level.

There have been many studies with regard to the use (what kinds of meta-
data to be used) [14], and selection (which are the most relevant) [47] of
meta-features or metadata [9] in general. However, these studies have been
performed independently and in specific domains. As a matter of fact, the
amount of datasets and metadata studied has been relatively small. With the
appearance of OpenML [92], however, the idea of collecting and generating
metadata and experiments has broadened. OpenML, engages the whole ma-
chine learning community to the idea of collecting experiments, datasets and
metadata. As a matter of fact, the amount of available data and metadata
has naturally increased and is steadily increasing day by day. That is why,
our analysis is performed on datasets and metadata provided by OpenML
— as the biggest source of data for meta-learning. Specifically, our focus of
analysis is on classification problems.

Contributions. The main contributions of this chapter can be summarized as
follows:

* We use a traditional method of feature extraction and selection for a
novel purpose of studying the predictive power of meta-features in a
meta-learning scenario.

e We hand-craft the latent features behind the OpenML meta-features,
then we study and visualize their predictive power for predicting dif-
ferent performance measures of different classification algorithms. As a
novelty and in contrast to other works, we perform our analysis by split-
ting the datasets according to the meta-features that can be retrieved
from them.

e We evaluate the effectiveness of the method for feature extraction and
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selection by performing meta-learning on top of OpenML data, and we
show the benefits obtained.

* We develop a user-friendly tool that can be used (e.g., by data analysts)
to generate meta-datasets (used for meta-learning) out of OpenML.

The rest of the chapter is organized as follows: In Section 3.2, an overview of
meta-learning is given. The method for studying and visualizing the predic-
tive power of meta-features is formally defined and explained in Section 3.3.
In Section 3.4, we give an overview of OpenML and more importantly we re-
port on the results obtained after performing our method on top of OpenML.
The related work is discussed in Section 3.5. Finally, Section 3.6 concludes
the chapter.

3.2 Meta-learning

Most of the data analysis performed remains hidden and not reused. The
vast amount of experience gathered from these analysis is not well exploited.
The idea behind meta-learning is to exploit the knowledge gained out of
this experience. More precisely, meta-learning is the process of learning the
relationships between datasets and data mining algorithms. Once different
data-mining algorithms have been applied on different datasets, the idea is to
use that knowledge in order to assist when data mining algorithms need to
be applied on new datasets. As depicted in Figure 3.1, meta-learning consists
of 3 steps:

First, a meta learning space is established using metadata consisting of
dataset characteristics (meta-features) and a performance measure (meta-
response) for data mining algorithms on those particular datasets. Then,
there comes the meta-learning phase. Here, a predictive meta-model is gen-
erated out of the meta-dataset constructed in the first phase. Finally, in the
third step when a new dataset arrives, its characteristics are extracted and

Metadata Meta-learner New dataset

. 4 _ ()
Establish <8 Perform | S8 . o
meta-learning |2 g learning |28 Predict | =
space Ex £ &

Fig. 3.1: Meta-learning process

36



3.2. Meta-learning

the predictive meta-model is used to predict the performance of a particular
algorithm — for which the meta-model was built, on that dataset.

This technique can be used to rank different algorithms depending on
their predicted performance on a new dataset. Hence, it can be used to
recommend data mining algorithms on the data mining step of the analysis.

The two main concepts of meta-learning are the metadata and the meta-
learner. In the following, we briefly discuss these two concepts.

3.2.1 Metadata

Metadata are the necessary information required to establish the meta-dataset.
In our definition, they consist of: i) meta-features, and ii) a performance mea-
sure of the considered algorithm — meta-response. In statistics, the former
are called predictors and the latter is called response.

Meta-features - characterize a dataset, and initially the two following
classes of measures have been proposed:

* General: include general information related to the dataset at hand. To a
certain extent they are conceived to measure the complexity of the un-
derlying problem. Some of them are: the number of instances, number
of attributes, dataset dimensionality, ratio of missing values, etc.

e Statistical and information-theoretic: describe attribute statistics and class
distributions of a dataset sample. They include different summary
statistics per attribute like mean, standard deviation, class entropy, etc.

Since the problem to be solved is usually a prediction problem, and, a
variable (or more) is defined to be the response, further meta-features mea-
suring the association between the predictors and the response have been
used. These measures are grouped into the Landmarking and Model-based
class [72, 73]. This class is related to measures asserted with simple machine
learning algorithms, so called landmarkers, and their derivatives based on the
learned models. They include error rates and pairwise 1 — p values obtained
by landmarkers such as 1NN, DecisionStump or NaiveBayes. Yet, when per-
formed on bigger datasets, these simple machine learning algorithms may
introduce significant computational costs.

In order to asses the computational behaviour of the Landmarking and
Model-based class of measures, we performed an empirical analysis with 720
datasets. In addition to Landmarking and Model-based, we calculated the per-
formance of the other classes too, and we show the comparison in terms of
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Fig. 3.2: Meta-feature extraction cost. Only Landmarking and Model-based classes are represented
through single measures. The rest of the classes are represented as the total execution times of
their participating measures (cf. Table 3.2)

execution times in Figure 3.2. Mind that the Lanmdarking and Model-based class
is represented via single measures like the execution time of NaiveBayes and
DecisionStump. The other classes are represented through the total execution
times of their participating measures. For instance, the execution time of the
Statistical class is calculated as the total execution time required to retrieve
24 individual measures like Mean Standard Deviation, Mean Skewness, Mean
Kurtosis, etc. (cf. Table 3.2). Similarly, the Information-Theoretic and General
class.

For the sake of presentation, instead of showing the scatter plot of the
values of all the measures for each dataset, we show the fitted line (regres-
sion line) for each measure or class of measures. In addition, the grey areas
around the lines denote the 95% interval of the prediction. One can imme-
diately observe the steepness of the slopes, and the wideness of the intervals
around the lines representing Landmarking and Model-based measures. The
former indicates that with an increase in dataset size, retrieving these mea-
sures becomes way costlier compared to the rest. The latter indicates that
there is a high variability in the execution times for Landmarking and Model-
based measures. It means that, even if the size of a dataset is small it can
still be costly to retrieve them. This can happen for instance if the dataset
contains a high number of features and a small number of instances. Hence,
as a consequence, because of the way they are computed and their computa-
tional overhead we do not consider Landmarking and Model based measures as
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classical dataset characteristics and they do not participate as meta-features
in our experiments.

Performance measures (meta-response) - are different outputs that can be
obtained after the evaluation of data mining algorithms. Since we are deal-
ing with classification problems, and hence the algorithms we consider are of
classification type, the performance is usually measured in terms of predictive
accuracy, precision, recall or the area under the roc curve (AUC). In Table 3.1, for-
mulas for calculating these measures are given. More precisely, classification
algorithms are usually evaluated using 10-fold cross-validation [53].

Table 3.1: Performance evaluation measures for classification algorithms

Measure Formula

TP+ TN
Accuracy TP+ FP+ FN + TN
Precision TP/(TP + FP)
Recall TP/(TP + FN)
AUC Prob(X2 > X1)

TN - True Negatives; TP - True Positives; FN - False
Negatives; FP - False Positives; X1, X2 - Score func-
tions of the classes

3.2.2 Meta-learner

After having generated a meta-dataset with all the necessary metadata, the
goal is to build a predictive meta-model that will be able to predict the per-
formance of an algorithm on a new dataset. Formally, the problem can be
defined as follows. Given algorithm A and a limited number of training
data D = (x1,¥1)...(Xn, ¥n), the goal is to find a meta learner with good gen-
eralization performance. Generalization performance is estimated by split-
ting D into disjoint training and validation sets Dglin and Df;iz)l .- Note that
X € X1,Xp..X, are the dataset characteristics and y is a measure of the per-
formance of algorithm A run on that particular dataset. Hence, x and y al-
together are the extracted metadata. Different meta-learners have been used
in the literature, such as, k-nearest neighbours, decision trees, support vector ma-
chines [2, 36].
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3.3 The Predictive Power of Meta-features: Feature

Extraction and Feature Selection

As mentioned above, different and a huge number of meta-features can be
used to define the meta-dataset for meta-learning. The list of meta-features
may become very big, due to the meta-meta effect, referred to as meta? [77].
For instance, when a statistical characteristic needs to be taken over the con-
tinuous attributes of a given dataset, usually the mean of that statistic over
the continuous attributes is taken. Let’s say, if a general value for skewness is
in question, commonly the mean skewness of all the continuous attributes is
considered. However, this does not always need to be the case. One may opt
for another statistic, different from the mean, for instance, the skewness of the
skewness of continuous attributes or even another, the kurtosis of the skewness
of continuous attributes. As a result, the plethora of statistics that can be
computed on top of other statistics, may lead to an explosion of the number
of meta-features that can be considered in a meta-learning process.

Therefore, the problem of choosing the most relevant and "minimal" —
introduce less computational overhead, set of meta-features is still present.
Consequently, the chosen meta-features play a key role in determining the
success of meta-learning.

In this section, we discuss the method that we use to study the relevance
of the meta-features for predicting the performance measures of data min-
ing algorithms. Our method consists of two steps, which are depicted in
Figure 3.3.

In the first step, we perform a Principal Component Analysis (PCA) and
subsequently an Orthogonal Rotation on the complete set of meta-features
that may be available. Even though this is a standard method in Exploratory
Factor Analysis, and has been used in different occasions [65], it is the first
time that it is applied in the meta-feature level. Hence, the input required by
this step is a meta-dataset consisting of dataset characteristics (meta-features).
PCA followed by an Orthogonal Rotation allows us to extract the latent fea-
tures and furthermore eliminate the redundant meta-features. Latent features
are the abstract features that can be automatically extracted, yet they need to
be manually interpreted. The automatic part of the process groups the meta-
features with "common characteristics" into latent features. These common
characteristics are the abstract concepts that need to be manually interpreted
in order to define/describe the latent-features.
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1. Feature Extraction

Meta features )

PCA + Orthogonal rotation

Latent features )

2. Feature Selection

Latent features + Alg. performance )

Partial correlations }

Partial correlation graph,
ranking of latent features

Fig. 3.3: Feature Extraction and Feature Selection

After extracting the latent features we are able to perform the second
step. The latent features are used as input for the second step, however,
in addition, for all the datasets we compute a performance measure (e.g.,
predictive accuracy) — response feature, of an algorithm (i.e., the one we want
to study). Hence, the input of the second step is a meta-dataset, but this time
comprised of latent features of datasets and a performance measure of an
algorithm run on the respective datasets.

In the second step, we perform a Partial Correlation analysis and generate
a partial correlation graph that visualizes the relationship between latent features
and the response. This allows us to select the latent features that are most
relevant for predicting the response. Hence, at the end of the whole process
we obtain a subset of latent features — expressed through meta-features, that
can be next used for meta-learning. In the following, we briefly and formally
introduce the two steps.

3.3.1 Principal Component Analysis

PCA [42] is the predominant linear dimensionality reduction technique, and
it has been widely applied on datasets in all scientific domains, from the
social sciences and economics, to biology and chemistry. In words, PCA seeks
to reduce the dimension of a large number of directly observable features
into a smaller set of indirectly observable features — latent features. More
precisely, the goals [65] of PCA are, to:
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¢ extract the most important information from the dataset,

* compress the size of the dataset by keeping only this important infor-
mation,

¢ explain and simplify the description of the dataset,
e analyze the structure of observations (instances) and variables.

In order to achieve these goals, PCA computes new features, which are
called principal components. These features are obtained as linear combina-
tions of the original features. The first principle component is required to
have the largest possible variance to "explain" the largest part of the vari-
ance of the dataset (i.e., meta-dataset). Then, the rest of the components are
computed under the following constraints: 1) each component needs to be
orthogonal to the previous one, and 2) each component needs to have the
largest possible variance. The values of these new features are called fac-
tor scores and are geometrically interpreted as the projections of the instances
onto the principal components. These are obtained from the Singular Value
Decomposition (SVD) of the dataset X, with:

X = PAQT (3.1)

where P is a m x [ matrix of left singular vectors, Q is the n x [ matrix of right
singular vectors and A is the diagonal matrix of singular values. [ is the rank
of the matrix X (I < min{m,n}). The m x | matrix of factor scores denoted F
is obtained as F = PA and can be interpreted as a projection matrix because
multiplying X by Q gives the values of the projections of the observation on
the principal components, using Eq. 3.1:

XQ =PAQTQ=PA=F (3.2)

Note that, in Eq. 3.2, matrix F is generated using a standardized dataset
— in our case meta-dataset, matrix X with dim(X) = (m, n), where m is the
number of instances and #n is the the number of features. PCA allows to
find a subspace of size p, where the features are grouped depending on their
projections into the factor space. The feature groups actually form latent-
features/factors. A set of p factors, p < n is then selected. Each factor
represents a certain part of the total variance of the dataset.
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3.3.2 Orthogonal Rotation

To facilitate interpretation, after having determined the number of compo-
nents, the analysis usually involves a rotation of the components retained.
Two types of rotations are mainly used: orthogonal — the new axes are re-
quired to be orthogonal to each other and obliqgue — the new axes are not
required to be orthogonal. Note that, the part of variance explained by the
total subspace after rotation is the same as it was before the rotation. In this
work, orthogonal rotation or more precisely VARIMAX [45] method is chosen
to perform a transformation of the original data. VARIMAX method assumes
that a simple solution means that each component has a small number of
large loadings, and a large number of zero loadings. Formally, it searches
for a linear combination of the original factors such that the variance of the

squared loadings is maximized, which amounts to maximizing v:

v = 2(’7]2,1 —q7)*

with q]% ; being the squared loading of the jth variable of the matrix Q on the
component [ and 1712 being the mean of the squared loadings. This rotation is
performed using the diagonal matrix of singular values and the eigenvectors
associated with the correlation matrix of X.

After the rotation, the set of factors — latent features, are more inter-
pretable, and they, of course, are defined by their respective meta-features —
the ones that are most correlated with them.

3.3.3 Partial Correlation Graphs

The first step, produces a subset of candidate latent-features for meta-learning.
However, it does not provide a relevance measure of the latent-features with
respect to the response. So, it does not necessarily retain only the latent-
features that are most relevant for predicting the response. The most relevant
latent-features with respect to the response out of the ones provided by the
first step are derived here, in the second step. That is why, in this step,
an additional feature (i.e., response) is attached to the derived set of latent-
features. The additional feature can be any of the performance measures of
the algorithms (cf. 3.1) evaluated over the datasets — instances of the meta-
dataset. Given that, graphical models (i.e., partial correlation graphs) that
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represent the relationships between features can be generated!. The empha-
sis of course is on the relationships of the latent-features and the response
feature, rather than relationships between latent-features. The latent-features
that have very significant relationship with the response are the most relevant
ones for predicting the response. Hence, we believe that retaining only the
subset of latent-features with very significant relationships with the response
is sufficient for performing meta-learning. Furthermore, the set of relevant
latent-features may be different for different algorithms considered in a meta-
learning framework. More formally, let x,y € R and z be a random vector.
The partial correlation between x and y, given z is a measure of association
between x and y after removing the effect of z. Specifically, p(x,y|z) is the
correlation between ex and ey where

exzxfnx, eyzyfny.
z z

Here, [ [, x is the projection of x onto the linear space spanned by z. That is
[1,x = zB where B minimizes E[x — zB]?. In other words, [], x is the linear
regression of x on z. Similarly, for [ [, y.

3.4 Experimental Study on the Predictive Power of
OpenML Meta-features

In this section, we first give a brief description of OpenML, then we discuss
about the metadata it stores and the application we built to retrieve these
metadata in order to generate meta-datasets for meta-learning. After that,
we describe the experimental setup which consists of applying the method
for feature extraction and selection on OpenML metadata and we discuss
the results obtained. Finally, we assess the performance of our method by
performing meta-learning on 720 datasets and we show the results obtained.

3.4.1 OpenML

It is an open science platform developed with the aim of allowing researchers
to share their datasets, implementations, and experiments (i.e., machine learn-
ing and data mining) in such a way that they can easily be found and reused

I Taking the partial correlations on the latent features allows to overcome the practical problem
of the redundancy that may exist between the meta features, since latent features are "orthogo-
nal".
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by others. It offers a web API through which new resources and results can
be submitted, and has been integrated into a number of popular machine
learning and data mining platforms, such as Weka, RapidMiner, KNIME,
and data mining packages in R. They enable an easy and automatic way for
submitting new results.

Metadata in OpenML

As previously mentioned, in our definition, metadata consists of meta-features
or more precisely dataset characteristics and a response feature or perfor-
mance measures of different algorithms on datasets. In OpenML, for each
uploaded dataset, 61 dataset characteristics’> (meta features) are calculated.
They are listed in Table 3.2. We classify each dataset characteristic into one
of the following categories:

* Continuous — the dataset characteristic can be calculated only on datasets
that contain continuous attributes,

* Categorical — the dataset characteristic can be calculated only on datasets
that contain categorical attributes,

* Generic — the dataset characteristic can be calculated on any dataset.

Classifying meta-features into these three groups is very important, since
for instance a continuous meta-feature cannot be calculated on datasets with
only Categorical attributes and vice-versa, a categorical feature cannot be cal-
culated on datasets with only Continuous attributes. Hence, an analysis of
meta-features should take this into account. To the best of our knowledge,
however, no prior study considers grouping datasets according to the meta-
features that can be extracted from them. In [79], they recommend converting
the Continuous attributes into Categorical (e.g., by discretization) in order
to be able to extract meta-features of categorical type in purely Continuous
datasets, otherwise the categorical features need to be replaced with missing
values. However, applying such excessive transformations introduces noise.
Thus, in our study (see Section 3.4.2), we group datasets based on their char-
acteristics, and we perform our analysis on these groups separately. That is,
the meta-features extracted and considered are in accordance with the types
of attributes a dataset contains.

2 At the time when the study was being performed
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Table 3.2: Dataset characteristics in OpenML

No Name Type Class

1 Number of Numeric Attributes Continuous ~ General

2 Percentage of Numeric Attributes Continuous  General
3.6 Min[Means|Std|Kurtosis|Skewness] of Numeric Attributes Continuous  Statistical
7..10 Mean[Means|Std|Kurtosis|Skewness] of Numeric Attributes  Continuous  Statistical
11.14 Max|Means|Std|Kurtosis|Skewness] of Numeric Attributes Continuous  Statistical
15..17  Quartile [1]2]3] of Means of Numeric Attributes Continuous  Statistical
18.20  Quartile [1]2]3] of Std of Numeric Attributes Continuous  Statistical
21..23  Quartile [1]2|3] of Kurtosis of Numeric Attributes Continuous  Statistical
24.26  Quartile [1]2|3] of Skewness of Numeric Attributes Continuous  Statistical
27 Number of Categorical Attributes Categorical ~ General
28 Number of Binary Attributes Categorical ~ General
29 Percentage of Categorical Attributes Categorical ~ General
30 Percentage of Binary Attributes Categorical ~ General
31.33  [Min|Mean|Max] Attribute Entropy Categorical ~ Inf. Theo.
34.36  Quartile [1|2|3] Attribute Entropy Categorical ~ Inf. Theo.
37.39  [Min|Mean|Max] Mutual Information Categorical  Inf. Theo.
40.42  Quartile [1|2|3] Mutual Information Categorical ~ Inf. Theo.
43 Equivalent Number of Attributes Categorical ~ Inf. Theo.
44 Noise to Signal Ratio Categorical  Inf. Theo.
45.48  [Min|Mean|Max|Std] Attribute Distinct Values Categorical ~ Statistical
49 Number of Instances Generic General
50 Number of Attributes Generic General
51 Dimensionality Generic General
52,53  [Number|Percentage] of Missing Values Generic General
54,55 [Number|Percentage] of Instances with Missing Values Generic General
56 Number of Classes Generic General
57 Class Entropy Generic Inf. Theo.
58,59 [Minority|Majority] Class Size Generic General
60,61  [Minority|Majority] Class Percentage Generic General
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Regarding the performance measures of algorithms on datasets, all of
the performance measures defined in Table 3.1, are stored in OpenML for
different classification algorithms. Hence, one can use the metadata provided
by OpenML in order to define meta-datasets for meta-learning.

Metadata Retrieval from OpenML

In order to create meta-datasets for meta-learning out of OpenML, one needs
to have a good knowledge of the schema of the OpenML repository — the
database consists of around 40 tables. This may pose challenges, especially to
data analysts with a statistics background. In order to facilitate this process,
we first developed a simple application — available for researchers?®, that is
capable of generating a meta-dataset for any chosen data mining algorithm.
A screenshot of the application is given in Figure 3.4. After generating some
meta-datasets we were able to continue with our studies, explained next.

Shttps:/ / github.com /bbilalli/MetadataFromOpenML

B’ OpenML App _ [m] b4
Algorithms by class | Alg: by version | Alg by metadata | Weka

|Algorithm class Measure Available metadata Selected metadata
weka.Naiv area_under_roc_curve numb reset clear

cluster-anil

weka.NaiveBayes
weka.NaiveBayesMultinomial
weka.NaiveBayesMultinomialUpdateable

weka.NaiveBayesUpdeateable

confusion_matrix

c_index

kappa
matthews_correlation_coefficient
mean_absolute_error
mean_weighted_recall
number_of_instances
predictive_accuracy
root_mean_squared_error

user_cpu_time_mills

EquivalentNumberOfAtts
NumBinaryAtts
NumberOfClasses
NumberOffeatures
NumberOfinstances
NumberOfinstancesWithMissVals
NumberOfMissingValues
NumberOfNumericFeatures

NumberOfSymbolicFeatures

NumberOfinstances
NumberOfFeatures
NumberOfClasses
PercentageOfNumericAtts
PercentageOfNominalAtts
PercentageOfBinaryAtts
PercentageOfMissingValues
ClassEntropy
MeanMutualinformation
MeanAttributeEntropy
MeanSkewnessOfNumericAtts
MeanKurtosisOfNumericAtts
MeanstdDevOfNumericAtts
NumberOfinstanceswithMissingValues
Dimensionality
EquivalentNumberOfAtts
IncompletelnstanceCount
MajorityClassSize
MinorityClassSize
MaxNominalAttDistinctValues
MeanNominalAttDistinctValues
MeanMeansNumericAtts

NegativePercentage

GENERATE METADATA

Fig. 3.4: Application for metadata retrieval from OpenML
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3.4.2 Experimental Setup

In the following, we discuss our experimental setup, which consists of apply-
ing the method shown in Figure 3.3 to metadata retrieved from OpenML.

The Retrieved Metadata

As previously mentioned, since our focus is on classification problems, we
retrieved metadata with regard to classification problems only. Hence, we
retrieved metadata for 720 datasets (classification problems), whose sizes in
terms of features are n < 1000 and instances m < 1000000. The dataset
characteristics (meta-features) and performance measures (meta-response)
retrieved are listed in Table 3.2 and Table 3.1, respectively. For the sake of
experiments, the classification algorithms/techniques that we consider are:
Decision Tree, Naive Bayes, JRip, and Nearest Neighbor.

PCA and Orthogonal Rotation for OpenML

As described in Eq. 3.2, matrix F is generated using a standardized dataset
matrix X with dim(X) = (m,n), where m is the number of observations
(m = 720) and n is the number of meta-features (n = 61). A set of p factors
(latent-features) is then selected (p = 14). Each factor represents a certain
part of the total variance of the meta-dataset. Several methods are used to
estimate the correct number of factors to represent the data variance and the
feature correlation. One that is commonly used, is to retain all the factors
that cumulatively represent a fair amount of the total variance (e.g., 80%).
The number of factors needed to explain 80% of the total variance in this
case is 14. The 14 selected factors altogether represent 80.69% of the total
variance. After determining the number of factors, in order to facilitate the
interpretation and more clearly define the latent-features, we perform a ro-
tation (VARIMAX) of the retained factors (components). VARIMAX assumes
that each factor has a small number of large loadings, and a large number
of zero loadings. Table 3.3, presents the most interesting factor loadings (i.e.,
with a threshold of +0.7) from matrix F for meta-features in the subspace rep-
resented by the p first factors (p = 14). Factors are orthogonal and describe
the correlation between the features in the original space representation. In
the first column of Table 3.3, we show the hand crafted latent concepts that
stand behind each one of the factors. They explain the meta-features shown
in the second column. Finally, in the third column, factor loadings for the
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respective meta-features are shown. Factor Loadings — correlations of meta-
features with the latent factors, can range from -1 to 1. Loadings close to -1
or 1 indicate that the factor strongly affects the meta-feature. Loadings close
to zero indicate that the factor has a weak affect on the meta-feature.

Table 3.3: Latent features obtained from PCA and VARIMAX

Latent-Feature Meta-feature Corr.
MeanAttributeEntropy 0.853
Inf o‘rmatlon‘ of Cate- MinAttributeEntropy 0.925
gorical Attributes
Q1AttributeEntropy 0.920
Q2AttributeEntropy 0.878
MeanKurtosisOfNumericAtts 0.933
MeanSkewnessOfNumericAtts 0.874
MinKurtosisOfNumericAtts 0.927
Shape of Numeric At-
tributes Q1KurtosisOfNumericAtts 0.971
Q1SkewnessOfNumericAtts 0.755
Q2KurtosisOfNumericAtts 0.962
Q2SkewnessOfNumericAtts 0.944
Q3KurtosisOfNumericAtts 0.969
Q3SkewnessOfNumericAtts 0.927
MeanMeansOfNumericAtts 0.987
Variability of Nu- MeanStdDevOfNumericAtts -0.994
meric Attributes
MinMeansOfNumericAtts 0.999
MaxStdDevOfNumericAtts -0.999
. Lo MinStdDevOfNumericAtts 0.821
Min.  Variability of
Num. Attributes Q1MeansOfNumericAtts 0.719
Q1StdDevOfNumericAtts 0.887
) . MaxNominal AttDistinctValues 0.899
Modality of Categori-
cal Attributes MeanNominal AttDistinctValues 0.874
StdvNominal AttDistinctValues 0.942
NumberOflnstances 0.978
Nunmber of Instances MajorityClassSize 0.935
MinorityClassSize 0.843
NumberOfInstancesWithMissVals 0.816

Missing Values
49



Chapter 3. On the Predictive Power of Meta-features in OpenML

NumberOfMissingValues 0.866

PercentageOfInstancesWithMissVals ~ 0.830

PercentageOfMissing Values 0.701
NumberOfNumericFeatures -0.955
Dimensionality NumberOfFeatures -0.956
Dimensionality -0.770
Information of the Re- ClassEntropy 0953
sponse NumberOfClasses -0.773
MajorityClassPercentage 0.770
NumberOfSymbolicFeat 0.964
Number of Cat. Atts. umbertlbymboiicteatures
NumberOfBinaryFeatures 0.966
3M OfN icAtt 0.974
Q3 Lev. Num.Atts. Q3Means umericAts
Q3StdDevOfNumericAtts 0.977
MinSkewnessOfNumericAtts 0.719
Shape of the Extreme
Num. Attributes MaxKurtosisOfNumericAtts -0.845
MaxSkewnessOfNumericAtts -0.794
MeanMutuallnformation -0.942
MinMutuallnformation -0.781
Mutual Information MaxMutuallnformation -0.864
Q1Mutuallnformation -0.803
Q2Mutuallnformation -0.895
Q3Mutuallnformation -0.904
Equival fA .97
Noise to Signal quivalentNumberOfAtts 0.976
NoiseToSignalRatio 0.975

Partial Correlation Analysis for OpenML Metadata

After having defined the latent features, it is time to rank them according to
their relevance for predicting the performance of a given algorithm. In order
to physically represent an abstract latent feature we use its corresponding
meta-features. That is, a latent feature is physically represented as the av-
erage of the meta-features it explains (cf. Table 3.3). Taking the average of
meta-features to define the latent concepts, and not their actual weights ob-
tained in the specific instances of the datasets analyzed, gives a more robust
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measure of the latent feature, independent of the actual data, which can be
easily generalized to future datasets by omitting not existing meta-features
or including new ones, provided that they are related with the actual con-
cepts present in the latent features. We join the latent-features obtained, with
the performance measures (i.e., accuracy, precision, recall, and AUC) of the
algorithms we consider for the corresponding datasets. Now, for each per-
formance measure of every algorithm considered, partial correlation graphs
can be generated in order to find the latent-features that are more relevant
for predicting the respective performance measures.

However, as previously mentioned, all the datasets retrieved from OpenML
do not contain the same types of attributes, and hence all the available meta-
features can not be calculated for all of them. Thus, we split the datasets into
3 sets:

¢ Combined - consists of datasets that contain both continuous and cat-
egorical attributes (226 datasets) — all meta-features can be calculated
(cf. Table 3.2).

e Continuous - consists of datasets that do not contain categorical at-
tributes (418 datasets) — only meta-features of type continuous and
generic can be calculated (cf. Table 3.2).

¢ Categorical - consists of datasets that do not contain continuous at-
tributes (76 datasets) — only meta-features of type categorical and generic
can be calculated (cf. Table 3.2).

As a consequence, partial correlation graphs are generated for all the perfor-
mance measures of all the algorithms for every split of datasets, separately.
A study performed this way, distinguishing the groups of datasets, allows
one to build a more customized meta-learning system. In addition, our hy-
pothesis is that depending on the datasets, depending on the algorithms, and
depending on the performance measures used, the relevance/importance of
meta-features differs.

3.4.3 Experimental Results

In this section, we first discuss the results obtained after applying the method
for feature extraction and selection on four classification algorithms and three
different performance measures. Next, we use the extracted /selected features
for performing meta-learning and we show the results obtained.
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Results on Decision Trees

In Figure 3.5, the partial correlation graphs for decision trees are shown.
Figure 3.5a shows the results with respect to Accuracy, 3.5b with respect to
Precision and 3.5c with respect to AUC. Note that the graph for Recall is
omitted due to the fact that identical values with Accuracy are obtained (see
weighted recall in Weka*).

In Figure 3.5, shaded nodes represent the different types of meta and la-
tent features. The white nodes represent the response features (performance
measures). The presence of an edge from a latent-feature node to a perfor-
mance measure node indicates that there exists a significant correlation be-
tween the respective features. The correlation is considered to be significant,
if the p — value of the correlation is pval < 0.01. The thickness of the edge
represents the level of significance. Furthermore, dashed edges represent
negative correlation and full edges represent positive correlation. Finally, the
different shades in the edges are used to denote the set of datasets where the
significant correlation appears.

The nodes connected with short straight edges to the latent-feature nodes,
represent the meta-features that define the respective latent-features.

In Figure 3.5a, as it can be observed, the latent feature that is most rel-
evant for predicting the Accuracy is the information of the response, and it is
attached with three edges. Thus, it is important in all the dataset splits we
have considered. Furthermore, the edges are thick — the correlations are
very significant, and the edges are full — the correlations are positive. This
means the higher the information of the response on a given dataset, the higher
the Accuracy of a Decision Tree applied on that dataset. The same effect can
be observed for Precision (Figure 3.5b), although the edges appear slightly
thinner. Hence, for predicting the Accuracy or Precision of Decision Trees,
the information of the response is very important. The second most important
latent-feature which interestingly enough appears as relevant for predicting
all the measures, is mutual information. However, the correlation appears very
significant only in the Combined split and is positive. Another common fea-
ture for all the three measures is also noise to signal. It is negatively correlated
and appears as significant in the Combined split, meaning that the higher it
is, the lower will be any of the measures considered.

The rest of the latent-features appear as less significant and are separately

relevant for the given measures.

4http: / /weka.sourceforge.net/doc.stable/weka/ classifiers /Evaluation.html
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Table 3.4: The most relevant latent-features

Latent-features

Generic | Continuous | Categorical
[N Q . 4
Split Measure Alg. é 5 4 :i‘ § 4 go b s
o, B < s £ o 5 =
8 52 g &< 2 c =
&~ = Z w el O =
= . § g O g e 3
o g5 & B ? o E]
g &
s sz k £z 2 g s
S & ]
DT 35e22 | | 5.0e-03 7.1e-12
A NB 3.6e21 | | 2.6e-06
T
CCUAY JRip  32e25 | | 8.2e-13
KNN  5.8e-17 | | 6.8e-04 2.8e-09
DT 2.8e-18 | | 6.1e-03 2.1e-10
. NB 1.0e24 | | 5.7e-03 2.8e-07
Comb. Precision Jpie™ 48e19 | \ 1.2-09
KNN  1.le-17 | | 3.6e-04 6.9e-10
DT | | 4.0e-03 4.8e-06
NB | | 4.2e-05 9.4e-04
AUC JRip | | 5.8e-03 2.1e-04
kNN | | 5.4e-05 3.7e-05
DT 2.6e-30 | 9.2e-03 9.7e-03 |
Accuracy NB 1.8e-18 | 1.6e-03 |
Y JRip  37e35 | 9.5e-03 |
KNN  4.6e-18 | 6.9e-03 |
DT 37e23 | 7.0e-04 |
 NB 9.8e22 | 1.5e-03 |
Cont. Precision 1pin ™ 25e28 | 8.1e-03 |
KNN  5.1e-16 | 3.2e-03 |
DT | 3.6e-03 |
c NB | 4.3e-03 |
AU JRip \ 84e-03 |
kNN | 2.8e-03 |
DT 2.0e-04 | |
Accuracy NB 3.0e-06 | | 27e-03  1.9e-03
u
Y JRip  5.4e-05 | | 5.0e-03
KNN  87e-04 | | 1.9e-05
DT 1.3e-03 | | 7.4e-03
. NB 5.5e-06 | | 80e-03 3.5e-03  8.2e-03
Cat. Precision JRip 14e-03 | ‘
KNN  1.8e-03 | | 2.3e-05
DT | |
NB | | 1.7e-04
AUC T Rip | |
kNN | | 3.8e-05

The columns highlighted in gray indicate the latent-features with negative correla-
tion
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Results on Naive Bayes, JRip and Nearest Neighbor

Taking into consideration that all the algorithms we consider behave similarly
— up to a certain degree, and given that for more algorithms, the graphs may
not be very easy to follow, for the rest of algorithms we show the results in a
concise table, namely Table 3.4. For the sake of comparison we also add the
results of Decision Tree.

We show the results in terms of the dataset splits, performance measures,
algorithms, and latent-features. Note that we omit the latent-features that do
not appear as significant on any of the algorithms. Thus, the presence of a
value for a latent-feature denotes that a significant relationship exists between
the latent-feature and the corresponding performance measure for a given
algorithm and dataset split. Furthermore, the value itself is the p-value of the
correlation, which in the graphs was represented through the thickness of the
edges. One more thing to consider is that the latent-features highlighted in
gray are negatively correlated, for all the rows in the table.

While reading the table, one can immediately observe some patterns. The
first is that, independently of the split of datasets and independently of algo-
rithms, Accuracy and Precision behave similarly. AUC instead, depends on
the split.

Other visible patterns are that, mutual information is the measure that ap-
pears as relevant for all the algorithms and for all the measures in the Com-
bined split. On the other hand, information of response appears as relevant
in all the splits for all the algorithms for Accuracy and Precision. Further-
more, the shape of extreme numerical attributes, dimensionality, and the minimum
variability of numeric attributes appear as significant in the Continuous split.
This is due to the fact that these latent-features are defined only for continu-
ous meta-features. On the other hand, noise to signal, information of categorical
attributes, and mutual information appear as relevant in the Categorical split.
This, because they are defined only for categorical features. Finally, an in-
teresting fact about the Categorical split is that for the AUC measure, in
Decision Tree and JRip, no latent-features appear as relevant and for the rest
of the algorithms only one latent-feature appears as relevant. In addition to
this, observing the significance of the correlations of the AUC measure in all
the splits, we can realize that they are usually less significant compared to
the other measures. The former and the latter altogether indicate that AUC
may be more difficult to predict in comparison to the other measures.
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Table 3.5: The RMSE values of the predicted measures for all the splits

RMSE
25 3
i i £ 0 5
Split Measure  Algorithm o =
=% &
8% 3
5§ =
S
Decision Tree 0.097 0.123
A Naive Bayes 0.109 0.129
ccuracy
JRip 0.095 0.121
Nearest Neighbor 0115  0.140
Decision Tree 0.109 0.130
Combined Precision Naive Bayes 0.099 0.125
JRip 0.108 0.129
Nearest Neighbor 0115  0.138
Decision Tree 0.125 0.125
ive B . .104
AUC Naive Bayes 0.098  0.10
JRip 0.120 0.124
Nearest Neighbor 0109  0.119
Decision Tree 0.091 0.102
A Naive Bayes 0.108 0.122
ccuracy
JRip 0.090 0.103
Nearest Neighbor 0118  0.130
Decision Tree 0.100 0.108
Continuous Precision Naive Bayes 0.099 0.114
JRip 0.094 0.102
Nearest Neighbor ~ 0.112  0.123
Decision Tree 0.106 0.107
AUC Naive Bayes 0.103  0.106
JRip 0.110 0.118
Nearest Neighbor ~ 0.123  0.127
Decision Tree 0.138  0.136
A Naive Bayes 0119 0.128
ccuracy
JRip 0.132  0.131
Nearest Neighbor ~ 0.151  0.144
Decision Tree 0.153  0.148
Categorical .. Naive Bayes 0126  0.126
Precision
JRip 0.150  0.145
Nearest Neighbor ~ 0.155  0.149
Decision Tree 0.168  0.160
AUC Naive Bayes 0115 0.123
JRip 0.164  0.156

Nearest Neighbor  0.181  0.165

Bold numbers indicate the best results per row
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Results on Meta-learning

The method for studying the predictive power of meta-features, allows to
define latent-features and then by measuring their relevance for predicting a
performance measure it helps on selecting the most relevant ones. Therefore,
at the end, only a subset of features is retained. In terms of meta-learning,
using a subset of features instead of the complete set (i.e., 61), has many
benefits. First, it saves computational effort when meta-features need to be
retrieved. Second, less features means less computational time when building
models (i.e., meta-models). Finally, since the retained features are latent-
features, the models built on top of them are more generalizable. Yet, in
order to enjoy these benefits, the models built with the selected features need
to perform well. That is, they need to be as good as, or even better than the
models built using all the meta-features. In order to check for this, we trained
a regression model (i.e., meta-model) on top of 720 datasets using Random
Forest as a meta-learner. We evaluated the performance of the regression
model using leave-one-out cross-validation. For measuring the performance
of the meta-learner we used the Root Mean Squared Error (RMSE), which
is often used as a measure of precision and can also serve as a confidence
indicator for the predictions.

In Table 3.5, column Feature Extraction/Selection shows the RMSE values

Table 3.6: The RMSE values for the Categorical split

RMSE
28 o B
£ 0 L o 5
. x 8 =g =1
Split Measure  Alg. M2 Bo s
e g8 &
2 =X -
§.8 S
=
Decision Tree 0.138 0.131 0.136
Accuracy  JRip 0.132 0126 0.131
Nearest Neighbor ~ 0.151  0.139  0.144
) Decision Tree 0.153 0.147 0.148
Categorical  precision JRip 0.150 0.141 0.145
Nearest Neighbor  0.155  0.142  0.149
Decision Tree 0.168 0.154 0.160
AUC JRip 0.164 0.149 0.156

Nearest Neighbor ~ 0.181  0.165  0.165

Bold numbers indicate the best results per row
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of the trained regression models for the sets of features suggested — the
union of the relevant latent-features per split is taken, and column All Features
shows the RMSE values for the complete set of meta-features. Furthermore,
the results are classified in terms of the splits of the datasets, the measures, and
the classification algorithms used. It can be observed that meta-learning with
the feature extraction/selection method applied, performs better than when
all the features are used. The only exceptions are in the Categorical split. We
believe this is due to that fact that latent-features that appear as relevant in
the Categorical split are less significant compared to the ones in the rest of
the splits — they are in the order of 10~% (cf. Table 3.4). This furthermore
is due to the fact that the Categorical split consists of only 76 datasets —
significance values are affected by the sample size.

Note that we can think of significance as a measure of confidence. That is,
the more significant the correlation, the more confident you can be about the
predictive power of the feature in consideration. Hence, since the correlations
in the Categorical split are less significant, we cannot be confident that the
selected features are exactly the ones with more predictive power. In order to
remedy this problem, we repeated the evaluation for the problematic cases of
the Categorical split, however this time using all the extracted latent-features.
The results are shown in column Feature Extraction in Table 3.6 — we keep the
previous results too, for the sake of comparison. It can be observed that using
all the extracted latent-features the results improve, and they furthermore
become better than when using all the meta-features. This indicates that the
extracted latent-features are more robust than the original meta-features. It
also indicates that when faced with small sample sizes (i.e., small number of
datasets), we can opt for using only the first step of the method depicted in
Figure 3.3 (i.e., only Feature Extraction).

3.5 Related Work

Meta-feature definition. Most of the focus with regards to the metadata
in meta-learning has been on defining different dataset characteristics that
can be used in meta-learning. The first attempt to characterize datasets was
done by Rendell [80]. Yet the description of a dataset in terms of its infor-
mation/statistical measures for the first time appears within the framework
of STATLOG project [63], 15 dataset characteristics have been used. This
set of characteristics has been later used in various studies for solving the
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algorithm selection problem [10, 91]. Sohn [85], notices that some of the
characteristics are highly correlated, and she omits the redundant ones in
her study. In [14], authors provide formulas for different data characteris-
tics (meta-features) and theoretically discuss their relevance. However, their
assumptions are based on intuition and theoretical knowledge. As a conse-
quence, the conclusions are more generic.

An alternative approach to characterize datasets called landmarking has

been proposed in [3, 73]. The intuitive idea behind landmarking is that the
performance of a simple learner, called landmarker, can be used to predict
the performance of given candidate algorithms. Landmarking measures have
been evaluated and have shown to perform well in many works, including [5,
33, 73, 79]. The usefulness of these measures, comes with a price though,
which is the computational cost. Yet, none of the studies apart from [5],
properly acknowledge this fact. This is mainly because the studies are per-
formed on a small number of datasets and on datasets of small sizes. For
instance in [79], they perform studies on top of 54 datasets. Another group
of measures, quite related to landmarking are model-based measures. The
idea is to create a model from the data and use its properties as feature val-
ues. The used model in this context is typically a decision tree [4, 72]. These
measures have been evaluated in [72, 79]. However, similarly to landmarking,
they induce computational overhead when computed on datasets of bigger
sizes.
Meta-feature selection. The first attempt at meta-feature selection appeared
in the meta-learning framework of zooming-ranking [90]. In this study, some
experiments are shown where a classical feature selection method is applied
to select relevant features. In [47], they study the meta-feature selection prob-
lem too. However, their method is constrained on finding relevant features
for pairs of algorithms. This is because their definition of meta-learning is
based on detecting the best classification algorithm in a context of pairs of
algorithms. In [79], an empirical evaluation of different categories of meta-
features in the context of their suitability for predicting classification accu-
racies for a number of standard classifiers can be found. In addition, an
automatic feature selection method is applied to the complete set of meta-
features used. However, no finer details of the feature selection method are
given. Furthermore, the number of datasets used is very small.
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3.6 Conclusions

In this chapter, we used a method to tackle the problem of meta-feature ex-
traction and selection. The method relies on a rigorous mathematical frame-
work and it is beneficial for improving the success of meta-learning tasks. It
consists of first extracting latent-features out of meta-features, and then, by
studying and visualizing the relationships of the latent features with the re-
sponse (i.e., the performance measures of algorithms), it allows to select the
most relevant or informative latent-features.

After applying the method to data retrieved from OpenML, we were able
to observe that: 1) all latent-features are not similarly relevant for predict-
ing the performance of different classification algorithms, and vice versa for
predicting different performance measures for the same classification algo-
rithms, 2) all latent-features are not similarly relevant when meta-learning
space consists of datasets with specific types of attributes — splitting the
datasets in accordance to the meta-features that can be extracted from them
was a novelty compared to previous works, and it played a decisive role in
our analysis. E.g., the latent-features relevant in a set of datasets with only
continuous attributes are not the same as the latent-features relevant in a set
of datasets with only categorical attributes, 3) the method for meta-feature
extraction/selection improves the meta-learning process.

Having observed this, we claim that meta-feature extraction/selection is a
necessary pre-processing step for meta-learning. Moreover, we contend that
meta-learning space needs to be specifically customized taking into consider-
ation the available datasets, algorithms, and the performance measures that
need to be predicted in a meta-learning framework.
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Intelligent Assistance for Data

Pre-processing

A data mining algorithm may perform differently on datasets with different charac-
teristics, e.g., it might perform better on a dataset with continuous attributes rather
than with categorical attributes, or the other way around. Typically, a dataset needs
to be pre-processed before being mined. Taking into account all the possible pre-
processing operators, there exists a staggeringly large number of alternatives. As a
consequence, non-experienced users become overwhelmed with pre-processing alter-
natives. In this chapter, we show that the problem can be addressed by automating
the pre-processing with the support of meta-learning. To this end, we analyze a wide
range of data pre-processing techniques and a set of classification algorithms. For
each classification algorithm that we consider and a given dataset, we are able to au-
tomatically suggest the transformations that improve the quality of the results of the
algorithm on the dataset. Our approach will help non-expert users to more effectively
identify the transformations appropriate to their applications, and hence to achieve
improved results.
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4.1 Introduction

One of the most important steps of the knowledge discovery process (cf. Fig-
ure 1.1) is the data pre-processing step. Data pre-processing is so important
that usually 50-80% of analysis time is spent on it [69]. One of the reasons
for this is that a properly prepared/pre-processed dataset yields better re-
sults. One can apply the best learning algorithm, but if the data is not well-
prepared, the algorithm may perform poorly (e.g., bad predictive accuracy)
[19].

Since data pre-processing is so important and typically it is performed by
a non expert-user, there is a need to support the user by means of automating
the process as much as possible.

In this chapter, we propose a solution to this problem. We aim at assisting
the user by recommending transformations, i.e., pre-processing operators,
that will ultimately improve the result of the analysis, that usually happens
to be a classification task. In order to do that, we make use of the concept of
meta-learning, which consists of two phases, such as learning and predicting.
For a given dataset and a selected classification algorithm we are able to
suggest transformations that once applied yield an improved classification
performance (e.g., predictive accuracy).

Contributions. The main contributions of this chapter can be summarized as
follows:

* We leverage ideas from meta-learning to present a technique for rank-
ing pre-processing operators depending on their impact on the final
result of data analysis.

* We show the benefits of our approach by implementing a prototype that
is capable of automatically recommending pre-processing operators to
the user.

* We show experiments that demonstrate the effectiveness and quality of
our approach.

The rest of the chapter is organized as follows: an overview of data pre-
processing together with its benefits is given in Section 4.2. Our proposed
solution is formally defined in Section 4.3. A brief look at the materialization
of our proposed approach in terms of a prototype solution is given in Section
4.4. The results of the experimental evaluations are reported in Section 4.5.
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The related work is discussed in Section 4.6. Finally, Section 4.7 summarizes
our work in this chapter.

4.2 Overview on Data Pre-processing

In this section we give a general overview of the pre-processing step in
data analytics by first explaining the different existing pre-processing op-
erators/algorithms. Next, we examine and discuss the impact of data pre-
processing operators on the final result of data analysis.

4.2.1 Data Pre-processing Operators

Traditionally, data mining has been performed on transactional data consist-
ing of continuous attributes. The continuous scale of these attributes has
enabled the use of conventional statistical methods, such as logistic regres-
sion. However, the advances in computational and storage capacity have
enabled the accumulation of ordinal, nominal, and binary data, giving rise
to datasets of heterogeneous scales. This has induced: 1) advances in the
application of data driven methods (e.g., decision trees, bayesian algorithms,
nearest neighbours, support vector machines, etc.) capable of mining large
datasets, and 2) challenges in transforming attributes of different scales into
mathematically feasible and computationally suitable formats [19]. Indeed,
each attribute may require special treatment, such as discretization of nu-
merical attributes, rescaling of ordinal attributes, and encoding of categorical
ones. Hence, different transformations may be required and the ones we con-

Table 4.1: List of transformations (data pre-processing operators)

Transformation Technique Attributes Input Type Output Type
Discretization Supervised Local Continuous Categorical
Discretization Unsupervised Local Continuous Categorical
Nominal to Binary Supervised Global Categorical Continuous
Nominal to Binary Unsupervised Local Categorical Continuous
Normalization Unsupervised Global Continuous Continuous
Standardization Unsupervised Global Continuous Continuous
Replace Miss. Val. Unsupervised Global Continuous Continuous
Replace Miss. Val. Unsupervised Global Categorical Categorical
Principal Components Unsupervised Global Continuous Continuous
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sider are shown in Table 4.1. They are available in the form of open source
packages in different data mining tools (e.g., Weka, RapidMiner). We aimed
at selecting some of the most important transformations that cover a wide
range of data pre-processing tasks, which are distinguished as data reduction
and data projection. The purpose of data reduction is to decrease the size of the
dataset (e.g., instances selection or feature selection). The purpose of data pro-
jection is to alter the representation of the dataset (e.g., mapping continuous
values to categories or encoding nominal attributes) [74].

In Table 4.1, a transformation is described in terms of: 1) the Technique
it uses, which can be Supervised — the algorithm knows the class of each
instance and Unsupervised — the algorithm is not aware of the class, 2) the
Attributes it uses, which can be Global — applied to all compatible attributes,
or Local — applied individually to specific compatible attributes, 3) the Input
Type, which denotes the compatible attribute type for a given transformation,
which can be Continuous — it represents measurements on some continu-
ous scale, or Categorical — it represents information about some categori-
cal or discrete characteristics, 4) the Output Type, which denotes the type of
the attribute after the transformation and it can similarly be Continuous or

Categorical.

4.2.2 Impact of Pre-processing

In the following we devise a brief example that reveals the importance of
data pre-processing for a prediction (e.g., classification) problem. For more
in depth analysis of the impact of pre-processing we refer the reader to [19,
22].

Table 4.2: Summary of Automobile Table 4.3: The impact of transformations on
the Automobile dataset

Metadata Value
Instances 205 Transformation Attribute PA
Attributes 2% Unsup. Discretiz. 1,9,10,11,12,13 0.81
Classes 5 Unsup. Discretiz. 1,9,10 0.80
Categorical Atts. 1 Unsup. Discretiz. All Cont. Atts.  0.75
Continuous Atts. 15 Sup. Nom. To Bin.  All Cat. Atts. 0.73
Miss. Values 59 Unsup. Normaliz. ~ All Cont. Atts.  0.71

Let us suppose that a user wants to apply the Logistic algorithm to the
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Automobile! dataset. The summary of Automobile is given in Table 4.2. This
dataset specifies autos in terms of their various characteristics like fuel type,
aspiration, num-of-doors, engine-size, etc. The response attribute (i.e., class) is
symboling. Symboling is a categorical attribute that indicates the insurance
risk rate, and its range is: -3,-2,-1,0,1,2,3. Value 3 indicates that the auto
is risky, -3 that it is pretty safe. The problem is to build a model that will
predict the insurance risk rate for a new auto.

Now, if Logistic Regression is applied to the original non-transformed
dataset, a predictive accuracy of 0. 71 is obtained with 10 fold cross-validation.
Note that for this run the Weka implementation of Logistic Regression
with a default parametrization is used. On the other hand, if some pre-
processing is first performed on Automobile and then the data mining algo-
rithm is applied, the results shown in Table 4.3 are obtained. In Table 4.3,
the first column denotes the transformation applied, the second denotes the
index values of the attributes to which the transformation is applied and the
third is the predictive accuracy (PA) obtained after the Logistic algorithm
is applied on the transformed dataset. Note that for instance, if the transfor-
mation Unsupervised Discretization (with default parametrization) is ap-
plied to attributes {1,9,10,11,12,13}, an improvement of 14% is obtained
in terms of the predictive accuracy. A non-experienced user would not be
aware of that. Hence, a proper recommendation of transformations would
ease user’s task and at the same time it would improve the final result.

Indeed, to alleviate this problem, in the next section we propose an ap-
proach that uses meta-learning to recommend transformations that ultimately
improve the result of the data analysis.

4.3 Meta-learning for Data Pre-processing

Meta-learning is a general process used for predicting the performance (e.g.,
predictive accuracy) of an algorithm on a given dataset. It is a method that
aims at finding relationships between dataset characteristics and data mining
algorithms [11].

However, taking into consideration the above mentioned scenario where
a user needs to be provided with some transformations to be applied, we
propose to use meta-learning in order to find relationships between transfor-
mations and data mining algorithms.

1h’tt’ps: / /archive.ics.uci.edu/ml/support/Automobile
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This can be done, since transformations, through the changes they cause
in the dataset characteristics, impact the results of the data mining algo-
rithms. Using meta-learning, we can learn this impact and we can rank trans-
formations according to their capability of improving the final result of the
data mining algorithm.

The process of ranking consists of three phases, see Figure 3.1 (cf. Chapter
3). First, a meta-learning space is established using metadata. The metadata
consist of dataset characteristics along with some performance measures for
data mining algorithms on those particular datasets. Then, the meta-learning
phase generates a model (i.e., predictive meta-model) which defines the area
of competence of the data mining algorithm [48]. Finally, when a trans-
formed dataset (i.e., a transformation was applied on the dataset) arrives, the
dataset characteristics are extracted and fed to the predictive meta-model,
which predicts the performance of the algorithm on the transformed version
of the dataset. At this point, we are able to obtain predictions for differ-
ent transformed datasets (e.g., different transformations applied to the same
dataset). By comparing the obtained predictions for the different transforma-
tions, we are able to rank the transformations depending on their predicted
impact on the given dataset. This concludes the prediction phase.

For the sake of concreteness, let us assume that, the user wants to ap-
ply Logistic Regression to a dataset, to deal with a classification problem
at hand. Our system, first, takes the dataset and applies several transfor-
mations to it (i.e., one at a time to avoid a combinatorial problem). As a
result, several transformed versions of the dataset are obtained. Next, the
system extracts the necessary meta-features (cf. Section 4.3.1) from all the
transformed versions of the dataset and uses them as input to the predictive
meta-model which is specifically built for the Logistic Regression algorithm.
The meta-model is built by training a meta-learner (e.g., Random Forest or
any other regression algorithm) on existing/historical metadata consisting of
dataset characteristics and a performance measure (e.g., predictive accuracy)
of Logistic Regression on the datasets. This meta-model is used to produce
a prediction for each transformed dataset. Informally, this is what the sys-
tem thinks will be the result (i.e., predictive accuracy) of applying Logistic
Regression on each transformed dataset. Thus, these values are used to rank
the transformations. That is, the higher the prediction, the higher will stand
the transformation — that caused this prediction, in the ranking. The top
ranked transformations will be recommended to the user.
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Two necessary ingredients for performing the aforementioned process are
the metadata and the meta-learner. In the following we give details on each
one of them.

4.3.1 Metadata

In Chapter 2, we studied and classified all types of metadata that can be
used by systems that intelligently support the user during the process of data
analysis. These systems may vary in terms of the methodology they follow
(e.g., case based reasoning, planning systems, etc.) [82] and may use different
metadata. When it comes to meta-learning however, metadata consist of: 1)
dataset characteristics — meta-features, and 2) a performance measure for
the algorithms considered — meta-response. In statistics, the former are
called predictors and the latter is called response.

Meta-features

Meta-features characterize a dataset, and two main classes have been pro-
posed :

* General measures: include general information related to the dataset at
hand. To a certain extent they are conceived to measure the complexity
of the underlying problem. Some of them are: the number of instances,
number of attributes, dataset dimensionality, ratio of missing values,
etc.

e Statistical and information-theoretic measures: describe attribute statistics
and class distributions of a dataset sample. They include different sum-
mary statistics per attribute like mean, standard deviation, class en-
tropy, etc.

In the literature, other meta-features have also been proposed, such as
Landmarking and model-based [72, 73] measures. These measures are not classi-
cal dataset characteristics, since they involve performing simple data mining
algorithms on datasets and then use these as values of the features. We do
not consider them as dataset characteristics, and since in big data settings,
they may introduce significant computational overhead (cf. Section 3.2.1),
they do not participate as meta-features in our experiments. Yet, various sys-
tems may use various meta-features for the construction of the meta-space.
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Table 4.4: Meta-features (dataset characteristics)

No Name Type Modifiable
1.2 [Number|Percentage] of Continuous Attributes Continuous Yes
3.6 Min[Means|Std|Kurtosis|Skewness] of Continuous Att. Continuous Yes
7.10 Mean[Means|Std |Kurtosis|Skewness] of Continuous Att. ~ Continuous Yes
11..14 Max[Means|Std|Kurtosis|Skewness] of Continuous Att. Continuous Yes
15..17  Quartile [1]2|3] of Means of Continuous Attributes Continuous Yes
18.20  Quartile [1]2|3] of Std of Continuous Attributes Continuous Yes
21..23  Quartile [1]2|3] of Kurtosis of Continuous Attributes Continuous Yes
24.26  Quartile [1]2|3] of Skewness of Continuous Attributes Continuous Yes
27 Number of Categorical Attributes Categorical Yes
28 Number of Binary Attributes Categorical Yes
29 Percentage of Categorical Attributes Categorical Yes
30 Percentage of Binary Attributes Categorical Yes
31..33  [Min|Mean|Max] Attribute Entropy Categorical Yes
34.36  Quartile [1]2|3] Attribute Entropy Categorical Yes
37.39  [Min|Mean|Max] Mutual Information Categorical Yes
40.42  Quartile [1|2|3] Mutual Information Categorical Yes
43 Equivalent Number of Attributes Categorical Yes
44 Noise to Signal Ratio Categorical Yes
45.48 [Min|Mean|Max|Std] Attribute Distinct Values Categorical Yes
49 Number of Instances Generic Yes
50 Number of Attributes Generic Yes
51 Dimensionality Generic Yes
52,53  [Number|Percentage] of Missing Values Generic Yes
54,55 [Number|Percentage] of Instances with Missing Values Generic Yes
56 Number of Classes Generic No
57 Class Entropy Generic No
58,59  [Minority|Majority] Class Size Generic No
60,61  [Minority|Majority] Class Percentage Generic No
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The meta-features we specifically consider are shown in Table 4.4. These are
the set of meta-features extracted in OpenML [92].

Column Type in Table 4.4, specifies the type of the meta-feature, and it
can be Continuous — the meta-feature can be extracted only from datasets
that contain attributes of continuous type, Categorical — the meta-feature
can be extracted only from datasets that contain attributes of categorical
type, Generic — the meta-feature can be extracted from any dataset, re-
gardless of the types of it’s attributes. Furthermore, in Table 4.4, column
Modifiable indicates whether the meta-features are modifiable through the
transformations we use, shown in Table 4.1. If meta-features are not modifi-
able/transformable, we do not consider them, because they remain constant
and they do not reflect the impact of transformations.

Yet, note that, in the set of meta-features considered (excluding the non-
modifiable ones), not all the meta-features are independent or non-correlated.
In order to remedy this, we perform feature extraction and then feature selec-
tion on the original/initial set of meta-features. The method is depicted in
Figure 3.3 and consists of two steps, which are explained next.

Feature Extraction. As previously mentioned, some of the meta-features con-
sidered may be very correlated or even redundant (e.g., we calculated the
correlation between Noise to Signal Ratio and Equivalent Number of Attributes
on a sample with 570 datasets, and they appeared to be correlated with a
Pearson coefficient of 0.85)%. As a matter of fact, performing meta-learning
on top of correlated meta-features will not lead to a good performance of
the meta-learning system. Therefore, in order to remove the dependency
and extract the most important information from the meta-features, we first
perform a Principal Component Analysis (PCA) [42] to the original set of
meta-features. PCA is the predominant linear dimensionality reduction tech-
nique, and it has been widely applied on datasets in all scientific domains,
from the social sciences and economics, to biology and chemistry. In short,
PCA seeks to reduce the dimension of a large number of directly observable
features into a smaller set of indirectly observable features — latent features.
PCA finds a subspace of size p, where the features are clustered depending
on their projections into the factor space. The feature clusters actually form
latent-features. A set of p components p < n is then selected. Each component
represents a certain part of the total variance of the dataset. In this chapter
we retain all the components (latent features) that cumulatively represent at

Zhttp:/ /www.openml.org/search?type=measure
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least 90% of the total variance.

Next, to facilitate interpretation, after having determined the number of
components, we perform a rotation of the components retained.

In this chapter, orthogonal rotation or more precisely VARIMAX [45]
method is chosen to perform a transformation of the data. VARIMAX method
assumes that a simple solution means that each component has a small num-
ber of large loadings, and a large number of zero loadings.

As a final remark, PCA followed by VARIMAX rotation removes the de-

pendency/correlation between features, however, it does not guarantee that
all the latent-features retained are equally relevant for predicting the perfor-
mance of a data mining algorithm. Thus, in order to retain only the most
relevant latent features (i.e., the ones that have higher predictive power), in
the second step (cf. Figure 3.3), we perform latent-feature selection, which is
explained next.
Feature selection. The first step in Figure 3.3, produces a set of candidate
latent-features for meta-learning. However, it does not provide a measure on
the relevance of the latent-features. The question is: "How relevant is a latent-
feature for predicting the response?”. Indeed, we are interested in the subset of
latent-features that are the most relevant for predicting the response. In order
to find and retain only the most relevant latent-features, in this step, first, an
additional feature (i.e., response) is attached to the set of latent-features. The
additional feature can be any of the performance measures (e.g., predictive
accuracy, cf. Section 4.3.1) of the algorithms evaluated over the datasets (the
instances of the meta-dataset).

Next, we calculate the partial correlation [1] between the features. This al-
lows us to generate partial correlation graphs that represent the relationships
and the strengths of the relationships between features. Our focus is only on
the relationships between the latent-features (extracted in the first step) and
the response. That is, we measure how relevant are the latent-features for pre-
dicting the response. The graph allows us to visualize only the latent-features
that have a direct link with the response. Furthermore, these links have a
strength which is measured through the significance value (i.e., p-value). We
consider as significant only the links with a value lower than 0.05 (p-value
< 0.05). Hence, at the end, only a subset of latent-features is retained. Given
the fact that, latent-features are defined through the original meta-features,
as explained in the previous section, ultimately this step allows us to retain
a subset of the original meta-features. Hence, in the whole process then, we
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use only the meta-features identified in this step. A schematic representation
of a partial correlation graph is shown in Figure 4.1.

Latent feature 1
(m56,m57,m61)

e Latent feature 2
e (m4,m15,m18)

Latent feature 3
(m6,m13,m14)

Latent feature 5
(m37,m38,m39,m40,m41,m42)
Latent feature 4
(m31,m32,m34,m35)

O Response feature O Generic feature . Categorical feature O Continuous feature

Fig. 4.1: Schematic representation of a partial correlation graph for Decision Tree algorithm and
Predictive Accuracy as a performance measure. The thickness of the edges denotes the
significance of the relationship between two nodes. The dashed edges denote negative
correlation. m[n] denotes a meta-feature and corresponds to the meta-features in Table 4.4.

Performance measures (meta-response)

Performance measures are different outputs that can be obtained after the
evaluation of data mining algorithms. Since we are dealing with classification
problems, and hence the algorithms we consider are of classification type,
the performance is usually measured in terms of predictive accuracy, precision,
recall or area under the roc curve (AUC). Moreover, classification algorithms are
usually evaluated using 10-fold cross-validation [53].

In Table 3.1 (cf. Chapter 3), formulas for calculating these measures are
given. Briefly, Accuracy is a measure of the overall effectiveness of a classifier.
Precision is the class agreement of the instance labels with the positive labels
given by the classifier. Recall measures the effectiveness of a classifier to
identify positive labels. Finally, one can think of AUC as the classifier’s ability
to avoid false classification. For more details regarding these measures and
how they extend to multi-class classification problems we refer the reader to
[86].
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4.3.2 Meta-learner

Having stored an algorithm performance characteristic (cf. Table 3.1) and a
set of dataset characteristics (cf. Table 4.4), the goal is to predict the perfor-
mance of an algorithm on a transformed dataset. Formally, the problem can
be defined as follows. Given algorithm A and a limited number of train-
ing data D = (x1,¥1)...(Xu, ¥u), the goal is to find a meta learner with op-
timal/good generalization performance. Generalization performance is es-
timated by splitting D into disjoint training and validation sets DY and

. train
Dz(;lu)li ;- We use leave-one-out validation [53], which splits the training data
into n partitions D)., D) and sets D). = D\DY)  fori = 1,...,n.

Note that x € xp,xp..x,; are the dataset characteristics and y is a chosen
measure of the performance of algorithm A run on that particular dataset.
Hence, x and y altogether are the extracted metadata. Since y consists of 4
different performance measures for algorithm runs, we build meta-spaces for
each specific measure separately. Then for each meta-space (meta-dataset),
we generate meta-models — using a meta-learner.

A few basic criteria were followed for selecting the meta-learner to use.
First, the problem in the meta-learning space is of regression type — a num-
ber needs to be predicted (i.e., a value in the range of [0,1]) rather than a
class.

The second criterion is that the meta-learner needs to be more sensitive. By
this we mean that the meta-learner needs to be able to capture even the slight
changes that transformations might apply on datasets. This is because we
need to predict the impact of the transformations on the data mining results
and we need to be able to compare the impacts of different transformations.
This comparison needs to be done at a finer granularity. Otherwise, in the
worst case, all the transformations may end up having the same impact. For
instance, as a first approach we considered simple regression trees [7] as
meta-learners, and they suffer from this problem. Their limitation is that
they contain a discrete number of leaves, and hence a discrete number of
possible predictions.

The third criterion is that the meta-learner should handle missing values.
Recall that some dataset characteristics can be calculated on datasets that
necessarily contain either continuous or categorical attributes (cf. Table 4.4).
As a matter of fact, our second trial of using Logistic Regression as meta-learner
did not give good results, because Logistic Regression cannot handle missing
values.
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Hence, finally the meta-learner we decided to use is Random Forest. Ran-
dom Forest complies with all the above mentioned criteria. It can be used for
regression problems. It suffers far less from the discreteness of the leaves,
because internally, a lot of trees (i.e., 500 trees) are built at random and at the
end averages are taken to be used as predictions. Finally, it performs well
when missing values are present.

Thus, we use Random Forest to build models for each data mining algo-
rithm or more precisely for each classification algorithm that we consider.

In particular, the classification algorithms that we consider are represen-
tative algorithms for all, except two classes of algorithms in Weka. In Weka,
the classification algorithms are classified into: bayes, functions, lazy, rules,
trees, meta-methods, and miscellaneous. We aimed at considering one algorithm
for each one of the first five classes, and they are: Naive Bayes, Logistic, IBk,
PART, and [48, respectively. The last two classes were omitted due to the fact
that they are more complex and are not commonly used by non experienced
users.

4.4 Solution Prototype

In this section, we discuss the materialization of the approach proposed in
Section 4.3, into a prototype solution. The general architecture of the de-
veloped prototype solution is depicted in Figure 4.2. The solution’s main
processes, Learning and Recommending, are implemented independently
from each other. Below we give detailed explanations for each one of them.

4.4.1 Learning Phase

In the previous sections we mentioned that in order to build a model (i.e.,
predictive meta-model), we must firstly establish the meta-space — denoted
as Learning phase in Figure 4.2. In our context, the meta-space needs to be
constructed out of metadata that can be extracted from datasets and from
the executions of classification algorithms on those datasets. As a matter of
fact, we needed to fetch hundreds of datasets, extract their characteristics,
run different algorithms on them and get different evaluation measures with
10 fold cross validation. Finally, use all of these to feed the Meta-database.

In order to do the aforementioned, we first used OpenML to fetch sev-
eral hundred datasets (i.e., 570). Next, from each dataset we extracted the 55
dataset characteristics — highlighted as modifiable in Table 4.4, and on each
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Fig. 4.2: Solution architecture

dataset we applied 5 classification algorithms in order to extract the perfor-
mance measures — shown in Table 3.1. Then, we performed feature extrac-
tion — using PCA followed by VARIMAX on the set of dataset characteristics
(meta-features), and feature selection — using the partial correlation graphs,
for every classification algorithm and every performance measure consid-
ered. Finally, for each classification algorithm and for each performance
measure, we obtained a meta-dataset that was fed to the Meta-database. In
Figure 4.2, this whole process is represented via the Metadata Generator mod-
ule and was developed in Java.

After obtaining the metadata, hence constructing the meta-space, we con-
tinued on building the Models (or predictive meta-models) using the Meta-
learner (i.e., Random Forest) we considered. We used the R language to con-
struct a model for each one of the algorithms and for each one of the perfor-
mance measures considered. After that, the models were exported to PMML
[37] files, and were next fed to the Predictor in the recommending phase.

Note that this process is not specifically tailored for datasets from the
OpenML repository, but it can work on any collection of datasets. The models
obtained are expected to slightly change from one collection to another.
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44.2 Recommending Phase

When a user wants to analyze a dataset, he/she selects an algorithm to be
used for the analysis and then the system automatically recommends trans-
formations to be applied, such that the final result is improved. In order
to do that, the system first applies different transformations to the dataset
through the Transformation executor module. Then, the meta-features of the
transformed dataset are extracted through the Meta-feature Extractor module
and they are fed to the Predictor, which using the meta-model (i.e., PMML
file) corresponding to the classification algorithm selected by the user, pre-
dicts the impact of the transformation/s. The gain here is that, the classifica-
tion algorithms are not applied for real to the transformed datasets — which
is a costly process. Instead, meta-models are used to predict the outputs
of the classification algorithms on the transformed datasets. Hence, finally,
transformations are ranked according to their predicted impact on the final
result — according to whether they improve the final result. The modules of
the Recommending phase are entirely developed in Java.

4.5 Evaluation

We perform an experimental study of the performance that can be achieved
by our approach on various algorithms and various datasets. After specifying
our experimental environment, we evaluate our system’s ability to predict the
transformations that improve the final result of the analysis.

4.5.1 Experimental Setup

Recall that when building the meta-learners, we use leave-one-out validation
for evaluating them. Likewise, in order to enable a larger number of datasets
for performing the experiments, each time we performed the leave-one-out
validation, we created a meta-model using the subset of datasets (i.e., with-
holding the dataset that was left-out). Hence, for each data mining algorithm,
we created as many meta-models as datasets considered for the respective
algorithm. As a matter of fact, in order to perform experiments for an algo-
rithm, we can use the entire set of datasets for testing, only bearing in mind
that for each dataset, in the Predictor, we use the meta-model that was built
without using that particular dataset.

In this context, an experiment — depicted in Figure 4.3, is performed in
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Fig. 4.3: Experimentation scheme

the following way. First, a dataset and a classification algorithm to be used
for performing analysis (i.e., classification) on the dataset is selected. Next,
the system finds the impact of a set of transformations on the final result of
the classification.

The set of transformations, consists of iteratively applying the transfor-
mations shown in Table 4.1, however each time changing the set of attributes
to which the transformation is applied. Note that the transformations which
are denoted as Global in the table, are applied only once to the set of all
compatible attributes (altogether), whereas the transformations, which are
denoted as Local are applied to: 1) every compatible attribute separately
(one by one), and 2) all the set of compatible attributes (altogether). Indeed,
transformations are not applied to combinations of attributes and hence there
is no "combinatorial explosion". However, the user may apply the method
several times in iteration, and as such, arrive to a combination that may in-
duce better results. Yet this depends on the user and his/her availability to
use the method iteratively.

The impact is the effect of transformations to the final result (i.e., pre-
dictive accuracy) of the selected algorithm, and it can be predicted impact or
computed impact.

The predicted impact is calculated by applying the set of transformations,
as defined above, and subsequently extracting the characteristics of the trans-
formed datasets, to use them as inputs for predicting the performance of the
respective algorithm on the transformed datasets.
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The computed impact is calculated by similarly applying the set of trans-
formations, but then subsequently applying the respective classification al-
gorithm for real to the transformed datasets, and hence obtaining the real
performance (e.g., predictive accuracy) of the classification algorithm on the
transformed datasets. In terms of computational complexity, the latter is a
costly process and it is performed only for the sake of evaluating the system.

The experiments were performed on an Intel Core i5 machine, running at
1.70 GHz with 8 GB of main memory. An experiment for a single algorithm,
on average took approximately 4 CPU hours.

On each run, the system internally categorizes a transformation into one
of the following three categories:

* Good — an improvement of the final result for the respective algorithm
is predicted if the transformation were to be applied, compared to the
prediction obtained on the non-transformed version of the dataset,

* Bad — a worsening of the final result for the respective algorithm is
predicted if the transformation were to be applied, compared to the
prediction obtained on the non-transformed version of the dataset,

* Neutral — neither improvement nor worsening is predicted if the trans-
formation were to be applied.

The aim of the experiments is roughly to verify whether the categoriza-
tions made by the system are true for real (i.e., whether a transformation
categorized as Good, is Good for real and improves the performance of the al-
gorithm). This, as previously mentioned — though costly, is done by execut-
ing the data mining algorithms on the transformed datasets and computing
the real impact of the transformations (cf. Figure 4.3).

In this context, we mark as Successful the cases (i.e., datasets) on which
the real/computed average improvement we get from all the transformations cat-
egorized as Good for a dataset, is greater than the real/computed average im-
provement we get from the transformations that were categorized as Bad for
the same dataset. That is, the transformations predicted as Good "beat" on
average the transformations predicted as Bad. In contrast, we mark as Un-
successful the cases on which the transformations predicted as Good cannot
"beat" on average the transformations predicted as Bad.
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4.5.2 Experimental Results

In Figure 4.4, we show the results obtained when Random Forests are used as
meta-learners. In the figure we show the comparison between the number of
Successful cases — the green bar, and the number of Unsuccessful cases — the
red bar. In addition, the gray bar denotes the total number of cases (datasets)
for which we performed the experiments on each respective algorithm. Fur-
thermore, the bars highlighted with dashes, dots, and back slashes refer to the
results for predictive accuracy, precision, and AUC, respectively. Notice that the
results for recall are omitted due to the fact that identical values with predictive
accuracy were obtained (see weighted recall in Weka?).

Observe that the sum of Successful (green) and Unsuccessful (red) cases
does not coincide with the total number of datasets (gray). This is because
for some datasets we either do not find Good transformations (14.3%), or we
do not find Bad transformations (7.9%). This happens because the datasets
already belong to the best or the worst leaves of all the internal trees of the
Random Forests, hence there can be no transformations that can move them

Shttp:/ / weka.sourceforge.net/ doc.stable/ weka/ classifiers/Evaluation
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Fig. 4.4: Random Forest results
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Table 4.5: Binomial significance test for Random Forests

Predictive Accuracy Precision AUC
Alg. Su.  Su+Un. p-value | Su. Su+Un. p-value | Su.  Su+Un.  p-value
NB 289 484 7.40E-06 | 301 501 2.41E-06 | 334 528 3.36E-10

{ { {
| | |
Log. | 279 442 1.09E-08 | 268 427  434E-08 | 292 442  339E-12
| | |
| | |
| | |

1Bk 264 491 431E-02 | 277 493 2.59E-03 | 358 526 0
PART | 286 454 9.73E-09 | 269 451 1.61E-05 | 301 487 6.42E-08
J48 307 529 8.95E-05 | 319 526 3.79E-07 | 193 387 5.00E-01

to a better or worse leaf, respectively. As a matter of fact, in those particular
cases we cannot compare the Good versus Bad, hence they do not appear
neither as Successful nor as Unsuccessful.

In order to understand whether the numbers shown in the figure are sig-
nificant, we performed a binomial distribution test comparing the number of
Successful cases to the number of Successful + Unsuccessful cases with respect
to the theoretical probability which is equal to 0.5. The results obtained are
shown in Table 4.5. The column p-value denotes how significant is the dif-
ference between the values of Successful and the population of Successful +
Unsuccessful. We assume the difference to be significant if the p-value is less
than or equal to 0.05. Observe that our method gives significant values for
all the algorithms and all the performance measures with the only exception
of algorithm [48 with performance measure AUC. Yet recall that when we
performed feature selection using the partial correlation graphs between fea-
tures and the response, we retained only the features that had a significant
relationship within the limits of 0.05, which happens to be too restrictive for
J48 with AUC (i.e., some relevant feature is left out). If we increase the thresh-
old to 0.1 (less restrictive) we obtain significant results for this case too. The
p-value we obtain is 0.0011.

4.6 Related Work

A lot of research has been conducted in terms of providing user support for
different steps of data analysis. The focus however, has usually been on the
data mining step, and data pre-processing has generally been overlooked.
Weka [38], an open source tool for data mining, allows users to apply pre-
processing algorithms but it does not provide assistance in terms of which
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one to apply. However, since different data mining algorithms have different
requirements regarding the dataset, some pre-processing is applied by de-
fault inside some of the algorithms. This pre-processing is usually a simple
transformation that does not aim at improving the performance of an algo-
rithm but it aims at transforming the dataset so that it can fit to the data
mining algorithm. Furthermore, note that only few algorithm implementa-
tions in Weka contain these kind of on the fly transformations.

In AutoWeka [89], user assistance is provided, however only with regard
to the data mining step. That is, the system suggests the best learning algo-
rithm to use with it’s proper parametrization without considering the pre-
processing step. Hence, the user needs to deal with the pre-processing on his
own.

In AmazonML*, the system recommends an initial recipe for pre-process-
ing, which is prepared taking into consideration the attributes of the dataset,
including the response (i.e., the attribute to be predicted). The recipes pro-
vided are however pre-formatted instructions for common transformations
and do not guarantee improvements of the final result. Hence, they are
recommended only because they are applicable to the particular dataset,
whereas we are interested in performing pre-processing with the only goal
of improving the final result of the analysis.

eIDA [52], which is a product of the eLico® project, aims at autonomously
constructing workflows that are combinations of pre-processing and data
mining algorithms. In order to do that, the problem of workflow construction
is viewed as a planning problem, in which a plan must be built consisting of
operators that transform the initial data into models or predictions. In order
to find the plans, an exhaustive combination of all applicable transforma-
tions with all applicable algorithms is performed. Taking into consideration
the number of algorithms (e.g., hundreds in RapidMiner® — the project is
built on top of RapidMiner), the search space of the problem is unfeasible to
compute, hence the optimal solution may not be found. Moreover, in this ap-
proach, independent support exclusively for pre-processing is not provided.
As a matter of fact, a take it all or leave it solution is given. In contrast, we
focus only on pre-processing, which not only reduces the search space but at
the same time allows independent support, where the data mining algorithm
can be chosen at will.

4h’ttps: / /aws.amazon.com/machine-learning
5http: //www.e-lico.eu
6http: / /rapidminer.com
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There exist some other systems [15, 48, 63], however they also focus on
providing support for the data mining step only.

4.7 Conclusions

In this chapter, we have shown that data pre-processing need not be treated
as an independent, isolated step inside a knowledge discovery process. In
contrast, it needs to be considered by the value it brings to the overall analy-
sis. Hence, we attempted to do so by automatically suggesting pre-processing
operators that aim at improving the overall analysis. This was made possible
through meta-learning, which enables predicting the impact of transforma-
tions on the final performance of algorithms on the corresponding datasets,
and in turn, allows ranking the transformations according to their impact on
the final result.

We built a prototype solution that draws on a range of classification al-
gorithms in Weka and makes it easy for non-experts to perform data pre-
processing. An extensive evaluation on hundreds of datasets showed that for
the set of algorithms considered, even blindly (e.g., users without any prior
knowledge in data mining) applying the recommended transformations im-
proves the final result of the algorithms on average. We believe that this can
be a handy tool for experienced users as well, because they can discriminate
within the recommended transformations and pick the ones that are poten-
tially more suitable for their problem at hand.
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Learning Based Recommending Assistant

for Data Pre-processing

Data pre-processing is one of the most time consuming and relevant steps in a data
analytics process (e.g., classification task). A given data pre-processing operator (e.g.,
transformation) can have positive, negative, or zero impact on the final result of the
analysis. Expert users have the required knowledge to find the right pre-processing
operators. However, when it comes to non-experts, they are overwhelmed by the
amount of pre-processing operators and it is challenging for them to find operators
that would positively impact their analysis (e.g., increase the predictive accuracy of
a classifier). Existing solutions either assume that users have expert knowledge, or
they recommend pre-processing operators that are only “syntactically” applicable to
a dataset, without taking into account their impact on the final analysis. In this
work, we aim at providing assistance to non-expert users by recommending data pre-
processing operators that are ranked according to their impact on the final analysis.
We developed a tool, PRESISTANT, that uses Random Forests to learn the impact of
pre-processing operators on the performance (e.g., predictive accuracy) of 5 different
classification algorithms, such as Decision Tree (J48), Naive Bayes, PART, Logistic
Regression, and Nearest Neighbor (IBk). Extensive evaluations on the recommenda-
tions provided by our tool show that PRESISTANT can effectively help non-experts
in order to achieve improved results in their analytic tasks.
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5.1 Introduction

Although machine learning algorithms have been around since the 1950s,
their initial impact has been insignificant. With the increase of data availabil-
ity and computing power, machine learning tools and algorithms are mak-
ing breakthroughs in very diverse areas. Their success has raised the need
for mainstreaming the use of machine learning, that is, engaging even non-
expert users (i.e., individuals with no proficiency in statistics and machine
learning) to perform data analytics. However, the multiple steps involved in
the data analytics process render this process challenging.

Data analytics as defined in [27], consists of data selection, data pre-
processing, data mining, and evaluation or interpretation. A very important
and time consuming step that marks itself out of the rest, is the data pre-
processing step. Data pre-processing is challenging but at the same time has
a heavy impact on the overall analysis. Specifically, it can have significant im-
pact on the generalization performance of a classification algorithm [56, 63],
where performance is measured in terms of the ratio of correctly classified
instances (i.e., predictive accuracy).

The main tools used for data analysis (e.g., scikit-learn, R, Weka, Ama-
zonML) overlook data pre-processing when it comes to assisting non-expert
users in improving the overall performance of their analysis. These tools are
usually meant for professional users who know exactly which pre-processing
operators to apply. However, the staggeringly large number of available
pre-processing operators (transformations) overwhelm non-expert users, and
they require support.

Hence, our work focuses on assisting the users by reducing the number
of pre-processing options to a bunch of potentially relevant ones. The goal is
to retain only the transformations that have high positive impact on the anal-
ysis. Like this, we aim at reducing the time consumed in data pre-processing
and at the same time improving the final results of the analysis. The focus
is on classification problems, thus, our method recommends pre-processing
operators that improve the performance of a given classification algorithm
(e.g., increase the predictive accuracy).

Contributions. The main contributions of this chapter can be summarized as
follows:

* We apply meta-learning techniques to develop a system that is capable
of recommending pre-processing operators (transformations) that pos-
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itively impact the final result of some classification tasks. Our method
is based on training an algorithm to learn the impact of pre-processing
operators and then use it to predict and ultimately rank different pre-
processing operators.

* We perform an extensive experimental evaluation to compute the accu-
racy of the rankings with regards to: a) the whole set of transforma-
tions, and b) the top-K. For the former, we obtain an accuracy of 61% as
an average for all the algorithms we consider. For the latter (i.e., K=1),
the accuracy increases up to 68% on average.

* We evaluate our rankings with regards to the benefit/gain obtained
from the user’s point of view and we measure it using a classical infor-
mation retrieval metric, Discounted Cumulative Gain (DCG). For the
whole set of transformations we are as close as 73% to the gain ob-
tained from the ideal rankings, whereas for the top-1 we are as close as
79%.

* We perform an empirical study comparing the ability of real users
against our approach, on finding a transformation that positively im-
pacts the classification accuracy on a set of randomly selected classifi-
cation problems. Our approach, on average, performs 2.5 times better.

The remainder of this chapter is organized as follows. In Section 5.2, we give
an overview on data pre-processing and we perform empirical analysis on
the impact of pre-processing. In Section 5.3, we discuss meta-learning and its
main components. In Section 5.4, we present our tool and proposed method
on using meta-learning for data pre-processing. In Section 5.5, we provide an
extensive evaluation of our approach. In Section 5.6, we discuss the related
work and finally, in Section 5.7, we provide the conclusions.

5.2 Data Pre-processing

One of the reasons that makes data pre-processing consume a lot of time is
that it encompasses a broad range of activities. Sometimes data needs to be
transformed in order to fit the input requirements of the machine learning
algorithm (e.g., if the algorithm accepts only data of numeric type, data is
transformed accordingly) [49]. Sometimes data requires to be transformed
from one representation to another (e.g., from an image representation to a
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matrix representation) [32], or data may even require to be integrated with
other data to be suitable for exploration and analysis [60]. Finally and more
importantly, data may need to be transformed with the only goal of improv-
ing the performance of a machine learning algorithm [17]. The first two
types of transformations are more of a necessity, whereas the latter is more of
a choice, and since an abundant number of choices exist, it is time consum-
ing to find the right one. In this chapter (and in the whole thesis), we target
the latter type of pre-processing, and as such, the transformations taken into
consideration are of the type that can impact the performance of data min-
ing algorithms (i.e., classification algorithms). They are listed in Table 4.1 (cf.
Chapter 4).

In Table 4.1, a transformation is described in terms of the Technique it
uses, Attributes it takes, the Input Type, and also the Output Type. The trans-
formations in Table 4.1 are the most commonly used ones in the Weka [38]
platform, and their implementations are open source'. A short description
for each category of transformations from Table 4.1 follows.

Discretization — the process of converting or partitioning continuous at-
tributes to discretized or nominal/categorical attributes.

Nominal to Binary - the process of converting nominal/categorical attributes
into binary numeric attributes.

Normalization — the process of normalizing numeric attributes such that
their values fall in the range [0,1].

Standardization — the process of standardizing numeric attributes so that
they have 0 mean and 1 variance.

Missing Value Imputation — the process of replacing missing values with
some other value.

Principal Component Analysis — linear dimensionality reduction technique.
The goal is to reduce the large number of directly observable features
into a smaller set of indirectly observable features.

5.2.1 Overall Impact of Data Pre-processing

Other than theoretical analysis [56], to the best of our knowledge there is
not much work on empirically studying the impact of pre-processing oper-

Thttps:/ / github.com/bnjmn/weka
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ators on real world classification problems. In order to assess the impact of
pre-processing, we retrieved 533 datasets from the OpenML [92] repository
and applied the pre-processing operators shown in Table 4.1. We used 5
different classification algorithms (i.e., J48, Naive Bayes, PART, Logistic, and
IBk)? and measured their performance on the datasets before and after the
transformations were applied. In Figure 5.1, we show the scatter plots of the
relative change in predictive accuracy before and after the transformations
where applied. In each scatter plot, we visualize the impact of all the trans-
formations applied to datasets for a given algorithm, where green, red, and
blue, denote positive, negative, and zero impact, respectively. The total set of
transformations applied to all the datasets is approximately 25,000.
Transformations are applied depending on whether they are Local or
Global (as classified in Table 4.1). If a transformation is Global it is applied
only once to all the set of compatible attributes (e.g., normalizing all numeric
attributes), whereas if it is Local, it is applied to: 1) every compatible attribute
individually (e.g., discretizing one attribute at a time), and 2) all the set of
compatible attributes (e.g., replacing missing values of all attributes).

weka J48 weka.NaiveBayes _weka PART weka.Logistic weka.IBk

Fig. 5.1: Distributions of the (relative) impact induced by transformations in different
algorithms

Observing Figure 5.1, one may conclude that:

— overall, transformations impact the final result of the analysis (i.e., they
impact the predictive accuracy of the classification algorithms consid-
ered),

— the magnitude of the impact is heterogeneous, and

— there is no clear winner when it comes to the sign of the impact, i.e.,
transformations do not always impact positively or they do not always
impact negatively.

2We chose one representative algorithm for 5 different classes of classification algorithms in
Weka.
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To confirm the latter, in Figure 5.2, we show the percentages of the positive,
negative and neutral impacts using bar plots.

weka.J48 weka.Nai weka.PART weka.Logistic weka.IBk

50% 50%

0% 40% 40%

30% 30% 30%

20% 20% 20%

10% 10% 10%

0% 0% 0%

\- Zero impact BB Positive impact I Negative\mpa(t‘

Fig. 5.2: The overall impact of transformations expressed in percentage for different algorithms

Figure 5.2, shows that transformations are almost uniformly distributed
when it comes to the sign of impact, which intuitively leads to the conclusion
that it may be challenging to distinguish among transformations that affect
positively or negatively the final result.

5.2.2 Impact per Pre-processing Operator

In the previous section, we argued that in general, the impact of pre-processing
is sound, but it may be difficult to find or predict the transformations that
have positive impact. The analysis was performed on all transformations
without distinguishing their types. The point now, is to check whether the
previous conclusions still hold when we delve into studying categories of
transformations separately (e.g., discretization), or conversely to the general
picture, there exist some patterns (e.g., discretization has mainly positive im-
pact).

In Figure 5.3, in a matrix like structure, we show the impact of every
transformation from Table 4.1, for every algorithm considered. Circles are
sized by the distance from a perfectly uniform distribution of the impact (i.e.,
33% zero, 33% positive, 33% negative), and they are colored by the winner
sign (i.e., blue if zero, green if positive, and red if negative impact is the
winner). Thus, the bigger the circle and the sharper the color, the more
obvious the pattern for a given transformation.

For instance, suppose Nearest Neighbor (IBk) for Normalization has a
distribution of 80%, 10%,10% for zero, positive, and negative impact, re-
spectively, and NaiveBayes for the same transformation has a distribution
of 30%,45%,25%. Then, the sizes of the circles are determined by the eu-
clidean distance between (80,10,10) and (33,33,33), for the first algorithm,
and the distance between (30,45,25) and (33,33,33), for the second algo-
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Fig. 5.3: Impact of pre-processing operators

rithm. The distance for the first algorithm (57.15) is obviously higher than
the distance for the second algorithm (14.73), and hence the size of the circle.
Furthermore, to define the colors of the circles, the distributions for negative,
positive, and zero impact, participate proportionally to the RGB (red, green,
blue) coloring scheme. Hence, for the above mentioned example for the first
algorithm color blue will be more decisive, and for the second green. Yet, for
the first algorithm, the color will be sharper than for the second, because of
the values being higher.

The patterns emerging from the plot may help us in two directions. First,
they can be used to devise basic rules or heuristics, i.e., if a transformation
has a big blue circle for a given algorithm, then the transformation can be
discarded because it is basically of no use for that particular algorithm, since
most of the time it does not affect the final result. Secondly, they enable us to
determine the more difficult transformations in terms of finding the impact
to the final analysis, i.e., if a transformation has a small circle for a particular
algorithm, it means that the distribution of the impact is close to uniform and
hence a simple rule may not help in finding the impact of the transformation.
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The latter rises the need for developing more sophisticated techniques for
discovering the impact of transformations. To this end, we propose to learn
the impact of transformations using meta-learning, and we delve into more
details of this in Section 5.3.

Simple heuristics/rules as result of the empirical study

In Figure 5.3, circles of bigger size give clear patterns for devising simple
heuristics. Notice that the bigger circles are usually of blue color. This means
that the transformations for the corresponding algorithms are not of much
use, since they do not impact the performance of the algorithms on the tested
datasets. Some of the blue circles are obviously expected. For instance, it is
well known that Normalization and Standardization do not impact the per-
formance of Decision Trees (i.e., J48). Hence, a simple heuristic would be that,
when a Decision Tree is chosen, Normalization and Standardization should
not appear in the palette of possible transformations. The same holds for
Logistic Regression. These transformations do not impact its performance.
However, a counter-intuitive pattern appearing, is that of Normalization and
Standardization with Nearest Neighbor. One would expect an impact of
transformations, yet the circles are big and the color is blue, implying no
impact.

We studied the internals of the Weka implementation in order to under-
stand why was this happening. It resulted that Nearest Neighbor in Weka,
internally uses a normalized Distance algorithm. Hence, the Normaliza-
tion/Standardization is implicitly performed inside the learning algorithm
and as a consequence, an external Normalization does not impact the perfor-
mance. Similarly, for Logistic Regression we realized that NominalToBinary
and Missing Value Imputation are applied implicitly in Weka.

The rest of the transformations have smaller circles in Figure 5.3, which
implies that they have impact on the performance of algorithms. However, in
the case of PCA for instance, although smaller, the circles are reddish. This
indicates that although PCA impacts the performance, it needs to be carefully
performed. A default or careless application of PCA may lead to a negative
impact on the overall performance, which indicates that PCA should be used
by experts. However, it is still interesting to discover the transformations that
have negative impact and advise the non-expert user to avoid such transfor-

mations.

90



5.3. Meta-learning for Predicting the Impact of Data Pre-processing

5.3 Meta-learning for Predicting the Impact of Data

Pre-processing

Meta-learning is a general process used for predicting the performance of an
algorithm on a given dataset. It is a method that aims at finding relationships
between dataset characteristics and data mining algorithms [11]. Given the
characteristics of a dataset, a predictive meta-model can be used to foresee the
performance of a given data mining algorithm. For instance, in a classifica-
tion problem, meta-learning can be used to predict the predictive accuracy of
a classification algorithm on a given dataset and hence provide user support
in the mining step.

Meta-learning can also be used to provide support in the pre-processing
step [8, 35] (cf. Chapter 4). This can be done by learning the impact of data
pre-processing operators (transformations) on the final result of the analysis.
That is to say, detecting the transformations that have the most positive im-
pact on the final analysis (i.e., transformations that after being applied on a
dataset of classification type, increase the accuracy of a given classification
algorithm on that dataset). This way, meta-learning pushes the user sup-
port to the data pre-processing step by enabling a ranking of transformations
according to their relevance to the analysis. The ranking is made possible
through the three phases, shown in Figure 3.1.

To enable meta-learning, the first thing to do for each classification al-
gorithm is to create a dataset, that is, a matrix-like structure consisting of
variables/features (predictors) and a response. The variables of this dataset
are dataset characteristics — in this case characteristics of the transformed
datasets (e.g., number of instances, number of missing values, etc.). The re-
sponse is a performance metric of the classification algorithm (e.g., predictive
accuracy). Since all these are metadata, this dataset is called a meta-dataset.
Consequently its variables are referred to as meta-features and the response
variable is named as meta-response. Furthermore, the process of learning
on top of this meta-dataset is referred to as meta-learning, and the learning
algorithm used is referred to as meta-learner. The meta-features, the meta-
response, and the meta-learner are the key ingredients, and we will delve
into details of each one of them, in the following sections.
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5.3.1 Meta-features

The meta-features we specifically consider in this chapter are shown in Ta-
ble 4.4. These are the set of meta-features extracted from OpenML [92].

In Table 4.4, column Modifiable indicates whether the meta-features are
modifiable through the transformations we use (listed in Table 4.1). If meta-
features are not modifiable/transformable, they are not considered because
they remain constant and they do not reflect the impact of transformations.

Note that the ultimate goal is to predict the impact of transformations,
and the impact per se, in this chapter is measured as the relative change of
the performance of the algorithm before and after the transformation was ap-
plied. To this end, to the set of meta-features we consider, we attach also the
base performance of the classification algorithm (i.e., the performance before
the transformation is applied) and in addition we add features that capture
the difference between the meta-features before and after the transformation
was applied. We call these features delta meta-features. As a result, every
meta-feature has its corresponding delta meta-feature. For instance, let us
say that in a given dataset, before applying a transformation, the number of
continuous attributes is 5. Assume we apply a transformation that is discretiz-
ing only one continuous attribute, then the number of continuous attributes
becomes 4 and thus the delta of this feature is —1 (i.e., the delta of the number
of continuous attributes).

Taking the deltas into account the total set of meta-features becomes large.
We apply meta-feature extraction and selection in order to select only the
most informative (with more predictive power) meta-features (cf Section 3.3.

5.3.2 Meta-response

The goal of meta-learning is to correctly predict the impact of transformations
on the performance of machine learning algorithms. Different measures can
be used to evaluate the performance of machine learning algorithms. Since
we are dealing with classification problems, and hence the algorithms we
consider are of classification type, the performance is usually measured in
terms of predictive accuracy, precision, recall, or AUC [39]. Moreover, classifica-
tion algorithms are usually evaluated using 10-fold cross-validation [53]. In
Table 3.1, formulas for calculating these measures are given.

These measures are collected before and after the transformations are
applied. The relative change between the performance obtained after the
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Fig. 5.4: Overview of PRESISTANT

transformation and the base performance (performance obtained before the
transformation) is the impact of a transformation on the predictive power
of a classification algorithm, and this is the meta-response. Based on the
meta-features and delta meta-features mentioned previously, the goal of the
meta-learner is to correctly predict this impact, which can be positive — if the
transformation helps on improving the performance, negative — if the per-
formance decreases after the transformation, and zero — if the performance
remains the same.

5.3.3 Meta-learner

Given that meta-features (including delta meta-features) and meta-response
candidates are defined, the next step is to define the meta-learning problem.
Since the meta-response — the impact of transformations, is of continuous
(numeric) type, the learning problem naturally fits to a regression type. Yet,
we are interested in finding the transformations that either positively or neg-
atively impact the data analysis, without necessarily needing to know the
exact amount of impact. As a matter of fact, the problem may as well be
defined as a classification problem, where three classes would be required,
positive, negative, and zero.

54 PRESISTANT

When dealing with a classification problem, the non-expert data analyst has
to choose from a large number of machine learning algorithms, and in addi-
tion, he/she encounters a plethora of different pre-processing options. Once
the classification algorithm is chosen (i.e., one of the algorithms considered),
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PRESISTANT assists the user by reducing the number of pre-processing op-
tions to only a set of relevant ones (i.e., operators that have positive impact).
To do this, PRESISTANT uses a method consisting of three phases, shown in
Figure 5.4 (cf. Appendix A for more details).

In the first phase, rules are applied to prune transformations such that the
search space is reduced. In the second phase, a model is trained to learn the
impact of transformations on the performance of classification algorithms. Fi-
nally in the third phase, the trained model is used to rank the newly arriving
transformed versions of datasets.

5.4.1 Pruning Phase

Given that there is an overwhelming number of different transformations that
can be applied to a dataset, in Section 5.2.2, we argued that simple rules can
help on discarding transformations that have no impact. This translates to
having a repository of Expert Rules (cf. Figure 5.4), that can be extended to
contain any types of rules that may be known in advance and that reduce the
number of potential transformations to be applied on datasets. Our first ba-
sic set of rules is derived from the experiments whose results were shown in
Figure 5.3, where for instance we define rules in order to exclude Standard-
ization and Normalization when considering algorithms like, IBk, Logistic,
J48, and PART.

5.4.2 Learning Phase

Two important activities are performed in the learning phase. First, a meta-
database (i.e., set of meta-datasets) is generated for all the classification al-
gorithms considered (cf. Algorithm 1), and then on top of it, a learning
algorithm is applied (cf. Algorithm 2). As a result, a statistical model (meta-
model) is generated for every classification algorithm considered.

The inputs required to construct the meta-database are datasets, trans-
formations — that are likely to improve the performance of classification
algorithms, and the classification algorithms in consideration.

For the sake of simplicity, let us consider that we want to create the meta-
dataset for a single classification algorithm. In line 5 of Algorithm 1, we
first extract the dataset characteristics (i.e., meta-features from the original
non-transformed datasets). Next, we apply all the available transformations
to all the datasets and hence obtain transformed datasets, see line 8. We
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Algorithm 1 Establish meta-database

Output: meta_db[1.#algs]|[1. #trans|[1. #metadata]; > meta-database;
meta-dataset per classification alg.

1: function CREATEMETADB(datasets| |, trans formations| |,classAlgs[ ])
2: metadata| | = &; = the set of metadata to be collected

3: for each algorithm alg in classificationAlgs do

4 for each dataset ds in datasets do

5: ds_mf[] = CoMPUTEMETAFEATURES(ds); > Tbl. 4.4
6: ds_pm = GETPERFORMANCEWITH10FOLDCV(alg,ds); = Tbl. 3.1
7: for each transformation tr in transformations do

8: trans_ds = APPLYTRANSFORMATION({7,ds);

9: trans_ds_mf[ ] = CoMPUTEMETAFEATURES(frans.ds);
10: Amf[] = trans_ds_mf[] —ds_mf[];

11: trans_ds_pm = GETPERFORMANCEWITH10FOLDCV(alg,ds);
12: mr = |trans_ds_mr — ds_pm| / ds_myr; > meta-response
13: metadata[ | = trans_ds_mf[] v Amf[] v ds_pm u mr;

14: meta_dblalg][trans_ds| = metadatal |;

15: end for

16: end for

17: end for

18: return meta_db;

19: end function

Algorithm 2 Create meta-models

Input: datasets]..] > available datasets of classification type
trans formations|..] > set of transformations to be applied
classificationAlgs|..] = available classification algorithms
Output: models| | = meta-model for each algorithm

1: function PERFORMMETALEARNING

2 meta_db = CREATEMETADB(datasets[ |, trans formations[ |,classAlgs[]);
3 meta_learner = RandomForest(); = a meta learner of choice
4 models[ | = &;

5 for each algorithm alg in classificationAlgs do

6: models[alg] = APPLYMETALEARNER(meta_learner,meta_db[alg][ ][ ]);
7 end for

8: return models;

9: end function

extract the meta-features from the transformed datasets in line 9, and take
the difference between them and the meta-features from the original non-
transformed datasets in line 10. Like this, we obtain the delta meta-features.
Furthermore, to both original non-transformed datasets — line 6, and the
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transformed ones — line 11, we apply the classification algorithm and then
take the relative change between their corresponding performance measures
(e.g., predictive accuracy) — line 12. The latter is the meta-response, which
together with the meta-features of the non-transformed version of the dataset,
the delta meta-features, and the performance measure of the original dataset
compile the complete set of metadata — see line 13.

Once a meta-dataset for each classification algorithm is obtained, next a
learning algorithm (i.e., meta-learner) is applied on top — line 6 of Algo-
rithm 2, and as a result, a meta-model (i.e., statistical model) for each of the
classification algorithms is obtained. PRESISTANT uses the Random For-
est [12] algorithm as meta-learner. The XGBoost [16] algorithm was also
tested as meta-learner. Similar results were obtained, yet Random Forest is

easier to interpret.

5.4.3 Recommending Phase

The recommending phase starts when a user wants to analyze a dataset.
He/she selects an algorithm to be used for the analysis and the system au-
tomatically recommends transformations to be applied, such that the final
result is improved. This phase is described in Algorithm 3, where first the
meta-features and the performance of the classification algorithm are ex-
tracted from the original non-transformed dataset in lines 4 and 5, respec-
tively. Next, different transformations are applied to the dataset and from
each transformed version of the dataset the necessary features (i.e., meta-
features, delta meta-features) are computed — see lines 6-10. The extracted
features are then fed to the predictor in line 11. The predictor in line 11, does
no more than applying an already existing meta-model to the extracted fea-
tures, to find the predicted impact of a transformation on the performance of
the algorithm.

After the predicted impacts are obtained for all the transformations, they
are ranked in descending order — using the probabilities of being positive;
provided by the model, in line 12.

Note that a strong feature of PRESISTANT is that it actually only predicts
the performance of the algorithms, otherwise the classification algorithms
need to be applied for real on the transformed datasets. The former, as shown
in Table 5.1, is orders of magnitudes faster than the latter.

Furthermore, the number of total transformations executed per dataset
determines the level of interactivity that one can get with PRESISTANT. The
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Algorithm 3 Recommend transformations

Input: models]..]; > meta-model for each algorithm
trans formations|..]; > set of transformations to be applied
ds o> new dataset chosen by the user
Output: transformations|..]; & trans. ordered according to predicted impact
function RANKTRANSFORMATIONS(datasets| | ,trans formations| |,class Algs| ])

1:

2 predictions[ ][ ]; > predictions for transformed datasets
3 ds_mf[] = CoMPUTEMETAFEATURES(ds);

4 ds_pm = GETPERFORMANCEWITH10FOLDCV(alg,ds);

5: for each transformation tr in transformations do

6 trans_ds = APPLYTRANSFORMATION (t7,ds);

7 trans_ds_mf = COMPUTEMETAFEATURES(ds);

8 Amf[] = trans_ds_mf[] —ds_mf[];

9 features[| = trans_ds_mf[] v Amf[] v ds_pm;

10: predictions[tr] = APPLYMODEL(features| |,models[class Alg]);
11: end for

12: trans formations = RANKBYPROBABILITIES(predictions,desc = true);
13: return trans formations;

14: end function

cost of executing most of the transformations individually, as shown in Ta-
ble 5.2, is very cheap (notice that could be even cheaper executing several
in a single pass over the dataset), unless more complex transformations like
PCA are considered. However, as we already mentioned in Section 5.4.1, the
task of an expert in the pruning phase would be to define rules that would
filter the useless transformations and at the same time in a sense configure
the overall level of interactivity.

Algorithm Alg. Execution  Predictions Transformation Exec. Time
weka.J48 4658 0.1 Discretization 14.65
weka.NaiveBayes 1530 0.1 NominalToBinary 4.63
weka PART 14144 0.1 Normalization 0.50
weka.Logistic 28880 0.1 Standardization 0.63
weka.IBk 7624 0.1 PCA 980
Table 5.1: Comparison of average run times Table 5.2: Average run time (ms) of
(ms) per dataset, real executions vs transformations per dataset
predictions
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5.5 Evaluation

We perform experimental studies to evaluate the performance of our tool. In
particular, the aim of the experiments are three-fold:

1. Asses the performance of PRESISTANT in terms of the quality of the
predictions from the meta-learner perspective. We try to answer the
question "How good are the predictions?" (cf. Section 5.5.1).

2. Assess the gain obtained by the recommendations from the user per-
spective. We try to answer the question "How valuable are the recom-
mendations?" (cf. Section 5.5.2).

3. Assess the performance of the recommendations of PRESISTANT, com-
pared to the transformations picked by humans in a set of randomly
selected classification problems. We try to answer the question "How
difficult is to find the correct transformations in practice?" (cf. Sec-
tion 5.5.3).

To enable the use of the entire set of datasets in the experiments, we use
the 10-fold cross-validation method. This entails that for each classification
algorithm considered, when building the meta-models, if a dataset is used in
testing the same is not considered in the training.

Furthermore, we performed experiments treating the meta-learning prob-
lem both as classification and as regression. Similar results were obtained in
both cases. We discuss only the results obtained with classification.

5.5.1 The Quality of Predictions

Predictions provided by the meta-model enable the ranking of transforma-
tions. The list of recommended transformations can be very large in case a lot
of transformations are considered (e.g, with different parametrization). One
may be interested in the whole set of transformations (e.g., "recommending
all good items" in collaborative filtering), or only on the top-K transforma-
tions, K being an arbitrary number (e.g., "recommending some good items" in
collaborative filtering). The latter is more realistic since the greater the ranked
position, the less valuable a transformation is for the user, because the less
likely it is that the user will examine the transformation due to time, effort,
and cumulated information from transformations already seen/applied [43].

98



5.5. Evaluation

Table 5.3: Confusion matrices

Predicted Predicted
Positive Negative Zero Positive Negative Zero
Real Real
Positive TP FN, FO, Positive TP FNP
Negative FP, N FO, Negative
FP’ TNP
Zero FP, FN, T0 Zero
a) b)

We performed evaluations both considering the whole set of transformations
and considering only the top-K.

Evaluation of the quality of the whole set of transformations

When treated as classification, the meta-learning problem translates to a
multi-class classification problem with three classes (i.e., positive, negative,
zero) in the response variable. Given that it is a multi-class problem and
knowing that all the classes do not have the same importance, we cannot use
the traditional binomial confusion matrix for the evaluation. For instance, re-
garding the importance of classes, miss-predicting a zero transformation does
not have the same impact as miss-predicting a positive or negative transfor-
mation.

Therefore, in Table 5.3a, we devise a confusion matrix that consists of
two parts. The inner (green) part is the traditional confusion matrix for the
positive and negative predictions and the outer (orange) part is the one that
takes into account the zero class.

Furthermore, since datasets have varying numbers of attributes, they do
not have the same number of transformations applied to them i.e., some
datasets can have more transformations than others (cf. Table 4.1). To give
equal importance to every dataset regardless of the number of transforma-
tions, we assign weights to their corresponding transformations (i.e., trans-
formed versions of the same dataset): wr, = 1/|T4|, where |T,]| is the total
number of transformations applied to dataset d. Like this, each dataset has
weight equal to 1.

Using the matrix shown in Table 5.3a, per dataset 4 and for the set of
its transformations T; with their corresponding weights wr,, we evaluate
our system calculating the Predictive accuracy (PA,), Precision (Pr;), Overall
recall (ORj;), and G-measure (G;), defined as follows:
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oA TP + TN oy P TN )
47 TP+ FENp+FPy+TN ¢~ \TP+FPy ' TN +FNp

OR. — TP+ FNp+ FPy + TN __(PA;x ORy
47 TP+ FNp+ FPy + TN + (FOp + FON) %~ “\ PA, + OR;

where TP represents the number of true positives, FNp the number of
false negatives, FPy the number of false positives, and TN the number of
true negatives. Furthermore, FOp represents the number of transformations
that are predicted as zero but in reality they are positive, FOy represents the
zero predicted transformations that are in reality negative. Finally, FP; are
positive predictions that in reality have zero impact, F Ny negative predictions
that in reality have zero impact, and T0 are the true zeros. Notice that FPy
and FNj are less harmful than FOp and FOy, respectively, since predicting
a transformation as zero and then having a positive impact in real (FOp)
is worse than predicting a transformation as positive and then having zero
impact in real (FPp). The same applies for FNy when compared to FOy.

The aforementioned measures are calculated for individual datasets d.
Averaging the individual measures over all datasets with at least one relevant
transformation, we obtain the mean Predictive accuracy PA, Precision Pr,
Overall recall OR, and G-measure G. In the experiments performed on 533
datasets we obtained the results shown in Figure 5.5.

The results show that on average, if a user selects any transformation
from the whole list of possible transformations (T;), the system provides an
accuracy of 63%.

Evaluation of the quality of the top-K recommendations

Since real users are usually concerned only with the top part of the recom-
mendation list, a more practical approach is to consider the number of a
datasets” relevant transformations ranked in the top-K positions.

Many details need to be considered in order to perform a proper evalua-
tion of the K positions.

First of all, for the sake of simplicity, let us use the confusion matrix
shown in Table 5.3b, where we denote as True Non Positive (TNP = TN +
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Fig. 5.5: Results obtained when evaluating the whole set of transformations

FOn + FNp + T0), a transformation that is predicted as non-positive and it
is non-positive in real (i.e, after executing the classification algorithm the
transformation has no positive impact). False Non Positive (FNP = FNp +
FOp), a transformation that is predicted as non-positive but is positive in real.
Finally FP’, a transformation that is predicted as positive but in reality can
have either negative or zero impact.

Next, notice that for each dataset there could be L transformations that
have real positive impact, and the system (in practice) recommends y trans-
formations that are predicted to have a positive impact.

To be able to perform evaluations for all the datasets, including the datasets
with L=0 (i.e., datasets that do not have any transformations that have real
positive impact), and to be able to calculate average measures for datasets
with different L for all the positions in the ranking, we rank the transforma-
tions as follows: first we rank the y positively predicted transformations by
their probability of being positive (the highest goes first). Next, we append
the remaining real positive transformations (if any are left) up to L. Finally,
we append all the remaining transformations ranked by their probability of
being positive.

This ranking allows us to perform evaluations for each position K for any
dataset with L real positive transformations. The results of the evaluations
form a matrix of size [L, K], and the possible evaluation we can have is shown
in Table 5.4, where two possible scenarios are considered:

1. if y > L (i.e., we predict too many positive transformations), the current

101



Chapter 5. Learning Based Recommending Assistant for Data Pre-processing

Table 5.4: Evaluation of our approach based on the chosen ranking (ordering of

transformations)
TP or FP' C,Lg> TP or FP' <,yﬁ,\ TNP or FNP
TPorFP' .7, FNP L, TNPOrrnp

transformation in position c¢ can be below y where we can find either
TP or FP', and above y where we can find either TNP or FNP.

2. if y < L (i.e., we predict too few positive transformations), the current
transformation in position ¢ can be: below y, between y and L, and
above L. Below y, we can find either TP or FP'. Above L, we can
find either TNP or FNP. Finally, between y and L we can only find
FNP, since here we have the transformations that are predicted as non-
positive (c > y), but in reality they have positive impact.

Using the aforementioned, we can calculate accuracy measures where below
the diagonal we can compute the ratio of true positives (TP/(TP + FP' +
TNP + FNP)), and above the diagonal we can calculate the ratio of true non
positives (TNP/(TP + FP' + TNP + FNP)).

In Table 5.5, we show the results obtained for algorithm IBk. The numbers
shown inside each cell [L, K], denoted as x/z, are the cumulative accuracies x,
and the number of datasets z, which have at least K transformations and ex-
actly L real positives. The cells are colored according to the values obtained,
the darker the color the higher the accuracy.

Notice that the cells below the diagonal become darker as L grows. This
means that we obviously perform better when the number of real positives
is higher. Furthermore, the cells in the bottom part are darker than the rest.
This means that we perform better in the top-K positions.

In Table 5.6, we show the weighted average results for all L, but only for
position K=13.

Comparison with a random pick

To evaluate the performance of our approach, we compare it to the approach
of a user randomly selecting a transformation to apply. For the latter, given
the data, we need to find the probability of having TP below the diagonal
and having TNP above the diagonal.

3The complete results for the corresponding algorithms are shown in Appendix A.
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Table 5.5: Accuracy values obtained for the IBk classifier, for transformations in positions K in
datasets with L real positive transformations. The numbers shown inside the cells, denoted as
x/z, are the cumulative accuracies x, and the number of datasets z, which have at least K
transformations and exactly L real positives. The last column, shows the values obtained after
computing the weighted average for each position K for all possible L.

0.5/21

0.54/28

0.52/30

0.5/32

6- 0.52/23 046/18 0.48/28 05529  0.49/32

Positions K

5-  0.47/23 0.4/18 0.43/28  0.52/29
4- 047/31 03921 046/35 0.52/34
3- 03931 035721

2-0.27/31 0.31/21

1--E

1

weka.|Bk
0.54/28 0.55/22
0.51/30 0.52/23
0.52/35 0.52/28
0.51/35 0.47/29

0.45/23

0.45/25

0.46/26

0.43/28

0.4/30

0.48/27

0.44/30

Accuracy

0.8

Real positives L

0.6

0.4

Table 5.6: Weighted average values for all L in K=1

Algorithm  WAVG in K=1 #Datasets
J48 0.62 533
Naive Bayes 0.78 533
PART 0.67 533
Logistic 0.57 480
IBk 0.77 533
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Table 5.7: Evaluation of the random pick based on the chosen ranking

L ] L - ITal =L
o s .
Tal=L ;
L y . L ard-n -ty
A “ > P S——— 1 S
[Tal = L

Finding the probability of having TP below the diagonal in the K posi-
tion, translates to the problem of finding the probability of picking a positive
transformation in K draws from a bag consisting of positive, negative, and
zero (neutral) transformations. This follows a hyper-geometric distribution
and the expected value of TP in a cell [L, K] below the diagonal is calculated

as Urp = KIT%I’ where |T;| denotes the total number of transformations in
L—|Ty|

! } . T4l

To make a fair comparison with our approach, we need to assume the

dataset d. The expected value of TNP is calculated as yrnp = K

same ordering. Hence, the values to be calculated are shown in Table 5.7,
where i/ is the expected number of positive predictions a dataset can have,
which is calculated as the ratio of the transformations of dataset d, given the
proportion of all real positives we can have for algorithm a, iy = |T,|P,(Positive)
(probabilities for each algorithm can be found using the distributions of the
impacts in Figure 5.2).

In Table 5.7, again two scenarios are considered:

1. if ¥ > L (i.e., the random picks too many positive transformations),
below i’ we take the probability of being TP, and above y’ we take the
probability of being TNP.

2. if ¥’ < L (i.e, the random picks too few positive transformations), for
the current transformation ¢ positioned below y’, we calculate the prob-
ability of being TP. For the transformation positioned between i’ and
L the probability of being TP is 0. Finally, for the transformation posi-
tioned above L we calculate the expected TNP based on the expected
positive predictions y/'.

More precisely, given the conditions in Table 5.7, the probabilities for each
cell [L, K] are calculated using the following function:
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(min(K, y’)ﬁ +max(0,K —y') ‘TldTl;‘L)/K, ify > L
PLK) =4 (im-o-styy
(min(K,y )m +max(0,K — L)T)/K, ify <L

To show whether the values obtained by our approach are significant, we
performed a binomial distribution test comparing the true positives obtained
by our approach with the total number of datasets, against the theoretical
probabilities obtained by the random pick. The results obtained are shown
in Table 5.8, where the color of the cell denotes whether the value obtained
is significant or not (white means significant). We consider the value to be
significant if it is p <= 0.001.

It can be observed that significant values are obtained for most of the

Table 5.8: Significance values obtained when comparing results obtained with meta-learning
and the random pick, for the IBk classifier. The numbers shown inside the cells, denoted as x/v,
are the cumulative accuracies x obtained using our approach, and the random pick
probabilities z, for datasets with at least K transformations and exactly L real positives. The last
column shows the averages for our approach compared to the random pick, in each position K,
weighted by the number of datasets in each L.

weka.|Bk
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cells below the diagonal where the accuracy with regards to TP is measured.
Furthermore, it is worth to mention that:

— Observing the bottom left-most cell, it can be noted that the system in-
creases the chance of finding the transformations that do not positively
impact the analysis (the system may suggest avoiding those transfor-
mations).

— The bottom right-most cell indicates that for position K = 1, we almost
double the accuracy compared to the random pick (77% versus 41%).
Moreover, the accuracy obtained for the whole set of transformations
for IBk was 67%, and for top-1 becomes 77%.

— The probabilities of the random pick start to become higher above the
diagonal due to the fact that it is easier to guess negative transforma-
tions as you go down in the ranking.

— Significance values are also impacted by the sample sizes (number of
datasets), which are different for each L and they may also vary for
different Ks. Yet, observe the last column where the weighted averages
are shown. The calculations are done for all the datasets on each K, and
the values obtained are significant.

5.5.2 The Gain Obtained from Recommendations

In the Information Retrieval domain, different measures that calculate the
gain obtained from a ranked result have been proposed. The most popu-
lar one among them is the Discounted Cumulative Gain (DCG) [43]. The
assumption is that the greater the ranked position, the less valuable the
item (i.e., transformations) is for the user, because it is less likely that the
user will examine it. Thus, DCG uses a discounting function that progres-
sively reduces the gain as the rank increases. To compute DCG, a permuta-
tion/ordering 7t of the gain values Gr, on the entire list of transformations in
a given dataset d, results in the ordered list of gains G, 1, (a vector of length
N, where N is |T|). In particular, we are interested in the permutation that
sorts according to our predicted scores (i.e., predicted probabilities) for the
various transformations in a dataset: Gy, denotes the recommended list
or gains in descending order of the predicted scores of the transformations
(highest ranked transformation is first in list). Moreover, the best (Gpest,T,)
and worst (Gyorst, ;) possible permutations are also of interest.
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For the general case DCG is computed as [87]:

N

GTL’ Td
DCGGn,Td Z logz i + 1

The calculations are performed for each dataset and we obtain values for

the recommended ranking (DCGg,,, ; ), the best ranking (DCGg,,, oy ) and the

rec,Ty

worst ranking (DCGg_ , 1, ).
To obtain a relative value, we normalize the gain obtained by our recom-

mendations in the following way:

DCGg,,;, — DCGg
DCGa,,,,, — DCGg

worst, Ty

nDCGy =

warst,Td

This normalized value can be interpreted as a percentage of how close we
are to the best ranking, and it is calculated for each dataset. Averaging the
individual measures over all datasets with at least one relevant (non-neutral)
transformation we obtain the mean nDCG. This measure can again be cal-
culated for the whole set of transformations or for the top-K. In Table 5.9,
we provide the results obtained for the whole set of transformations and for
top-1, for all the classification algorithms considered.

Table 5.9: Normalized discounted cumulative gain values

nDCG

Algorithm #Datasets”
All trans. Top-1

J48 0.72 0.78 475

Naive Bayes 0.78 0.85 476

PART 0.73 0.79 476

Logistic 0.63 0.66 421

IBk 0.77 0.85 475

"Number of datasets with at least 1 relevant (non-neutral) transformation

5.5.3 PRESISTANT Compared to Humans

In this section, we discuss the results obtained in an empirical evaluation
with humans. The importance of evaluations with real users has already
been acknowledged in previous works [13].
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Table 5.10: UCI datasets used in the Table 5.11: Average scores of users and
experiments PRESISTANT

Dataset  #Participants Algorithm Users PRESISTANT
autos 31 J48 0.10 0.27
ecoli 37 Naive Bayes  0.52 1.0
diabetes 30 PART 0.21 0.51
flags 39 Logistic 0.10 0.50
IBk 0.17 0.55
Total 0.22 0.57

Our experiment, in the form of a quiz4, is defined as follows: given a
dataset, a classification algorithm, and a set of applicable transformations
over the dataset, find the transformation that has the most positive impact on
the classification accuracy of the algorithm. If none of the transformations is
ought to have positive impact, pick option "None".

Among the possibly many positive transformations per dataset, users
must find only one of them to have their answer considered as correct. On
the other hand, PRESISTANT’s choice is considered correct if its top recom-
mended transformation is among the positive ones. In both cases, score 1 is
assigned to the correct, and score 0 to the incorrect answer.

We performed experiments with 4 randomly selected datasets® (cf. Ta-
ble 5.10), and the 5 classification algorithms that PRESISTANT supports. The
maximum number of participants per dataset was 39, and their background
varied between users with "No knowledge" in data mining — 18.71%, "Ba-
sic knowledge" — 48.75%, "Intermediate knowledge" — 31.07%, and "Expert
knowledge" — 1.47%. Most of the participants held master’s degrees in fields
related to Computer Science — 72.83%. Others held Ph.D.’s in some Com-
puter Science field — 15.89%, and the rest were undergraduate students in
Computer Science — 11.28%. More than half of the participants were not
students and they are currently pursuing their professional careers in either
companies or academia, always in the field of data management and analyt-
ics.

The average scores obtained per algorithm by real users and PRESISTANT
are compared in Table 5.11. PRESISTANT scored on average 2.5 times better
than humans, showing its effectiveness in real scenarios. More interestingly

“http://www.essi.upc.edu/"bbilalli/presistant.html#quiz
SDatasets are retrieved from the UCI repository: https://archive.ics.uci.edu/ml/
datasets.html
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5.6. Related Work

however, users performed worse than they were expected (i.e, they score 0.22
and the expected score with a random pick is close to 0.3). We suspect this
occurred because of the fact that users were biased towards selecting trans-
formations that are of type Global — applied globally to all the compatible
attributes of a dataset. Indeed, 7 out of top 10 most frequently picked trans-
formations were either of type Global or "None" — 57.08%. Yet, out of the
transformations shown to the user on average only 37% of them were of type
Global and the rest were Local.

Overall, the results indicate that in practice it is difficult to find the trans-
formations that positively impact the analysis and that there is obvious need
for user support.

5.6 Related Work

A lot of research has been done in order to address the problem of provid-
ing user support in the different steps of knowledge discovery. The idea has
been to develop (semi) automatic systems that provide user assistance in one
or many steps altogether. In the beginning, the focus has been to provide sup-
port exclusively for the data mining step. Recently however, the direction has
shifted towards designing systems that specifically provide user assistance in
the data pre-processing step and also systems that aim at fully automating
the knowledge discovery process.

In the following, we give more details about the methods and systems
developed to provide support in the different steps of knowledge discovery.
User support in data pre-processing. Since pre-processing covers a broad
range of activities, different systems have been developed to tackle the prob-
lem of user assistance from different perspectives. There are systems that
discover patterns and detect errors in data and then automatically infer rele-
vant transformations. For instance, in Potter’s Wheel [76], Wrangler [49], and
Foofah [44], the relevant transformations are learned by example. The user
either directly manipulates the visualized data or he/she needs to provide
the output (to be) data.

In KATARA [18], DataXFormer [66], and VADA [54], they also infer trans-
formations, however this time using external knowledge stored in knowledge
bases, web tables, or knowledge obtained through interaction with crowds.

Other systems like NADEEF [21], Llunatic [34], and BigDansing [51],
(semi) automate the detection and repairing of violations with respect to a
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set of heterogeneous and ad-hoc constraints. Many types of quality con-
straints like functional dependencies, conditional functional dependencies,
multivalue dependencies, and ETL rules can be defined. Their goal is to cope
with multiple queries holistically and optimize their application.

In DataTamer [88] and DataCivilizer [23], they deal with the end to end
curation (e.g., integration, de-duplication) of data from different sources.

Finally in ActiveClean [57], they aim at prioritizing the cleaning of records
that are more likely to affect the results of the statistical modeling problems,
assuming that the latter belong to the class of models called convex loss
models (e.g., linear regression and SVMs).

Note that the assumption of the aforementioned systems is that an ex-
pert user is performing the analysis. That is, the user knows what the final
shape of the transformed data should look like. Our assumption is that the
user is a non-expert, and he/she wants to apply transformations only for the
sake of improving the analysis. That is, he/she does not know what the in-
put dataset to a mining algorithm should look like in order to yield better
results/analysis.

User support for data mining (model selection). The main systems for pro-
viding support in data mining are dubbed as Expert systems and Meta-learning
systems.

Expert systems [26, 75, 84] are the first and simplest systems to provide
help to the user during the data mining phase. Their main component is a
knowledge base consisting of expert rules. Given the input, either from the
user or extracted from the dataset, rules are used to determine the mining
algorithms to be recommended.

Meta-learning systems (MLS) [11, 36, 46] are more advanced than Expert
systems. The rules that were statically defined by the experts in the previous
category are dynamically learned here. MLSs try to discover the relationship
between measurable features of the dataset and the performance of different
algorithms, which is a standard learning problem. The learned model is then
used to predict the most suitable data mining algorithm for a given dataset.

In general, the drawback of these systems is that they overlook the impact

of pre-processing.
User support for data analytics (knowledge discovery). When it comes to
automating the whole knowledge discovery process we distinguish between
Case-based reasoning systems, Planning-based data analysis systems, and AutoML
(automated machine learning) systems.
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Case-based reasoning systems (CBS) [26, 61, 68] store the successfully applied
workflows (i.e., machine learning pipelines) as cases, in a case base, with the
goal of reusing them in the future. When faced with a new problem (i.e.,
dataset) provided by the user, these systems return k similar cases, which can
be further adapted to the current problem.

Planning-based data analysis systems (PDA) [24, 52, 95] are able to autonomo-
usly design valid workflows without relying on similarities. To this end, the
workflow composition problem is treated as a planning problem, where a
plan is built by combining operators that transform the initial problem into
accurate models or predictions. In order to construct valid workflows, the
input, output, preconditions, and effects (IOPE) of each operator (e.g., pre-
processing or data mining algorithm) need to be formally defined. Plenty
of workflows are then generated by combining operators that syntactically
complement one another.

AutoML systems [28, 71, 89] refer to systems that try to automatically opti-
mize the hyperparameters of operators. The goal is to automatically generate
workflows or machine learning pipelines that give optimal results for the task
at hand. Typically, Bayesian optimization methods are used to tune and op-
timize the hyperparameters. Since Bayesian optimization is randomized and
it starts from a random configuration of hyperparameters, meta-learning has
been used to find a good seed for the search [29].

Note that the full automation of knowledge discovery has been an ulti-
mate goal of many research works. However, reaching such an automation
has shown to be computationally expensive due to the search space, which
explodes even more with the increase of pre-processing and mining oper-
ators. Therefore, the usability of such approaches in realistic scenarios is
limited. In addition, our approach of finding a bunch of relevant transforma-
tions can be seen as complementary to these solutions, since it can help in
pruning their large search space.

5.7 Conclusions

In this chapter, we addressed the problem of assisting non-expert users to
perform pre-processing with the goal of improving the final results of their
classification tasks.

To provide assistance, we trained a model that learned the relationship
between pre-processing operators and the performance of classification algo-
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rithms. To this end, we were able to rank the transformations according to
their impact on the final result of the analysis (i.e., the impact of transfor-
mations on the predictive accuracy of a classification algorithm). An exten-
sive evaluation on hundreds of datasets and a set of classification algorithms
showed that our approach gives promising results. More specifically, we were
able to observe that:

— even if a user randomly picks a transformation from the entire list of
transformations ranked by PRESISTANT we obtain an average accuracy
of 61%, for all the algorithms considered,

— recommending only the top-1 transformation, increased the average ac-
curacy to 68%,

— measuring the gain obtained from our ranking for all transformations
using DCG, we were as close as 73% on average to the gain obtained
from the best possible ranking (for all the algorithms considered),

— measuring the gain from the top-1 recommendations using DCG, we
were as close as 79% on average to the gain obtained from the best
possible ranking,

— in a set of randomly selected classification problems, PRESISTANT per-
formed 2.5 times better than humans (mostly non-experts).

Finally, the results indicate that PRESISTANT can assist users to more effec-
tively identify the pre-processing operators appropriate to their applications,
and to achieve improved results.
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6.1 Conclusions

When data pre-processing is treated as an independent, stand-alone process,
its impact on a potential analysis (e.g., mining) is not questioned, and this is
normal. The problem rises when data pre-processing is performed within a
knowledge discovery process (i.e., it is performed as a step before mining),
and yet its impact on the analysis is not considered. Systems aiming at pro-
viding user support in data pre-processing have typically considered it as an
independent step, and therefore their support has generally been syntactic.

Differently from previous works, the goal of this thesis was to provide
user assistance in data pre-processing with the aim of improving the perfor-
mance of the overall analysis. To narrow down the problem, we focused on
classification problems. That is, given the classification algorithm to be used,
the task was to provide user support by recommending data pre-processing
operators that would improve the results of the analysis (e.g., increase the
predictive accuracy).

To this end, we proposed the use of meta-learning as a method that ex-
ploits metadata about data mining experiments on transformed datasets, to
learn the relationships between pre-processing operators and classification
algorithms. Since this was a learning problem that naturally translates to a
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knowledge discovery process, we had to pass through all the steps of knowl-
edge discovery (data analytics) in order to make it work. Therefore, as men-
tioned in Chapter 1 (cf. Figure 1.3), the overall work of this thesis matches
a knowledge discovery process, and hence the different chapters map to its
different steps.

In the following, we provide conclusions for each step (i.e., each chapter),
separately.

Metadata selection. In Chapter 2, we were generally concerned with the
metadata used within different methods that aimed at providing user
assistance either for the whole knowledge discovery process, or for each
of its steps separately. To this end, we analyzed different systems that
are referred to as Intelligent Discovery Assistants and identified the spe-
cific metadata they use for enabling user support. We classified the
metadata found, and identified additional metadata that was not ex-
ploited by these systems, and argued for their potential benefits. Fur-
thermore, we developed a metadata repository for storing such meta-
data and proposed an initial architecture that could make use of such
metadata. Since this chapter dealt with all the possible metadata that
can be selected, it fitted to the first step of (meta)data selection in a
knowledge discovery step.

Metadata pre-processing. In Chapter 3, we focused specifically on the meta-
data used in meta-learning and we performed exploratory analysis with
the goal of selecting the most predictive subset of metadata. Particu-
larly, in this chapter, we used a method that consists of two phases,
namely meta-feature extraction and selection. In the first phase, we ap-
plied Principal Component Analysis in order to discover the latent con-
cepts behind the meta-features. This allowed to study the metadata in
a higher level, and at the same time enabled to have more robust fea-
tures. Furthermore the latent features are in a sense more independent
from the actual data, because they can generalize to future datasets by
omitting not existing meta-features or including new ones, provided
that they are related with the actual concepts present in the latent fea-
tures. Next, in the second phase we used partial correlations graphs
to select the most predictive latent-features, which in our evaluations
resulted to improve the performance of the meta-learning. In addition,
in this chapter we provided a novel way of visualizing the relationship
between different meta-features and latent-features. Since this chapter
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deals with the pre-processing of metadata, it automatically maps to the
second step of knowledge discovery.

Meta-learning. In Chapter 4, which maps to the mining phase of the knowl-
edge discovery process, we proposed to use meta-learning with the aim
of providing user support in the data pre-processing step. Therefore,
the metadata that was pre-processed in the previous step was used
in this step with the aim of building meta-models for each classifica-
tion algorithm considered. Specifically, the goal was to learn the rela-
tionship between transformations and the performance (e.g., predictive
accuracy) of the classification algorithms. Therefore, using the char-
acteristics of the transformed datasets as meta-features, we were able
to predict the performance of a classification algorithm on the trans-
formed dataset. Since the goal was to predict a continuous value, our
prediction (meta-learning) problem was of regression type. The pre-
dictions eventually allowed to rank transformations according to their
relevance to the result of the analysis. Our evaluation on hundreds of
datasets from OpenML, showed that this approach gives significant re-
sults. More precisely, the binomial comparison between the successful
and unsuccessful cases for different classification algorithms and differ-
ent performance measures gave significant values (cf. Chapter 4). We
considered the values to be significant if the p-value obtained was below
0.05.

Interpretation and looping back to pre-processing. The last phase of a knowl-
edge discovery process is evaluating and interpreting the results ob-
tained from the analysis (mining). Similarly in this thesis, in Chapter
5, we reached the point of interpretation, where we realized that there
was space for improvement with respect to the results obtained from
the mining (meta-learning) step. Therefore as a result, we "looped back
to the pre-processing step”. That is, we once more studied the meta-
features used for meta-learning and we decided to extend them. Partic-
ularly, we added the performance of the classification algorithm on the
non-transformed version of the dataset as a new meta-feature and we
also considered new features like the ones obtained when taking the
difference between the characteristics of the transformed dataset and
the base dataset. We named these features as delta meta-features. Fur-
thermore, differently from the previous chapter, this time our task was
to predict the impact of transformations, which was measured as the
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relative change that a transformation induces on the performance of
a classification algorithm (e.g., predictive accuracy). This value could
be either positive, negative, or zero. Thus, the meta-learning problem
translated to a classification problem. Using this approach, we built a
tool, PRESISTANT, that given a classification algorithm recommends
transformations that positively impact the analysis. We extensively
evaluated our recommendations from three perspectives. In the first
one, we checked how accurate our predictions were. In the second, we
analyzed how much gain they provided to the final non-experienced
user. Finally in the third, we analyzed the performance of PRESIS-
TANT compared to humans in a realistic scenario. The results showed
that our approach was feasible, especially because our top first recom-
mendations provided both good accuracy and gain when compared to
an ideal ranking. Briefly, the evaluation of the rankings with regards to
the gain obtained from the user’s point of view, using a classical infor-
mation retrieval metric — Discounted Cumulative Gain [43], showed
that for the whole set of possible transformations of a dataset, PRESIS-
TANT was as close as 73% to the gain obtained from the ideal rankings.
Whereas for the best transformation in the ranking, PRESISTANT was
as close as 79% on average for all the considered algorithms.

Finally, in summary, we contend that this thesis is a step towards bringing
data pre-processing closer to non-experts, since even without any knowledge
for data pre-processing this work makes it possible to find transformations
that would positively impact the analysis.

6.2 Future Directions

Knowledge discovery is an inherently complex process that requires user in-
teraction and intervention. Therefore, claiming full automation is rather op-
timistic, not to say impossible. This is mainly due to the important role that
domain knowledge plays in knowledge discovery. Its need, effectiveness,
and importance in all the stages of knowledge discovery has already been
confirmed in the past research efforts. However, there is lack of methods that
enable a comprehensive exploitation and definition of domain knowledge,
for providing user support in a knowledge discovery process. A partial so-
lution to this in this thesis was the module that allows to capture/introduce
domain knowledge specifically for data pre-processing, through the defini-
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tion of expert rules. However, we contend that this is not enough and there
need to be more comprehensive and generic ways to formally define and use
domain knowledge for user support in knowledge discovery. One option
may be the use of semantic web technologies for developing frameworks that
can systematically incorporate domain knowledge in an intelligent discovery
environment [50, 58].

When it comes to the specific task of user support in data pre-processing,
we currently consider the recommendation of single pre-processing operators
and thus a combination of different operators can be achieved only through
an iterative application of our approach. Yet we contend that this may be
a limitation and thus may be tackled through user support in the form of
workflows (i.e., connected operators). However, the latter implies the need
for more meta-knowledge. That is, there is need for new ways of character-
izing workflows such that they can be stored and used for learning on top of
them [70].

Another aspect for future research is the characterization of datasets and
the metadata used for meta-learning in data pre-processing. In Chapter 5, we
showed that considering additional different meta-features, we can improve
the performance of meta-learning for pre-processing. This was an indication
that there may be room for even more improvement. To this end, there is
need for engineering new meta-features that can better capture the relation-
ship between transformations, algorithms, and datasets. This may include
developing additional methods for characterizing data mining algorithms
(e.g., through their prerequisites/preconditions) and data pre-processing op-
erators.

Furthermore, another aspect that can be considered as a future direction
is with regards to decreasing the computational cost incurred when applying
different transformations to a dataset. More precisely, in our approach, we
first need to execute all the transformations for which we aim to predict the
impact. Since the number of transformations may be large, this can incur
some computational cost. Hence, in this regard there is need for methods
that ideally, foresee the impact or the change that transformations imply on
datasets, without the need of physically executing them.

Finally, our study was limited to classification problems. That is, we are
providing user support in data pre-processing only if the problem at hand
is of classification type. However, our method can be directly extended to
regression problems since they also belong to the domain of Predictive Ana-
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lytics. In that case however, instead of considering the improvement of accu-
racy due to transformations, one needs to consider the improvement in the R?
(in the cross-validation). Furthermore, for other data mining techniques like
clustering and association rules, which belong to the domain of Descriptive
Analytics, although not very obvious, one can define metrics that measure
the quality of the obtained results and then extend our method. Possible
metrics to be used can be intervariability of centroids for clustering, and lift for
association rules.
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PRESISTANT: Data Pre-processing Assistant

A concrete classification algorithm may perform differently on datasets with different
characteristics, e.g., it might perform better on a dataset with continuous attributes
rather than with categorical attributes, or the other way around. Typically, in order
to improve the results, datasets need to be pre-processed. Taking into account all
the possible pre-processing operators, there exists a staggeringly large number of
alternatives and non-experienced users become overwhelmed. Furthermore, trial and
error is not feasible in the presence of big amounts of data.

We developed a method and tool — PRESISTANT, with the aim of answer-
ing the need for user assistance during data pre-processing. Leveraging ideas from
meta-learning, PRESISTANT is capable of assisting the user by recommending pre-
processing operators that ultimately improve the quality of the data analysis (e.g.,
increase the predictive accuracy of a classification algorithm). The user selects a clas-
sification algorithm and then PRESISTANT proposes candidate transformations to
improve the result of the analysis.

In the demonstration, participants will experience, at first hand, how PRESIS-
TANT easily and effectively ranks the pre-processing operators.
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Appendix A. PRESISTANT: Data Pre-processing Assistant

A.1 Introduction

The main tools used for data analysis (e.g., R}, scikit-learn?, Weka [38]) over-
look data pre-processing when it comes to assisting non-expert users on im-
proving the overall performance of their analysis. These tools are usually
meant for professional users — who know exactly which pre-processing op-
erators (transformations) to apply, and they leave non-experts unattended.
To remedy this, we developed PRESISTANT? (cf. Figure A.1), which focuses
on assisting the users by reducing the number of pre-processing options to
a bunch of potentially relevant ones and ranks them. The goal is to high-
light the transformations that have higher potential positive impact on the
analysis.

PRESISTANT aims at reducing the time consumed in data pre-processing
and at the same time improving the final result of the analysis. The focus
is on classification problems, thus only operators that improve the perfor-
mance of a classification algorithm (e.g., increase the predictive accuracy) are
recommended.

Outline. We first give a brief overview of data pre-processing. Next, we give
an overview of PRESISTANT and present its core features. Finally, we outline
an on-site presentation.

1@ - o x

autos_Larff Load Recommend Algorithm | weka.laiveBoyes Selected Dataset:  [autos_Larff
Meta Learning  Meta Tree Selected Algorithm: eka.NaiveBayes

Dataset Metadata Non Transformable Metadata AttributeMe

[ = omberofinetances = +sa| Recommended Transformations : [Ordered by Relevance]
|
Dimensionality 0.12662927 NumberOfClasses 7 g Supervised On Attributes : 1 910 ~
Percentageofiumatts 057692308 ClassEntropy -10000000 ,*" {
Mif Foreseen Improvement
PercentageOftiomAtts 038461538 NegatiePercentage 032682927,
PercentageofBinats o.s384615 Postiverercantage o.000009d | [Predictie Accuracy o
Percentage0fMissingVal 0.011069418 MajorityClassSize o . |
Weaneans 1470810 Mnortycasssie o 0.15
Meanstandardpeviation 606.98793 &
[Predicted] Predictive Accurac/
Meanskewness 079163190 2 ‘ =
& Apply Transformation
Meankuross 1248795 0.51 | o0.00 ok
Mextiombistinctval 2
[Real] Predictive Atcuracy

MeanNombistinctval 6.0000000
S 0.56 | 0.00
MeanAttributeEntropy 13925777 3
MeanMutuallnformation 0.26739253 [ Recommend Transformations -
EquivalenthrOfAtts -3.4795616 Caasy —
NoiseToSignalRatio 3.8455598 T < N

Fig. A.1: PRESISTANT: application interface

Thttps:/ /r-project.org
2http: / /scikit-learn.org/stable
3For details visit: http://www.essi.upc.edu/“bbilalli/presistant.html
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A.2. Data Pre-processing

A.2 Data Pre-processing

Data pre-processing consumes 50-80% of data analysis time [69]. The reason
for this is that it encompasses a broad range of activities. Sometimes data
needs to be transformed in order to fit the input requirements of the machine
learning algorithm, e.g., if the algorithm accepts only data of numeric type,
data is transformed accordingly [49]. Sometimes, data requires to be trans-
formed from one representation to another, e.g., from an image (pixel) repre-
sentation to a matrix (feature) representation [32], or data may even require to
be integrated with other data to be suitable for exploration and analysis [60].
Finally, and more importantly, data may need to be transformed with the only
goal of improving the performance of a machine learning algorithm [17]. The
first two types of transformations are more of a necessity, whereas the latter
is more of a choice, and since an abundant number of choices exist, it is time
consuming to find the right one. In PRESISTANT, we target the latter type
of pre-processing, and as such, the transformations taken into consideration
are of the type that can impact the performance of data mining algorithms
(i.e., classification algorithms), and they are listed in Table 4.1. They are the
most commonly used transformations in the Weka platform, and their im-
plementations are open source*. The list of transformations considered by
PRESISTANT can be extended by simply adding new ones to the palette.

A.3 System Overview

PRESISTANT takes as input a dataset and a classification algorithm, and
generates a ranking of transformations according to their predicted impact
on the final result of the algorithm. In the following, we explain the method
and architecture used to achieve this.

A.3.1 Meta-learning for Data pre-processing

Meta-learning is a general process used for predicting the performance of an
algorithm on a given dataset. It is a method that aims at finding relationships
between dataset characteristics and data mining algorithms [46]. Given the
characteristics of a dataset, a predictive meta-model can be used to foresee the
performance of a given data mining algorithm. For instance, in a classifica-

4htt-ps: // github.com/bnjmn/weka
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T -
- Learning phase

DM Algorithms | Transformations

— —— : |
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Fig. A.2: PRESISTANT: system overview

tion problem, meta-learning can be used to predict the predictive accuracy of
a classification algorithm on a given dataset and hence provide user support
in the mining step.

However, in Chapter 4 and 5, we showed that meta-learning can also
be used to provide support in the pre-processing step. This can be done by
learning the impact of data pre-processing operators (transformations) on the
final result of the analysis. That is to say, detecting the transformations that
after being applied on a dataset, increase the accuracy of a given classification
algorithm on that dataset. This way, meta-learning pushes the user support
to the data pre-processing step by enabling a ranking of transformations ac-
cording to their relevance to the analysis.

Extensive results of the evaluation of this method can be found in Chap-
ter 5 and Appendix A. Yet briefly, the evaluation of the rankings with regards
to the gain obtained from the user’s point of view, using a classical informa-
tion retrieval metric — Discounted Cumulative Gain (DCG) [43], showed that
for the whole set of possible transformations of a dataset, PRESISTANT is as
close as 73% to the gain obtained from the ideal rankings, whereas for the
best transformation in the ranking, PRESISTANT is as close as 79% on aver-
age for all the considered algorithms.
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A.3. System Overview

A.3.2 Architecture & Implementation

PRESISTANT is built with the meta-learning concept in mind and, as a con-
sequence, it consists of two main phases, the learning and the recommending
phase. Figure A.2 depicts the architecture of PRESISTANT.

The learning phase is performed offline and consists of two steps. In the
first step, a meta-space is established for each classification algorithm that is
considered by the system for application, i.e., for the time being PRESISTANT
supports 5 classification algorithms. The meta-space is constructed by ex-
tracting dataset characteristics — meta-features, and by generating different
measures on the performance of the classification algorithms on the datasets,
i.e., predictive accuracy, precision, recall, and area under the roc curve (AUC).
Dataset characteristics and performance measure altogether are referred to as
metadata. In the second step, meta-learning is performed on top of the meta-
space (meta-dataset). As a result, a predictive meta-model is generated that
can be used to predict the performance of a classification algorithm on any
new dataset.

The recommending phase is initiated when a new dataset to be analyzed
arrives. At this point, a set of transformations are applied, and the corre-
sponding transformed datasets are obtained. Transformations are applied
depending on whether they are Local or Global (as classified in Table 4.1). If
a transformation is Global it is applied only once to the set of all compatible
attributes (e.g., normalizing all numeric attributes), whereas if it is Local, it
is applied to: 1) every compatible attribute separately (e.g., discretizing one
attribute at a time), and 2) all the set of compatible attributes (e.g., replacing
missing values of all attributes). Furthermore, PRESISTANT uses heuristics
(cf. Chapter 5 for more details), to prune the number of transformations that
may be applied. For instance, given that Standardization and Normalization do
not affect the performance of a Decision Tree, they are not applied when us-
ing a Decision Tree (J48) as classifier. Similarly, since in Weka, when applying
Nearest Neighbor (IBk) the Normalization transformation is applied implicitly,
PRESISTANT does not check for its impact in an explicit way. Although it
may seem computationally costly to execute transformations and then pre-
dict the performance of algorithms on the transformed datasets, notice that
this is orders of magnitude less costly than applying the classification algo-
rithm after each transformation. This in fact, is the strongest point of our
approach.

Furthermore, some concepts that require specific attention are:
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Metadata. In Chapter 2, we studied and classified all types of metadata that
can be used by systems that intelligently support the user during the
process of data analysis. PRESISTANT, considers: 1) 54 dataset char-
acteristics consisting of different summary characteristics (e.g., number
of instances, dimensionality, class entropy, mean attribute entropy, etc.)
and 2) a measure of the performance of an algorithm on the dataset (i.e.,
predictive accuracy, precision, recall or AUC). The metadata generation
and extraction are performed in the Metadata Generator and Metadata
Extractor modules, respectively, shown in Figure A.2. These modules
are implemented in Java.

Meta-learner. The meta-learner is the algorithm that performs learning on
top of the meta-dataset constructed out of the above mentioned meta-
data. The goal of the meta-learner is to create a model that is capable
of predicting the performance of a given classification algorithm on a
transformed dataset. In other words, its goal is to correctly predict
the impact of a transformation on the performance of a classification
algorithm. PRESISTANT uses a Random Forest as meta-learner. The
meta-learning process is performed in the Meta-Learner module shown
in Figure A.2, and it is implemented in R. The models generated are
exported into pmml files, which are then fed to the Predictor module.

Transformations. The set of transformations currently considered in PRE-
SISTANT, that the audience will experience, are described in Table 4.1
and cover a wide range of data pre-processing tasks, which are com-
monly used in the Weka platform. The execution of transformations is
performed in the Transformations Executor module, shown in Figure A.2,
which is implemented in Java.

Classification Algorithms. They represent the classification algorithms for
which PRESISTANT can currently provide user support. That is, if the
user selects one of these algorithms for analyzing a dataset, PRESIS-
TANT is capable of recommending transformations that will improve
the quality of the analysis. PRESISTANT is built on top of Weka, and
Weka categorizes the classification algorithms into the following 7 cat-
egories: bayes, functions, lazy, rules, trees, meta-methods and miscellaneous,
out of which the last two contain algorithms that are more complex
and almost never used by non-experts. Assistants will be able to exper-
iment with a representative classification algorithm for each category
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except the last two, and they are: Naive Bayes, Logistic, IBk, PART, and
J48, respectively.

A.4 Demo Walkthrough

Different real world datasets covering a variety of domains (e.g., health, in-
surance, banking) are available to show the benefits of our tool. Demo par-
ticipants are encouraged to play the roles of data analysts and validate the
tools” assistance. Since, for the time being, PRESISTANT covers 5 classifi-
cation algorithms, the on-site demonstration consists of 5 scenarios where
each time a different algorithm is presented. In every scenario, the user deals
with a classification problem, e.g., in the first scenario the user is presented
with the lung cancer® dataset where the task is to build a prediction model
that achieves a good accuracy on predicting the type of the lung cancer a
patient has, evaluated with 10-fold cross-validation. The idea is to show how
the transformations recommended by PRESISTANT improve the quality of
the analysis or more precisely how once applied, they increase the predictive
accuracy of a chosen classification algorithm. Moreover, we validate the per-
formance of PRESISTANT by comparing how classification algorithms per-
form on datasets without any transformations applied and how they perform
on datasets transformed according to the recommendations of PRESISTANT.
Further datasets for the on-site demonstration can be selected from OpenML®,
which contains one of the biggest collection of datasets for classification prob-
lems.

5h’tf:ps:/ /www.openml.org/d/163
Chttp:/ /www.openml.org
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Evaluation Results for PRESISTANT

B.1 Evaluation Results

In the following we show the results obtained when evaluating 1) the quality
(i.e., accuracy) of the top-K recommendations provided by PRESISTANT, and
2) the evaluation results (i.e., significance values) obtained when comparing
the recommendations of PRESISTANT to a random pick. We show the re-
sults obtained for 4 classification algorithms such as: J48 (Decision Tree), Naive
Bayes, PART, and Logistic.

In particular, the blue cells show the accuracy values obtained for the cor-
responding classifiers, where each row denotes the position K of the trans-
formations recommended and the columns denote the number of datasets
with L real positive transformations. The numbers shown inside the cells,
denoted as x/z, are the cumulative accuracies x, and the number of datasets
z, which have at least K transformations and exactly L real positives. The last
column shows the values obtained after computing the weighted average for
each position K for all possible L.

Furthermore, the red cells show the significance values obtained when
comparing the results obtained with PRESISTANT and the random pick for
the corresponding classifiers. The numbers shown inside the cells, denoted
as x/v, are the cumulative accuracies x obtained using our approach, and the
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random pick probabilities z, for datasets with at least K transformations and
exactly L real positives. The last column shows the averages for our approach
compared to the random pick, in each position K, weighted by the number
of datasets in each L.

In summary, observing the accuracy and significance values obtained, es-
pecially with regards to the top positions K, we can claim that PRESISTANT
is capable of learning the impact of transformations on the classification ac-
curacy.

140



B.1. Evaluation Results

Table B.1: Accuracy values followed by Significance values for the J48 (Decision Tree) classifier
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Table B.2: Accuracy values followed by Significance values for the NaiveBayes classifier
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Table B.3: Accuracy values followed by Significance values for the PART classifier
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0.2
2 3 4 5 6 7 8 E] 10 WAVG
Real positives L
weka.PART
. 0.47/0.31 | 0.41/0.26 | 0.48/0.4
. 0.47/0.3 | 0.5/0.27 | 0.46/0.28 | 0.49/0.4
0.52/0.42 0.51/0.31 0.49/0.39
0.49/0.4 0.37/0.24 | 0.49/0.29 0.49/0.38
Binom Sign.
0.46/0.36 0.43/0.32 0.41/0.27 0.49/0.37 0.4
0.3
0.2
0.43/0.3 0.44/0.26 0.54/0.38 0.6/0.4 | 0.49/0.36 01
0.0
0.43/0.25 0.36/0.27 0.49/0.3 | 0.54/0.31 [ 0.47/0.34 | 0.54/0.43 | 0.58/0.48 | 0.68/0.43 | 0.52/0.37
0.44/0.21 | 0.34/0.2 | 0.4/0.28 | 0.53/0.36 | 0.54/0.34 | 0.56/0.38 0.63/0.49 | 0.73/0.45 | 0.54/0.36
0.41/0.16 | 0.43/0.26 | 0.48/0.31 | 0.59/0.43 | 0.6/0.39 | 0.6/0.43 0.69/0.49 | 0.8/0.45 | 0.57/0.37
0.59/0.17 | 0.49/0.32 | 0.61/0.31 | 0.74/0.43 | 0.76/0.39 | 0.63/0.43 | 0.68/0.49 | 0.86/0.49 | 0.8/0.45 | 0.67/0.39
2 3 4 5 6 7 8 9 10 WAVG



Positions K

Positions K

Appendix B. Evaluation Results for PRESISTANT

Table B.4: Accuracy values followed by Significance values for the Logistic classifier

weka.Logistic

10-. 0.5/22 0.39/21  0.44/25 0.37/23  0.34/19 0.47/18
9-. 0.48/25 0.38/23 04429 03824  0.36/20
s-. 0.44/25 03423  0.42/29 03524 | 0.37/20
7-. 0.45/28 0.3/24 0.39/20
6-. 045/31 | 0.48/23 039/28 042/30  0.27/24
5-. 041/31  043/23 034/28 039/30 | 0.26/24
4-. 0.36/31  0.39/23 0.28/28 | 0.36/30 | 0.3/24
3-. 03331 03523 | 0.21/28 | 0.38/30 | 0.33/24
2- 0.27/31 | 0.26/23 | 0.2/28 | 0.4/30 | 0.35/24
1- 0.23/31 | 0.39/23 | 0.32/28 | 05/30 | 0.38/24
0 H 2 3 4 5 6

Real positives L

weka.Logistic
10- 0.75/0.38  0.5/0.42 0.6/0.38 0.56/0.44 .
9- 0.76/0.39 0.48/0.39 0.58/0.34 0.54/0.43 0.53/0.4 . 0.51/0.33
8- 0.75/0.36 0.44/0.37 0.55/0.31 0.5/0.41 0.5/0.36 0.42/0.34 0.49/0.36 | 0.56/0.36
7- 0.74/0.34 0.45/0.31 0.52/0.26 0.46/0.37 0.45/0.32 0.52/0.39 | 0.6/0.38
6- 0.74/0.3 0.45/0.24 0.48/0.22 0.42/0.28 0.36/0.29 0.55/0.42 | 0.66/0.4
5- 0.71/0.23 0.41/0.19 0.43/0.18 0.39/0.26 0.43/0.31 | 0.4/0.3 |0.42/0.34 | 0.59/0.45 | 0.73/0.43
4- 0.68/0.15 0.36/0.15 0.39/0.15 0.36/0.23 0.49/0.32 | 0.42/0.31 0.62/0.45 | 0.79/0.44
3- 0.64/0.06 0.33/0.09 0.35/0.12 0.38/0.25 0.54/0.34 | 0.45/0.33 | 0.45/0.36 | 0.63/0.45 | 0.81/0.44
2- 0.61/0.01 0.27/0.07 | 0.26/0.12 0.4/0.25 0.57/0.34 | 0.52/0.33 | 0.48/0.36 | 0.67/0.45 | 0.83/0.44
1- 0580 |[0.23/0.07 | 0.39/0.12 | 0.32/0.21 | 0.5/0.25 | 0.38/0.3 | 0.52/0.34 | 0.56/0.33 | 0.6/0.36 |0.67/0.45 | 0.89/0.44

0 H 2 3 4 5 6 7 8 Bl 1o

Real positives L
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0.52/0.41

0.53/0.4

0.53/0.39

0.52/0.37

0.53/0.36

0.53/0.34

0.53/0.32

0.53/0.31

0.53/0.3

0.57/0.3

WAVG

Accuracy
0.8

0.6
0.4

0.2

Binom Sign.
0.5
0.4
0.3
0.2
01
0.0
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