
T BII

D C

Aggregation Techniques for
Energy Flexibility

Ph.D. Dissertation
Emmanouil Valsomatzis

Dissertation submitted August, 2017

A thesis submitted to the Technical Faculty of IT and Design at Aalborg Uni-
versity (AAU) and the Universitat Politècnica de Catalunya, BarcelonaTech
(UPC), in partial fulfillment of the requirements within the scope of the IT4BI-
DC programme for the joint Ph.D. degree in computer science. The thesis is
not submitted to any other organization at the same time.

Thesis submitted: August, 2017
AAU Ph.D. Supervisor: Prof. Torben Bach Pedersen

Aalborg University (AAU), Denmark

UPC Ph.D. Supervisor: Assoc. Prof. Alberto Abello
Polytechnic University of Catalonia (UPC),
Spain

AAU Ph.D. Co-Supervisor: Assoc. Prof. Katja Hose
Aalborg University, Denmark

Ph.D. Committee: Assoc. Prof. Simonas Saltenis,
Aalborg University, Denmark

Assoc. Prof. Lukasz Golab
University of Waterloo, Canada

Senior Researcher Henrik W. Bindner
Technical University of Denmark, Denmark

Ph.D. Series: Technical Faculty of IT and Design, Aalborg
University

ISSN (online):
ISBN:

Published by:
Aalborg University Press
Skjernvej 4A, 2nd floor
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright by Emmanouil Valsomatzis. Author has obtained the right to
include the published and accepted articles in the thesis, with a condition
that they are cited, DOI pointers and/or copyright/credits are placed
prominently in the references.

Printed in Denmark by Rosendahls, 2017

Abstract

Over the last few years, the cost of energy from renewable resources, such as
sunlight and wind, has declined resulting in an increasing use of Renewable
Energy Sources (RES). As a result, the energy produced by RES is fed into
the power grid while their share is expected to significantly increase in the
future.

However, RES are characterized by power fluctuations and their integra-
tion into the power grid might lead to power quality issues, e.g., imbalances.
At the same time, new energy hungry devices such as heat-pumps and Elec-
tric Vehicles (EVs) become more and more popular. As a result, their demand
in power, especially during peak-times, might lead to electrical grid overloads
and congestions. In order to confront the new challenges, the power grid is
transformed into the so-called Smart Grid. Major role in Smart Grid plays
the Demand Response (DR) concept.

According to DR, Smart Grid better matches energy demand and sup-
ply by using energy flexibility. Energy flexibility exists in many individual
prosumers (producers and/or consumers). For instance, an owner of an EV
plugs-in his EV for more time than it is actually needed. Thus, the EV charg-
ing can be timely shifted. The load demanded for charging could be moved
to time periods when production from wind turbines is high or away from
peak-hours. Thus, RES share is increased and/or the electrical grid operation
is improved.

The Ph.D. project is sponsored by the Danish TotalFlex project
(http://totalflex.dk). Main goal of the TotalFlex project is to design and
establish a flexibility market framework where flexibility from individual
prosumers, e.g., household devices, can be traded among different market
actors such as Balance Responsible Parties (BRPs) and distribution system
operators. In order for that to be achieved, the TotalFlex project utilizes the
flex-offer concept.

Based on the flex-offer concept, flexibility from individual prosumers is
captured and represented by a generic model. However, the flexible loads
from individual prosumers capture very small energy amounts and thus
cannot be directly traded in the market. Therefore, aggregation becomes es-

iii

sential. The Ph.D. project focuses on developing aggregation techniques for
energy flexibilities that will provide the opportunity to individual prosumers
to participate in such a flexibility market.

First, the thesis introduces several flexibility measurements in order to
quantify the flexibility captured by the flex-offer model and compare flex-
offers among each other, both on an individual and on an aggregated level.
Flexibility is both the input and the output of the aggregation techniques. Ag-
gregation techniques aggregate energy flexibility to achieve their goals and,
at the same time, they try to retain as much flexibility as possible to be traded
in the market. Thus, second, the thesis describes base-line flex-offer aggre-
gation techniques and presents balance aggregation techniques that focus on
balancing out energy supply and demand. Third, since there are cases where
electrical grid congestions occur, the thesis presents two constraint-based ag-
gregation techniques. The techniques efficiently aggregate large amounts of
flex-offers taking into account physical constraints of the electrical grid. The
produced aggregated flex-offers are still flexible and when scheduled, a nor-
mal grid operation is achieved. Finally, the thesis examines the financial
benefits of the aggregation techniques. It introduces flex-offer aggregation
techniques that take into account real market technical requirements. As a
result, individual small flexible loads can be indirectly traded in the energy
market through aggregation.

The proposed aggregation techniques for energy flexibilities can con-
tribute to the use of flexibility in the Smart Grid in both current and future
market frameworks. The designed techniques can improve the services of-
fered to the prosumers and avoid the very costly upgrades of the distribution
network.

Abstract in Danish / Resumé

Gennem de senere år er prisen faldet på energi fra vedvarende energikilder
såsom sollys og vind, hvilket har medført et stigende forbrug af vedvarende
energi. Dette har resulteret i, at energi, der produceret af vedvarende energi,
sendes ud i elnettet og andelen forventes at stige markant i fremtiden.

Vedvarende energi er imidlertid karakteriseret af effektsvingninger, og
integrationen i elnettet kan føre til kvalitetsproblemer med strømmen som for
eksempel uligevægt. Samtidig bliver enheder, der sluger vedvarende energi
såsom varmepumper og elektriske køretøjer, mere og mere populære. Dette
resulterer i, at efterspørgslen på energi, især i spidsbelastede situationer, kan
medføre overbelastning og trængsel på elnettet. For at konfrontere de nye
udfordringer bliver elnettet ændret til et såkaldt Smart Grid. Konceptet om
udbud og efterspørgsel Demand Response (DR) spiller her en meget stor
rolle.

Ifølge DR, imødegår Smart Grid bedre udbud og efterspørgsel af energi
ved at bruge fleksibel energi. Fleksibel energi eksisterer i mange individuelle
producenter og/eller forbrugere. For eksempel tilslutter en ejer af et elek-
trisk køretøj sit køretøj i mere tid end det rent faktisk er nødvendigt. På
denne måde kan tidspunktet for opladningen ændres rettidigt. Belastnin-
gen, der kræves for opladning, kunne flyttes til perioder, hvor produktion fra
vindmøller er høj eller væk fra de spidsbelastede tidspunkter. Således øges
vedvarende energi’ andel og/eller elnettets drift er forbedret.

Dette Ph.D. projekt er sponsoreret af det danske TotalFlex projekt
(http://totalflex.dk). TotalFlex’ formål er at designe og etablere et fleksi-
belt elmarkedsystem, hvor fleksibilitet fra individuelle producent og/ eller
forbruger f.eks. husholdningsenheder kan blive udvekslet mellem forskel-
lige markedsaktører såsom balanceansvarlige parter og eldistributionsnettets
operatører. For at opnå dette, udnytter TotalFlex flex-offer konceptet.

Baseret på konceptet om flex-offer, bliver fleksibilitet fra individuelle
prosumers fanget og repræsenteret i en generisk model. Fleksible belast-
ninger fra de individuelle prosumers fanger imidlertid kun meget små en-
ergimængder og kan ikke udveksles direkte på markedet. Derfor bliver ag-
gregering essentielt. Ph.D. projektet fokuserer på at udvikle aggregering-

v

steknikker for energifleksibilitet, der kan give individuelle prosumers mu-
lighed for at deltage i et sådant fleksibilitetsmarked.

Først vil afhandligen introducere adskillige fleksibilitetsmålinger for at
kvantificere fleksibiliteten, der fanges af flex-offer modellen og sammenligne
flex-offer med hinanden både på et individuelt og et aggregeret niveau.
Input og output af aggregeringsteknikker er fleksibilitet. Aggregering-
steknikker samler energifleksibilitet for at opnå dets mål og forsøger på
samme tid at beholde så meget fleksibilitet som muligt til at blive udvekslet
på markedet. Herpå forsøger afhandligen for det andet at beskrive basis flex-
offer aggregeringsteknikker og præsenterer balance-aggregeringsteknikker,
der fokuserer på at afbalancere energiudbud og -efterspørgsel. Siden der
er situationer, hvor overbelastninger af elnettet forekommer, præsenterer
afhandlingen for det tredje, to begrænsningsbaserede aggregeringsteknikker.
Teknikkerne samler effektivt store mængder af flex-offers og tager samtidig
hensyn til fysiske begrænsninger i elnettet. De producerede, samlede flex-
offers er stadig fleksible og efter det er planlagt, opnås et normaltfungerende
net. Til slut vil afhandlingen undersøge de økonomiske fordele ved ag-
gregeringsteknikkerne. Den introducerer flex-offer aggregeringsteknikkerne,
der tager højde for de reelle, tekniske krav, der er på markedet. Resultatet
kan være, at individuelle små fleksible belastninger indirekte kan udveksles
på energimarkedet gennem aggregering.

De foreslåede aggregeringsteknikker til energi-fleksibilitet kan bidrage til
brug af fleksibilitet i Smart Grid i både nuværende og fremtidige marked-
srammer. De designede teknikker kan forbedre de tilbudte ydelser til pro-
sumers og undgå de meget dyre opgraderinger af distributionsnetværk.

Abstract in Spanish /
Resumen

Durante los últimos años, la bajada en el precio de la energía procedente de
fuentes renovables, tales como luz solar y eólica, ha resultado en un aumento
del uso de este tipo de recursos de Energía Renovables (ER). Como conse-
cuencia de este aumento, la energía producida a través de ER es inyectada
en la red eléctrica y se espera que la proporción de energía suministrada a la
red crezca significativamente en los próximos años.

Sin embargo, las ER se caracterizan por ser muy fluctuantes y su inte-
gración en la red eléctrica podría acarrear problemas de calidad, como por
ejemplo desequilibrios energéticos. Al mismo tiempo, nuevos dispositivos de
alto consumo de energía, como bombas de calor y vehículos eléctricos, son
cada vez mas populares y la alta demanda de estos, especialmente en horas
puntas, puede crear sobrecargas y congestiones en la red. Para afrontar estos
restos, la red eléctrica se transforma en la llamada Red Inteligente, dónde el
concepto de respuesta a la demanda juega un papel.

Esta thesis de doctorado está patrocinada por el proyecto danés TotalFlex
(http://totalflex.dk). El objetivo principal de este proyecto es diseñar y es-
tablecer el marco de flexibilidad de mercado, dónde la flexibilidad de pro-
ductores/consumidores, por ejemplo los dispositivos del hogar, pueda ser
comercializada entre los diferentes actores del mercado como las comercial-
izadoras de electricidad y los operadores de sistemas de distribución. Para
lograr este propósito, el proyecto TotalFlex utiliza el concepto flex-offer flexi-
bilidad en la oferta.

Basado en el concepto flex-offer, la flexibilidad de consumidores y pro-
ductores individuales es capturada y representada a través de un modelo
genérico. Sin embargo, las cargas flexibles de estos individuos producen pe-
queñas cantidades de energía y, por lo tanto, no pueden ser directamente
negociadas en el mercado. Esto significa que la agregación de esta energía es
esencial. Este Ph.D está enfocado desarrollo de técnicas de agrega para que
permitirán a productores y consumidores individuales participar en dicha.

vii

En primer lugar, esta tesis introduce medidas de flexibilidad con la fi-
nalidad de cuantificar la flexibilidad calculada por el modelo flex-offer y
comparar las diferentes ofertas entre ellas, tanto a nivel individual como
agregado. Flexibilidad es tanto la entrada como la salida de las técnicas
de agregado, las cuáles agregan flexibilidad energética para lograr sus ob-
jetivos y, al mismo tiempo, retener la máxima flexibilidad para comerciarla
en el mercado. En segundo lugar, la tesis describe la base de las tecnicas de
agregado flex-offer y presenta técnicas de que se enfocan en un balance entre
la oferta y la demanda energética. Tercero, dado que existen casos dónde se
producen congestiones en la red eléctrica, la tesis presenta tecnicas de agre-
gado basadas en restricciones. Dichas técnicas agregan grandes cantidades
de flex-offers considerando restricciones físicas de la red eléctrica. Las flex-
offers agregadas que se producen son aún flexibles y, cuando se programan,
se logra una operación normal de red. Por último, en la tesis se examina los
beneficios económicos de las técnicas agregadas, introduciendo técnicas de
agregado flex-offer que tienen en cuenta los requisitos técnicos del mercado
real. Como resultado, las pequeñas cargas individuales y flexibles pueden
ser indirectamente negociadas en el mercado energético a través de la agre-
gación. Las técnicas de agregado propuestas para favorecer la flexibildad
energética puede contribuir al uso de flexibilidad en la red inteligente tanto
en el presente como en el futuro. Mejorar los servicios ofrecidos a consumi-
dores y productores así como evitar las costosas actualizaciones de la red de
distribución.

Acknowledgements

First of all, I would like to thank my main Ph.D. supervisor Professor Torben
Bach Pedersen for being an exquisite teacher. I feel lucky and proud to have
crossed his path. It has been a great pleasure to collaborate with him and I
am grateful to him for giving me the opportunity to be his student.

I would like to express my sincere gratitude to Associate Professor Alberto
Abello and Associate Professor Katja Hose for all their help and valuable
contributions to my research.

I would also like to thank all my colleagues and staff in the Computer
Science department. I really enjoyed my time among them and I feel happy
to have been a member of this academic group.

I acknowledge that the TotalFlex project sponsored by the ForskEL pro-
gram of Energinet.dk supported in part this research.

I would like to thank my family for their support through all these years.
Last but not least, a great thanks to Aliki who supported me and encour-

aged me through all these Ph.D years.

ix

Acknowledgements

x

Contents

Abstract iii

Abstract in Danish / Resumé v

Abstract in Spanish / Resumen vii

Acknowledgements ix

Thesis Details xv

1 Introduction 1
1 Background and Motivation . 1
2 Life-cycle of Flex-offers . 2
3 Thesis overview . 4

3.1 Chapter 2: Measuring and Comparing Energy Flexibilities 4
3.2 Chapter 3: Aggregating and Disaggregating Flexibility

Objects . 6
3.3 Chapter 4: Balancing Energy Flexibilities through Ag-

gregation . 8
3.4 Chapter 5: Aggregating Energy Flexibilities under

Constraints . 9
3.5 Chapter 6: Trading Aggregated Flex-Offers via Flexible

Orders . 11
3.6 Appendix A . 12

4 Structure of the Thesis . 12

2 Measuring and Comparing Energy Flexibilities 15
1 Introduction . 16
2 Preliminaries . 18
3 Flexibility Definitions and Measures 19

3.1 Time and energy flexibility 19
3.2 Combined flexibility measures 20

xi

Contents

4 Discussion . 27
5 Related work . 32
6 Conclusion and future work . 32

3 Aggregating and Disaggregating Flexibility Objects 35
1 Introduction . 36
2 Problem Formulation . 38
3 Aggregation and Disaggregation 42
4 N-to-M Aggregation . 45

4.1 Overview of the N-To-M aggregation 45
4.2 Logical phases of the N-To-M Aggregation 45
4.3 Algorithms for the N-To-M Aggregation 47
4.4 M-to-N Disaggregation and Discussion 52

5 Balance Aggregation . 53
6 Experimental Evaluation . 57

6.1 Experimental setup . 57
6.2 N-to-M aggregation . 57
6.3 Balance aggregation . 61
6.4 Experiment Summary . 64

7 Related work . 64
8 Conclusion and Future Work . 65
A Appendix . 65

A.1 Proof of amount conservation 66
A.2 Complexities of N-to-1 aggregation functions 66
A.3 Complexities of N-to-M aggregation sub-functions . . . 67
A.4 Complexity of N-to-M aggregation 68
A.5 Complexity of the simple greedy balance aggregation

technique . 69

4 Balancing Energy Flexibilities through Aggregation 71
1 Introduction . 72
2 Related work . 73
3 Preliminaries . 74
4 Balance aggregation . 75

4.1 Flex-offer Aggregation . 75
4.2 Balance aggregation . 77

5 Experimental Evaluation . 78
5.1 Experimental setup . 78
5.2 Absolute balance . 82
5.3 Flexibility loss . 84
5.4 Execution time and aggregated flex-objects count. 88

6 Conclusion and Future Work . 91

xii

Contents

5 Aggregating Energy Flexibilities under Constraints 93
1 Introduction . 93
2 Background and preliminaries 96
3 Problem Formulation . 97

3.1 Traditional FO aggregation 98
3.2 Constraint aggregation objectives and complexity 99

4 Constraint-based FO Aggregation 100
4.1 Constraint and target related distances 101
4.2 Aggregation techniques 102

5 Experimental Evaluation . 105
5.1 Experimental setup . 105
5.2 Use case . 106

6 Related Work . 108
7 Conclusion and future work . 109

6 Trading Aggregated Flex-Offers via Flexible Orders 111
1 Introduction . 112
2 Preliminaries . 113

2.1 Electric vehicle model . 113
2.2 Market framework . 114

3 Problem Formulation . 115
3.1 FO aggregation . 115
3.2 Market-based Flex-Offer aggregation 117

4 Heuristic solutions . 118
4.1 Heuristic Market-based Aggregation Main Algorithm . 118
4.2 Main Algorithm variants 119

5 Experimental Evaluation . 124
5.1 Experimental setup . 124
5.2 Market-based aggregation results 124
5.3 Financial evaluation . 127

6 Conclusion and Future work . 130
A Appendix . 130

A.1 Number of solutions . 130
A.2 Integer Linear Programming problem complexity 131

7 Conclusions and Future Research Directions 133
1 Summary of Results . 133
2 Future Research Directions . 137

Bibliography 139
References . 139

xiii

Contents

A Towards Constraint-based Aggregation of Energy Flexibilities 147
1 Introduction . 147
2 Flex-Offer aggregation problem 149

2.1 Problem definition . 149
2.2 Heuristic constraint-based aggregation 150

3 Preliminary results . 150
4 Conclusions . 151

xiv

Thesis Details

Thesis Title: Aggregation Techniques for Energy Flexibility
Ph.D. Student: Emmanouil Valsomatzis
Supervisors: Prof. Torben Bach Pedersen, Aalborg University (AAU Su-

pervisor)
Assoc. Prof. Alberto Abello, Polytechnic University of Cat-
alonia (UPC Supervisor)
Assoc. Prof. Katja Hose, Aalborg University (AAU Co-
Supervisor)

The main body of this thesis consist of the following papers.

[1] Emmanouil Valsomatzis, Katja Hose, Torben Bach Pedersen, Lau-
rynas Siksnys,“Measuring and Comparing Energy Flexibilities,” In
Proceedings of the Workshops of the EDBT/ICDT 2015 Joint Conference
(EDBT/ICDT), Belgium, Brussels, vol. 1330, pp. 78–85, 2015.

[2] Laurynas Siksnys, Emmanouil Valsomatzis, Katja Hose, Torben Bach
Pedersen,“Aggregating and Disaggregating Flexibility Objects,” IEEE
Transactions on Knowledge and Data Engineering (TKDE), vol. 27, no. 11,
pp. 2893–2906, 2015

[3] Emmanouil Valsomatzis, Katja Hose, Torben Bach Pedersen, “Balancing
energy flexibilities through aggregation,” In Proceedings of the Second In-
ternational Workshop on Data Analytics for Renewable for Renewable Energy
Integration (DARE), Nancy, France, pp. 17-37, 2014

[4] Emmanouil Valsomatzis, Torben Bach Pedersen, Alberto Abelló, Katja
Hose,“Aggregating energy flexibilities under constraints”, In Proceed-
ings of the 7th IEEE International Conference on Smart Grid Communications
(SmartGridComm), Sydney, Australia, pp. 484-490, 2016

[5] Emmanouil Valsomatzis, Alberto Abelló, Torben Bach Pedersen,
“Trading Aggregated Flex-Offers via Flexible Orders”, DBTR series,

xv

Thesis Details

http://dbtr.cs.aau.dk/DBPublications/, DBTR- 38.pdf, Aalborg Uni-
versity, Technical Report, 2017

In addition to the main papers, the following publication has also been made.
A short version of paper number 4:

[6] Emmanouil Valsomatzis, Torben Bach Pedersen, Alberto Abelló, Katja
Hose, Laurynas Siksnys, “Towards constraint-based aggregation of
energy flexibilities,” In Proceedings of the Seventh International Confer-
ence on Future Energy Systems Poster Sessions (e-Energy ’16), Waterloo,
Canada, 2 pages, 2016

This thesis has been submitted for assessment in partial fulfillment of the
joint Ph.D. degree. The thesis is based on the submitted or published scien-
tific papers which are listed above. Parts of the papers are used directly or
indirectly in the extended summary of the thesis. As part of the assessment,
co-author statements have been made available to the assessment committee
and are also available at the Faculty. The permission for using the published
and accepted articles in the thesis has been obtained from the correspond-
ing publishers with the conditions that they are cited, DOI pointers and/or
copyright/credits are placed prominently in the references.

xvi

Chapter 1

Introduction

1 Background and Motivation

Smart Grid uses advanced Information and Communication Technology
(ICT) [5] to improve the power grid services quality and increase the use
of energy from RES, such as wind and sunlight [8].

However, the Smart Grid confronts many challenges. In particular, RES
are characterized by volatile generation. As a result, high energy produc-
tion might be generated during times when consumption is low which might
lead to power grid problems [34]. On the other hand, new technological ad-
vancements, such as heat-pumps, demand a lot of energy [7, 45] and during
peak-hours, they might create congestions into the power grid [51]. Energy
storage is an expensive solution to avoid such problems while feeding the
surplus energy into the electrical grid might be dangerous for its infrastruc-
ture. That is the reason flexibility plays a prominent role in Smart Grid and
contributes to the achievement of its goals. Flexibility can be used to shift
loads away from peak-hours and balance out production with consumption.
Consequently, a very expensive electrical grid upgrade is avoided, the use of
renewable energy sources is increased, and new business opportunities arise
in a new market [27] were flexibility can be traded [61].

The Ph.D. project is supported by the TotalFlex project. The main objec-
tive of the TotalFlex project is the design of a new flexibility market where
individual prosumers (producers and/or consumers) with flexible loads can
participate, e.g., loads from household devices. In such a market, flexibility
can be traded in order to tackle congestion and balancing problems. How-
ever, the loads from individual devices are too small to be traded in the
market and the scheduling of such small devices results in a highly complex
Unit Commitment (UC) problem [79]. Therefore, it is essential to aggregate
the flexible loads from the individual devices in order to trade them in the

1

Chapter 1. Introduction

Time
0

+
tf(f)tes tls

A
m

o
u
n
t

1

2

3

1

4

5

4

Slice

 S(2)

2 3 5

Slice

 S(1)

6

amin

amax

Fig. 1.1: Illustration of a flex-offer

market and reduce the complexity of the scheduling problem [80].
The goal of the Ph.D. project is to design and develop aggregation tech-

niques that produce aggregated energy flexible loads so that the complex-
ity of the UC problem is reduced and loads from individual prosumers are
traded in the market.

2 Life-cycle of Flex-offers

In order to achieve its goal, the Ph.D. project utilizes the flex-offer concept—
introduced in the MIRABEL project [56]—that captures flexibility in both the
amount and time dimensions as presented in the following example.

Example 2.1
The owner of an EV plug-ins her EV at 1 a.m. She would like the car to be
charged within the 80% to 100% of its full capacity at 7 a.m. The EV needs
only 2 hours to be charged. Thus, its charging cans start between 1:00 and
5:00 a.m.

The flex-offer is defined accordingly. A flex-offer f is a two elements
tuple. Its first element captures the range of the potential starting time
(time flexibility interval). The second element of the tuple is a sequence
of slices with minimum and maximum amount requirements per time unit.
For instance, the EV in the above example is represented with the flex-offer
f = ((1, 5)〈[3, 4], [3, 4]〉), see Figure 1.1. 1 and 5 are the earliest and latest
starting time of the time flexibility interval, respectively. Flex-offer f has two
identical slices. Their minimum and maximum amounts are 3 and 4, respec-
tively.

2

2. Life-cycle of Flex-offers

f1

f2Consumers/
Producers f3

Aggregators
fa1 fa2

f4g1 g2

Aggregation

Balance Responsible
Parties (BRP)

g1 g2

Scheduling/
Instantiation

fa1 fa2
g1 g2

x
x

Disaggregation

f1

f2
f3 f4g1 g2

x

x x x

Fig. 1.2: The life-cycle of the flex-offers [75]

In the market scenario described by the TotalFlex project, a new market
actor called Aggregator handles a portfolio of a large number of flex-offers.
The flex-offers derive from different prosumers, see Figure 1.2. A flex-offer
can be either positive, negative, or mixed. The positive flex-offers have posi-
tive values for all of their slice amounts and represent devices that consume
energy, e.g., dishwashers and washing machines. The negative flex-offers
represent devices that supply energy, such as solar panels, and all their slices
are negative. The mixed flex-offers have both positive and negative slices
and represent devices that can both consume and produce energy, e.g., an
EV with vehicle to grid discharging option.

The Aggregator has a collateral agreement with the prosumers. The pro-
sumers offer their flexibility to the Aggregator. The Aggregator gains control
of their devices, but he respects the comfort settings of the prosumers. At the
same time, the prosumers are awarded accordingly, e.g., with lower tariffs.
The goal of the Aggregator is to aggregate the flex-offers and produce ag-
gregated ones, taking into account different objectives, e.g., balancing energy,
see g1 and g2 on the left side of Figure 1.2. During aggregation, the Aggre-
gator utilizes part of the flex-offers flexibility to achieve his objective and the
produced aggregated flex-offers are still flexible. Moreover, the aggregated
flex-offers respect all the amount and time requirements of the individual
flex-offers. As a result, disaggregation that maps to the initial flex-offers is
also supported. The flexible aggregated flex-offers are then handled by the
BRPs who trade them in the market. Afterwards, the aggregated flex-offers
are scheduled. Thus, their flexibility is instantiated, i.e., their starting time
and the amounts of all the slices are defined. The instantiated aggregated
flex-offers are then disaggregated so that the individual flex-offers are trans-
formed into assignments. Their starting times and their slice amounts are
assigned according to the instantiated aggregated flex-offers .

3

Chapter 1. Introduction

Chapter 1

Introduction
Chapter 2

Flexibility
Measurements

Chapter 3

Baseline & Balance
Aggregation

Chapter 5

Constraint-based
Aggregation

Chapter 6

Market-based
Aggregation

Chapter 7

Conclusions &

Future Directions

Appendix A

Towards Constraint-based
Aggregation

Chapter 4

 Balance
Aggregation

Fig. 1.3: The Ph.D. story

3 Thesis overview

This section is an overview of each chapter and the appendix in this thesis.
Figure 1.3 illustrates the thesis flow. An overall description of the thesis is
given in Chapter 1. Chapter 2 introduces several flexibility measurements
that are used to develop and evaluate the aggregation techniques. Chap-
ter 3 discusses baseline flex-offer aggregation and introduces several bal-
ance aggregation techniques that focus on balancing out demand and sup-
ply. Chapter 4 introduces two variations of the balance aggregation tech-
niques described in Chapter 3 and it also presents an extensive experimental
setup dedicated on evaluating balance aggregation. Chapter 5 describes the
constraint-based aggregation techniques that are applied on flex-offers in or-
der to confront electrical grid bottlenecks. Chapter 6 describes the market-
based flex-offer aggregation and introduces several aggregation techniques
that take into account market requirements in order to trade the aggregated
flex-offers in the market. Appendix A contains the initial stage of constraint-
based aggregation work. It describes the preliminary concepts and results of
constraint-based aggregation. Finally, Chapter 7 summarizes the outcome of
the thesis and describes the future research directions.

3.1 Chapter 2: Measuring and Comparing Energy Flexibili-
ties

The volatile nature of the RES acts like a barrier to their share because of
the potential energy shortages that might be caused to the power grid [34].
That is the reason why the Smart Grid uses energy flexibility to tackle such
challenges. Subsequently, flexible loads are activated when energy genera-

4

3. Thesis overview

tion from RES occurs and flexibility becomes valuable. The TotalFlex project
exploits the flexibility of small loads, e.g., household appliances, to achieve
the aforementioned goal by using the flex-offer concept [73].

However, a flexibility measure is needed to identify how much and what
kind of flexibility is offered. In addition, due to the high number of the flex-
offers and the small load amounts that such devices capture, aggregation of
flex-offers is essential. Flex-offer aggregation reduces the complexity of the
UC problem (scheduling) [62] and gives the aggregated flex-offers the oppor-
tunity to be traded in a flexibility market. Due to the fact that aggregation
techniques utilize flexibility to reach their objectives, a flexibility measure
is also needed to evaluate the aggregation techniques. Different flexibility
definitions have been proposed, with some of them focusing on the use of
flexibility [16, 65] e.g., tackling balancing issues, and others focusing on the
main characteristics of the flexible power units [66]. However, a common
agreed flexibility definition is still pending [65].

In comparison, Chapter 2 introduces several flexibility definitions to quan-
tify flexibility in both supply and energy demand based on the generic flex-
offer model. The flex-offer model represents models from different devices
and takes into account time and energy dimensions, both individually and
combined. Chapter 2 initially suggests, the time and the energy flexibility mea-
surements that take into account time and energy dimension, respectively.
However, when flex-offers have both time and energy flexibility, those two
measurements do not capture their combined effect. Thus, it is proposed that,
the product flexibility measurement can be used to capture the combined effect
of time and energy flexibility. The chapter also suggests the vector flexibility
measurement that handles time and energy flexibility as vector components.
The length of the vector can be computed with relevant norms, such as the
Manhattan and the Euclidean, and expresses the total flexibility of the flex-
offer. As a result, the vector flexibility captures both time and energy dimen-
sion. Moreover, the chapter proposes 2 more flexibility definitions so-called,
time-series and assignments flexibility that are both based on the assignments
of a flex-offer. The time-series flexibility definition considers the difference
between the minimum and the maximum assignment whereas the assign-
ments flexibility definition takes into account the number of assignments that
a flex-offer has. Both definitions can capture flexibility derived from energy
and time and they can also be applied on all the types of flex-offers. How-
ever, they do not take into account the size of the flex-offers. Consequently,
flex-offers with different load sizes might be considered to have the same flex-
ibility. Thus, Chapter 2 also proposes a flexibility measurement that is size
related. In particular, it proposes the absolute area-based flexibility measure-
ment that takes into account the sum of the potential energy that a flex-offer
could capture due to its time flexibility. Moreover, the chapter introduces
the relative area-based flexibility that is a size-independent measurement. Both

5

Chapter 1. Introduction

absolute and relative area-based flexibility measurements consider the com-
bined effect of time and energy. However, absolute area-based flexibility is
a size-dependent measurement whereas relative are-based measurement ex-
presses the flexibility per energy unit and can be used to compare flex-offers
with different sizes.

3.2 Chapter 3: Aggregating and Disaggregating Flexibility
Objects

Flexibility of flex-offers is very important for aggregation. Goal of the aggre-
gation, apart from reducing the number of the flex-offers, is to retain flexibil-
ity. This is due to the fact that flexibility is used by the scheduling process
to find the optimum scheduling. Chapter 3 discusses baseline aggregation
techniques that try to reduce the number of flex-offers and retain as much
flexibility as possible measured according to the introduced measurements
of Chapter 2. It shall be noted that in Chapter 3, the generic term flex-object
is used instead of the term flex-offer. The reason is that the baseline aggre-
gation was initially introduced considering a broader application domain.
However, the Ph.D. study focuses on energy domain and considers a market
scenario where flexibility can be offered. Hence, the term flex-offer was se-
lected thereafter as a more appropriate one and it is used in this chapter to
avoid misconceptions.

Chapter 3 proposes the Start-Alignment (SA) aggregation that is applied
on flex-offers. SA is applied on a set of flex-offers and produces a single ag-
gregated flex-offer. The earliest starting time of the aggregated flex-offer is
the minimum earliest starting time among the flex-offers that participate in
aggregation. The time flexibility of the aggregated flex-offer is the minimum
time flexibility of the flex-offers that participate in aggregation. In order to
reduce the flexibility losses, a grouping phase is introduced prior to SA ag-
gregation. The grouping of the flex-offers takes into account two parameters,
the earliest starting time tolerance and the time flexibility tolerance. The flex-
offers with earliest starting time and time flexibility difference less or equal to
the corresponding defined grouping parameters are grouped together. More-
over, aggregation supports the bin-packing phase where a constraint is ap-
plied on the grouping result. For instance, the size of the group shall be
within the range specified by the bin packing parameters. After the grouping
and the bin-packing phase, SA aggregation is applied on each group and an
aggregated flex-offer per group is produced. Based on an extensive experi-
mental setup, Chapter 3 shows that grouping parameters with values close
to zero minimize the flexibility losses but increase the number of the aggre-
gated flex-offers. That is a proof of the trade-off between the output size of
aggregation and flexibility. A smaller number of aggregated flex-offers leads
to higher flexibility losses. The clustering techniques proposed in the liter-

6

3. Thesis overview

ature, e.g., [23, 52, 72, 92], can only partially solve the aggregation problem.
On the contrary, the proposed aggregation techniques efficiently handle both
the grouping and the flex-offer aggregation problem. Moreover, aggregation
techniques suggested for temporal, spatio-temporal, and multidimensional
data [6,14,15,39,89] are designed for inflexible data and thus are inapplicable
to aggregation of flex-offers.

Since the output of the aggregation (the aggregated flex-offers) are han-
dled by a BRP whose main goal is the energy balancing and the avoidance
of electrical grid overloads, Chapter 3 also introduces the balance aggrega-
tion. Balance aggregation takes advantage of counteracting flex-offers and
produces aggregated flex-offers with slice amounts close to zero. In partic-
ular, goal of balance aggregation is the minimization of the the sum of the
absolute balance of the aggregated flex-offers. The absolute balance of a flex-
offer is defined as the sum of the absolute average amount flexibilities of its
slices. Chapter 3 proposes five different balance aggregation techniques that
can be applied on a group of flex-offers and take advantage of the different
profile alignments of the flex-offers. The exhaustive search technique examines
all the potential alignments among the flex-offers of the group to identify the
aggregated flex-offer that minimizes the absolute balance. It demands a lot
of time to be executed, but it identifies the optimal solution based on a single
aggregated flex-offer. Chapter 3 also introduces the zero terminated exhaustive
search which, similarly to exhaustive search, terminates when a zero absolute
balance value has been identified. The dynamic simulated annealing technique
is also introduced in Chapter 3. In order to reduce the execution time of the
exhaustive search, dynamic simulated annealing examines only a random
number of alignment combinations defined by a parameter.

Finally, Chapter 3 proposes two more greedy techniques, the simple and
the exhaustive greedy. Both techniques are also applied on a group of flex-
offers, but they might produce more than one aggregated flex-offer. Simple
greedy starts by selecting the flex-offer with the most negative balance (ini-
tial flex-offer) and aggregates it with flex-offers that have balance closer to
the opposite one. Thus, it tries to balance out the first selected flex-offer. It
then examines all the potential alignments using the flex-offers in the group
as long as the absolute balance of the aggregated flex-offer is reduced. Oth-
erwise, it selects a new initial flex-offer and continues until all the flex-offers
have been examined. Exhaustive greedy also might produce more than one
aggregated flex-offer. Differently from simple greedy, it starts by selecting the
flex-offer with the greatest absolute balance (initial flex-offer). The technique
then examines all the potential alignment combinations between the initial
flex-offer and all the remaining flex-offers in the group. It continues aggre-
gation as long as the absolute balance of the aggregated flex-offer is reduced.
Otherwise, it selects a new initial flex-offer and terminates when all the flex-
offers in the group have been examined. An extensive experimental setup

7

Chapter 1. Introduction

focusing on the evaluation of balance aggregation is presented in Chapter 4

3.3 Chapter 4: Balancing Energy Flexibilities through Aggre-
gation

Chapter 4 focuses on balance aggregation techniques. In particular, it eval-
uates both simple and exhaustive greedy (introduced in Chapter 3) under
four different experimental setups. It also introduces two variations of the
greedy techniques using a different starting point and it also examines the
performance of start alignment aggregation introduced in Chapter 3.

Each experimental setup consists of 10 groups of 8 datasets that are cre-
ated based on real historical consumption data from the MIRABEL project
The datasets include flex-offers that capture both production and consump-
tion devices. The datasets are also characterized by different time flexibility
distributions and different profile length distributions. Energy scenarios that
take into account different flexibility characteristics for the flex-offers and
simulate cases where RES co-exist with power hungry devices are also con-
sidered.

The experimental setup shows that both exhaustive and zero exhaustive
search identify the solutions with zero absolute balance, when the grouping
parameters are set to zero. However, they both have very high execution
times. On the contrary, start alignment aggregation achieves the worst ab-
solute balance, yet the lowest execution time, as it examines only a single
alignment combination per group. Simple and exhaustive greedy achieve to
produce balanced aggregated flex-offers with low processing times as well.
They also show an almost constant rate of flexibility losses, as the size of
population increases. Exhaustive greedy achieves a better absolute balance
when the input size is high, as it examines a larger solution space compared
to simple greedy.

The problem of balancing energy production and supply has been pre-
viously handled as part of the UC problem [42, 62] either with distributed
(e.g., [50]) or centralized solutions (e.g., [35]). Moreover, scheduling tech-
niques for flex-offers are also proposed in [80]. However, the proposed
balance aggregation techniques in both Chapter 3 and Chapter 4 integrate
balancing into aggregation and produce aggregated flex-offers, so that their
flexibility can be then used by a scheduling technique. Thus, the balance
aggregation techniques reduce scheduling complexity and, at the same time,
they partially handle the balancing problem.

8

3. Thesis overview

R

AFOs

Trading

Scheduling

Violation Normal operation

Baseline

(Our solution)

aggregation

300kW

-300kW

ICT infrastructure

2

0.4kV

AFOs

Trading

Scheduling

300kW

-300kW

0

+

-

0

+

-

2'

3
3'0

+

-

0

-

+

0

-

+

0

+

-

Constaint-based
aggregation

Devices/FOs

-

0

1

4 4'

0

+

nfrastructure

 0

-
0

+

-300kW

300kW

-300kW

300kW

tes tls

power value

time
1 5

P
o

w
er

Fig. 1.4: Traditional vs Constraint-based aggregation [83].

3.4 Chapter 5: Aggregating Energy Flexibilities under Con-
straints

There are cases where the objectives of a market actor contradict the objec-
tives of another actor. That might especially happen at electrical grid loca-
tions with limited power capacity (bottlenecks). For instance, there might be
high demand for energy consumption and a business case of selling energy,
but at the same time a bottleneck might occur, endangering the grid op-
eration. In such a case, flexible loads become valuable and flexibility can
be used to confront bottlenecks by shifting the loads away from congestions.
Therefore, Chapter 5 proposes flex-offer aggregation techniques that take into
account grid constraints.

The flex-offers that participate in aggregation are also part of the electrical
grid and their operation depends on the flex-offers utilization. For instance,
there are low voltage grid elements such as a distribution transformer with a
maximum power value of few hundred of kW. Thus, a simultaneous charge of
few hundred EVs might create severe problems to the electrical grid. Chap-
ter 5 maps the structure and the constraints of the grid to a tree based on
[88]. The bottleneck of the grid is the root of the tree, see R in Figure 1.4.
The flex-offers represent devices, all connected to the grid, see bottom of Fig-
ure 1.4. The aggregation of flex-offers is needed (2 in Figure 1.4), in order

9

Chapter 1. Introduction

for the flex-offers trading to take place, while the complexity of scheduling
is reduced (3 in Figure 1.4). However, when baseline aggregation tech-
niques, introduced in Chapter 3 are applied, the grid constraint imposed by
the root is not respected. The aggregated flex-offers have amounts above the
grid constraint value and as a result, the scheduling applied afterwards can-
not find a solution respecting the grid constraint. Thus, the grid constraint
is violated and it might collapse, see 4 in Figure 1.4. Chapter 5 proposes
two techniques that take into account the grid constraint during aggrega-
tion. Therefore, when the produced aggregated flex-offers are scheduled, a
valid solution (schedule) that respects the grid constraint is generated. Sub-
sequently, a normal grid operation is achieved, see 4’ in Figure 1.4.

Due to the fact that the complexity of constraint-based aggregation is ex-
tremely high, Chapter 5 introduces two heuristics, i.e., the Simple Greedy (SG)
and the Exhaustive Greedy (EG). Both techniques consider a target function
that represents the objective of a BRP and a constraint function that repre-
sents the power grid constraint. However, a normal grid operation is pri-
oritized. Hence, a weighted function to compute the distance to both the
constraint and the target function is used, with a higher coefficient for the
target function.

Simple and exhaustive greedy are based on binary aggregations to reduce
their complexity. They consider different starting points, while SG examines
a smaller solution space compared to EG. As a result, SG is much faster,
whereas EG is more effective when a high number of flex-offers participates
in aggregation. The reason is that EG explores a larger solution space than
simple greedy does. Thus, it produces aggregated flex-offers, which, when
scheduled, respect the grid constraint.

Chapter 5 experimentally evaluates the proposed techniques and com-
pares them with the aggregation techniques introduced in Chapter 3. Chap-
ter 5 considers a use case scenario where the objective of a BRP (target func-
tion) contradicts the objective of the distribution system operator (constraint
function and power grid constraint). Thus, both a medium voltage grid and
a mixed portfolio of flex-offers are taken into account. Different sizes of
datasets are also considered with different characteristics. The experimental
setup shows that SG outperforms EG in terms of processing time, yet it pro-
duces a higher number of aggregated flex-offers. As a result, SG also has less
time flexibility losses compared to EG. However, EG is the only technique
that respects the constraint in all cases. When a high number of flex-offers
is connected to the grid, it guarantees a normal operation, whereas baseline
aggregation violates the grid in the 18% of the time horizon.

10

3. Thesis overview

3.5 Chapter 6: Trading Aggregated Flex-Offers via Flexible
Orders

The thesis previous chapters introduce flex-offer aggregation techniques that
focus on the technical benefits reaped by utilizing flexibility as defined
in Chapter 2. Chapter 3 focuses on the balance between demand and sup-
ply and Chapter 5 on guarantying a normal grid operation. In compari-
son, Chapter 6 examines the market perspective of aggregation and focuses
on aggregation techniques that produce aggregated flex-offers which comply
with real market requirements. In particular, it focuses on flex-offers from
electrical vehicles and the day-ahead market of the Nordic region. EVs are
power hungry devices characterized by time flexibility, since they are mainly
plugged-in for more time than their charging demands. Hence, their flexibil-
ity can be used by market actors and be traded in the energy market, creating
new business opportunities [37, 44].

In the bibliography, there are many works proposing different techniques
to tackle energy trading of flexible loads. Their goal is to trade the energy
required to charge (and/or discharge) a population of EVs in day-ahead mar-
kets at a minimum cost [71]. For instance, in [90] and [48] several scheduling
techniques are proposed based on day-ahead prices to minimize the charging
cost of EVs. The main characteristic of the proposed techniques in research
is the scheduling of the flexible loads. A market actor, e.g., a BRP, controls a
large population of EVs and schedules them considering different parameters
such as driving activity uncertainties [90] or price signals [24]. The outcome
of techniques is aggregated non-flexible loads. On the contrary, Chapter 6
introduces 3 market-based aggregation techniques that produce aggregated
flexible loads (aggregated flex-offers) that can be traded in the day-ahead mar-
ket. The market schedules them and defines when their utilization occurs.

Chapter 6 considers a recently introduced product of the Elspot day-ahead
market called flexible order. According to the flexible order product, a BRP
can bid to purchase energy from Elspot. The BRP defines the energy amount
needed, and the time interval when the purchased energy can be utilized.
For instance, the BRP requests to purchase 2MW for one hour between 17:00
and 22:00. It places the flexible order in the market and the market defines
the activation hour of the order based on the optimization of the social wel-
fare, e.g, at 20:00. However, flexible orders have some strict requirements.
In particular, only 5 flexible orders per trading day and per BRP are permit-
ted using hourly granularity and 0.1MW volume granularity. The requested
power volume must be the same for the whole requested duration. Moreover,
the time interval that defines the potential activation of the order shall exceed
the duration of the order for at least one hour. Therefore, market-based flex-
offer aggregation is essential to produce aggregated flex-offers that fulfill the
flexible order requirements.

11

Chapter 1. Introduction

Due to the fact that the complexity of market-based aggregation is
extremely high, Chapter 6 introduces 3 heuristic aggregation techniques,
namely, Dynamic Time Flexibility (DTF), Largest Profile (LP), and Dynamic
Profile (DP). All the proposed techniques produce aggregated flex-offers that
fulfill the flexible order requirements. Thus, the aggregated flex-offers can be
transformed to flexible orders and traded in Elspot market. LP is the fastest
technique among the proposed ones, while it also achieves the highest partic-
ipation percentage. DTF produces the most flexible but long ones aggregated
flex-offers. Hence, they are suitable for low prices occurring later than the
plug-in times of the EVs. DP produces less flexible and shorter aggregated
flex-offers which makes them suitable for low prices occurring close to the
plug-in times of the EVs and for a short period of time. Based on real market
prices, Chapter 6 financially evaluates the 3 heuristics and compares them to
both the aggregation techniques proposed in Chapter 3 and a non-realizable in
practice optimal solution where each flex-offer is directly traded in the mar-
ket. Chapter 6 shows that all proposed techniques achieve more than 19%
cost reduction on energy purchase compared to the charging cost according
to plug-in times of the EVs. In particular, DP achieves 96, 6% of the optimal
cost reduction for the flex-offers that participate in aggregation.

3.6 Appendix A

Appendix A does not include any new content. It is included for complete-
ness because the work was published individually. However, it is redundant
with Chapter 5. Appendix A describes the motivation of constraint-based
aggregation and a preliminary experimental setup with a small dataset of
flex-offers used for the evaluation of the aggregation techniques.

4 Structure of the Thesis

The thesis is organized as a collection of papers with each chapter (Chap-
ter 2 - Chapter 6) and appendix corresponding to an individual research
work. Thus, each chapter/appendix is self-contained and can be read au-
tonomously. Chapter 3 introduces several balance aggregation techniques.
Additionally, Chapter 4 focuses on two of the balance aggregation techniques
and presents an extensive experimental setup. Therefore, there can be an
overlap of concepts between the two chapters regarding the balance aggre-
gation techniques discussion. Moreover, all the research papers are based on
the flex-offer concept and a scenario where energy flexibility is valuable and
can be traded in the market. Hence, there can be some overlaps of concepts
and texts in the introduction and preliminary sections of different chapters
as they are formulated in relatively similar kind of settings. Additionally,

12

4. Structure of the Thesis

the layout of the papers in each chapter is slightly modified during the inte-
gration. For instance, every reference to “paper” is replaced with “chapter”.
The bibliography of the chapters is also integrated into one and presented
after Chapter 7.

In particular, the reader could omit Appendix A (Paper A) as it is is a
short version of Chapter 5.

The papers included in this thesis are listed in the following. Chapter 2
is based on Paper 1, Chapter 3 is based on Paper 2, Chapter 4 is based on
Paper 3, Chapter 5 is based on Paper 4, Chapter 6 is based on Paper 5, Ap-
pendix A is based on Paper 6.

1. Emmanouil Valsomatzis, Katja Hose, Torben Bach Pedersen, Laurynas
Siksnys,“Measuring and Comparing Energy Flexibilities,” Proceedings
of the Workshops of the EDBT/ICDT 2015 Joint Conference (EDBT/ICDT),
Belgium, Brussels, vol. 1330, pp. 78–85, 2015

2. Laurynas Siksnys, Emmanouil Valsomatzis, Katja Hose, Torben Bach
Pedersen,“Aggregating and Disaggregating Flexibility Objects,” IEEE
Transactions on Knowledge and Data Engineering), vol. 27, no. 11, pp.
2893–2906, 2015

3. Emmanouil Valsomatzis, Katja Hose, Torben Bach Pedersen, “Balancing
energy flexibilities through aggregation,” In Proceedings of the Second In-
ternational Workshop on Data Analytics for Renewable for Renewable Energy
Integration (DARE), Nancy, France, pp. 17-37, 2014

4. Emmanouil Valsomatzis, Torben Bach Pedersen, Alberto Abelló, Katja
Hose,“Aggregating energy flexibilities under constraints”, Proceedings
of the 7th IEEE International Conference on Smart Grid Communications
(SmartGridComm), Sydney, Australia, pp. 484-490, 2016

5. Emmanouil Valsomatzis, Alberto Abelló, Torben Bach Pedersen,
“Trading Aggregated Flex-Offers via Flexible Orders”, DBTR series,
http://dbtr.cs.aau.dk/DBPublications/, DBTR- 38.pdf, Aalborg Uni-
versity, Technical Report, 2017

6. Emmanouil Valsomatzis, Torben Bach Pedersen, Alberto Abelló, Katja
Hose, Laurynas Siksnys, “Towards constraint-based aggregation of
energy flexibilities,” In Proceedings of the Seventh International Confer-
ence on Future Energy Systems Poster Sessions (e-Energy ’16), Waterloo,
Canada, 2 pages, 2016

13

Chapter 1. Introduction

14

Chapter 2

Measuring and Comparing
Energy Flexibilities

The paper has been published in the
Proceedings of the Workshops of the EDBT/ICDT 2015 Joint Conference
(EDBT/ICDT), Belgium, Brussels , vol. 1330, pp. 78–85, 2015.
The layout of the paper has been revised.

Copyright is with the authors. Published in the Workshop Proceedings
of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brussels, Bel-
gium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper is
permitted under the terms of the Creative Commons license CC-by-nc-nd
4.0

Abstract

Flexibility in energy supply and demand becomes more and more important with
increasing Renewable Energy Sources (RES) production and the emergence of the
Smart Grid. So-called prosumers, i.e., entities that produce and/or consume energy,
can offer their inherent flexibilities through so-called demand response and thus help
stabilize the energy markets. Thus, prosumer flexibility becomes valuable and the
ongoing Danish project TotalFlex [1] explores the use of prosumer flexibility in the
energy market using the concept of a flex-offer [13], which captures energy flexibil-
ities in time and/or amount explicitly. However, in order to manage and price the
flexibilities of flex-offers effectively, we must first be able to measure these flexibilities
and compare them to each other. In this chapter, we propose a number of possible flex-
ibility definitions for flex-offers. We consider flexibility induced by time and amount
individually, and by their combination. To this end, we introduce several flexibility

15

Chapter 2. Measuring and Comparing Energy Flexibilities

measures that take into account the combined effect of time and energy on flex-offer
flexibility and discuss their respective pros and cons through a number of realistic
examples.

1 Introduction

A common challenging goal is to increase the use of energy produced by
renewable energy sources (RES), such as wind and solar and at the same time
reduce the CO2 emissions. However, RES are characterized by fluctuating
energy production and increased use of RES can lead to peaks (and valleys)
in energy production and thus create congestion problems (or shortages) in
the electric grid [34]. On the other hand, new devices such as heat pumps,
increase the demand of energy and will lead to undesirable consumption
peaks and a need for load shedding.

In this new energy scenery, the forthcoming Smart Grid [26] uses ad-
vanced information and communication infrastructures to activate the con-
cept of demand side management (DSM) [45, 59]. According to DSM, the
individual energy prosumers (producers and consumers) have a prominent
role in the energy market due to their inherent flexibility. Flexibility can
be used to mainly let the energy demand follow the energy supply and ad-
just the energy requirement according to energy production. The TotalFlex
project explores the effect of prosumer flexibility on the energy market by
introducing a new commodity using the flex-offer [13] concept that captures
flexibilities in operating times and energy amounts of devices, as presented
in the following use case.

Flex-offer use-case example. An electrical vehicle (EV) is plugged in and
ready for charging at 23:00. Its battery is totally empty and it needs 3 hours
to be charged. Moreover, its owner is satisfied with a minimum charging of
60% because this is sufficient enough for his needs tomorrow, e.g., going to
work. Thus, we can see a flexibility regarding the energy demand of the EV
due to the energy range satisfaction (60%−100%). Furthermore, the owner
wants the car to be charged by 6:00 the latest, where he/she leaves home. As
the battery requires 3 hours of charging, it should start being charged at 3:00
the latest. Therefore, we can also see a flexibility regarding the starting time
range (23:00-3:00) of recharging the EV. The energy supplier is notified about
the EV owner’s energy requirement as well as the associated flexibilities in
time and amount in the form of a flex-offer. Utilizing the flex-offer, the
charging of the battery is scheduled (the starting time and energy demand
for operating are assigned) at 1:00 because wind production will increase at
that time. Furthermore, in order to ensure the owner’s participation and to
take advantage of the EV flexibility, the owner is offered lower energy tariff
prices.

16

1. Introduction

Flexibility, harnessed from many prosumers (using flex-offers) and han-
dled according to the use-case example above, brings many advantages to
society as well as to the actors participating in the energy market. Specifi-
cally, the utilization of RES is substantially increased and CO2 emissions are
reduced. Individual energy demands from prosumers are met and lower
energy tariffs are offered. Marginal costs are reduced for Balanced Respon-
sible Parties (BRPs) who trade energy. Congestion problems of Distributed
System Operators (DSOs) can be handled without costly upgrades of physical
grid infrastructures.

However, in order to take flexibility into consideration, we need to be able
to measure how much flexibility is offered and identify the kind of flexibility of-
fered. Only with a proper flexibility measure, different flexibility offerings
can be compared together. Focusing on the use-case of flex-offers and flexi-
bility represented by these, we now present two scenarios where measuring
flexibility is particularly useful.

Scenario Nr. 1 Flex-offers must be scheduled at some point in time to
be able to satisfy the prosumers’ energy needs, as described in the use case
example above. Flex-offer scheduling problem [80], being similar to the unit
commitment problem [62], is highly complex [79], when considering a large
number of flex-offers, issued for a variety of appliances such as EVs, heat-
pumps, dish washers, and smart refrigerators. To reduce the complexity of
scheduling, flex-offer aggregation [73] plays a crucial role by trying to reduce
the number of flex-offers while retaining as much as possible of their flexibil-
ity. In addition, the TotalFlex project is further utilizing the aggregation not
only to reduce the number of the flex-offers, but also to partially handle the
balancing task as well [82]. For all the aggregation techniques, it is essential
to quantify and then to minimize flexibility losses, and therefore a flexibility
measure is needed.

Scenario Nr. 2 Consider an energy market where flex-offers are traded.
It is infeasible to trade flex-offers from individual prosumers directly in the
market due to their small energy amounts. It is desirable for a BRP or for any
other participating actor (e.g., an Aggregator) to first aggregate flex-offers
from individual prosumers (e.g., household appliances) into “larger"’ aggre-
gated flex-offers (e.g., at the district level) before entering the market. Con-
sequently, only large aggregated flex-offers are allowed to be traded in the
market, and, when traded, used, e.g., by a BRP to ensure balance between the
physically dispatched energy and energy traded in the energy spot-market,
thus avoiding imbalance penalties. In this scenario, it is preferable for aggre-
gated flex-offers to retain as much flexibility as possible in order to obtain a
better value in the energy market when they are traded. Thus a flexibility
measure to quantify flexibility of various flex-offers traded as commodities is
needed.

In this chapter, we employ the existing flex-offer definition [73] capturing

17

Chapter 2. Measuring and Comparing Energy Flexibilities

flexibilities regarding time and energy amount. We assume that a flex-offer
is already generated and it captures the energy and associated flexibility of
a single prosumer unit (e.g., an EV). Our goal, is to express the flexibility, in
time, amount, and both time and amount, with a single flexibility measure
that can be applied on a single flex-offer or on a set of flex-offers. There-
fore, we introduce 8 possible flexibility measures that can be used to quantify
flexibilities of flex-offers and to compare flex-offers together in terms of their
flexibilities. These include so-called time, energy, product, vector, time-series, as-
signments, absolute area-based, and relative area-based flexibility measures, which
treat time and energy amount either as independent or dependent flex-offer
dimensions. We discuss their advantages and disadvantages using illustra-
tive real-world based examples. Our proposed flexibility definitions can be
used not only for the valuing of flex-offers, but also for evaluation of flex-
offer aggregation techniques and their algorithmic implementation. In fact,
depending on the application needs, the flexibility of a flex-offer can be mea-
sured using one or more of the proposed measures, each with their advan-
tage.

The remainder of the chapter is structured as follows. In Section 3, we
introduce and propose different flexibility definitions. We discuss in Section 4
about the use-case of the introduced definitions mentioning their pros and
cons. We refer to related work in Section 5, and we conclude and mention
our future work in Section 6.

2 Preliminaries

In this chapter, we consider the dimensions of time and energy, where time
has the domain of natural numbers including zero (N0) and energy has the
domain of integers (Z). These assumptions are without loss of generality as
we can achieve any desired finer granularity/precision of time and energy by
simply multiplying their values with the desirable coefficient. Based on [73],
we define a flex-offer according to Definition 1.

Definition 1. A flex-offer f is a 2-tuple f=([tes, tls], 〈s(1), . . . , s(s)〉). The first
element of the tuple denotes the start time flexibility interval where tes ∈ N0 and
tls ∈ N0 are the earliest start time and latest start time, respectively. The second
element is a sequence of s consecutive slices that represents the energy profile. Each
slice s(i) is an energy range [amin, amax], where amin ∈ Z and amax ∈ Z. The
duration of slices is 1 time unit.

A flex-offer also has a total minimum cmin and a maximum cmax energy con-
straint. The minimum constraint is smaller than or equal to the maximum
one and they are lower and upper bounded by the sum of all the minimums
and the sum of all the maximums of energy of the slices, respectively. If all the

18

3. Flexibility Definitions and Measures

energy values of a flex-offer are positive then the flex-offer represents energy
consumption (positive flex-offer), e.g., a dishwasher. If all the energy values
of a flex-offer are negative then the flex-offer represents energy production
(negative flex-offer), e.g. a solar panel. If the energy values of a flex-offer
are both positive and negative then the flex-offer represents both energy con-
sumption and production (mixed flex-offer), e.g., a “vehicle-to-grid”.

A flex-offer f can be instantiated into a so-called assignment of f , fa, is a
time series defining the starting time and the exact energy amounts satisfying
all flex-offer constraints.

Definition 2. An assignment fa of a flex-offer f = ([tes, tls], 〈s(1), . . . , s(s)〉) is a
time series { fa}tstart+s

t=tstart
= 〈v(1), . . . , v(s)〉 such that:

• tes ≤ tstart ≤ tls

• ∀i = 1..s : s(i).amin ≤ v(i) ≤ s(i).amax

• cmin ≤
s

∑
i=1

v(i) ≤ cmax

A (valid) flex-offer assignment satisfies the constraints of a flex-offer. Specif-
ically, for each slice of the flex-offer, the assignment has a corresponding
energy value which must be within the corresponding slice energy range of
the flex-offer. In addition, the sum of the energy values of a flex-offer as-
signment must be within the total minimum and the total maximum energy
constraints of the flex-offer. Furthermore, the first non-zero energy value of
the assignment that defines the actual starting time of the flex-offer must be
within the start time flexibility interval of the flex-offer. A single flex-offer
(typically) has several flex-offer assignments. We use the set L(f) to define all
(valid) flex-offer assignments. For instance, Figure 2.1 illustrates a flex-offer
with four slices f = ([1, 6], 〈[1, 3], [2, 4], [0, 5], [0, 3]〉). One valid assignment of
f is fa1 ∈ L(f) such that { fa1}5

t=2 = 〈2, 3, 1, 2〉, shown as bold lines in Fig-
ure 2.1.

3 Flexibility Definitions and Measures

We now introduce different flexibility definitions and measures associated
with a flex-offer.

3.1 Time and energy flexibility

There are two different types of flexibilities associated with a flex-offer, either
derived by the starting time interval or by the energy ranges of the slices.

19

Chapter 2. Measuring and Comparing Energy Flexibilities

En
er

gy

Time

Fig. 2.1: Illustration of a flex-offer f

Based on the flexibility definitions introduced in [73], we consider the time
flexibility tf (f) of a flex-offer f to be the difference between the latest and the
earliest start time of f , measured in time units, i.e., tf (f) = f .tls − f .tes.

Example 3.1
The flex-offer f in Figure 2.1 has tls=6 and tes=1, thus time flexibility is:
tf (f) = 6− 1 = 5.

Moreover, since the total maximum and the total minimum energy con-
straints impose the allowed energy range of a flex-offer, we also define energy
flexibility of a flex-offer f to be the difference between the total maximum and
the total minimum energy constraints, i.e., ef (f) = c_max(f)− c_min(f)

Example 3.2
The flex-offer f in Figure 2.1 has the sum of maximum slice val-
ues equal to 15 and the sum of minimum slice values equal to 3.
Given that, c_max(f)=15, c_min(f)=3, and the energy flexibility of f is
ef (f)=15−3=12.

3.2 Combined flexibility measures

As seen above, quantifying either time or energy flexibilities on their own
is rather straightforward. It is more tricky to consider them in combination.
Therefore, we now define and discuss several alternative measures for this.

20

3. Flexibility Definitions and Measures

Product flexibility. The existing definition of total flexibility [73] originally
specified the total (joint) flexibility of a flex-offer f as the product of the time
flexibility and the sum of the energy flexibilities of all the slices. However, as
we have additionally introduced the total energy constraints of a flex-offer,
we define the product flexibility of a flex-offer as follows:

Definition 3. The product flexibility product_flexibility(f) of a flex-offer f
is the product of the time flexibility and the energy flexibility of f , i.e.,
product_flexibility(f) = t f (f) · e f (f).

Example 3.3
The flex-offer f in Figure 2.1 has product flexibility product_flexibility(f) =
5 · 12 = 60.

Vector flexibility. Since a flex-offer is characterized by both time and
energy we define the flexibility of a flex-offer to be a vector where time and
energy flexibilities are the vector components.

Definition 4. The vector flexibility vector_flexibility(f) of a flex-offer f is a vector v
with 2 components. The first component of the vector is the time flexibility of f , and
the second component is the energy flexibility, i.e., v = 〈t f (f), e f (f)〉.

The total flexibility is then intuitively given by the “length” of the vector, com-
puted using a given norm. Possible relevant norms in our two dimensions
include Manhattan (L1−norm) and Euclidean norm (L2−norm).

Example 3.4
The flex-offer f in Figure 2.1 has vector flexibil-
ity vector_flexibility(f) = 〈5, 10〉, and we can compute
its length as either ‖vector_flexibility(f)‖1=5+10=15 or
‖vector_flexibility(f)‖2=

√
(52 + 102)=11.180.

Time-series flexibility. A flex-offer allows multiple assignments, each
expressing a possible instantiation of the flex-offer. Since every assignment
of a flex-offer is a time series, the difference between two assignments is also
a time series. We consider the two most dissimilar time series (assignments),
minimum and maximum, defined as follows:

Definition 5. The minimum assignment f min
a (f) of a flex-offer f =

([tes, tls], 〈s(1), . . . , s(s)〉) is the assignment with the first energy value positioned
at the earliest starting time of f and energy values equal to the minimum slice values
of f , i.e., f min

a (f) = t, where {t}tes+s
t=tes

= 〈 f .s(1).amin, . . . , f .s(s).amin〉.

21

Chapter 2. Measuring and Comparing Energy Flexibilities

Fig. 2.2: Time series definition example with e f (f1) = 1 and t f (f1) = 1

Definition 6. The maximum assignment f max
a (f) of a flex-offer f =

([tes, tls], 〈s(1), . . . , s(s)〉) is the assignment with the first energy value positioned
at the latest starting time of f and energy values equal to the maximum slice values
of f , i.e., f max

a (f) = t, where {t}tls+s
t=tls

= 〈 f .s(1).amax, . . . , f .s(s).amax〉.

Using minimum and maximum assignments, we define series flexibility as
follows:

Definition 7. The time series flexibility, series_flexibility(f), of a flex-offer f is
the difference the maximum and the minimum assignments of f (time series), i.e.,
series_flexibility(f)= f max

a (f)- f min
a (f).

Since we use two dimensions, we again propose the Manhattan and Eu-
clidean norms to quantify the difference between two assignments.

Example 3.5
Figure 2.2 illustrates a flex-offer f1 with 1 slice, earliest start time = 0, and

latest start time = 1, f1 = ([0, 1], 〈[0, 1]〉, cmin(f1) = 0, and cmax(f1) = 1.
Flex-offer f1 has 4 assignments, and the following minimum and max-

imum assignments: { f min
1a (f1)}1

t=0 = 〈0, 0〉, { f max
1a (f1)}1

t=0 = 〈0, 1〉. Let
the difference between f max

1a (f1) and f min
1a (f1) be fd1 so that fd1= f max

1a (f1)-
f min
1a (f1). In this example { fd1}1

t=0 = 〈0, 1〉, L1−norm, |{ fd1}1
t=1|1 = 1,

and L2−norm, |{ fd1}1
t=1|2 = 1. According to both L1−norm and L2−norm,

series_flexibility(f1)=1.

Assignment flexibility. As mentioned in Section 2, a flex-offer allows a

22

3. Flexibility Definitions and Measures

Fig. 2.3: Number of assignments example with e f (f2) = 2 and t f (f2) = 2

number of possible assignments. The number of possible assignments di-
rectly depends on time and energy flexibility and is the number of the com-
binations between all the allowed amount and time values of all its slices.
Therefore, we use the number of possible assignments as a combined mea-
sure induced by both time and amount flexibility.

Definition 8. We define assignment flexibility, assignment_flexibility(f), of a
flex-offer f = ([tes, tls], 〈s(1), . . . , s(s)〉) to be the number of all possible assignments
of f , i .e., assignment_flexibility(f)=

=(tls−tes+1)·
s

∏
i=1

(s(i).amax−s(i).amin+1).

Example 3.6
Flex-offer f2 = ([0, 2], 〈[0, 2]〉) in Figure 2.3 has tls−tes+1=3 and since it
has one slice s(1).amax−s(1).amin+1=3. Thus, f2 has 9 assignments in total.

Absolute area-based flexibility. Absolute area-based flexibility is based
on the area that all flex-offer assignments jointly cover, considering all of
their possible values of start time and energy. As a basis for calculating this
area, we consider a two-dimensional (time and energy) grid G = N0 ×Z =
{(t, e) : t ∈ time, e ∈ energy}, in which the x axis corresponds to discretized
time and the y axis to discretized energy. Cells of the grid are identified by
their lower left coordinates. For instance, the cell with identifier (0, 0) has the
following corner coordinates: (0, 0), (0, 1), (1, 0), (1, 1).

23

Chapter 2. Measuring and Comparing Energy Flexibilities

Fig. 2.4: Area of the assignment { f3a}3
t=1 = 〈2, 1, 3〉

First, we define the area of a single flex-offer assignment.

Definition 9. The area of an assignment fa of a flex-offer f , denoted as area(fa), is
the set of cells that falls between the fa energy values and the X-axis of the grid.

Example 3.7
Given an assignment of flex-offer f3, { f3a}3

t=1 = 〈2, 1, 3〉 the area is as
follows: area({ f3a}3

t=1) = {(1, 0), (1, 1), (2, 0), (3, 0), (3, 1), (3, 2)}, which is
represented by the hatched cells in Figure 2.4.

This area represents the total assigned amount of a single flex-offer. How-
ever, multiple assignments with different areas are possible for a flex-offer.
The total coverage of all these assignment areas gives us the area of the flex-
offer flexibility. This joint area expresses all the possible amounts at all the
possible time instances that a flex-offer could have. Furthermore, we are in-
terested in the size (a numerical value) of this area of flexibility. To specify
this, we additionally take into account the minimum total energy constraint
c_min, which is applicable to all assignments and is thus considered inflexi-
ble.

Definition 10. The absolute area-based flexibility of a flex-offer f is the difference
between the size of the total area covered by all the assignments of f and the total min-
imum constraint of f : absolute_area_flexibility=| ⋃

as_ f∈L(f)
area(as_ f)| − c_min(f)

Example 3.8
Figure 2.5 illustrates the flex-offer f4 = ([0, 4], 〈[2, 2]〉, cmin(f4)=2,

and cmax(f4)=2. Flex-offer f4 has 5 different assignments and each

24

3. Flexibility Definitions and Measures

En
er

gy

Time

New area=8, Absolute flexibility=8, Relative flexibility=16/4

En
er

gy

Time

New area=6

En
er

gy

Time

New area=4

En
er

gy

Time

New area=2

En
er

gy
Time

tf(f4)=4
ef(f4)=0
c_min=3
c_max=4
#assignments=5

EST LST

Fig. 2.5: Absolute and relative area-based flexibility of the flex-offer f4

one covers an area of two cells, see Figure 2.5. Flex-offer f4 has
absolute_area_flexibility(f4)=10−2=8.

Example 3.9
Figure 2.6 illustrates the flex-offer f5 = ([0, 4], 〈[1, 1], [2, 2]〉, cmin(f5)=3,

and cmax(f5)=3. Flex-offer f5 has 5 different assignments and each
one covers an area of three cells, see Figure 2.6. Flex-offer f5 has
absolute_area_flexibility(f5)=10−2=8.

25

Chapter 2. Measuring and Comparing Energy Flexibilities

En
er

gy

Time

New area=8, Absolute flexibility=8, Relative flexibility=16/6

En
er

gy

Time

New area=6

En
er

gy

Time

New area=4

En
er

gy

Time

New area=2
En

er
gy

Time

tf(f4)=4
ef(f4)=0
c_min=3
c_max=4
#assignments=5

EST LST

Fig. 2.6: Absolute and relative area-based flexibility of the flex-offer f5

Relative area-based flexibility. For most of the presented flexibility mea-
sures (incl., absolute area-based flexibility), the value of the flexibility de-
pends on the actual amounts specified in the flex-offer. However, in cases
when we need to compare flex-offers of different sizes in terms of amount,
we need a size-independent measure. For these cases, we propose a relative
area-based flexibility.

Definition 11. The relative area-based flexibility of a flex-offer f is equal to the
absolute flexibility divided by the average of the energy total constraints of f :

relative_area_flexibility(f) = 2∗absolute_area_flexibility(f)
|c_min(f)|+|c_max(f)| , |c_min(f)| +

|c_max(f)| 6= 0

Example 3.10
Flex-offer f4 = ([0, 4], 〈[2, 2]〉, cmin(f4)=2, cmax(f4)=2, shown in Fig-
ure 2.5, has relative_area_flexibility(f4)= 2∗8

|2|+|2|=4. Flex-offer f5 =

26

4. Discussion

([0, 4], 〈[1, 1], [2, 2]〉, cmin(f5)=3, cmax(f5)=3, shown in Figure 2.6, has
relative_area_flexibility(f5)= 2∗8

|3|+|3|=16/6.

4 Discussion

In this section, we discuss the pros and cons of the proposed flexibility mea-
sures, and scenarios in which we can use each of these measures.

Product flexibility. The product flexibility measure, defined in Defini-
tion 3, is only applicable in cases when a flex-offer f has positive time and
energy flexibilities, i.e., t f (f) > 0 and e f (f) > 0. In cases, when either
the time or the amount flexibility is equal to zero, the value of the product
flexibility is also equal to zero. As the flex-offer is still flexible in the other
dimension (time or energy), this measure is not particularly accurate.

Example 4.1
Flex-offer fx=([2, 8], 〈[5, 5]〉) has t f (f)=6, e f (fx)=0, and
product_flexibility(fx) = 6 · 0 = 0. Moreover, two flex-offers
fx=([1, 3], 〈[1, 5]〉) and fy=([1, 3], 〈[101, 105]〉) have equal product flexibil-
ity values, i.e., product_flexibility(fx)=product_flexibility(fy)=8, even if the
minimum energy requirement of fy is more than 100 times greater than
the minimum energy requirement of fx.

Furthermore, product flexibility does not take into account individual
slice energy requirements. It relies only on total energy requirements (cmin
and cmax). Nevertheless, Definition 3 can still be applicable in scenarios where
the flex-offer represents production, consumption, or both, as long as there
are no mixed flex-offers. Additionally, it can be generalized for sets of flex-
offers. To compare two or more sets of flex-offers, we should sum the product
flexibilities of the flex-offers in each set.

Vector flexibility. Vector flexibility measure, as defined in Definition 4,
can be applicable to either individual flex-offers or sets of flex-offers, like
the product flexibility. However, unlike the product flexibility, it can capture
the flexibility in cases where either time or energy flexibility of a flex-offer is
equal to zero. Furthermore, it is independent of the sign of the energy values
of the slices of a flex-offer. In particular, it can express flexibility of flex-
offers that represent either energy production, consumption, or both. Like
the product flexibility, it does not take into account individual slice energy
requirements, solely relying on total energy requirements (cmin and cmax).
Lastly, vector flexibility does not take into account the actual values of energy

27

Chapter 2. Measuring and Comparing Energy Flexibilities

(“size of the flex-offer”), but, instead, captures only the difference between
energy bounds.

Example 4.2
The two flex-offers fx=([1, 3], 〈[1, 5]〉) and fy=([1, 3], 〈[101, 105]〉) from Ex-
ample 4.1 have the same vector flexibility irrespectively of the used
norm, even if the minimum energy requirement of fy is more than 100
times greater than the minimum energy requirement of fx. Specifically,
‖vector_flexibility(fx)‖1=‖vector_flexibility(fy)‖1=6 according to the Man-
hattan norm, and ‖vector_flexibility(fx)‖=‖vector_flexibility(fy)‖2=4.472 ac-
cording to the Euclidean norm.

Time-series flexibility. Norms such as Manhattan and Euclidean, appli-
cable with time-series flexibility (see Definition 7), do not take into account
the temporal structure of the time series [46] and thus cannot capture the joint
effect of time and energy flexibilities. As a result even if time-series captures
both time and energy, the norms applied on a difference between time-series
can capture only energy flexibility. However, the time-series definition can
be applied on positive, negative, and mixed flex-offers, as well as on sets of
flex-offers – by computing the sum of time-series flexibilities of the flex-offers
in the set.

Example 4.3
As mentioned in Example 3.5 , flex-offer f1 = ([0, 1], 〈[0, 1]〉, cmin(f1) = 0,
and cmax(f1) = 1 results in time series { fd1}1

t=0 = 〈0, 1〉, and its norms are
as follows: L1−norm, |{ fd1}1

t=1|1 = 1, and L2−norm, |{ fd1}1
t=1|2 = 1. How-

ever, another flex-offer f ′1 = ([0, 10], 〈[0, 1]〉, cmin(f ′1) = 0, and cmax(f ′1) = 1
with 10 times greater time flexibility than f1 results in a similar time se-
ries { f ′d1}

1
t=0 = 〈0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1〉 with identical norms: L1−norm,

|{ f ′d1}
1
t=1|1 = 1, and L2−norm, |{ f ′d1}

1
t=1|2 = 1.

Assignment flexibility. Assignment flexibility, as defined in Definition 8,
considers only the number of flex-offer assignments, and this number is inde-
pendent of the actual values of the time and energy bounds. The limitation
of this measure is that energy flexibility has an exponential impact on the
number of the assignments, i.e., the number of assignments increases expo-
nentially when energy flexibility is increased. In comparison, the number
of flex-offer assignments increases linearly when time flexibility is increased.
Thus, this measure favors energy flexibility over time flexibility. Moreover,
assignment flexibility, as defined in Definition 8, does not take into account

28

4. Discussion

Fig. 2.7: Number of assignments example, flex-offer f6

the total energy requirements (cmin and cmax), and gives the same values for
flex-offers with the same time and amount flexibilities, but differing in energy
amounts. Furthermore, it can express flexibility of flex-offers that represent
either production, consumption, or both. It can be used to compare individ-
ual flex-offers and to compare sets of flex-offers by counting the number of
possible assignments for the whole set.

Example 4.4
The flex-offer f2 with t f (f2)=e f (f2)=2, shown in Figure 2.3, has 9 possible
assignments. If t f (f2) were 0, flex-offer f2 would have 3 possible assign-
ments, but if e f (f2) were 0, f2 would have 2 possible assignments. The
flex-offer f6 with t f (f6)=2 and e f (f6)=10, shown in Figure 2.7, has 240
assignments. If t f (f6) were 0, f6 would have 80 assignments, but if e f (f6)
were 0, f6 would have 3 assignments.

29

Chapter 2. Measuring and Comparing Energy Flexibilities

Absolute and relative area-based flexibility. Both the absolute and rela-
tive area-based flexibility measures (Definitions 10–11) can be used to capture
the joint effect of time and energy flexibilities. However, the absolute area-
based flexibility measure should only be used for (pure) consumption flex-
offers only, as its value is adjusted using the total minimum energy constraint
(cmin), which is meaningful only for the consumption case where amounts are
positive. For the production flex-offer case, where amounts are negative, the
total maximum energy constraint (cmax) should be used instead. However,
for cases when the flex-offer represents both production and consumption,
this flexibility measure is not feasible.

Example 4.5
For instance, flex-offer f4=([0,2],〈[−1,2],[−1,−4],[−3,1]〉) in Figure 2.7
has cmin(f6)=−8 and cmax(f6)=2, but neither of them expresses the
lower or upper bounds of the area, jointly covered by the assign-
ments of f6. In this case, absolute_area_flexibility(f6)=24−(−8)=32 and
relative_area_flexibility(f6)= 2∗32

|8|+|2|=6.4.

On the other hand, both absolute and relative area-based flexibility mea-
sures can be used to compare individual flex-offers. Only absolute area-based
flexibility can be used to compare the total absolute flexibility of two or more
sets of flex-offers, e.g., by summing up the individual absolute area-based
flexibility values of the flex-offers in the sets. To assess the relative flexibil-
ity for a set of flex-offers, the sum of relative flexibilities is not meaningful,
instead the average relative flexibility could be used.

All the flexibility measures can be applied for both individual flex-offers
and sets of flex-offers to compare their underlying flexibility. However, as
we see in Table 2.1, which summarizes the characteristics of all the proposed
flexibility definitions, each flexibility measure has specific characteristics and
should be used under specific circumstances only. For example, the product
flexibility measure cannot properly capture flexibility unless both time and
amount flexibility is exhibited. The time-series flexibility measure captures
only flexibility induced by energy flexibility. Only the absolute and relative
area-based flexibility measures take into account the amount values (size)
of the flex-offers. However, the absolute and relative area-based flexibility
measures have problems expressing the flexibility of mixed flex-offers.

Application Scenarios. There are 2 major scenarios (see Section 1) where
the different measures can be applied. In Scenario 1, the goal of aggregation
is to reduce the input complexity of scheduling and retain as much flexibility
of flex-offers as possible. In this scenario, measures that capture flexibility

30

4. Discussion

Flexibility Measures
Characteristics Time Energy Product Vector

Captures time Yes No No Yes
Captures energy No Yes No Yes

Captures time & energy No No Yes Yes
Captures size No No No No

Captures positive flex-offers Yes Yes Yes Yes
Captures negative flex-offers Yes Yes Yes Yes
Captures Mixed flex-offers Yes Yes Yes Yes

Single Value Yes Yes Yes (Yes)

Flexibility Measures
Characteristics Time-series Assignments Abs. Area Rel. Area

Captures time No Yes Yes Yes
Captures energy Yes Yes Yes Yes

Captures time & energy No Yes Yes Yes
Captures size No No Yes Yes

Captures positive flex-offers Yes Yes Yes Yes
Captures negative flex-offers Yes Yes Yes Yes
Captures Mixed flex-offers Yes Yes No No

Single Value Yes Yes Yes Yes

Table 2.1: Flexibility definitions characteristics.

induced by both time and energy, e.g., product flexibility and assignments
flexibility, are qualified. Measures that capture only time or energy flexibil-
ity, such as time-series flexibility, are not appropriate for Scenario 1. However,
in cases where aggregation handles the balancing task as well, measures that
capture flexibility of mixed flex-offers are needed since the aggregated flex-
offers might be mixed ones. Thus, measures that are not suitable for mixed
flex-offers, i.e., absolute and relative area-based flexibility, are inappropriate
to express flexibility. Instead, measures that capture flexibility of mixed flex-
offers such as vector and assignments flexibility, are qualified. In Scenario 2,
where an energy market actor (e.g., an Aggregator) trades flex-offers as com-
modities, measures capturing only time or energy can be used. The reason
is because an Aggregator might handle flex-offers from specific appliances
that are characterized only by time or energy flexibility. Thus, the time-series
measure, the time and energy flexibility measures, and the product flexibility
measure are appropriate. In cases where an Aggregator wants to explore and
evaluate the potentials of achieving a local balance and handle a power capac-
ity limitation, measures for mixed flex-offers are more appropriate. However,
only absolute and relative area-based flexibilities take into account the size
of a flex-offer, but they cannot be applied on mixed flex-offers. Therefore,
a combination of measures that includes the absolute or the relative area-
based flexibility can be used to handle these more complex cases. Weighting
is one way of combining different flexibility measures and balancing their

31

Chapter 2. Measuring and Comparing Energy Flexibilities

influences to fulfill specific characteristics mentioned in Table 2.1.

5 Related work

Flexibility in energy supply and demand has a prominent role in the Smart
Grid domain, and, among others within this domain, can be associated
with distributed generation, load management and demand side manage-
ment [45]. Many definitions of flexibility have been proposed, but a for-
mal universal definition is still pending [65]. Some proposed measures of
flexibility focus on operational aspects and take into account transmission
constraints [16], while others are based on time shifting of loads [66]. Fur-
thermore, there has been proposed categorizations of power units based on
their characteristics, taking into consideration their qualities and capabilities
to dispatch power and solve balancing issues [65].

In comparison, this chapter proposes and discusses specific measures to
quantify flexibility in energy supply and demand, namely in the units con-
nected to the Smart Grid such as electric vehicles, solar panels, wind turbines,
and refrigerators. We use the existing definition of a flex-offer [73], which is a
generic model for representing flexibility and adjust it for the cases of energy
consumption, production, and both consumption and production. The pro-
posed measures can be applied on individual electrical units and on sets of
units as well, e.g., when solving the unit commitment problem [62] or tack-
ling balancing or congestion problems occurring in the grid [80].

6 Conclusion and future work

In this chapter, we proposed and explored 8 measures for quantifying flexi-
bility in demand and supply based on the generic flexibility model of a flex-
offer, capturing the energy behavior of units connected to the Smart Grid.
We identified the independent flexibilities of time and energy and proposed
a number of combined measures – product, vector, time-series, assignments, ab-
solute area-based, and relative area-based – which take both time and energy into
account. These measures can be used to compare the flexibility of individual
flex-offers as well as sets of flex-offers. We demonstrated and discussed the
impact of the proposed measures using elaborate graphical examples. We
concluded through a discussion that such single-value measures can be used
to express the flexibility of the units connected to the Smart Grid. However,
none of the measures have all the desirable characteristics. Instead, each mea-
sure has specific characteristics and can be used in specific circumstances, all
discussed in the chapter.

In future work, we will examine the use of the suggested measures for
flex-offer aggregation algorithms, including those that partially address the

32

6. Conclusion and future work

energy balancing problem and consider electric grid constraints. The pro-
posed flexibility measures will be added to the constraints and/or objective
functions of these aggregation algorithms, performing aggregation jointly
with flexibility optimization. We will also experimentally evaluate the flexi-
bility measures and their effect on the scheduling process in different scenar-
ios. Moreover, we will extend the current proposals to new types of measures
capturing more aspects of flexible electrical loads.

33

Chapter 2. Measuring and Comparing Energy Flexibilities

34

Chapter 3

Aggregating and
Disaggregating Flexibility
Objects

The paper “Aggregating and Disaggregating Flexibility Objects” has been
published in the
IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 11, pp.
2893–2906, 2015.
The layout of the paper has been revised.
DOI: 10.1109/TKDE.2015.2445755

IEEE copyright/ credit notice:
© 2015 IEEE. Reprinted, with permission, from Laurynas Šikšnys, Em-
manouil Valsomatzis, Katja Hose, and Torben Bach Pedersen, Aggregating
and Disaggregating Flexibility Objects, 2015

Abstract

In many scientific and commercial domains we encounter flexibility objects, i.e., ob-
jects with explicit flexibilities in a time and an amount dimension (e.g., energy or
product amount). Applications of flexibility objects require novel and efficient tech-
niques capable of handling large amounts of such objects while preserving flexibility.
Hence, this chapter formally defines the concept of flexibility objects (flex-objects)
and provides a novel and efficient solution for aggregating and disaggregating flex-
objects. Out of the broad range of possible applications, this chapter will focus on

35

Chapter 3. Aggregating and Disaggregating Flexibility Objects

smart grid energy data management and discuss strategies for aggregation and dis-
aggregation of flex-objects while retaining flexibility. This chapter further extends
these approaches beyond flex-objects originating from energy consumption by addi-
tionally considering flex-objects originating from energy production and aiming at
energy balancing during aggregation. In more detail, this chapter considers the com-
plete life cycle of flex-objects: aggregation, disaggregation, associated requirements,
efficient incremental computation, and balance aggregation techniques. Extensive
experiments based on real-world data from the energy domain show that the proposed
solutions provide good performance while satisfying the strict requirements.

1 Introduction

Many scientific and commercial domains deal with flexibilities in terms
of time and amount. In the smart-grid domain, for instance, the EU FP7
research project MIRABEL [13] and the ongoing Danish project TotalFlex
(www.totalflex.dk) exploit time and energy amount flexibilities of various
electricity consumers and producers to increase the share of renewable
energy sources (RES) such as wind-turbines and solar-panels.

Such flexibilities can be captured by flexibility objects (in short, flex-objects),
specifying (1) how much energy is needed, (2) when it is needed, and (3) what
the tolerated flexibilities are regarding time (e.g., between 9 PM and 5 AM) and
energy amount at consecutive time intervals (e.g., between 2 and 4 kWh in the
first hour and 3 and 5 kWh in the second hour). By interconnecting thousands
of European Electricity Market participants – consumers, producers, aggrega-
tors, and Balance Responsible Parties (BRPs) – using a large-scale Energy Data
Management System [13], these flex-objects undergo the cycle of aggregation,
instantiation, and disaggregation, depicted in Figure 3.1. Generated by individ-
ual consumers/producers (e.g., a smart-home automation system for charg-
ing the battery of an electric vehicle (EV)), flex-objects (f1, . . . , f4) are sent to
aggregators, which first group similar (time-overlapping) flex-objects (g1 and
g2) and then aggregate them into larger “macro” flex-objects (fa1 and fa2).
Utilizing such “macro” flex-objects, the BRP schedules (globally balances)
flexible loads of the “macro” flex-objects to match the forecasts of inflexible
consumption and RES production. During the scheduling, the “macro” flex-
objects are transformed (instantiated) into so-called “macro” fix-objects (f x

a1
and f x

a2) having concrete values assigned for the time and amount dimen-
sions within the flex-object flexibility intervals. Then, the aggregators dis-
aggregate the “macro” fix-objects into “micro” fix-objects (f x

1 , . . . , f x
4), which

specify the exact time and magnitude of energy that has to be consumed
(or produced) by the consumers/producers. If electricity is consumed and
produced according to the fix-objects, consumers/producers are ultimately
rewarded based on the flexibility they offer.

36

www.totalflex.dk

1. Introduction

f1

f2Consumers/
Producers f3

Aggregators
fa1 fa2

f4g1 g2

Aggregation

Balance Responsible
Parties (BRP)

g1 g2

Scheduling/
Instantiation

fa1 fa2
g1 g2

x
x

Disaggregation

f1

f2
f3 f4g1 g2

x

x x x

Fig. 3.1: The lifecycle of flex-objects

In this cycle, the aggregation and disaggregation operations have a num-
ber of associated requirements. First, aggregation must reduce the total num-
ber of flex-objects to lower the complexity of solving the scheduling prob-
lem. It should retain as much flexibility as possible in the aggregated flex-
objects, while not introducing more flexibility than that of the non-aggregated
flex-objects. Second, the aggregation must produce aggregated flex-objects
conforming to individual BRP requirements, setting the limits for, for in-
stance, the number, magnitude of amount, and covered time window, of
the flex-objects. Third, aggregation must be able to support rapid and con-
tinuous flex-object additions and removals issued by consumers/producers.
Fourth, to reduce the risk of congestions (caused by RES and EVs), it is
very important to balance demand and supply locally by aggregators prior
to scheduling (global balancing) by BRPs. Thus, the aggregation must be
able to perform local balancing when producing aggregated flex-objects. Fig-
ure 3.1 demonstrates such “balance aggregation” using the flex-object fa1,
which represents the joint energy needs/offers from a consumer issuing the
flex-object f1 and a producer issuing the flex-object f2. Lastly, the disag-
gregation of fix-objects must be feasible in all these cases. For use in the
smart-grid (MIRABEL/TotalFlex) and other domains, no flex-object aggrega-
tion/disaggregation solution satisfying all these requirements exists.

Considering this need, the contributions of this chapter are as follows.
First, we formally define flex-objects, fix-objects, measures to quantify flex-
ibility, aggregation and disaggregation functions, and associated require-
ments. Second, we present a basic technique to aggregate many flex-objects
into a single aggregated flex-object and to disaggregate a fix-object into many
fix-objects. Third, we present an advanced technique that generates many
aggregated flex-objects and that is able to disaggregate fix-objects. Here,
the aggregation is performed incrementally. Given a sequence of flex-object
deltas, our technique partitions flex-objects into disjoint groups of similar
flex-objects. The partitioning is performed in two steps – grid-based grouping
and bin-packing – ensuring that flex-objects in the groups are similar enough

37

Chapter 3. Aggregating and Disaggregating Flexibility Objects

and that the groups themselves fulfil a given (aggregate) criterion. After
bin-packing, similar flex-objects from different groups are merged into ag-
gregated flex-objects, which are finally returned as output in the form of a
sequence of aggregated flex-object deltas. Fourth, we present five techniques
for balance aggregation. For all techniques, we provide detailed algorithms
in pseudo-code along with computational complexity estimates. Finally, we
discuss the results of our extensive set of experiments with both regular and
balance aggregation and show that our solution scales well and handles ag-
gregation and disaggregation efficiently and effectively.

This chapter significantly extends our previous work [73] by providing (1)
a more concise problem formulation, also including balance aggregation, (2)
detailed aggregation/disaggregation algorithms with pseudo-code, (3) five
concrete balance aggregation algorithms, (4) computational complexity anal-
yses, and (5) a set of comprehensive balance aggregation experiments.

The remainder of the chapter is structured as follows. Section 2 for-
mally defines all relevant concepts. Sections 3–4 describe basic and advanced
flex-object aggregation/disaggregation techniques. Balance aggregation tech-
niques are introduced in Section 5. Section 6 describes the experimental eval-
uation, while Section 7 discusses related work. Finally, Section 8 concludes
the chapter and discusses future work. The Appendix A of the chapter pro-
vides additional proofs and the detailed complexity analyses of the proposed
algorithms.

2 Problem Formulation

We now formalize the problem of aggregating and disaggregating flexibility
objects. Our formalization includes (1) definitions of flex-object concepts,
(2) measures for quantifying flexibility, and (3) functions for aggregation and
disaggregation and their associated constraints.

Let e be an entity from a domain D utilizing a resource r; the utilization
of the resource is characterized by a continuous amount over a discrete time.
An example of an entity (e) is an electric vehicle (EV) that is connected to a
charging station (D) and consuming specific amounts of electrical energy (r)
at different hours to fully charge its battery. We define flexibility in how the
resource can be utilized (i.e., flexible utilization) using a so-called flex-object,
which is a multidimensional object capturing two aspects: (1) a time flexibility
interval and (2) an amount profile with a sequence of consecutive slices, each
defined by minimum and maximum bounds of the amount.

Definition 12. A flex-object f is a tuple f = ([tes, tls], p) where [tes, tls] is the
start time flexibility interval and p is the amount profile. The time is discretized
into equal-sized units, e.g., 15 minute intervals. Thus, we use tes ∈N to specify the
earliest start time and tls ∈N to specify the latest start time. The p is a sequence

38

2. Problem Formulation

Time

Earliest

start time

(tes)

Latest

start time

(tls)

Profile

s(1)
Slice

Latest

End time

(tle)

s(2) s(4) s(5)
A

m
o

u
n

t Maximum amount, amax

Minimum amount, amin

Possible amount

instantiation

Time flexibility interval

Posible start time

instantiation

(ts)

s(3)

Fig. 3.2: A generic flex-object

of slices 〈s(1), . . . , s(m)〉, where a slice s(i) is a continuous range [amin, amax] defined
by a minimum amount amin and a maximum amount amax. The extent of s(i) in
the time dimension is 1 unit. Hence, a flex-object’s profile duration is computed as
pdur(f) = | f .p|, its earliest end time as tee(f) = f .tes + pdur(f), and its latest
end time as tle(f) = f .tls + pdur(f).

Figure 3.2 depicts an example of a flex-object specifying the intended con-
sumption of electricity of a single EV connected to a charging station, where
the EV, electricity, and charging station are the above presented entity e, re-
source r, and domain D, respectively. The flex-object has a profile with five
slices: 〈s(1), . . . , s(5)〉. Every slice is represented by a bar in the figure. The
top of the light-shaded bar represents the minimum amount value (amin) and
the top of the dark-shaded bar represents the maximum amount value (amax).

Depending on the values of the amount bounds, we distinguish the fol-
lowing three types of flex-objects:

Definition 13. A flex-object f is called positive if ∀s ∈ f .p : s.amin ≥ 0. A
flex-object f is called negative if ∀s ∈ f .p : s.amax < 0. A flex-object f is called
mixed if it is neither positive nor negative, i.e., if ∃sn, sp ∈ f .p : sn.amin < 0 ∧
sp.amax ≥ 0.

For example, a positive flex-object can be used to describe the consumption
profile and associated flexibilities of a heat-pump heating a house. A negative
flex-object can be used for various production-only power systems, e.g., solar
panels, wind-turbines, or power generators. A mixed electrical behaviour is
exhibited by more advanced power systems, e.g., EVs whose batteries can
be charged or discharged. A mixed flex-object can be used to capture such
specific behaviour.

We distinguish two types of flexibilities associated with f . The time flex-
ibility tf (f) is the difference between the latest and earliest start time, i.e.,

39

Chapter 3. Aggregating and Disaggregating Flexibility Objects

tf (f) = f .tls − f .tes. Similarly, the amount flexibility af (f) is the sum of
the differences between the amount bounds of all slices in f ’s profile, i.e.,
af (f) = ∑s∈f .ps.amax − s.amin.

A flex-object with time and amount flexibilities equal to zero is called a
fix-object. In this case, the fix-object f = ([tes, tls], p) is such that tes = tls and
∀s ∈ f .p : s.amin = s.amax. A fix-object may or may not be a valid instance of a
given flex-object.

Definition 14. A valid instance (instantiation) of a flex-object f =

([tes, tls],〈s(1),. . . ,s(m)〉) is a fix-object f x = ([ts, ts],〈s(1)x ,. . . ,s(m)
x 〉) such that

tes ≤ ts ≤ tls and ∀i = 1..m : s(i).amin ≤ s(i)x .amin = s(i)x .amax ≤ s(i).amax.
We use the notation f x . f to denote that a fix-object f x is a valid instance of a
flex-object f . We refer to ts as the (assigned) start time.

In the general case, there is an infinite number of possible instances of a
flex-object (f x . f). One possible instance is shown as the dotted line in Fig-
ure 3.2. To quantify the size of the possible instantiation space (flexibility),
we define total flexibility as follows:

Definition 15. The total flexibility of a flex-object f is the product of time and
amount flexibility, i.e., flex(f) = t f (f) · a f (f).

A flex-object with a larger total flexibility represents a larger variety of
instantiations compared to a flex-object with lower total flexibility. Consider a
flex-object f =([2, 7],〈s(1), s(2)〉) where s(1)=[10, 20] and s(2)=[18, 30]. The time
flexibility of f is equal to 7−2=5. The amount flexibility af (f) is equal to
(20−10)+(30−18)=22. Hence, the total flexibility of f is equal to 110, and
it is considered “more flexible” than, for example, a flex-object with a total
flexibility of 100.

We now generally define the concepts of flex-object aggregation and dis-
aggregation, and formulate associated constraints and requirements. Later,
in Sections 3–5, we elaborate on how these operations are performed.

Definition 16. Flex-object aggregation generalizes the joint flexible utilization of
a resource within the domain. This is performed by a function AGG(F) that takes a
set of flex-objects F and produces a set of flex-objects A, |A| ≤ |F|. Every fa ∈ A is
called an aggregated flex-object.

Definition 17. Flex-object disaggregation de-generalizes (coarse) instances of ag-
gregated flex-objects by generating (detailed) instances of non-aggregated flex-objects.
This is performed by a function DAGG(F, A, AX) where AX is a set of fix-objects that
are instances of the aggregated flex-objects from A such that A = AGG(F) ∧ ∀ fa ∈
A : ∃ f x

a ∈ AX and f x
a . fa. The function produces a set of non-aggregated flex-object

instances, FX , such that ∀ f ∈ F : ∃ f x ∈ FX where f x . f .

40

2. Problem Formulation

There exist many different pairs of aggregation and disaggregation func-
tions (AGG, DAGG). However, we are primarily interested in those pairs that
“correctly summarize” amounts (and their allocations in time). We formulate
this as the following requirement.

Amount conservation requirement. For any given F, AX , and FX =
DAGG(F, AGG(F), AX), the following equality must hold for every time in-
stance t ∈N:

∑
f x
a ∈AX

| f x
a .p|

∑
i=1

[f x
a .p[i].amin|t = f x

a .tes + i] = (3.1)

∑
f x∈FX

| f x .p|

∑
i=1

[f x.p[i].amin|t = f x.tes + i]. (3.2)

The conservation requirement ensures that the amounts of flex-object in-
stances are equal before and after (dis-)aggregation at all time intervals. In
addition, individual aggregation and disaggregation functions must comply
with a number of requirements that are inspired by the MIRABEL/TotalFlex
use-cases, but are also important for flex-object aggregation in general:

Compression/flexibility trade-off requirement. AGG must allow con-
trolling the trade-off between the number of aggregated flex-objects and the
flexibility loss – the difference between the total flexibility (see Definition 15)
before and after aggregation.

Aggregate constraint requirement. Every aggregated flex-object fa ∈
AGG(F) must satisfy a so-called aggregate constraint C, which is satisfied only
if the value of a certain flex-object attribute, e.g., total maximum amount, is
within the given bounds and thus the aggregated flex-objects are “properly
shaped” to meet the BRP rules.

Incremental update requirement. Flex-object updates (addi-
tion/removal) should be processed efficiently and cause minimal changes to
the set of aggregated flex-objects. This is vital in scenarios, like MIRABEL,
where addition/removal of flex-objects are very frequent.

Balance requirement. When local balance is required, the aggregation
function AGG must generate flex-objects by specifying the joint flexible re-
source utilization of counter-acting entities within the domain D. Thus, AGG
should minimize the sum of the absolute balance of the aggregated flex-objects,
where the absolute balance of a flex-object f , AbsBalance(f), is the sum of the
absolute amount averages (| amin+amax

2 |) of its slices.
This ensures that amount bounds of an aggregated flex-object are centred

(balanced) around zero, as in fa1 = ([1, 10],〈[−10,+10], [−10,+10]) in Fig-
ure 3.1. Such an aggregated flex-object is, potentially, mixed and captures (1)
the balanced utilization of a resource within a domain D as a nominal option,
and (2) feasible deviations from the balance, describing how the utilization

41

Chapter 3. Aggregating and Disaggregating Flexibility Objects

tls

tls

tls

tls

f2

f1
5

2

Aggregation

a1 2

tes tle

tes tle

tes tle

2

tes tle

,pf1

,pf2

f2

f1
3

2

a2

tes tle

tes tle,pf2

pf1

tls tls

Disaggregation
Aggregation

Disaggregation

(a) Start-alignment (b) Balance-alignment

Fig. 3.3: N-to-1 aggregation using different profile alignment options, and the 1-to-N disaggre-
gation

can be unbalanced while respecting all flex-object constraints. In practice,
such balance-aggregated flex-objects can be used by BRPs, for example, to
balance demand and supply while charging a fleet of EVs and at the same
time following price signals from the regulating power market.

Note that the compression/flexibility trade-off and balance requirements are
conflicting, because it is not possible to achieve a small number of aggregated
flex-objects with high flexibility and balance at the same time.

3 Aggregation and Disaggregation

In this section, we propose basic flex-object aggregation and disaggregation
functions satisfying only the amount conservation requirement. As these two
functions produce (consume) a single aggregated flex-object, we denote them
as N-to-1 and 1-to-N, respectively. In Section 4, we generalize these functions
for a larger set of aggregated flex-objects (N-to-M and M-to-N) and revisit
the remaining requirements.

N-To-1 Aggregation. As defined in Section 2, the flex-object profile is not
fixed in time, but it must be positioned so that the earliest start time f .tes and
the latest start time f .tls bounds are respected. Hence, the aggregation of even
two flex-objects is not straightforward. Consider aggregating two flex-objects
f1 and f2 with time flexibilities 5 and 2. Thus, we have 18 ((5 + 1) · (2 + 1))
different profile positioning combinations, each of them realizing a different
aggregated flex-object. Figure 3.3 depicts two such combinations.

42

3. Aggregation and Disaggregation

Algorithm 1 N-To-1 aggregation using start-alignment
Input: F - a set of flex-objects;
Output: fa - an aggregated flex-object;

1: function AGG-N-to-1(F)
2: for f ∈ F do
3: p f ← f .tes; . Start-aligning
4: end for
5: fa.tes ← min f∈F(p f)
6: fa.tls ← fa.tes + min f∈F(f .tls − p f)
7: for t ∈ [min f∈F(p f) + 1, max f∈F(p f + pdur(f))] do
8: sa ← fa.p[t− fa.tes]
9: sa.amin ← ∑

f∈F
f .p[t− p f].amin

10: sa.amax ← ∑
f∈F

f .p[t− p f].amax

11: end for
12: return fa
13: end function

In the simplest case, flex-object profiles can be positioned at their earliest
start time (tes), see Figure 3.3(a). We refer to this type of positioning as start-
alignment. In this case, Algorithm 1 is used to aggregate flex-objects from a
set F into a single flex-object fa (N-To-1).

First, Algorithm 1 partially instantiates flex-objects in F by choosing the
absolute profile positions p f1 , . . . , p f|F| using start-alignment (Lines 2–8). Then,
the start time flexibility bounds of the aggregated flex-object are computed
conservatively so that the aligned profiles of f ∈ F can always be shifted
within the flexibility range of fa (Lines 5–6). Finally, the profile of the aggre-
gated flex-object is constructed by summing up the minimum and maximum
amounts of the slices of the aligned profiles, ignoring the slices with out-of-
range indices (Lines 7–11).

In general, there are many other ways to align profiles by choosing the
profile positions p f1 , . . . , p f|F| at Lines 2–8. Each of these alignments deter-
mines where amounts from individual flex-objects are allocated within the
profile of fa. A few basic alignment options have already been presented and
discussed [73]. Additionally, we propose a novel so-called balance-alignment,
solving the non-linear balance optimization problem to find the profile po-
sitions, so that the amount bounds of aggregated flex-object are allocated
around zero, as formulated by the balance requirement. The effects of the start
and balance alignments are illustrated in Figure 3.3(a-b). The balance align-
ment is further elaborated on in Section 5.

1-To-N Disaggregation. Given a set of flex-objects F, an aggregated flex-

43

Chapter 3. Aggregating and Disaggregating Flexibility Objects

Algorithm 2 1-To-N disaggregation
Input: F - a set of flex-objects; fa - an aggregated flex-object; f x

a - an instance
of fa; PF = {p f1 , . . . , p f|F|} - a set of profile alignment positions

Output: FX - a set of flex-object assignments
1: function DAGG-1-to-N(F, fa, f x

a , PF)
2: for i← 1..| f x

a .p| do
3: sx ← f x

a .p[i]
4: s← fa.p[i]
5: sx.amin ← sx.amax ← sx .amin−s.amin

s.amax−s.amin
6: end for
7: for f ∈ F do
8: f x.tes ← f x.tls ← f x

a .tes − fa.tes + p f ;
9: end for

10: for i← 1..| f .p| do
11: f x.p[i].amin ← f x.p[i].amax ← f .p[i].amin + (f .p[i].amax −

f .p[i].amin) · (f x
a .p[p f − fa.tes + i].amin)

12: end for
13: return { f x

1 , f x
2 , . . . , f x

|F|}
14: end function

object fa = AGG-N-to-1(F), its instance f x
a (f x

a . fa), and the set of profile
alignment positions PF = {p f1 , . . . , p f|F|}, where PF is { f1.tes, . . . , f|F|.tes} for
start-alignment, the disaggregation of f x

a is performed using Algorithm 2.
First, the algorithm normalizes the amounts of f x

a , making them relative
to the amount bounds of fa (Lines 2–6). Then, it builds instances for every
f ∈ F so that their start-times are equally indented (Line 8) and the amounts
are distributed proportionally, having the same relative allocations as the
f x
a amounts (Lines 10–12). The disaggregation of two aggregated flex-object

instances (dashed lines) are shown in Figure 3.3(a-b).
The pair of aggregation and disaggregation functions (AGG-N-to-1,

DAGG-1-to-N) satisfies the amount conservation requirement (the proof is given
in Appendix A.1). Therefore, for a given instance of an aggregated flex-object
it is always possible to generate valid instances of non-aggregated flex-objects
such that the amounts of fix-objects before and after disaggregation match.
The N-to-1 aggregation with start-alignment and the 1-to-N disaggregation
require O(| fa.p| · |F|) time, where | fa.p| is the length of the aggregated flex-
object profile (the full analysis is given in Appendix A.2).

To summarize, the N-to-1 aggregation and the 1-to-N disaggregation
functions can be used to aggregate and disaggregate flex-objects while sat-
isfying the amount conservation requirement. However, the aggregated flex-
objects exhibit time flexibility losses, which depend on the alignment and the

44

4. N-to-M Aggregation

Deltas of F
DF1,…,DFk

-added (+)
-removed (-) Set of flex-

offers F

Set of aggregated
flex-offers A

Deltas of A
DA1,…,DAm

-added (+)
-removed (-)
-modified (*)

Grouping
Bin-

packing
N-to-1

Aggregation

Fig. 3.4: N-to-M aggregation input, output, and phases

flex-object with the smallest time flexibility (see Lines 5–6 in Algorithm 1).
To address this limitation and to meet the additional requirements from Sec-
tion 2, we now propose N-to-M aggregation and M-to-N disaggregation ap-
proaches.

4 N-to-M Aggregation

As discussed in Section 3, aggregating flex-objects with different start time
flexibilities may result in an unnecessary loss of time flexibility. This loss can
be avoided by carefully grouping flex-objects and thus ensuring that their
time flexibility intervals are similar (or equal). We now describe an incremen-
tal (N-to-M) approach that performs multiple levels of grouping to aggregate
a set of flex-objects F into a set of aggregated flex-objects A while satisfying
the compression/flexibility trade-off, aggregate constraint, and incremental update
requirements.

4.1 Overview of the N-To-M aggregation

As shown in Figure 3.4, the N-to-M aggregation approach (internally) man-
ages a set of non-aggregated flex-objects F and a set of aggregated flex-objects
A. The sets F and A are maintained using sequences of deltas (updates).
∆F1, . . . , ∆Fk is the input and ∆A1, . . . , ∆Am is the output of the aggregation.
Each delta ∆Fi is of the form (f , c), where f is a non-aggregated flex-object
and c ∈ {+,−} indicates insertion (+) or deletion (-) of f in F. Similarly, a
delta ∆Ai is of the form (fa, ca), where fa is an aggregated flex-object and
ca ∈ {+,−, ∗} indicates insertion (+), deletion (-), or modification (*) of fa
in A. To explain how the output ∆A1, . . . , ∆Am is generated from the input
∆F1, . . . , ∆Fk, we now provide a high-level and intuitive explanation of the
logical phases of grouping, bin-packing, and N-to-1 aggregation.

4.2 Logical phases of the N-To-M Aggregation

The input ∆F1, . . . , ∆Fk is passed through the logical phases of (1) grouping,
which partitions flex-objects (from F) into disjoint groups of similar flex-
objects, (2) bin-packing, which packs flex-objects into smaller sub-groups to

45

Chapter 3. Aggregating and Disaggregating Flexibility Objects

f1

f2

f3

f4

f5

g1

g2
fa2

Smallest time flexibility, thus specially annotated

as not satisfying the bin-packing constraint |g|=2

fa1

Grouping Bin-packing

f1

f3

f2

f4

f5

g21

f1

f3

f2

f4

f5

g1

g22

N-to-1 aggregation

fa3

Fig. 3.5: Flex-object aggregation using the N-to-M approach

ensure an aggregation constraint (e.g., the total energy should be below
100kWh), and (3) N-to-1 aggregation, which applies the N-to-1 aggregation
function for each sub-group to produce aggregated flex-objects (see Fig-
ure 3.5). Propagation of data is done incrementally, avoiding re-computation
of groups, sub-groups, and aggregated flex-objects unaffected by the deltas
∆F1, . . . , ∆Fk.

Grouping phase. In this logical phase, the set of flex-objects F is main-
tained according to ∆F1, . . . , ∆Fk and then incrementally partitioned into dis-
joint groups of similar flex-objects. For this purpose, flex-object similarity
grouping is performed: two flex-objects are grouped together if the val-
ues of specific flex-object attributes, e.g., earliest start time, latest start time,
and/or time flexibility, differ by no more than respective user-defined toler-
ance thresholds. The associated grouping attributes and user-defined toler-
ance thresholds are called grouping parameters. In the example in Figure 3.5,
flex-objects f1, f2, . . . , f5 are partitioned into the groups g1 and g2 during the
grouping phase.

Bin-packing phase. This logical phase incrementally enforces the aggre-
gate constraint (see Section 2). Each affected group g produced in the group-
ing phase is either passed to the next logical phase (if g satisfies the constraint
already) or further partitioned into the minimum number of bins (groups)
such that the constraint wmin ≤ w(b) ≤ wmax is satisfied and time flexibil-
ity is retained by each bin b. Here, w(b) is a weight function and wmax and
wmin are the upper and lower bounds. We refer to wmin, wmax, and w as bin-

46

4. N-to-M Aggregation

packing parameters. By adjusting these parameters, groups with, for instance,
a bounded number of flex-objects or a bounded total amount can be built.
Note that it may be impossible to satisfy the constraint for certain groups.
For example, consider a group with a single flex-object, while we impose a
lower bound of two flex-objects in all groups. Aggregated flex-objects of the
sub-groups failing to satisfy the aggregate constraint are specially annotated
(see g22 in Figure 3.5).

N-to-1 Aggregation phase. For each of the affected bins, aggregated flex-
objects are produced by applying an incremental variant of the N-to-1 ag-
gregation (see Section 3). The alignment option (strategy) is specified as an
aggregation parameter.

Figure 3.5 visualizes the processing of 5 flex-object insert deltas
(f1,+), . . . , (f5,+) in all three logical phases. In these phases, f1, . . . , f5
are aggregated into the flex-objects fa1, fa2, and fa3, which are ultimately
packed into the insert deltas (fa1,+), (fa2,+), and (fa3,+) returned as out-
put. In this example, grouping parameters are set so that the maximum
difference between the earliest start times (tes) is at most 2. The bin-packing
parameters are set so that resulting groups have exactly two flex-objects, i.e.,
wmin = wmax = 2, w(g) = |g|. In the N-to-1 aggregation phase, start-alignment
is used.

Here, the formation of groups, sub-groups, and aggregates is configured
using user-defined parameters – grouping, bin-packing, aggregation param-
eters. In practice, users are not required to set or fine-tune these (cumber-
some) parameters. Instead, they will be offered a number of meaningful
pre-defined parameter configurations corresponding to typical business re-
quirements, e.g., short (long) balanced profiles or amounts as early as possible and
limited to 100.

4.3 Algorithms for the N-To-M Aggregation

For realizing the N-to-M aggregation, we use the functions initAgg, process-
Delta, and aggregateInc. Algorithm 3 uses these functions to perform the N-
to-M aggregation. The algorithm produces a set of aggregated flex-objects
FA = {a1, . . . , aM} given a set of non-aggregated flex-objects F = { f1, . . . , fN}
and the discussed grouping, bin-packing, and aggregation parameters.

In Algorithm 3, initAgg initializes a number of global data structures (vari-
ables) for a specific setting of grouping, bin-packing, and aggregation parame-
ters (Line 2). processDelta processes each provided delta from the sequence
of deltas, in this case the sequence (f1,+), . . . , (fN ,+) generated in Lines 3–
4. aggregateInc returns all (latest) changes of aggregated flex-objects that oc-
curred since its previous invocation. As it is invoked only once in Algo-
rithm 3 (with an initially empty set of flex-objects), it returns a sequence of
aggregated flex-object insert deltas (Line 6), which are then converted into a

47

Chapter 3. Aggregating and Disaggregating Flexibility Objects

Algorithm 3 N-To-M aggregation for inserts only
Input: F - a set of flex-objects; PG - grouping parameters; PB - bin-packing

parameters; PA - N-to-1 aggregation parameters;
Output: FA - a set of aggregated flex-objects

1: function AGG-N-to-M(F, PG, PB, PA)
2: initAgg(PG, PB, PA)
3: for each f ∈ F do
4: processDelta(f ,′+′)
5: end for
6: ∆FA ← aggregateInc()
7: for each (f , c) ∈ ∆FA do
8: switch c do
9: case ’+’

10: FA ← FA ∪ { f };
11: end for
12: return FA;
13: end function

set of aggregated flex-objects FA (Lines 7–10), returned as output (Line 12).
Additionally, the function processDelta can handle delete deltas (of the type

’-’) in Line 4. In this case, aggregateInc might return insertion (+), deletion
(-), and modification (*) deltas, denoting that new flex-objects were added or
existing flex-objects were deleted or changed in the set of aggregated flex-
objects during the processing of deltas in Line 6. In the following, we discuss
each of these functions (initAgg, processDelta and aggregateInc) in more detail
and discuss how they together support the logical phases of grouping, bin-
packing, and N-to-1 aggregation.

Function initAgg. This function initializes the global data structures, in-
cluding group hash, bin hash, and aggregate hash holding groups, sub-groups
(bins), and aggregates generated in the grouping, bin-packing, and N-to-1 ag-
gregation phases. It also initializes the group changes list that stores (recent)
group modifications.

Function processDelta (Algorithm 4). This function performs pre-
grouping, i.e., it maintains flex-object groups in the group hash according to a
delta (f , c) given as input. Here, f is the affected flex-object and c is the type
of the delta (’+’ or ’-’). First, f is mapped into a d-dimensional point (Line 2).
This point belongs to a cell in a d-dimensional uniform grid. The extent of a
cell in each dimension is defined by the tolerance thresholds from the group-
ing parameters, and every cell is identified by its coordinates in the grid.
Only populated cells with flex-objects from F are tracked, combining adjacent
populated cells into a group. The groups are stored in the group hash, which

48

4. N-to-M Aggregation

Algorithm 4 The pre-grouping function processDelta
Global data: GH - a group hash; CL - group changes list;
Input: f - a flex-object to be updated; c - the type of delta: ‘+’ for insertion;

‘-’ for deletion;
1: function processDelta(f , c)
2: p← mapToPoint(f);
3: g← GH. f indGroup(p);
4: switch c do
5: case ‘+′

6: if g = NULL then
7: g← new Group(p);
8: GH.insertGroup(g);
9: end if

10: g.insertFOs({ f });
11: CL.registerChange(g,′+′, { f });
12: case ‘−′
13: if g 6= NULL then
14: g.removeFOs({ f });
15: CL.registerChange(g,′−′, { f });
16: end if
17: end function

is an in-memory hash table with the cell coordinates as the key and the flex-
object group associated with this cell as the value. In Algorithm 4, the group
hash is probed for an affected group (Line 3), and the respective changes are
made to the group while registering add (+) or delete (-) modifications in the
group changes list (Lines 4–15). In case a group is not found in the group
hash, a new group with a single populated cell is created (Line 7). If the
group changes list already contains a change record for a particular group,
the record is updated to reflect the combination of the changes (Line 11 and
Line 15).

Figure 3.6 shows the effect of adding a flex-object f1 using processDelta. f1
is mapped to a 2-dimensional point that lies in grid cell c2 (Line 2). The coor-
dinates of c2 are used to locate a group in the group hash (Line 3). The found
group is updated by inserting f1 into its list of flex-objects (Line 10). Finally,
a change record indicating that f1 was added (+) to the group is inserted into
the group changes list (Line 11).

Function aggregateInc (Algorithm 5). This function finalizes grouping and
performs (the full phases of) bin-packing and N-to-1 aggregation. First, it opti-
mizes each of the affected groups using the optimizeGroup sub-function while
storing new group updates in the group changes list (Line 3). Then, each

49

Chapter 3. Aggregating and Disaggregating Flexibility Objects

Grid Group hash
Group

changes list
….
….
….

f1 added
(+)

Flex-object f1

c2
c2

Stores all groups with
all objects from F

c2: f5,f2,f1

c4: f6,f7,f8

Consists of
populated cells

f1 g2

Group g2

g2

…
…
…

Mapping Probing/adding Group updating Change tracking

Fig. 3.6: Processing the addition of a flex-object in the grouping phase

Algorithm 5 The grouping, bin-packing, and N-to-1 aggregation function
aggregateInc
Global data: CL - the group changes list;
Output: ∆FA - a set of aggr. flex-object deltas;

1: function aggregateInc

2: for each ∆grp ∈ CL do
3: optimizeGroup(∆grp.getGroup());
4: end for
5: for each ∆grp ∈ CL do
6: for each ∆bin ∈ updateBins(∆grp) do
7: for each ∆ fa ∈ updateAggs(∆bin) do
8: ∆FA = ∆FA ∪ {∆ fa};
9: end for

10: end for
11: end for
12: CL.clear();
13: return ∆FA;
14: end function

group change from the updated list is processed with the sub-functions up-
dateBins and updateAggs, which perform bin-packing and N-to-1 aggregation.
Finally, the aggregated flex-object deltas are accumulated (Line 8) and re-
turned as output (Line 13), clearing the group changes list (Line 12).

Sub-function optimizeGroup (Algorithm 6). This function is used to op-
timize affected groups, making them more compact and balanced. First, this
function computes a minimum bounding rectangle (MBR) over all points
containing flex-objects from a given group g (getFoMBR in Line 3). If the ex-
tent of the MBR exceeds the grouping parameter thresholds in at least one
dimension (Line 3), g is split into a number of sub-groups satisfying the
thresholds. For this purpose, g is first disassembled into a number of cells
and then bottom-up hierarchical clustering [23] is performed on the MBRs of the
flex-objects within these cells to form new sub-groups (Line 6). All relevant

50

4. N-to-M Aggregation

Algorithm 6 The group optimization function optimizeGroup
Input: GH - the group hash; CL - the group changes list; PG - grouping

parameters;
Input: g - a group to be optimized;

1: function optimizeGroup(g)
2: Fa ← g.getFlexObjs();
3: if getFoMBR(Fa) ≤ PG.getMBR() then . Tolerances violated, split g
4: g.removeFOs(Fa);
5: CL.registerChange(g,′−′, Fa);
6: for each s ∈ clusterHierarch(g.getCells(), PG) do
7: GH.insertGroup(s);
8: CL.registerChange(s,′+′, s.getFlexObjs());
9: end for

10: else . Consider merging neighbors
11: for each n ∈ GH. f indNbrGroups(g) do
12: Fa ← g.getFlexObjs() ∪ n.getFlexObjs();
13: if getFoMBR(Fa) ≤ PG.getMBR() then
14: Fn ← n.getFlexObjs() . Merge
15: n.removeFOs(Fn);
16: CL.registerChange(n,′−′, Fn);
17: g.insertFOs(Fn);
18: CL.registerChange(g,′+′, Fn);
19: end if
20: end for
21: end if
22: end function

group changes are registered in the group hash and the group changes list
(Lines 4–8). Additionally, group merging is considered, while first probing
the group hash to identify adjacent neighbouring groups (Line 11). If the
extent of the MBR computed over all flex-object points from g and an adja-
cent group are within the grouping parameter thresholds in all dimensions
(Lines 12–13), then g and the adjacent groups are merged while tracking all
associated group changes (Lines 14–18). Figure 3.7 demonstrates group split-
ting and merging.

Sub-function updateBins (Algorithm 7). This function propagates a
given group delta ∆grp to a number of bins stored in the bin hash, which is a
hash table with a group ID as the key. First, added and deleted flex-objects,
∆added and ∆delete, are retrieved (Lines 2–3), and flex-objects from ∆delete are
discarded from the existing bins (Lines 4–6). Groups with a total weight
less than wmin are deleted and flex-objects from these groups and ∆added are

51

Chapter 3. Aggregating and Disaggregating Flexibility Objects

Group merge

g1 g2

g3

g2

g5 g5

Group splitGroup
changes list

g6

Group Hash

0 1 2

7

8

9

0 1 2

7

8

9

0 1 2

4

5

6

0 1 2

4

5

6

Before optimization After optimization

Group Hash

due to
merge

opportunity

due to
oversized

group

Group
changes list

c04
c05
c07
c08
c15
c18

g5
g5
g3
g1
g5
g2......

g5
g2

+
-

......

g5
g6
g2
g1
g3

*
+
*
-
-......

c04
c05
c07
c08
c15
c18

g6
g5
g2
g2
g5
g2......

Fig. 3.7: Flow of data in the group optimization

included into other existing bins using the first fit decreasing strategy [43],
creating new bins with total weight less than wmax, if needed (Line 8). Finally,
the changes of affected bins are computed and returned as output (Lines 9–
12).

Sub-function updateAggs (Algorithm 8). This function maintains the ag-
gregate hash, which is a hash table, mapping the ID of an individual bin to
an aggregated flex-object. First, a bin, bin ID, an aggregated flex-object fa,
and the sets of added and deleted flex-objects ∆add and ∆delete are retrieved
for an associated bin delta ∆bin (Lines 2–6). Then, fa is incrementally main-
tained using the N-to-1 aggregation (Algorithm 1): if there are no deletes, fa
is re-aggregated together with flex-objects from ∆add (Lines 7–10); otherwise,
flex-objects from the bin are aggregated into fa from scratch (Lines 16–18),
deleting aggregated flex-objects of empty bins if needed (Lines 12–14). Fi-
nally, all aggregated flex-object deltas are provided as output (Line 21).

The average-case complexity of Algorithm 3 combining all these sub-
functions is O(|F| · Pavg), where Pavg is the average length of aggregated flex-
object profiles. The complexity analysis details and the worst-case complexity
are given in

4.4 M-to-N Disaggregation and Discussion

To disaggregate the instances of aggregated flex-objects, the DAGG-1-to-N
function from Section 3 is applied independently to each of the affected in-
stances – which are generated in a single (scheduling) step by a single entity
(BRP) rather than by multiple (consumer/producer) entities. Therefore, the

52

5. Balance Aggregation

Algorithm 7 The bin-packing function updateBins
Global data: BH - the bin hash
Input: ∆grp - a delta of a group
Output: ∆B - a set of bin deltas

1: function updateBins(∆grp)
2: ∆add ← (∆grp).getAddedFOs()
3: ∆delete ← (∆grp).getDeletedFOs()
4: bins← BH.getBins((∆grp).getGrp().getId())
5: for each b ∈ bins do
6: b.removeFOs(∆delete);
7: end for
8: f irstFitDecreasing(bins, ∆add)
9: ∆B← ∅

10: for each b ∈ bins do
11: if b.isA f f ected() then
12: ∆B← ∆B ∪ {b.getBinDelta()}
13: end if
14: end for
15: return ∆B
16: end function

(M-to-N) disaggregation is straightforward in comparison to the (N-to-M)
aggregation, and we therefore omit the presentation of an explicit disaggre-
gation algorithm.

In summary, the discussed N-to-M aggregation and (M-to-N) disaggrega-
tion techniques allow efficiently aggregating flex-objects and disaggregating
their instances. As the N-to-1 aggregation and the N-to-1 disaggregation
functions from Section 3 are used inherently, amount conservation is ensured.
Different grouping parameter combinations allow building flex-object groups
with different levels of flex-object similarity and thus controlling the trade-off
between flex-object compression and flexibility loss. The aggregate constraint
is ensured by bin-packing. Finally, incremental updates are feasible, which
allow efficiently processing flex-object additions and removals without the
need to recompute aggregated flex-objects from scratch.

5 Balance Aggregation

In Section 3, we have proposed the use of balance-alignment to satisfy the
balance requirement. In relation to balance-alignment, we now describe sev-
eral extensions to the N-to-M aggregation and practical techniques for solv-
ing the (non-linear) minimization problem of finding the profile positions

53

Chapter 3. Aggregating and Disaggregating Flexibility Objects

Algorithm 8 The N-to-1 aggregation updateAggs
Input: ∆bin - a delta of a bin;
Output: ∆Fa - a set of aggr. flex-object deltas
Data: AH - the aggregate hash

1: function updateAggs(∆bin)
2: bin← (∆bin).getBin()
3: binId← bin.GetId()
4: fa ← AH.getAgg(binId)
5: ∆add ← (∆bin).getAddedFOs()
6: ∆delete ← (∆bin).getDeletedFOs()
7: if ∆delete = ∅ then . No deletes
8: fa ← AGG-N-to-1({ fa} ∪ ∆add);
9: AH.updateAgg(binId, fa)

10: ∆Fa ← ∆Fa ∪ {(fa,′+′)}
11: else
12: if (bin.getFlexObjs() = ∅ then . Handle deletes
13: AH.deleteAgg(binId)
14: ∆Fa ← ∆Fa ∪ {(fa,′−′)}
15: else . Aggregate from scratch
16: fa ← AGG-N-to-1(bin.getFlexObjs())
17: AH.insertAgg(binId, fa)
18: ∆Fa ← ∆Fa ∪ {(fa,′ ∗′)}
19: end if
20: end if
21: return ∆Fa;
22: end function

p f1 , p f2 , . . . , p f|F| and thus building aggregated flex-objects with the amount
bounds allocated around zero (see Figure 3.3b). The extensions are applica-
ble to the N-to-1 aggregation phase (Section 4) and aggregate only flex-objects
that are placed in the same bin.

Exhaustive search. This technique explores all feasible profile position
combinations of all the flex-objects in a bin. After examining all possible
combinations, the technique generates an aggregated flex-object with the
minimum absolute balance (see Section 2).

Zero terminated exhaustive search. This technique is similar to the pre-
vious one. For each bin, it stops examining further combinations when the
current aggregated flex-object has an absolute balance equal to zero.

Dynamic simulated annealing. This is an approximate technique based
on simulated annealing [2]. The parameter h is used to limit the total num-
ber of random combinations to be examined. By default, h is set to half of
all possible combinations, where the total number of combinations is com-

54

5. Balance Aggregation

Algorithm 9 Simple greedy technique
Input: B - a bin of flex-objects;
Output: Ba - a set of aggregated flex-objects;

1: function SimpleGreedy(B)
2: fnom ←FlexObjectWithMinBalance(B);
3: B← B \ fnom; Ba ← ∅;
4: while |B| > 0 do
5: fa ← fnom
6: v←balance(fnom)
7: ftmp←ClosestTo-vBalance(B, v)
8: end while
9: for each profile position of ftmp do

10: fx ←AGG-N-to-1(ftmp ∪ fnom)
11: if AbsBalance(fx)<AbsBalance(fa) then
12: fa ← fx
13: end if
14: if AbsBalance(fa)<AbsBalance(fnom) then
15: B← B \ ftmp
16: fnom ← fa
17: else
18: Ba ← Ba ∪ fa
19: B← B \ fnom
20: fnom ←FlexObjectWithMinBalance(B)
21: end if
22: end for
23: return Ba
24: end function

puted individually for each bin. The algorithm terminates if a solution with
absolute balance equal to zero is found.

Simple greedy. This technique, described in Algorithm 9, starts by select-
ing (Line 2) and removing from the bin the flex-object fnom with the largest
negative balance v (Line 3); where balance(f) is the sum of the average values
of all the slices of a flex-object f . The technique further aggregates fnom with
the flex-object ftmp that has (non-absolute) balance closest to −v (Line 2). It
examines all the profile positions of ftmp and selects the aggregated flex-object
fa that gives the smallest absolute balance (Lines 3–13). In case the absolute
balance of fa is lower than the absolute balance of fnom (Line 5), the algo-
rithm continues aggregation of the same aggregated flex-object by assigning
fa to fnom. Otherwise (Line 17), it stores fnom as a new aggregated flex-object
(Line 19) and starts a new aggregation by selecting fnom, the flex-object with
the largest negative balance, from the remaining flex-objects (Line 20). The

55

Chapter 3. Aggregating and Disaggregating Flexibility Objects

Algorithm 10 Exhaustive greedy technique
Input: fnom, fa, ftmp, fx - flex-objects; B - a bin of flex-objects;
Output: Ba - a set of aggregated flex-objects;

1: function ExhaustiveGreedy(B)
2: fnom ←FlexObjectWithMaxAbsBalance(B)
3: F ← F \ fnom
4: Fa ← ∅
5: while |B| > 0 do
6: fa ← fnom
7: for f ∈ B do
8: for all profile positions of f do
9: fx ←AGG-N-to1(f ∪ fnom)

10: if AbsBalance(fx)<AbsBalance(fa) then
11: fa ← fx
12: ftmp ← f
13: end if
14: end for
15: end for
16: if AbsBalance(fa)<AbsBalance(fnom) then
17: B← B \ ftmp
18: fnom ← fa
19: else
20: Ba ← Ba ∪ fa
21: B← B \ fnom
22: fnom←FlexObjectWithMaxAbsBalance(B)
23: end if
24: end while
25: return Ba
26: end function

technique stops when there are no more flex-objects to be aggregated (Line 4,
when |B|=0). As a result, the technique might produce more than one aggre-
gated flex-object per bin (Line 23).

Exhaustive greedy. Similar to simple greedy, this technique (Algo-
rithm 10) also produces more than one aggregated flex-object per bin. It
starts by selecting (Line 2) and removing (Line 4) the flex-object fnom from
the bin with the maximum absolute balance. However, it considers all the
time flexibility values of all the remaining flex-objects (Line 7 and Line 8)
in the bin to find the one that, in combination with the (intermediate) ag-
gregated flex-object fa, reduces the absolute balance the most. Similar to the
simple greedy algorithm, it continues the aggregation of the same aggregated
flex-object by assigning fa to fnom if the absolute balance is reduced (Line 12).

56

6. Experimental Evaluation

Otherwise, it stores fnom as a new aggregated flex-object (Line 21) and starts
a new aggregation by selecting from the remaining flex-objects the flex-object
fnom having the largest absolute balance (Line 22). The technique stops when
there are no more flex-objects to be aggregated.

6 Experimental Evaluation

In this section, we present the evaluation of the N-to-M aggregation and the
balance aggregation techniques.

6.1 Experimental setup

We implemented the basic N-to-M and balance aggregation techniques in
Java 1.6. As there are no other flex-object aggregation and disaggregation
solutions, we compared our N-to-M aggregation implementation to two rival
implementations: RHA and RSG, using our solution for bin-packing and N-
to-1 aggregation, but with different (non-incremental) implementations for
the grouping phase.

• For grouping, RHA uses agglomerative hierarchical clustering [23] by
first assigning each flex-object to individual clusters and then repeat-
edly merging the two closest clusters while no grouping constraints are
violated. The distance between two clusters is calculated based on the
values of the grouping parameter flex-object attributes.

• RSG applies the similarity group-by operator [77] for one grouping param-
eter at a time, thus partitioning the input into valid groups of similar
flex-objects.

Our experiments were run on a PC with Quad Core Intel®Xeon®E5320 CPU,
16GB RAM, OpenSUSE 11.4 (x86_64).

6.2 N-to-M aggregation

We evaluated the N-to-M aggregation discussed in this chapter as well as
RHA and RSG using a synthetic flex-object dataset from the MIRABEL project,
containing one million flex-objects representing consumption. The earliest
start time (tes) is distributed uniformly in the range [0, 23228]. The number of
slices and the time flexibility values (tls − tes) follow the normal distributions
N (8, 4) and N (20, 10) in the ranges [10, 30] and [4, 12]; the slice duration is
fixed to 1 time unit (15 minutes) for all flex-objects, thus length of the profiles
ranges from 2.5 to 7.5 hours. Unless otherwise stated, the default values of
the experimental parameters are: (a) the number of flex-objects is 500k; (b)
EST = 0 (Earliest Start Time Tolerance) and TFT = 0 (Time Flexibility Tolerance)

57

Chapter 3. Aggregating and Disaggregating Flexibility Objects

0 2 4 6 8 10

x 10
5

0

0.5

1

1.5

2
x 10

5

Flex−object count

A
gg

re
ga

te
d

fle
x−

ob
je

ct
 c

ou
nt

EST=0, TFT=0
EST=250, TFT=0
EST=0, TFT=6
EST=250, TFT=6

0 2 4 6 8 10

x 10
5

0

10

20

30

40

Flex−object count

A
g

g
re

g
a

ti
o

n
 t

im
e

,
s

EST=0, TFT=0

EST=250, TFT=0

EST=0, TFT=6

EST=250, TFT=6

(a) Compr. perf. (b) Agg. time

Fig. 3.8: Scalability of compression and aggregation time

0 10 20 30 40
0

5

10

15

20

Aggregation time, s

D
is

a
g

g
re

g
a

ti
o

n
 t

im
e

,
s

y = 0.47*x − 0.43

 Experiment points

 linear fit

BP−off BP−on
0

0.5

1

1.5

2

2.5

P
ro

c
e

s
s
in

g
 t

im
e

,
s

BP−off BP−on
0

200

400

600

800

1000

1200

M
e

m
o

ry
 u

s
a

g
e

,
M

B

Grouping

Bin−packing

Aggregation

500k obj.

182k agg. obj

Work space

(a) Disagg./agg. time (b) Time/mem. usage

Fig. 3.9: Scalability aggregation/disaggregation and time/memory usage

are used as the grouping parameters. They are based on the Earliest Start
Time (tes) and Time Flexibility (tls − tes) flex-object attributes. (c) the aggregate
constraint is unset (bin-packing is disabled). We also perform experiments
with bin-packing enabled (explicitly stated).

Scalability To evaluate flex-object compression in terms of performance
and scalability, the number of flex-objects is gradually increased from 50k to
1000k. Aggregation is performed using two different EST and TFT parame-
ter values: EST equal to 0 or 250, and TFT equal to 0 or 6. Disaggregation is
executed with randomly generated instances of aggregated flex-objects. The
results are shown in Figures 3.8 and 3.9. Figures 3.8(a-b) show that differ-
ent aggregation parameter values lead to different compression factors and
aggregation times. Disaggregation is approximately 2 times faster than ag-
gregation (see Figure 3.9(a)) regardless of the flex-object count and grouping
parameter values. Most of the time is spent on the bin-packing (if enabled)
and N-to-1 aggregation phases (the 2 left bars in Figure 3.9(b)). Considering

58

6. Experimental Evaluation

500 1k 2k 4k 8k 16k 32k 64k128k256k
0

1

2

3

4

Flex−object additions and removals

In
c
re

m
e
n
ta

l
a
g
g
re

g
a
ti
o
n
 t
im

e
,
s

Incremental aggregation time

500k objects aggregation time

0 2 4 6 8 10

x 10
5

0

10

20

30

40

Flex−object count

A
g

g
re

g
a

ti
o

n
 t

im
e

,
s

R
HA

R
SG

Our Inc. Approach

(a) Incr. agg. time (b) Diff. approaches

Fig. 3.10: Incremental behaviour

the overhead associated with incremental behaviour, the amount of memory
used by the approach is relatively small compared to the footprint of the orig-
inal and aggregated flex-objects. Memory usage increases when bin-packing
is enabled.

Incremental Behaviour To evaluate incremental aggregation, we first ag-
gregate 500k flex-objects. Then, for different k values ranging from 500 to
256k, we insert k new flex-objects and remove k randomly selected flex-
objects. The total number of flex-objects stays at 500k. For every value of
k, we execute incremental aggregation. Figure 3.10(a) shows that updates
can be processed efficiently. Hence, our approach results in substantial time
savings compared to the case when all 500k flex-objects are aggregated from
scratch (represented by the line in Figure 3.10(a)). We then compare the total
time to process flex-objects with our incremental approach to the other two
(inherently non-incremental) approaches (RHA and RSG). As Figure 3.10(b)
illustrates, our approach is competitive in comparison to RSG in terms of
scalability. The overhead associated with the change tracking and group op-
timization in the incremental grouping phase is not significant in the overall
aggregation time. Additionally, the hierarchical clustering-based approach
(RHA) results in very high execution time even for small datasets (due to a
large amount of distance computations) and is thus not scalable enough for
flex-object aggregation.

Effect of Grouping Parameters As shown in Figure 3.11(a), EST signifi-
cantly affects the flex-object compression factor. For this dataset, increasing
EST by a factor of two leads to a flex-object reduction by approximately the
same factor. However, the use of high EST values results in aggregated flex-
object profiles with more slices. Aggregating these requires more time (see
“aggregation time” in Figure 3.11(a). The TFT parameter has a significant
impact on the flexibility loss (see “flexibility loss” in Figure 3.11(b)). Higher

59

Chapter 3. Aggregating and Disaggregating Flexibility Objects

10
0

10
1

10
2

10
2

10
3

10
4

10
5

10
6

Earliest start time tolerance (EST)

A
g

g
re

g
a

te
d

 o
b

je
c
t

c
o

u
n

t

10
0

10
1

10
2

10
0

10
1

10
2

A
g

g
re

g
a

ti
o

n
 t

im
e

,
s

Aggregated FO count

Aggregation time

Time flexibility tolerance (TFT)
0 2 4 6

A
g
g
re

g
a
te

d
 f
le

x
-o

b
je

c
t
c
o
u
n
t ×105

0

0.5

1

1.5

2

F
le

x
ib

ili
ty

 l
o
s
s
,
%

0

10

20

Flexibility loss
Aggregated flex-object count

(a) Effect of EST (b) Effect of TFT

Fig. 3.11: Grouping, optimization, and bin-packing

0 2 4 6 8 10

x 10
5

0

1

2

3

4

5
x 10

4

Flex−object count

A
g

g
re

g
a

te
d

 f
le

x
−

o
b

je
c
t

c
o

u
n

t

Group opt. −on

Group opt. −off

EST = 0
TFT = 6

0 2 4 6 8 10

x 10
5

0

2

4

6

8

Flex−object count

E
x
e

c
u

ti
o

n
 t

im
e

,
s

Total time,Grp.opt−on

Total time,Grp.opt−off

Grp. time,Grp.opt−on

Grp. time,Grp.opt−off

EST = 0
TFT = 6

(a) Group. opt. effect (b) Group opt. cost

Fig. 3.12: Grouping, optimization, and bin-packing

values of TFT results in higher flexibility losses. When TFT is set to 0, aggre-
gation causes no flexibility loss but results in a larger number of aggregated
flex-objects. When the number of distinct time flexibility values in a flex-
object dataset is low (as in our case), the best compression with no flexibility
loss can be achieved when TFT = 0 and the other grouping parameters are
unset (or set to high values).

Optimization and Bin-packing We now evaluate group optimization and
bin-packing. As shown in Figure 3.12, group optimization is relatively cheap
(Figure 3.12(b)) and it substantially contributes to the reduction of the num-
ber of aggregated flex-object (Figure 3.12(a)). To evaluate bin-packing, the
aggregate constraint was set so that the time flexibility of an aggregate is al-
ways at least 8 (wmin = 8, equiv. to 2 hours). By enabling this constraint,
we investigate the overhead associated with bin-packing and its effect on the
flexibility loss. As shown in Figure 3.13(a), by restricting the time flexibility
for every aggregate, the overall flexibility loss can be limited. However, bin-

60

6. Experimental Evaluation

0 2 4 6 8 10

x 10
5

0

5

10

15

20

25

Flex−object count

F
le

x
ib

ili
ty

 l
o
s
s
,
%

BP−off,EST=0,TFT=6

BP−off,EST=250,TFT=6

BP−on,EST=0,TFT=6

BP−on,EST=250,TFT=6

0 2 4 6 8 10

x 10
5

0

50

100

150

Flex−object count

A
g

g
re

g
a

ti
o

n
 t

im
e

,
s

BP−off,EST=0,TFT=6

BP−off,EST=250,TFT=6

BP−on,EST=0,TFT=6

BP−on,EST=250,TFT=6

(a) Bin-packing effect (b) Bin-packing cost

Fig. 3.13: Grouping, optimization, and bin-packing

packing introduces a substantial overhead that depends on the number of
objects in flex-object groups after the group optimization (see Figure 3.13(b)).
When this number is small (EST = 0, TFT = 6), the overhead of bin-packing
is insignificant. However, when groups are large (EST = 250, TFT = 6),
bin-packing overhead becomes very significant.

6.3 Balance aggregation

We experimentally evaluated the balance aggregation techniques, namely ex-
haustive search (ES), zero terminated exhaustive search (ZES), dynamic sim-
ulated annealing (DSA), simple greedy (SG), and exhaustive greedy (EG). We
compared these techniques against each other, as well as to start-alignment
(SA), in terms of absolute balance, flexibility loss, and execution time by vary-
ing the grouping tolerances EST and TFT. We also evaluate the techniques
in terms of grouping parameters. We set EST to zero and test values from
zero to six for the TFT parameter using datasets with 40 customers, which
contain approximately 90K flex-objects (Figures 3.15 and 3.16(c, f). We used
8 distinct flex-object datasets derived from the MIRABEL dataset. The first
dataset is generated from the historical measurements of 5 randomly selected
customers (households), the second by adding another 5 customers, and so
on, up to the eighth, which contains 40 customers in total.

We run all experiments 10 times using 10 different instances of the de-
scribed 8 datasets. The average results of the experiments are illustrated
in Figures 3.14–3.16(a-c) and Table 3.1. In addition, we also show the full
variation of execution times in Figures 3.16(d-f) since their variations were
much higher than the variations of flexibility loss and absolute balance. We
often omitted the results of ES, ZES, and DSA due to the extremely high ex-
ecution times when TFT>0. We also omitted DSA in Figure 3.16(a) since it
shows the highest flexibility loss due to the limited number of iterations.

61

Chapter 3. Aggregating and Disaggregating Flexibility Objects

5 10 15 20 25 30 35 40

10
−10

10
−5

10
0

10
5

Customers

A
b

s
o

lu
te

 b
a

la
n

c
e

 (
lo

g
 s

c
a

le
)

SG

EG

SA

DSA

ES

ZES

5 10 15 20 25 30 35 40

10
−10

10
−5

10
0

10
5

Customers

A
b

s
o

lu
te

 b
a

la
n

c
e

 (
lo

g
 s

c
a

le
)

SG

EG

SA

(a) TFT=0 (b) TFT=6

Fig. 3.14: Absolute balance for TFT = 0 and TFT = 6

0 1 2 3 4 5 6

10
−10

10
−5

10
0

10
5

A
b

s
o

lu
te

 b
a

la
n

c
e

 (
lo

g
 s

c
a

le
)

Time flexibility tolerance (TFT)

SG

EG

SA

DSA

ES

ZES

TFT=0...6

Fig. 3.15: Absolute balance for TFT=0...6

Absolute balance. Both ES and ZES achieve zero absolute balance, which
is possible due to the nature of the test data, see Figure 3.14(a). In addition,
EG and SG achieve a very low absolute balance compared to DSA and SA,
see Figures 3.14 and 3.15. SA obtains the highest absolute balance in all
examined scenarios since it does not consider balancing during aggregation.

Flexibility loss. SA has the least flexibility loss in all the scenarios fol-
lowed by EG and SG (Figures 3.16(a-c)). ES and ZES have similar percent-
ages of flexibility loss compared to EG and SG; hence we omit them in the
figures. This happens because their goal is to achieve the minimum abso-
lute balance and the flex-objects participating in the aggregation are time
shifted in a similar way. In Figure 3.16(b), we see that the flexibility loss of
SA increases when more flex-objects participate in the aggregation and the
number of aggregated flex-objects follows the same behaviour. This happens
because when TFT>0, the flex-objects in each group have different latest start

62

6. Experimental Evaluation

Customers
5 10 15 20 25 30 35 40

A
g
g
re

g
a
te

d
 f
le

x
-o

b
je

c
t
c
o
u
n
t

×10
4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

F
le

x
ib

ili
ty

 L
o
s
s
,%

0

5

10

15

20

25

30

35

40

45

EG Agg. FOs
EG Flex. Loss
SG Agg. FOs
SG Flex. Loss
SA Agg. FOs
SA Flex. Loss

Customers
5 10 15 20 25 30 35 40

A
g
g
re

g
a
te

d
 f
le

x
-o

b
je

c
t
c
o
u
n
t

×10
4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

F
le

x
ib

ili
ty

 L
o
s
s
,%

0

10

20

30

40

50

EG Agg. FOs
EG Flex. Loss
SG Agg. FOs
SG Flex. Loss
SA Agg. FOs
SA Flex. Loss

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

A
g
g
re

g
a
te

d
 f
le

x
−

o
b
je

c
t
c
o
u
n
t

Time flexibility tolerance (TFT)

0 1 2 3 4 5 6
0

10

20

30

40

50

F
le

x
ib

ili
ty

 L
o
s
s
,%

EG Agg. FOs

EG Flex. Loss

SG Agg. FOs

SG Flex. Loss

SA Agg. FOs

SA Flex. Loss

(a) Flex. loss, TFT=0 (b) Flex. loss, TFT=6 (c) Flex. loss, TFT=0...6

0 10 20 30 40
0

1

2

3

4

5

6

Customers

E
x
e
c
u
ti
o
n
 t
im

e
,
s

SG

EG

SA

0 10 20 30 40
0

2

4

6

8

10

12

Customers

E
x
e
c
u
ti
o
n
 t
im

e
,
s

SG

EG

SA

0 1 2 3 4 5 6
0

2

4

6

8

10

12

E
x
e
c
u
ti
o
n
 t
im

e
,
s

Time flexibility tolerance (TFT)

SG

EG

SA

(d) Exec. time, TFT=0 (e) Exec. time, TFT=6 (f) Exec. time, TFT=0...6

Fig. 3.16: Flexibility loss and execution time

times and therefore the aggregated flex-object will have smaller time flexibil-
ity intervals. In Figures 3.16(b-c), we see that both EG and SG create more
aggregated flex-objects than SA due to their capability to generate more than
one aggregated flex-object for each bin.

Execution time. SA is the fastest among all the techniques, followed by
SG and EG, see Figures 3.16(d-f). SA’s execution time is correlated with the
number of flex-objects and, since this is constant, execution time shows a
similar behaviour, see Figure 3.16(f). On the other hand, as TFT grows, SG
is not examining a larger solution space - in contrast to EG - and generates
approximately the same number of aggregated flex-objects, see Figures 3.16(c,
f). Therefore, the execution time remains almost constant.

Technique Execution time
Start alignment 0.5 sec.
Simple greedy 1.7 sec.

Exhaustive greedy 2.3 sec.
Dynamic simulated annealing 26 min.

Zero terminated exhaustive search 14.27 hours
Exhaustive search 18.76 hours

Table 3.1: Execution time (15 customers, EST=0, TFT=5)

63

Chapter 3. Aggregating and Disaggregating Flexibility Objects

6.4 Experiment Summary

In summary, we show that our basic N-to-M aggregation technique scales
linearly with the number of flex-object inserts, and it is just as efficient as
the best non-incremental grouping approach (RSG). The overhead associ-
ated with the incremental behaviour is insignificant. The trade-off between
the flex-object compression factor and flexibility loss can be controlled using
the grouping parameters. The compression factor can be further increased
efficiently by group optimization. Disaggregation is approximately 2 times
faster than aggregation.

Furthermore, we show that the balance aggregation techniques EG and
SG can achieve a very low absolute balance with low execution time and
maintain a near-constant behaviour regarding flexibility loss. For these char-
acteristics, EG performs better than SG and produces a lower number of
aggregated flex-objects. However, all the proposed balance aggregation tech-
niques show higher flexibility loss compared to SA, thus demonstrating the
inevitable trade-off between flexibility loss and absolute balance. For larger
grouping tolerance values, the difference in flexibility loss between SA and
EG/SG is reduced.

7 Related work

Clustering. Many clustering algorithms have been proposed, including den-
sity-based (e.g., BIRCH [92]), centroid-based (e.g., K-Means [52]), hierarchi-
cal clustering (e.g., SLINK [23, 72]) as well as incremental algorithms, such
as incremental K-means [93] and incremental BIRCH [38]. In comparison
to our approach, clustering partially solves only the grouping part, which
is substantially simpler than the whole problem of grouping, bin-packing,
balance-aligning, and N-to-1 aggregation. For grouping alone, existing clus-
tering algorithms provide neither effective incremental solutions nor strict
guaranties of cluster object similarity, both of which are provided by our
approach. The closest work is incremental grid-based clustering [36, 47, 63],
where we, in comparison, improve the clusters across the grid boundaries
and limit the number of items per cluster using bin-packing.

Similarity Group By. The operator SGB [76] groups objects based on the
similarity between tuple values and is supported by SimDB [76]. However,
SGB again solves only the grouping part of the problem and is (unlike our
approach) not incremental, which is essential.

Complex objects. Complex objects with multidimensional data exist in
many real-world applications [53] and can be represented with multidimen-
sional data models [64]. Several research efforts (e.g., [17] and [91]) have been
proposed to aggregate complex objects. However, these efforts do not con-
sider the specific challenges related to aggregating flex-objects.

64

8. Conclusion and Future Work

Temporal Aggregation. Several papers have addressed aggregation for
temporal and spatio-temporal data including instantaneous temporal ag-
gregation [14], cumulative temporal aggregation [6, 39, 89], histogram-based
aggregation [20], and multi-dimensional temporal aggregation [15]. These
techniques differ in how a time line is partitioned into time intervals and
how an aggregation group is associated with each time instant. The effi-
cient computation of these time intervals poses a great challenge and there-
fore various techniques that allow computing them efficiently have been pro-
posed [28,30,60]. Unfortunately, these techniques only deal with simple data
items without flexibilities, making them unsuitable for aggregation of flex-
objects.

Balance Aggregation. Existing approaches [79] solve the energy balanc-
ing problem globally and independently from the aggregation. In compar-
ison, our approach performs local balancing during aggregation, thus re-
ducing distribution grid congestion risks and partially fulfilling the goal of
scheduling (global balancing).

8 Conclusion and Future Work

Objects with inherent flexibilities in time and amount, so-called flexibility ob-
jects (flex-objects), occur in both scientific and commercial domains. By fo-
cusing on flex-object aggregation and disaggregation, this chapter formally
defined relevant concepts and provided a novel and efficient grid-based in-
cremental technique for flex-object aggregation and disaggregation. The pa-
per considered the aggregation/disaggregation process, the grouping of flex-
objects, alternatives for computing aggregates, and associated requirements.
Additionally, it introduced the concept of energy balancing in aggregation
and proposed five techniques that fulfil both balancing and other aggrega-
tion goals simultaneously. Extensive experiments using data from an energy
domain project showed that the techniques provide very good performance
while satisfying all entailed requirements.

Future work will address challenges of aggregating and disaggregating
flex-objects with additional flexibilities in profile slice duration. Furthermore,
novel balance aggregation techniques taking into account electricity grid con-
straints will be examined, together with advanced grouping techniques and
data structures to further improve performance.

A Appendix

In this appendix, we provide (1) the proof for the amount conservation and
(2) the computational complexity analysis of the basic N-to-M and balance
aggregation algorithms. For the computational complexity, we first analyse

65

Chapter 3. Aggregating and Disaggregating Flexibility Objects

the general complexity of the N-to-1 aggregation functions (Algorithms 1–
2). Then, we present the general complexities of the essential N-to-M ag-
gregation sub-functions (Algorithms 4–8). Finally, we use the complexity
estimates of all these algorithms in a subsequent analysis of the average- and
worst-case run-times of Algorithm 3 that combines all the N-to-M aggregation
sub-functions. We also analyse the complexity of the simple greedy balance
aggregation technique.

A.1 Proof of amount conservation

We now provide a proof that the pair of N-to-1 aggregation and N-to-1 dis-
aggregation functions from Section 3 (Algorithms 1–2) satisfy the amount
conservation requirement from Section 2.

Proof. Consider the following two simple flex-objects f1=([1, 1], 〈[a1, a1 +
d1]〉) and f2=([1, 1], 〈[a2, a2 + d2]〉) and their respective instances
f x
1 =([1, 1], 〈[ax

1 , ax
1]〉) and f2=([1, 1], 〈[ax

2 , ax
2]〉), where a1 ≤ ax

1 ≤ a1 + d1
and a2 ≤ ax

2 ≤ a2 + d2. Provided the set F={ f1, f2} as input, the ag-
gregation function AGG-N-to-1 (Algorithm 1) generates an aggregated
flex-object fa=([min(1, 1), min(1, 1) + min(0, 0)], 〈[a1 + a2, a1 + d1 + a2 +
d2]〉)=([1, 1], 〈[a1 + a2, a1 + d1 + a2 + d2]〉). Here, fa represents a variety of
instances f x

a =([1, 1], 〈[ax, ax]〉) such that a1 + a2 ≤ ax ≤ a1 + d1 + a2 + d2. The
conservation requirement in this simplified case with a single time instance
essentially states that the equality ax = ax

1 + ax
2 must hold for any valid ax

and any ax
1 and ax

2 computed by the disaggregation function DAGG-1-to-N
(Algorithm 2). Given F, fa, and f x

a as input, the disaggregation function
first normalizes the amounts in f x

a =([1, 1], 〈[ax, ax]〉) (Lines 2–6), computing
the normalized amount as follows nx = ax−(a1+a2)

d1+d2
. Later, the function

produces the instances f x
1 = ([1, 1], 〈[ax

1 , ax
1]〉) and f2 = ([1, 1], 〈[ax

2 , ax
2]〉),

where ax
1=a1 + d1 · nx and ax

2=a2 + d2 · nx. By using the nx expression, we

have ax
1 + ax

2=a1 + a2 + (d1 + d2) · ax−(a1+a2)
d1+d2

=ax, thus proving the amount
conservation for the AGG-N-to-1 and DAGG-1-to-N function pair.

A.2 Complexities of N-to-1 aggregation functions

Algorithm 1 performs the N-to-1 aggregation using the provided set F with
|F| flex-objects. Here, the profile positions for start-alignment are initialized in
O(|F|) time (Lines 2–8). The start-time flexibility interval for the aggregated
flex-object fa is initialized in O(1) time (Lines 5–6). However, the construc-
tion of the profile of fa requires nested looping through (1) the time range
[min f∈F(f .tes)+ 1, max f∈F(tee(f))] containing all profiles of the flex-objects in
F (Line 7) and (2) all flex-objects in F (Lines 9–10). As this time range deter-
mines the total number of slices in the aggregated flex-object profile, denoted

66

A. Appendix

as | fa.p|, the overall complexity of Algorithm 1 is O(| fa.p| · |F|).
Algorithm 2 performs the 1-to-N disaggregation using F (a set of flex-

objects), fa (an aggregated flex-object), and f x
a (an instance of fa) provided as

input. As f x
a is an instance of fa (f x

a . fa), both fa and f x
a have equal numbers

of profile slices, i.e., | fa.p| = | f x
a .p|. Thus, the normalization of f x

a amounts
requires O(| fa.p|) time (Lines 2–6). However, the overall run-time is domi-
nated by the construction of non-aggregated flex-object instances, requiring
O(| fa.p| · |F|) time (Lines 7–12). Therefore, the overall complexity of Algo-
rithm 2 is O(| fa.p| · |F|).

A.3 Complexities of N-to-M aggregation sub-functions

Algorithm 4 performs the pre-grouping using the delta (f , c) provided as in-
put. Here, the flex-object f is mapped into a d-dimensional point in O(|PG|)
time (Line 2), where d = |PG| is the number of similarity criteria (or group-
ing tolerances) used. A group is located in the group hash (Line 3), and
the respective group modifications (Lines 4–15) are performed in O(1) time.
Thus, the overall complexity of Algorithm 4 is O(1) because no more than 10
similarity criteria (|PG|) are typically applicable to flex-objects and |PG| deter-
mining the total number of point (or grid) dimensions is just a small constant
|PG| ≤ 10, the value of which does not grow with the input.

Algorithm 6 performs the optimization of the group g provided as input.
Here, g consists of |g|c cells containing |g| flex-objects in total. Both |g|c and
|g| depend on the nature of flex-objects in the set F and the grouping parame-
ters PG applied to these flex-objects, such that 0 ≤ |g|c ≤ |g| ≤ |F|. Therefore,
all flex-objects in g are acquired in O(|g|) time (Line 2). The test for group
splitting is performed in O(|PG|) time, where |PG| is the number of grouping
tolerances used (Line 3). The complexity of the general bottom-up hierarchical
clustering isO(n3) [23], thus group splitting requiresO(|g|3c) orO(|g|3) time,
as |g|c ≤ |g| (Lines 3–8). For group merging, neighboring groups are acquired
in O(min(|G|, 3|PG |)) time when either scanning all G flex-object groups or
probing the |PG|-dimensional grid (group hash) for populated cells. The flex-
objects are combined together in O(|g|) time (Line 8) and the test for group
merging is performed in O(|PG|) time (Line 13). Finally, the actual flex-object
redistribution is performed in O(|g|) time (Lines 13–18). As |PG| is a small
constant, the value of which does not grow with the input, the group splitting
dominates the whole process and thus the group optimization is performed
in O(|g|3) time.

Algorithm 7 updates the number of bins according to the group delta
∆grp provided as input. ∆grp contains (carries) |∆grp| flex-objects of a
group g such that 0 ≤ |∆grp| ≤ |g|. Therefore, the sets of added and
deleted flex-objects ∆added and ∆delete are retrieved inO(|∆grp|) time (Lines 2–
3). Associated bins are retrieved from the bin hash in O(1) time (Line 4).

67

Chapter 3. Aggregating and Disaggregating Flexibility Objects

As there might be at most |g| bins (each with a single flex-object), rele-
vant flex-objects from ∆delete are removed from these bins in O(|g| · |∆grp|)
time (Line 6). The complexity of the first fit decreasing bin-packing is
O(n · log(n)) [43], thus new flex-objects from ∆added are packed into the exist-
ing bins inO(|∆grp| · log|∆grp|) time (Line 8). Finally, the changes of affected
bins are computed in O(|g|) time (Lines 9–12). Thus, as the removal of flex-
objects dominates the whole process, the overall complexity of Algorithm 7
is O(|∆grp| · |g|).

Algorithm 8 updates an aggregated flex-object fa according to the bin
delta ∆bin provided as input. As ∆bin contains (carries) at most |∆grp|
flex-objects added or removed to/from a bin having at most |g| flex-objects,
the sets of added and deleted flex-objects ∆add and ∆delete and associated
data are acquired in O(|∆grp|) time (Lines 2–6). When there are no deletes
(∆delete = ∅), the aggregated flex-object fa is updated using Algorithm 1 with
start-alignment in O(| fa.p| · |∆add|) time (Lines 7–10). When deletes are fea-
sible, fa is computed from scratch using Algorithm 1 with start-alignment in
O(| fa.p| · |g|) time (Lines 12–18). As |∆add| and |∆remove| are bounded by |g|,
the complexity of Algorithm 8 is O(| fa.p| · |g|).

Algorithm 5 performs the logical phases of grouping, bin-packing, and
N-to-1 aggregation utilizing Algorithms 6–8. It processes |CL| group deltas
from the group changes list CL, covering |CL| different groups in total. Uti-
lizing Algorithm 6, the (final) grouping is performed in O(|CL| · |g|3) time
(Line 3). The joint nested bin-packing, and N-to-1 aggregation are performed
using Algorithms 7–8 in O(|CL| · |∆grp| · | fa.p| · |g|2) time (Lines 5–8). Thus,
the overall complexity of Algorithm 5 isO(|CL| · |g|2 · (|g|+(|∆grp| · | fa.p|))).

A.4 Complexity of N-to-M aggregation

The complete process of N-to-M aggregation is performed using Algorithm 3,
which uses insert-only deltas to transform N flex-objects from the input set
F into M aggregated flex-objects. To evaluate the run-times of Algorithm 3,
we first consider the less realistic worst case when all flex-objects from F are
aggregated into a single aggregated flex-object, thus loosing most of the avail-
able flexibility. As opposed to this, we also consider the more realistic average
case when groups with a bounded number of flex-objects in each group are
created. We now use the computational complexities of Algorithms 4–5 to
evaluate run-times of Algorithm 3 in the described worst and average cases.

Worst-case In the worst-case, a single flex-object group g with |F| flex-
objects is created, i.e., |g| = |F|. As only one group is affected, a single record
is inserted into the group changes list, i.e., |CL| = 1. Furthermore, as Algo-
rithm 3 processes all insert deltas at once (Lines 3–4), the delta of g contains
(carries) all |F| flex-objects, i.e., |∆grp| = |F|. Consequently, the worst-case
complexity of Algorithm 3 is O(|F|3 · Pmax), where Pmax is the length of the

68

A. Appendix

longest aggregated flex-object profile.
Average-case In the average-case, the total number of flex-objects in each

group is bounded by the constants Gmin and Gmax such that Gmin ≤ |g| ≤
Gmax. Therefore, the insert deltas of flex-objects from F (Lines 3–4) are pro-
cessed in batches with at most Gmax deltas, and they affect no more than
|F|/Gmin groups, i.e., |∆grp| = Gmax and |CL| = |F|/Gmin. Consequently, as
Gmin and Gmax are just bounding constants, the values of which do not grow
with the input, the average-case complexity of Algorithm 3 is O(|F| · Pavg),
where Pavg is the average length of aggregated flex-object profiles.

A.5 Complexity of the simple greedy balance aggregation
technique

Algorithm 9 performs the simple greedy technique using the provided bin B
of flex-objects. Here, the computation of the balance of a flex-object f requires
O(| f .p|) time. Moreover, the flex-object, fnom, with the minimum balance is
selected in O(|B|) time (Line 2). Thus, Line 2 requires O(|B|·| f .p|) time in
total. The assignments in Lines 6 and 6 require O(1) time. The “while” loop
in Line 4 is executed |B|−1 times. The assignment in Line 2 requires O(|R|)
time, where R, |R|<|B|, is the set of remaining flex-objects in the bin, and
is linearly reduced by one in each iteration. Thus, it demands O(|B|2) time.
The aggregation in Line 4 requires O(| f .p|) time since 2 flex-objects are ag-
gregated and Algorithm 1 is applied. However, the aggregation is executed
(t f (ftmp)+1) times since it is nested in the “for” loop of Line 3 multiplied
by |B|−1 times because it is also nested in the ”while” loop. The number
of “for” loop iterations depends on the time flexibility of ftmp. The average

time flexibility, TFavg, of the flex-objects in B\ fnom is: TFavg=
∑ f∈B\ fnom t f (f)
|B| − 1

.

Thus, the aggregations require O(|B|·TFavg·| f .p|) time in total. The assign-
ments in Lines 6, 6, and 19 and the checking condition Line 5 require O(1)
time. Line 11 computes the balance of f in O(| f .p|) time and is repeated
in Line 4 (|B|−1)·TFavg times. Thus, it demands O(|B|·TFavg·| f .p|) time in
total. Line 20 scans the remaining flex-objects of the bin in O(|R|) time and
is reduced by one in each loop iteration. Thus, it demands O(|B|2) time in
total. The overall complexity of Algorithm 9 is O(|B|2 + |B| · | f .p| · TFavg).

69

Chapter 3. Aggregating and Disaggregating Flexibility Objects

70

Chapter 4

Balancing Energy
Flexibilities through
Aggregation.

The paper has been published in the
Data Analytics for Renewable Energy Integration (DARE), Nancy, France, pp.
17-37, 2014.
The layout of the paper has been revised.
DOI: 10.1007/978-3-319-13290-7_2

Springer copyright/ credit notice:
Data Analytics for Renewable Energy Integration: Second ECML PKDD
Workshop, DARE 2014, Nancy, France, September 19, 2014, Revised Selected
Papers, Emmanouil Valsomatzis, Katja Hose, and Torben Bach Pedersen.
With permission of Springer.

Abstract

One of the main goals of recent developments in the Smart Grid area is to increase
the use of renewable energy sources. These sources are characterized by energy fluc-
tuations that might lead to energy imbalances and congestions in the electricity grid.
Exploiting inherent flexibilities, which exist in both energy production and consump-
tion, is the key to solving these problems. Flexibilities can be expressed as flex-objects,
which due to their high number need to be aggregated to reduce the complexity of
energy scheduling. In this chapter, we discuss balance aggregation techniques that
already during aggregation aim at balancing flexibilities in production and consump-
tion to reduce the probability of congestions and reduce the complexity of scheduling.

71

Chapter 4. Balancing Energy Flexibilities through Aggregation

We present results of our extensive experiments.

1 Introduction

The power grid is continuously transforming into a so called Smart Grid. A
main characteristic of the Smart Grid is the use of information and communi-
cation technologies to improve the existing energy services of the power grid
and simultaneously increase the use of renewable energy sources (RES) [8].
However, the energy generation by renewable sources, such as wind and
solar, is characterized by random occurrence and thus by energy fluctua-
tions [34]. Since their power is fed into the power grid and their increased
use is a common goal, they may provoke overload of the power grid in the
future, especially in peak demand situations [7,45]. Moreover, the use of new
technologies, such as heat pumps and electrical vehicles (EV), and their high
energy demand could also lead to electricity network congestions [51].

Within the Smart Grid, the EU FP7 project MIRABEL [13] and the ongoing
Danish project TotalFlex [1] are using the flex-offer concept [79] to balance
energy supply and demand. The concept is based on the idea that the energy
consumption and production can not only take place in specific time slots,
but be flexible and adjustable instead. For instance, an EV is parked during
the night from 23:00 until 6:00. The EV could be charged or alternatively also
act as an energy producer and feed its battery energy into the grid [68]. So
the EV is automatically programmed to maximally offer 30% of its current
battery energy to the grid, corresponding to 2 hours of discharging. So,
in a case of an energy demand or favorable energy tariffs, the EV will be
discharged, e.g. from 1:00 to 2:00, offering 15% of its battery energy.

In the MIRABEL project, an Energy Data Management System (EDMS) is
designed and prototyped. The EDMS aims at a more efficient utilization of
RES by the use of the flex-object concept. Such an EDMS is characterized by a
large number of flex-objects that have to be scheduled (assign a specific time
and energy amount) so that balancing supply and demand is feasible. Since
it is infeasible to schedule a large number of flex-objects individually [79], an
aggregation process is introduced, so that the number of flex-objects is de-
creased and consequently also scheduling complexity [80]. In the proposed
EDMS architecture, the scheduling component is responsible for properly
scheduling the aggregated flex-objects in order to balance out energy fluc-
tuations. The TotalFlex project additionally considers balancing goal during
aggregation so that imbalances are partially being handled by the balance
aggregation.

The balance aggregation aims to aggregate flex-objects derived from con-
sumption and production in order to create flex-objects with low energy de-
mand and supply requirements. Thus, violations of the network’s electricity

72

2. Related work

capacities could be avoided. At the same time, the aggregated flex-objects
still maintain flexibility that could further be used during scheduling to avoid
grid congestions, reassure a normal grid operation, and amplify RES use. For
instance, in the above mentioned EV example, there could also be another EV
that needs 4 hours of charging, corresponding to 70% of its battery capacity.
Charging could take place during the night from 22:00 to 5:00. So, the energy
of the first EV could be used to partially recharge the second one, for example,
from 23:00 to 1:00. Thus, instead of the two EVs, we consider an aggregated
flex-object that represents the demand of 2 hours charging, corresponding to
40% of battery capacity and the charge could take place from 23:00 to 5:00.
In this work, we perform an extensive experimental investigation of the be-
havior of balance aggregation. We also propose alternative starting points for
the techniques and evaluate the impact of aggregation parameters.

The remainder of this chapter is structured as follows. Section 2 is describ-
ing the theoretical foundations and Section 3 related work. Section 4 explains
how exactly balance aggregation works. Section 5 discusses results of our ex-
tensive experiments. We conclude in Section 6 with a discussion of our future
work.

2 Related work

The unit commitment problem [42,62], where balancing energy demand and
supply is taken into consideration, has been extensively investigated through
either centralized (e.g., [35, 78]) or distributed approaches (e.g., [49, 50]).
Moreover, in [79], the unit commitment problem has been examined by han-
dling the units as flex-objects and by using centralized metaheuristic schedul-
ing algorithms. In [79], the economic dispatch stage of the unit commitment
problem is also elaborated by applying a cost function and thus confronting
potential imbalances.

Furthermore, aggregation that takes into account flexibilities with a flex-
object use case evaluation has been investigated in [73]. Scheduling aggre-
gated flex-objects that only represent energy consumption and introducing
aggregation as a pre-step of scheduling has been investigated in [80]. How-
ever, in this chapter, we examine aggregation of flex-objects that takes into
account one of the goals of scheduling, i.e., balancing. We do not address im-
balances by using a cost function as in [80], but instead we handle imbalances
as an effort to directly balance out energy amounts derived from supply and
demand. To achieve that, we integrate balancing into the aggregation process.
As a result, imbalances are partially handled and flexibility still remains to
be used by the scheduling procedure. In this chapter, we evaluate the tech-
niques by taking into consideration energy flexibility representing not only
from consumption as in [73, 80] but from production as well. Moreover, this

73

Chapter 4. Balancing Energy Flexibilities through Aggregation

work provides an extensive experimental evaluation of balanced aggregation
techniques.

3 Preliminaries

We use the following definition based on [73].

Definition 18. A flex-object f is a tuple f = (T(f), profile(f)) where T(f) is the
start time flexibility interval and profile(f) is the data profile. Here, T(f) = [tes, tls]
where tes and tls are the earliest start time and latest start time, respectively.

The data profile pro f ile(f) = s(1), . . . , s(m) where a slice s(i) is a tuple ([ts, te],
[amin, amax]) where [amin, amax] is a continuous range of the amount and [ts, te] is a
time interval defining the extent of s(i) in the time dimension.

We consider three types of flex-objects: positive, negative, and mixed
ones. Positive flex-objects have all their amount values of all their slices posi-
tive and correspond to energy consumption flex-object. Negative flex-objects
have all their amount values of all their slices negative and correspond to
energy production flex-objects. All the other flex-objects are considered as
mixed and express hybrid flex-objects. Figure 4.1 illustrates a mixed flex-
object f with four slices, f = ([1, 7], s(1), s(2), s(3), s(4)).

Fig. 4.1: A mixed flex-object

The time is discretized into equal size units, e.g., 15 minutes and the
amount dimension represents energy. Every slice is represented by a bar in
the figure. The below and above bars of each slice represent the minimum

74

4. Balance aggregation

and maximum amount value, amin and amax, respectively. A flex-offer also
supports a lowest and a highest total amount that represents the minimum
and the maximum energy required respectively [74].

Moreover, as defined in [73], the time flexibility, tf (f), of a flex-object f , is
the difference between the latest and earliest start time, the amount flexibility,
af (s), is the sum of the amount flexibilities of all slices in the profile of f , and
the total flexibility of f is the product of the time flexibility and the amount
flexibility, i.e. flex(f)= t f (f)·a f (s). For instance, the flex-object in Figure 4.1
has tf (f)=7-1=6, af (s)=(3−1)+(4−2)+(2−(−4))+(−1−(−3))=12, and to-
tal flexibility: 6∗12=72.

Furthermore, we consider as aggregation the process in which the input
is a set of flex-objects and the output is also a set of flex-objects (aggregated)
with a smaller or equal number of flex-objects. An aggregated flex-object en-
capsulates one or more flex-objects and is able to describe the flex-objects that
created it. Furthermore, a measurement that we use to evaluate the aggre-
gation is the flexibility loss that is defined according to [73] as the difference
between the total flex-object flexibility before and after aggregation. We will
further discuss the aggregation process, introduce balance aggregation, and
two of its techniques in Section 4.

4 Balance aggregation

In order to describe balance aggregation we define the balance, balance(f),
of a flex-object f , as the sum of the average amount values of each slice, and
absolute balance, absolute_balance(f) as the sum of the average absolute values
of the amounts for each slice of the flex-object. For example in Figure 4.1,
the flex-object f =([1, 6], s(1), s(2)), s(3), s(4)) has balance(f)=1+3−1−2=1 and
absolute_balance(f)=|1|+|3|+|−2| +|−1|= 9. Goal of the balance aggregation
is to create aggregated flex-objects with low values of absolute balance. In
this section, we sketch the aggregation process and describe approaches to
achieve balance aggregation.

4.1 Flex-offer Aggregation

In Figure 4.2 we present a simple aggregation scenario where we aggregate
two flex-objects, f1 and f2, creating the aggregated flex-object f1,2. Both f1
and f2, have time and amount and so does the aggregated one. As illustrated,
the time flexibility (hatched area) of f1 is 2 and of f2 is 3. In the first column
of the figure we show the start alignment aggregation [73]. In that case, we
align the two flex-objects so that their profiles start at the earliest start time
and then we sum the minimum and maximum amounts of each aligned slice.
The time flexibility of the aggregated flex-object is the minimum flexibility of

75

Chapter 4. Balancing Energy Flexibilities through Aggregation

(a) Alignment1 (b) Alignment2 (c) Alignment3

Fig. 4.2: Different alignments for aggregation

the non-aggregated flex-objects. This reassures that all the possible positions
of the earliest start time of the aggregated flex-object will not violate the time
constraint that the non-aggregated flex-objects have.

However, because the time flexibility of the aggregated flex-object de-
pends on the minimum flexibility of the flex-objects that participate in the
aggregation, the flex-objects are grouped according to 2 different parame-
ters, EST (Earliest Start time Tolerance) and TFT (Time Flexibility Tolerance) to
minimize flexibility losses [73]. The value of EST represents the maximum
difference of the earliest start times that the flex-objects could have in order
to belong to the same group. The value of TFT represents the maximum time
flexibility differences that the flex-objects could have in order to be grouped
together.

As we can see in the second and the third column of Figure 4.2, there are
different start time profile combinations for the flex-objects that participate
in the aggregation and result in different aggregated flex-objects. Note that
the absolute balance of the aggregated flex-object also depends on the start
time profile combinations. For instance, in the second column where we shift
the first flex-object for one time unit, we see that the absolute balance of the
aggregated flex-object has reduced. On the other hand, continuing shifting

76

4. Balance aggregation

the first flex-object will increase again the absolute balance of the aggregated
flex-object, see third column in Figure 4.2. However, with only two flex-
objects there are few combinations and the number of combinations increases
exponentially with the number of flex-objects and larger time flexibilities. The
balance aggregation aims at identifying start time profile combinations and
aggregate flex-object in a manner that will minimize the absolute balance of
the aggregated flex-object. At the same time, the two balance aggregation
techniques considered in this work do not not explore the whole solution
space and thus avoid in-depth search.

4.2 Balance aggregation

We examine two different approaches of implementing balance aggregation,
the exhaustive greedy and the simple greedy. The techniques are trying to
find start time combinations between positive and negative flex-objects that
will lead to an aggregated one with a minimum absolute balance.

Both these greedy techniques have the same start point but exhaustive
greedy aims to examine a larger solution space than simple greedy. After
grouping the flex-objects according to the grouping parameters, both tech-
niques sort all the flex-objects inside each group in a descending order re-
garding their balance and start the aggregation choosing the one with the
minimum balance. The flex-object with the minimum balance will be the
most negative one representing a flex-object derived from production that is
usually less flexible than the positive ones. Afterwards, exhaustive greedy
considers the maximum flexibility for the selected flex-object and then exam-
ines all the possible earliest start time combinations with all the remaining
flex-objects. The technique chooses the alignment of the flex-object that pro-
vides the minimum absolute balance. It continues until the absolute balance
is no longer reduced. If the absolute balance is not reduced, it restarts with
the remaining flex-objects.

On the other hand, simple greedy also starts the aggregation by choos-
ing the flex-object with the minimum balance. However, aggregation contin-
ues with the flex-object that has the balance which is closest to the opposite
(+/−) balance of the first one. It examines all the possible start time combi-
nations of the flex-object and chooses the aggregation that has the minimum
absolute balance. It also continues the aggregation until the absolute bal-
ance of the aggregated flex-object is not further reduced. In case the absolute
balance is not reduced, it considers the aggregated flex-object and contin-
ues with the remaining flex-objects. In Figure 4.3 we show how exhaustive
greedy and simple greedy work in the same group of flex-objects. The ex-
ample is from one of our datasets and in the figure we show the balance of
each flex-object. We see that both the techniques start their aggregation by
choosing the most negative flex-object, f5, and aggregate it with flex-object

77

Chapter 4. Balancing Energy Flexibilities through Aggregation

f51: -4791f51: -4791

f512: -4147f512: -4147

Step 1 Step 2

Simple greedy

Step 3

f1: 1005f1: 1005

f2: 643f2: 643

f3: 469f3: 469

f4: -2455f4: -2455

f5: -5797f5: -5797

f2: 643f2: 643

f3: 469f3: 469

f4: -2455f4: -2455

f3: 469f3: 469

f4: -2455f4: -2455

f4: -2455f4: -2455

Step 4

f5123: -3678f5123: -3678

|balance|=7178

f51: -4791f51: -4791

f513: -4362f513: -4362

Step 1 Step 2

Exhaustive greedy

Step 3

f1: 1005f1: 1005

f2: 643f2: 643

f3: 469f3: 469

f4: -2455f4: -2455

f5: -5797f5: -5797

f2: 643f2: 643

f3: 469f3: 469

f4: -2455f4: -2455

f4: -2455f4: -2455

f42: -1811f42: -1811

Step 4

f513: -4322f513: -4322

|balance|=6402

f2: 643f2: 643

Fig. 4.3: Exhaustive and simple greedy examples

f1. However in step 3, exhaustive greedy chooses to aggregate with f3 be-
cause it gives a better absolute balance and simple greedy with flex-object f2
since it is closer to the opposite of the f51 balance. As a result, exhaustive
greedy continues the aggregation separately for f2 and f4 and simple greedy
continues aggregation with f3 leaving f4 non-aggregated. Therefore, the two
techniques lead to different absolute balance values.

5 Experimental Evaluation

In this section, we present an extensive experimental evaluation of the bal-
ance aggregation techniques a comparison to start alignment aggregation dis-
cussed in Section 4.

5.1 Experimental setup

For the evaluation of the balance aggregation techniques, we used 4 exten-
sive experimental setups of 10 groups of 8 datasets, 320 datasets in total.
Each setup is characterized by different time and amount probabilistic distri-
butions corresponding to different energy scenarios.

The first experimental setup is based on the one described in [73]. It con-
sists of 10 groups and each group has 8 datasets, 80 in total. In order to
create each group of the 8 datasets, we first select flex-objects derived from
the historical consumption time series of 5 random customers. Then, we in-
crementally add to each dataset flex-objects corresponding to the number of
5 more random customers. The last one, the eighth dataset, has flex-objects

78

5. Experimental Evaluation

derived from historical consumption time series of 40 random customers. Af-
terwards, for every dataset we apply start alignment aggregation according
to [73], with EST and TFT equal to zero, resulting in an aggregated posi-
tive flex-object. In every aggregated flex-object, a random number of amount
slice, between zero and its time flexibility value is added. Finally, all the pos-
itive aggregated flex-objects are converted to negative ones. As a result, there
are always one or more positive flex-objects that if being aggregated have the
same opposite balance as a negative one. Since we add in each dataset flex-
objects derived from five more customers, the datasets have an incremental
number of flex-objects that approximately corresponds to 11K additional flex-
objects for every 5 customers. The way the dataset is created reassures that
whenever we apply aggregation with the parameters EST and TFT set to 0, it
is feasible to create an aggregated flex-object with zero absolute balance. The
time flexibility values of the flex-objects follow a normal distribution N (8, 4)
in the range [4, 12] and the number of the slices a normal distribution N (20,
10) in the ranges [10, 30]. Those profiles are from 2.5 to 7.5 hours long, with
one to three hours time flexibility, which could represent flex-objects derived
mostly from EVs. The results of the experiments of this setup are illustrated
in the first row of Figures 4.4- 4.11.

Regarding the second experimental setup, we also created 10 groups of
8 datasets. The number of the flex-objects is similar to the one of the pre-
vious dataset. Furthermore, historical consumption time series of customers
and the flex-object generator tool described in [41] were used to create the
datasets. The flex-object generator tool was used to generate both positive
and negative flex-objects. For all the datasets the number of the positive
(consumption) flex-objects is twice the number of the negative (production)
ones. In addition, the number of the slices of the positive flex-objects follows
the normal distributions N (20, 10) in the ranges [10, 30] and of the negative
flex-objects the normal distributions N (40, 20) in the ranges [20, 60]. The
time flexibility values (tls − tes) of the positive flex-objects and of the negative
flex-objects follow a discrete uniform distribution on the interval [1, 10] and
[1,8] respectively. This setup aims to explore a scenario in which balancing
out energy and production is theoretically feasible. Thus, the negative flex-
objects are half the positive ones but with double profile length. Such neg-
ative flex-objects with long profiles and less flexibility than the flex-objects
representing the consumption could simulate RES. On the other hand, flex-
objects characterized by more time flexibility and shorter profiles represent
flex-objects derived from mostly recent technological achievements such as
EVs and heat pumps. The results of the experiments of this setup are illus-
trated in the second row of Figures 4.4- 4.11.

Our third experimental setup is created as the second one. These datasets
are variations of the second one with a deviation regarding the length and
the time. More specifically, the slices of the positive flex-objects follow the

79

Chapter 4. Balancing Energy Flexibilities through Aggregation

same distribution as before, but the negative flex-objects follow the normal
distribution N (50, 10) in the ranges [40, 60], which makes them longer. The
time flexibility values (tls − tes) of the positive flex-objects and of the negative
flex-objects follow a discrete uniform distribution on the interval [2, 18] and
[1,6] respectively, making the positive flex-objects much more flexible regard-
ing time. Such kind of flex-objects could represent not only EVs and heat
pumps but also electronic devices as well. The results of the experiments of
this setup are illustrated in the third row of Figures 4.4- 4.11.

Our last experimental setup is similar to the third one. However, the nega-
tive flex-objects in this setup are characterized by less energy flexible profiles
compared to the positive ones, reflecting a scenario in which the RES are not
that flexible regarding energy. Moreover, the positive flex-objects are twice
the number of the negative ones. More specifically, the number of the slices
for the positive and the negative flex-objects follow the normal distributions
N (5, 2) and N (10, 2) in the ranges [1, 10] and [5, 15], respectively. The energy
flexibility values of the positive flex-objects follow the normal distributions
N (30, 10) in the range [0, 50] and of the negative flex-object N (20, 10) in the
same range over the same amount of flexibility. The results of the experi-
ments of this setup are illustrated in the fourth row of Figures 4.4- 4.11..

In the experiments we investigate the three aggregation techniques re-
garding the absolute balance, the flexibility loss, the number of the aggre-
gated flex-objects, and the processing time. We examine all four aspects
in terms of scalability and grouping parameters, EST, and TFT. In terms
of scalability, we set both the grouping parameters to zero, and examined
the techniques in datasets with incremental numbers of flex-objects, start-
ing with minimum 11K (approximately) and maximum 90K (approximately)
flex-objects (Figures 4.4, 4.6, 4.8, and 4.10). For each experimental setup, we
created 10 groups of datasets that have the same number of flex-objects to
reduce any effect of the randomness that characterizes the dataset genera-
tion. Regarding the effect of the grouping parameters, we used datasets with
almost 90K flex-objects and set one of the parameters stable and set to zero,
and varied the other values from zero to six, respectively (Figures 4.5, 4.7, 4.9,
and 4.11). For illustrating purposes, we show the average behavior of the
similar datasets that there are in each group.

We also investigate the performance of exhaustive and simple greedy after
alternating their starting point referring to them in all the figures as “exhaus-
tive greedy” and “simple greedy1”. We illustrate their performance when
they both start by selecting the flex-object with the maximum absolute bal-
ance instead of the one with the minimum balance. In the first row, and the
first and second column of Figures 4.4, 4.6, and 4.8 there is an overlap be-
tween the illustrated lines of the techniques because the techniques showed
similar behavior. The experiments were conducted on a 2.9GHz Intel core i7
processor with two cores, L2 Cache of 256 KB, L3 Cache of 4 MB and physical

80

5. Experimental Evaluation

memory of 8 GB (4 of 4 GB of 1600MHz DDR3).

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2
x 10

7

Flex−offer count

A
b

s
o

lu
te

 b
a

la
n

c
e

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2
x 10

7

Flex−offer count

A
b

s
o

lu
te

 b
a

la
n

c
e

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

2

4

6

8
x 10

7

Flex−offer count

A
b
s
o
lu

te
 b

a
la

n
c
e

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

1

2

3

4

5

6
x 10

7

Flex−offer count

A
b
s
o
lu

te
 b

a
la

n
c
e

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

2

4

6

8
x 10

7

Flex−offer count

A
b
s
o
lu

te
 b

a
la

n
c
e

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

2

4

6

8
x 10

7

Flex−offer count

A
b
s
o
lu

te
 b

a
la

n
c
e

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2
x 10

7

Flex−offer count

A
b
s
o
lu

te
 b

a
la

n
c
e

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2
x 10

7

Flex−offer count

A
b
s
o
lu

te
 b

a
la

n
c
e

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

TFT=0, EST=0 TFT=6, EST=0

Fig. 4.4: Results of the absolute balance in terms of scalability effect

81

Chapter 4. Balancing Energy Flexibilities through Aggregation

0 2 4 6
0

0.5

1

1.5

2
x 10

7

A
b

s
o

lu
te

 b
a

la
n

c
e

Time Flexibility Tolerance (TFT)

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
0

0.5

1

1.5

2
x 10

7

A
b
s
o
lu

te
 b

a
la

n
c
e

Earliest Start Time Tolerance (EST)

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
4.5

5

5.5

6

6.5
x 10

7

A
b
s
o
lu

te
 b

a
la

n
c
e

Time Flexibility Tolerance (TFT)

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
4.5

5

5.5

6

6.5
x 10

7

A
b
s
o
lu

te
 b

a
la

n
c
e

Earliest Start Time Tolerance (EST)

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
6

6.2

6.4

6.6

6.8
x 10

7

A
b
s
o
lu

te
 b

a
la

n
c
e

Time Flexibility Tolerance (TFT)

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
6.4

6.5

6.6

6.7

6.8
x 10

7

A
b
s
o
lu

te
 b

a
la

n
c
e

Earliest Start Time Tolerance (EST)

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
1.55

1.6

1.65

1.7

1.75
x 10

7

A
b
s
o
lu

te
 b

a
la

n
c
e

Time Flexibility Tolerance (TFT)

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
1.64

1.66

1.68

1.7

1.72

1.74
x 10

7

A
b
s
o
lu

te
 b

a
la

n
c
e

Earliest Start Time Tolerance (EST)

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

TFT=0...6, EST=0 TFT=0, EST=0...6

Fig. 4.5: Results of the absolute balance in terms of grouping parameters effect

5.2 Absolute balance

The results for absolute balance are shown in Figures 4.4 and 4.5. In Fig-
ure 4.4, absolute balance scales almost linearly with the number of input
flex-objects. All the techniques, exhaustive greedy, simple greedy and start
alignment have almost the same performance (first row of Figure 4.4) in all

82

5. Experimental Evaluation

the setups except the first one. In the first setup, the two greedy techniques,
exhaustive and simple greedy, achieve a very low balance, first row of Fig-
ures 4.4 and 4.5.

More specifically, we see in the first column of Figure 4.4 that both tech-
niques achieve a very close to zero balance when both EST and TFT are set to
zero. When TFT is set to 6, exhaustive greedy achieves a lower balance than
simple greedy (first row, second column in Figure 4.4), but close to zero for
both. Due to the nature of the first experimental setup, zero absolute balance
can be achieved and therefore the two greedy techniques achieve it. How-
ever, we observe that start alignment achieves the minimum absolute balance
among the techniques in the last three setups when there is a large number
of flex-objects, approximately 90K, see Figure 4.5. In the second to fourth
line of Figure 4.5 we see that exhaustive greedy and simple greedy have ab-
solute balance similar to start alignment, with exhaustive greedy achieving a
slightly smaller value between the two greedy techniques.

In the last three experimental setups (second to fourth row in Figures 4.4
and 4.5), there is an overlap in all the slices between the positive and the
negative flex-objects since the profiles of the negative flex-objects have at least
double profile length in comparison to the positive ones. As a result, start
alignment achieves a low absolute balance and the two greedy techniques
do not take advantage of the exploration of the solution space since all the
differences in absolute balance between each possible aggregation are very
low. They are very low because even if there might be an earliest start time
combination between a positive and a negative flex-object that reduces the
total absolute balance of the mixed flex-object, the percentage will be too low
because the absolute balance is mostly reflected by the long profiles of the
negative flex-object. This fact combined with the large number of aggregated
flex-objects that the two greedy techniques produce after aggregation in all
the datasets, (Figures 4.8 and 4.9) produce a lower balance for start alignment.

The number of the flex-objects that is produced by aggregation influences
the result of the absolute balance. The fewer flex-objects participate in the
aggregation, the more aggregated are produced. As a result less compen-
sations between positive and negative slices take place and that leads to a
higher absolute balance. Furthermore, start alignment shows a decreasing
behavior of the produced absolute balance when the values of the grouping
parameters are greater than zero, first row of Figure 4.9. This occurs because
when the values of the grouping parameters increase, more flex-objects par-
ticipate in the aggregation and thus more positive and negative flex-objects
are aggregated, achieving a lower absolute balance.

83

Chapter 4. Balancing Energy Flexibilities through Aggregation

0 2 4 6 8 10

x 10
4

0

10

20

30

40

50

Flex−offer count

F
le

x
ib

ili
ty

 L
o

s
s
,%

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

10

20

30

40

50

Flex−offer count

F
le

x
ib

ili
ty

 L
o

s
s
,%

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

2

4

6

8

Flex−offer count

F
le

x
ib

ili
ty

 L
o
s
s
,%

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

10

20

30

40

50

Flex−offer count

F
le

x
ib

ili
ty

 L
o
s
s
,%

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

Flex−offer count

F
le

x
ib

ili
ty

 L
o
s
s
,%

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

10

20

30

40

50

Flex−offer count

F
le

x
ib

ili
ty

 L
o
s
s
,%

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

Flex−offer count

F
le

x
ib

ili
ty

 L
o
s
s
,%

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

10

20

30

40

50

Flex−offer count

F
le

x
ib

ili
ty

 L
o
s
s
,%

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

TFT=0, EST=0 TFT=6, EST=0

Fig. 4.6: Results of the flexibility loss in terms of scalability effect

5.3 Flexibility loss

Another aspect that we examine for the aggregation is the flexibility loss. In
Figures 4.6 and 4.7 we see that the techniques show a divergent behavior in
all the different setups. We see, in the first column of Figure 4.6, that start

84

5. Experimental Evaluation

alignment has zero absolute balance when TFT=0, followed by exhaustive
greedy that has a small difference to simple greedy. The flexibility loss is

0 2 4 6
0

10

20

30

40

50

Time Flexibility Tolerance (TFT)

F
le

x
ib

ili
ty

 L
o

s
s
,%

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
0

10

20

30

40

50

Earliest Start Time Tolerance (EST)

F
le

x
ib

ili
ty

 L
o
s
s
,%

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
0

5

10

15

20

25

30

Time Flexibility Tolerance (TFT)

F
le

x
ib

ili
ty

 L
o
s
s
,%

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
0

5

10

15

20

25

30

Earliest Start Time Tolerance (EST)

F
le

x
ib

ili
ty

 L
o
s
s
,%

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
0

5

10

15

Time Flexibility Tolerance (TFT)

F
le

x
ib

ili
ty

 L
o
s
s
,%

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
0

1

2

3

4

5

Earliest Start Time Tolerance (EST)

F
le

x
ib

ili
ty

 L
o
s
s
,%

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
0

5

10

15

Time Flexibility Tolerance (TFT)

F
le

x
ib

ili
ty

 L
o
s
s
,%

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
0

1

2

3

4

Earliest Start Time Tolerance (EST)

F
le

x
ib

ili
ty

 L
o
s
s
,%

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

TFT=0...6, EST=0 TFT=0, EST=0...6

Fig. 4.7: Results of the flexibility loss in terms of grouping parameters effect

mainly affected by the time flexibility and since both EST and TFT are set to
zero, it means that in each group the flex-objects have the exact same earliest
start time and the same time flexibility as well. That leads to no time flexibil-

85

Chapter 4. Balancing Energy Flexibilities through Aggregation

ity loss for start alignment and thus no flexibility loss at all. Furthermore, we
notice a low percentage of flexibility loss for exhaustive and simple greedy in
the three last setups (second column, second and third row of Figure 4.6 and
first column, second and third row of Figure 4.7). The low time flexibility of
the negative flex-objects of the third and the fourth setups reassures a low
flexibility loss. This happens because the solution space is narrowed down,
low time flexibility leads to fewer combinations, and that TFT set to 0 reas-
sures that all the flex-objects in the group have the same low time flexibility.
A higher percentage of flexibility loss for both greedy techniques is shown in
the second setup (second row of Figures 4.6 and 4.7), because in this dataset
the time flexibility of the flex-objects is higher.

Both exhaustive and simple greedy behave similarly to start alignment,
producing almost the same number of aggregated flex-objects (first column
of Figure 4.8). However, we notice a high percentage of the flexibility loss
for both greedy and simple greedy in the first setup (first row of Figures 4.6
and 4.7). We see that start alignment has, as before, zero flexibility loss, and
the nature of the setup favors an exploration of the solution space for both
greedy techniques. Eventually, the greedy techniques identify aggregations
that lead to less time flexibility and thus to flexibility loss.

Based on the second column of Figure 4.6, the first and partially the sec-
ond column of Figure 4.7, we notice that for all the techniques, when the
grouping parameters are increased, the flexibility loss is also increased. This
happens because flex-objects with different time flexibilities are in the same
group. For start alignment, this will lead to an aggregated flex-object with the
lowest time flexibility and hence to flexibility loss. Regarding exhaustive and
simple greedy, larger grouping parameters result in a larger solution space
since more flex-objects participate in the aggregation and more earliest start
time combinations exist. As a result, the techniques will most probably create
an aggregated flex-object with a lowest absolute balance and a lowest time
flexibility. However, no matter how much we increase the value of the EST
parameter, the fact that TFT is zero will reassure the maintenance of the time
flexibility for start alignment and thus no flexibility loss will occur. In almost
all the datasets, start alignment shows the best behavior compared to the
other two techniques. In the third and the fourth experimental setup, we see
that while the number of the flex-objects increases and especially while TFT
increases (third and fourth row of Figure 4.7), the two greedy techniques
show a result that is competitive to start alignment result and even better,
achieving a lower flexibility loss. The low flexibility losses occur due to the
high value of the time flexibility that the positive flex-objects are character-
ized with, compared to the negative ones in the third and the fourth setup.
Therefore, there are flexibility losses for start alignment, since the aggregated
flex-objects have the lowest time flexibility.

The two greedy techniques achieve a lower flexibility loss because some

86

5. Experimental Evaluation

of the flex-objects in the group do not participate in the grouping. Hence,
exhaustive and simple greedy create more aggregated flex-objects than start
alignment (Figures 4.8 and 4.9), thus fewer flex-objects participate in the ag-
gregation and less flexibility loss will occur.

0 2 4 6 8 10

x 10
4

0

1

2

3

4

5
x 10

6

Flex−offer count

A
g

g
re

g
a

te
d

 f
le

x
−

o
ff

e
r

c
o

u
n

t

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

1

2

3

4

5
x 10

6

Flex−offer count

A
g

g
re

g
a

te
d

 f
le

x
−

o
ff

e
r

c
o

u
n

t

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

1

2

3

4

5

6
x 10

6

Flex−offer count

A
g
g
re

g
a
te

d
 f
le

x
−

o
ff
e
r

c
o
u
n
t

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

1

2

3

4

5

6
x 10

6

Flex−offer count

A
g
g
re

g
a
te

d
 f
le

x
−

o
ff
e
r

c
o
u
n
t

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

2

4

6

8
x 10

6

Flex−offer count

A
g
g
re

g
a
te

d
 f
le

x
−

o
ff
e
r

c
o
u
n
t

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

2

4

6

8
x 10

6

Flex−offer count

A
g
g
re

g
a
te

d
 f
le

x
−

o
ff
e
r

c
o
u
n
t

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

2

4

6

8
x 10

6

Flex−offer count

A
g
g
re

g
a
te

d
 f
le

x
−

o
ff
e
r

c
o
u
n
t

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

2

4

6

8
x 10

6

Flex−offer count

A
g
g
re

g
a
te

d
 f
le

x
−

o
ff
e
r

c
o
u
n
t

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

TFT=0, EST=0 TFT=6, EST=0
Fig. 4.8: Results of the aggregated flex-object count in terms of scalability effect

87

Chapter 4. Balancing Energy Flexibilities through Aggregation

0 2 4 6
2

2.5

3

3.5

4

4.5
x 10

6

Time Flexibility Tolerance (TFT)

A
g

g
re

g
a

te
d

 f
le

x
−

o
ff

e
r

c
o

u
n

t

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
1.5

2

2.5

3

3.5

4

4.5
x 10

6

Earliest Start Time Tolerance (EST)

A
g
g
re

g
a
te

d
 f
le

x
−

o
ff
e
r

c
o
u
n
t

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
2

3

4

5

6

7
x 10

6

Time Flexibility Tolerance (TFT)

A
g
g
re

g
a
te

d
 f
le

x
−

o
ff
e
r

c
o
u
n
t

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
1

2

3

4

5

6

7
x 10

6

Earliest Start Time Tolerance (EST)

A
g
g
re

g
a
te

d
 f
le

x
−

o
ff
e
r

c
o
u
n
t

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
3

4

5

6

7

8
x 10

6

Time Flexibility Tolerance (TFT)

A
g
g
re

g
a
te

d
 f
le

x
−

o
ff
e
r

c
o
u
n
t

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
2

3

4

5

6

7

8
x 10

6

Earliest Start Time Tolerance (EST)

A
g
g
re

g
a
te

d
 f
le

x
−

o
ff
e
r

c
o
u
n
t

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
3

4

5

6

7

8
x 10

6

Time Flexibility Tolerance (TFT)

A
g
g
re

g
a
te

d
 f
le

x
−

o
ff
e
r

c
o
u
n
t

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
2

3

4

5

6

7

8
x 10

6

Earliest Start Time Tolerance (EST)

A
g
g
re

g
a
te

d
 f
le

x
−

o
ff
e
r

c
o
u
n
t

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

TFT=0...6, EST=0 TFT=0, EST=0...6
Fig. 4.9: Results of the aggregated flex-object count in terms of grouping parameters effect

5.4 Execution time and aggregated flex-objects count.

Regarding the processing time of all the techniques, we see in Figures 4.10
and 4.11 that start alignment has the best performance followed by simple
greedy and exhaustive greedy. Start alignment is the fastest one since it al-
ways applies only one aggregation. It is also possible for start alignment to

88

5. Experimental Evaluation

0 2 4 6 8 10

x 10
4

0

1

2

3

4

5

Flex−offer count

E
x
e
c
u
ti
o
n
 t
im

e
,
s

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

2

4

6

8

10

Flex−offer count

E
x
e
c
u
ti
o
n
 t
im

e
,
s

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2

Flex−offer count

E
x
e
c
u
ti
o
n
 t
im

e
,
s

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

1

2

3

4

Flex−offer count

E
x
e
c
u
ti
o
n
 t
im

e
,
s

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2

Flex−offer count

E
x
e
c
u
ti
o
n
 t
im

e
,
s

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

1

2

3

4

Flex−offer count

E
x
e
c
u
ti
o
n
 t
im

e
,
s

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

Flex−offer count

E
x
e
c
u
ti
o
n
 t
im

e
,
s

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2

Flex−offer count

E
x
e
c
u
ti
o
n
 t
im

e
,
s

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

TFT=0, EST=0 TFT=6, EST=0
Fig. 4.10: Results of the processing time in terms of scalability effect

achieve better execution times, see third row, second column of Figure 4.11,
when the grouping parameters are high and thus fewer groups are created.
On the other hand, exhaustive greedy demands the most execution time
because it creates more than one aggregated flex-objects as simple greedy
does, but explores a larger solution space than simple greedy. This results
to larger execution times for exhaustive greedy, leaving simple greedy in the

89

Chapter 4. Balancing Energy Flexibilities through Aggregation

0 2 4 6
0

2

4

6

8

10

E
x
e
c
u
ti
o
n
 t
im

e
,
s

Time flexibility tolerance (TFT)

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
0

2

4

6

8

E
x
e
c
u
ti
o
n
 t
im

e
,
s

Earliest Start Time Tolerance (EST)

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
1

1.5

2

2.5

3

3.5

E
x
e
c
u
ti
o
n
 t
im

e
,
s

Time Flexibility Tolerance (TFT)

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
0

1

2

3

4

E
x
e
c
u
ti
o
n
 t
im

e
,
s

Earliest Start Time Tolerance (EST)

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
0

1

2

3

4

E
x
e
c
u
ti
o
n
 t
im

e
,
s

Time flexibility tolerance (TFT)

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
0

1

2

3

4

E
x
e
c
u
ti
o
n
 t
im

e
,
s

Earliest Start Time Tolerance (EST)

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
0

0.5

1

1.5

2

E
x
e
c
u
ti
o
n
 t
im

e
,
s

Time Flexibility Tolerance (TFT)

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

0 2 4 6
0.5

1

1.5

2

E
x
e
c
u
ti
o
n
 t
im

e
,
s

Earliest Start Time Tolerance (EST)

Simple Greedy

Exhaustive Greedy

Start Alignment

Simple Greedy1

Exhaustive Greedy1

TFT=0...6, EST=0 TFT=0, EST=0...6

Fig. 4.11: Results of the processing time in terms of grouping parameters effect

second place. Regarding the number of the aggregated flex-objects, we see
in Figures 4.8 and 4.9 that in all the experimental setups, start alignment has
a lower number of aggregated flex-objects than the two greedy techniques.
This is a result of the implementation of the techniques because start align-
ment will always create one aggregated flex-object when it is applied to a

90

6. Conclusion and Future Work

set of a flex-objects. On the other hand, exhaustive and simple greedy will
create at least one aggregated flex-object if absolute balance is not reduced
during the aggregation. Regarding the alternative exhaustive and simple
greedy we see no difference for the first experimental setup. However, in
all the other setups, the alternate techniques achieve a better absolute bal-
ance, higher flexibility losses, and fewer aggregated flex-objects when the
grouping parameters are set to values greater than zero for larger number
of flex-objects (second to fourth row of Figures 4.5, 4.7, and 4.9). On the
other hand, since they create fewer aggregated flex-objects, they have a big-
ger solution space to examine and thus they are slower than the original ones
(Figures 4.10 and 4.11).

6 Conclusion and Future Work

In this chapter, we elaborated on aggregation techniques that take into ac-
count balancing issues. The techniques discussed in Section 4 reduce the
number of the flex-objects that will be the input of the scheduling process
and at the same time consider one of its main goals, i.e., achieving balance
between energy supply and demand. We conclude through an extensive ex-
perimental evaluation that achieving the minimum balance is feasible, but
there is always a trade off between balance, flexibility loss and processing
time. We show that in order to achieve a good balance, we have to sacrifice
time flexibility and also spend more time on processing. The comparisons of
the balance techniques with start alignment aggregation showed as well that
there are scenarios in which start alignment can achieve very good balance
in faster processing times than the greedy techniques. However, flexibility
loss between the techniques depends on the grouping parameters without
providing a clear winner.

In our future work, we aim to improve the grouping phase that takes
place in order to maximize the flexibility that the aggregated flex-objects will
have and at the same time improve the balance. It seems also interesting to
examine the balance that aggregation will achieve during hierarchical aggre-
gation that is important for an EDMS. In such a scenario, balance aggregation
seems more suitable since the input will be mixed flex-objects.

91

Chapter 4. Balancing Energy Flexibilities through Aggregation

92

Chapter 5

Aggregating Energy
Flexibilities under
Constraints

The paper has been published in the
Proceedings of the 7th IEEE International Conference on Smart Grid Communica-
tions (SmartGridComm), Sydney, Australia, pp. 484-490, 2016.
The layout of the paper has been revised.
DOI: 10.1109/SmartGridComm.2016.7778808

IEEE copyright/ credit notice:
© 2016 IEEE. Reprinted, with permission, from Emmanouil Valsomatzis and
Torben Bach Pedersen, Alberto Abelló and Katja Hose, Aggregating Energy
Flexibilities under Constraints, 11/2016

1 Introduction

One of the main goals of the Smart Grid is the energy use increase from
Renewable Energy Sources (RES). However, due to RES being characterized
by volatile power production (e.g., wind power), Smart Grid takes advantage
of the prosumers’ inherent flexibility to better match energy demand with
supply, termed Demand Response (DR), and thus enables an increased share
of RES energy.

In our work, we model flexible demand/supply devices (referred to as
loads for simplification) using the flex-offer (FO) concept [13]. An FO explic-
itly captures the flexibility in energy and time of a load, as presented in the
following example.

93

Chapter 5. Aggregating Energy Flexibilities under Constraints

Example 1.1
The owner (consumer) of an electric vehicle (EV) wants to charge his EV at
20:00 and have it charged by 7:00 the following day. The EV takes 3 hours
to be charged and requires 15kWh. Thus, the EV can start its charging
between 20:00 and 4:00.

The number of loads that are flexible has recently increased due to new
technological achievements (e.g., EVs and heat pumps). The existence of ap-
propriate information and communication technology (ICT) infrastructure [5]
and a suitable hierarchical control architecture, offer the capability to market
actors to command the DR [24]. Moreover, the establishment of a flexibility
market [27] will provide flexibility with the opportunity to be traded [61].
However, the energy captured by individual FOs from small load devices
cannot be directly traded in the market [12]. For instance, the power required
to participate in the ancillary service market in Denmark is in the magnitude
of few hundreds of kW where the consumption capacity of an EV is few
kW [12]. Thus, in order to trade flexibility, it is essential to aggregate FOs
and produce commodities that can be traded in the emerging energy flexibil-
ity markets. Furthermore, aggregation of FOs, applied before scheduling, is
essential to reduce the highly complex Unit Commitment (UC) problem [62].
According to the UC problem, FOs are scheduled, i.e., the operational time
and amount is defined, based on an objective function.

On the other hand, flexible loads and, consequently, their corresponding
FOs are connected to an electrical grid. However, the grid is characterized by
power capacity limitations and the high power requirements of new devices,
such as EVs, might lead to grid congestions. Grid sensitive load locations
(bottlenecks) are in different voltage elements. They could be in low (local
distribution) and in high voltage elements (supra-regional distribution). For
instance, a bottleneck might be a distribution transformer (0.4-1kV) with a
maximum power value of few hundred kW. Such a transformer might serve
from few (e.g., in North America) to several hundred households (e.g., in
Europe) [57].

In our work, we follow the mapping applied in [88] and map a bottleneck
to the root of a tree, see R in Figure 5.1. The root is characterized by an
amount constraint that defines the tolerable operational power range. For in-
stance, the power of a distribution transformer (0.4kV) shall be in the interval
[-300kW, 300kW] [24]. We also map all FOs, which belong to the bottleneck,
to the leaf nodes, see 1 in Figure 5.1. The leftmost circle in the figure illus-
trates an FO corresponding to the load of an EV. The x-axis represents time
and the y-axis represents power. The energy required for charging the EV
is expressed by three slices (one per time unit). The dark-shadowed parts

94

1. Introduction

R

AFOs

Trading

Scheduling

Violation Normal operation

Traditional

(Our solution)

aggregation

300kW

-300kW

ICT infrastructure

2

0.4kV

AFOs

Trading

Scheduling

300kW

-300kW

0

+

-

0

+

-

2'

3
3'0

+

-

0

-

+

0

-

+

0

+

-

Constaint-based
aggregation

Devices/FOs

-

0

1

4 4'

0

+

nfrastructure

 0

-
0

+

-300kW

300kW

-300kW

300kW

tes tls

power value

time
1 5

P
o

w
er

Fig. 5.1: Traditional vs Constraint-based aggregation.

represent the minimum energy requirements. The light-shadowed parts rep-
resent optional charging levels. For instance, the EV owner is satisfied when
charging level is in the range [60%, 100%]. Moreover, as we see in the figure,
charging of the EV can start at time 1 at the earliest (tes) and at time 5 at the
latest (tls). Thus, the FO profile, which consists of the three slices, can be
time-shifted.

Using traditional aggregation techniques [75], the FOs are aggregated re-
sulting in aggregated FOs (AFOs). As illustrated in Figure 5.1, the four
FOs 1 are aggregated into two AFOs 2 . Each profile of an AFO is pro-
duced by summing up one or more profiles of the 4 FOs. Without consid-
ering constraints, loads might be placed at the same time since it may be
more beneficial, e.g., from a financial point of view. However, this could
lead to violations. For instance, we see that the power of the left AFO (first
dark-shadowed slice in 2) exceeds the constraint imposed by the grid. After
being aggregated, the AFOs are traded and scheduled, see 3 . Scheduling
transforms AFOs into assignments and forms the root power value. However,
it is impossible to schedule the output of traditional aggregation and to re-
spect the constraint. Thus, scheduling leads to a constraint violation due to
inappropriate aggregation, see 4 where the power value exceeds 300kW in
the first time slot (red circle). Consequently, FO aggregation techniques that
take into account grid constraints are required. In this chapter, we propose

95

Chapter 5. Aggregating Energy Flexibilities under Constraints

such constraint-based aggregation which produces AFOs that can be further
scheduled and support a normal grid operation, see 2' - 4' in Figure 5.1.

Contributions. First, we demonstrate the problems that occur with tra-
ditional FO aggregation. Second, we introduce the objectives of constraint-
based FO aggregation and propose two heuristic aggregation techniques that
reduce the input by more than 90% while retaining flexibility. Third, we
evaluate the proposed techniques in complex use case scenarios. We show
that our techniques lead to normal grid operation where the existing state-
of-the-art approaches lead to grid constraint violations at more than 15% of
the examined time horizon. Finally, we show that in cases where schedul-
ing cannot provide a schedule that respects grid constraints within a certain
time period, our aggregation techniques efficiently narrow down the solution
space and thus lead to valid scheduling results.

The remainder of the chapter is structured as follows. Section 2 intro-
duces relevant concepts and definitions. Section 3 discusses the problems
of traditional aggregation and introduces constraint-based aggregation ob-
jectives. In Section 4, the two constraint aggregation solutions are proposed.
Their experimental evaluation is described in Section 5. In Section 6 related
work is discussed. Finally, the chapter concludes and points to future work
in Section 7.

2 Background and preliminaries

Based on [75] and using two discrete dimensions, i.e., time and amount, we
define the following. We note that the granularity/precision of the discrete
time and amount dimensions can be set as finely as desired, at the expense
of somewhat slower computation. In our use case, 1 amount and 1 time unit
correspond to 0.5kW and 1 hour, respectively. Thus, we efficiently capture
loads of individual devices, e.g., EVs, and an hourly market trading.

Definition 19. An FO f is a tuple f=(T(f), P(f)) where T(f) is the start time
flexibility interval and P(f) is the amount profile. T(f)=[tes, tls] where tes and tls
are the earliest start time and latest start time, respectively. The amount profile
is a sequence of (m ∈ N>0) consecutive slices, P(f)=〈s(1), . . . , s(m)〉 where a slice
s(i) is an amount range [amin, amax]. The duration of slices is 1 time unit. For
instance, Figure 5.2 illustrates FO f = ([1, 5], 〈[3, 5], [2, 3]〉).

We distinguish two types of flexibilities associated with an FO that are
used as individual measures taking into account time and amount sepa-
rately. We consider time flexibility tf (f) of an FO f to be the difference be-
tween its latest and earliest start time, i.e., t f (f)=tls−tes. Moreover, we
consider amount flexibility af (f) of an FO f to be the difference between
the sum of all the maximum and minimum values of all its slices, i.e.,

96

3. Problem Formulation

Fig. 5.2: A flex-offer f

a f (f) = ∑s∈P(f)(s.amax − s.amin). Time flexibility is measured in time units
and amount flexibility in amount units.

An FO captures all possible amount demands and/or supplies of a device
for a given time horizon. However, during the scheduling process, an FO is
assigned to a specific amount at a specific time resulting in an assignment of
the FO defined as follows:

Definition 20. An assignment of an FO f is a sequence of |P(f)| ∈ N>0 con-
secutive slices, as_ f=〈s(1), ..., s(|P(f)|)〉. Each slice is a 2-tuple, s(i)=(ts, am), i ∈
[1, |P(f)|]. The first element, ts, indicates the actual starting time and the second
one, am, the actual amount of the slice. The duration of each slice is 1 time unit.

The starting time of the first slice of the assignment must be within the start
time flexibility interval of the FO, i.e., f .tes ≤ as_ f .s(1).ts ≤ f .tls. Each slice
of the assignment has an amount value in the range of the corresponding
slice of the FO, i.e., f .s(i).amin ≤ a_ f .s(i).am ≤ f .s(i).amax, ∀i = [1 . . . |P(f)|].
There is a finite number of assignments of an FO. We denote the set of all the
assignments of an FO f by L(f).

3 Problem Formulation

In this section, we discuss how aggregation is applied through traditional
aggregation and introduce the concept of constraint-based aggregation.

97

Chapter 5. Aggregating Energy Flexibilities under Constraints

 ′

1
2
3
4
5

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

1
2
3
4

1
2
3
4

1
2
3
4
5

1
2
3
4

1
2
3
4

constraint

constraint

constraint

constraint

constraint

constraint

(a) (b)

Fig. 5.3: Different alignment examples for aggregation.

3.1 Traditional FO aggregation

We consider, based on [75], traditional aggregation of FOs to be the function
that given a set of FOs returns an aggregated one, taking into account the time
and amount flexibilities of the FOs. Given a set of FOs, there are different
alignments that lead to different AFOs due to their time flexibility.

In particular, given |F| FOs with time flexibility tf (f1), . . . , tf (f|F|) respec-
tively, the number of the aggregation results (AFOs) that can be produced is:

∏
|F|
i=1 tf (fi) + 1. For instance, the 2 FOs, f1 and f2 in Figure 5.3, can be dif-

ferently aligned and result in different AFOs. Thus, for f1 and f2 with both
obtaining 3 different start times, there are 3 · 3 = 9 alignments that lead to 9
aggregation results (AFOs). We show 2 of them in Figure 5.3.

The time flexibility interval of an AFO is determined by the chosen align-
ments. In particular, the amount profile of an FO does not have any specified
starting time until the FO is assigned. However, an FO captures all the dif-
ferent starting times in the start time flexibility interval, see Definition 19. As
a result, when aggregation is applied, FOs that participate in aggregation are

98

3. Problem Formulation

aligned (a starting time among the interval is chosen for every FO) and the
amount ranges of each aligned slice are summed, see Figure 5.3. We denote
the aggregation that aligns FOs according to their earliest start time as Start
Alignment (SA) aggregation, see Figure 5.3a. According to SA aggregation,
the earliest starting time of the AFO is the minimum earliest starting time of
the non-aggregated FOs. The latest starting time of the AFO is the sum of its
earliest starting time and the minimum time flexibility among the FOs. As a
result, the AFO respects all the starting time intervals of the non-aggregated
FOs that produced it. For instance, the AFO f a

12 in Figure 5.3 has earliest
starting time 1 (f a

12.tes = min(f1.tes, f2.tes)). The latest starting time (tls) of f a
12

is equal to 3 (f a
12.tls = f a

12.tes + min(t f (f1), t f (f2))).

3.2 Constraint aggregation objectives and complexity

As mentioned in Section 1, the value of a node (actual load) is given by
the assignments of the FOs that belong to the node. In particular, during
scheduling each FO is turned into an assignment and the result is a set of
assignments. Consequently, the sum of the slice amounts with the same
time forms the node value at that time. However, in order to guarantee a
normal grid operation, the actual loads of the grid must be within the bounds
imposed by the constraint, e.g., [-300kW, 300kW]. For instance, concurrently
charging a high number of EVs can lead to transformer overload.

We assume that FOs f1 and f2 in Figure 5.3 belong to a node with con-
straint value 2. Moreover, we see that the aggregation result (f a

12 last row
column a) of SA does not enable an assignment that respects the constraint.
When scheduling is applied on f a

12, there are several potential assignments
of f a

12, e.g., as_ f a1
12 = (1, 3) and as_ f a2

12 = (2, 4), see Figure 5.3a. However, the
constraint value is 2 and the amounts of all the assignments are greater than
the constraint. They should have been within the range [-2,2]. Conversely, we
see that when FO aggregation takes into account the constraint, it produces
AFO f b

12 (Figure 5.3b) that contains assignments which respect the constraint,
e.g., as_ f b

12 = 〈(2, 2), (3, 1)〉.
In this chapter, we evaluate an aggregation result through the objectives

of constraint-based aggregation.
Constraint-based FO aggregation has 3 objectives. The produced AFOs (1)

shall enable scheduling results that respect the constraint of the node where
the FOs belong (hard constraint). Moreover, (2) aggregation should retain as
much flexibility as possible and (3) at the same time reduce the number of
FOs that belong to a specific node.

1) Respect node constraints. All node constraints should be respected.
A node constraint violation corresponds to a grid malfunction at the point
where the node is. That results in service cutoff of FOs that belong to the
violated node and thus the prosumers might not be served.

99

Chapter 5. Aggregating Energy Flexibilities under Constraints

2) Minimize flexibility losses. Flexibility of FOs is important for schedul-
ing because the more flexible FOs are, the more degrees of freedom the
scheduling has to find the optimal solution. Moreover, AFOs capture larger
flexibilities and can more easily be traded in the energy market. We use flex-
ibility as a quality measure to evaluate our proposed techniques, as AFOs
might lose flexibility during aggregation.

3) Minimize the number of AFOs. FOs are part of the scheduling input
that takes place after aggregation. Therefore, it is important for constraint
aggregation to reduce the number of FOs, because it directly reduces the
complexity of the subsequent scheduling. Moreover, unless FOs are aggre-
gated to capture large energy amounts, they cannot be traded in the energy
market.

The above-mentioned objectives might be contradictory and cannot be
satisfied simultaneously. In particular, as the number of FOs is reduced, time
flexibility losses might increase and time flexibility might be used to respect
the constraint. For instance, we see in Figure 5.3a that f1 and f2 have time
flexibility 2. However, AFO f b

12 has t f (f b
12) = 1.

Constraint aggregation complexity. Due to space limitations, we illus-
trate the computational complexity of constraint-based aggregation through
an example. In our example, given a set of FOs, we compute the total solution
space, i.e., the number of all the potential aggregation results.

Example 3.1
Given a set F of 4 FOs, f1, f2, f3, f4, with tf (f1)=3, tf (f2)=2,
tf (f3)=4, tf (f4)=5, there are B4 = ∑4

k=1 {
4
k}=

1
1! (−1)1(1

0)0
4 + 1

2! ∑2
j=0 (

2
j)j4 +

1
3! ∑3

j=0 (
3
j)j4 + 1

4! ∑4
j=0 (

4
j)j4= 1+7+6+1=15, partitions of F [4]. Moreover,

there are ∏4
i=1 tf (fi)=3·2·4·5=60 alignments. Thus, there are 15 · 60=900

possible aggregation results.
Adding a fifth FO to the set with t f (f5) = 5, there are B5=52 partitions

of F and ∏5
i=1 tf (fi)=60 · 5=300 alignments. Thus, there are 52·300=15600

possible aggregation results. Therefore, we can notice a combinatorial explo-
sion of the aggregation results depending on the size of the input and its
average time flexibility.

4 Constraint-based FO Aggregation

Due to the high complexity of exhaustive constraint-based aggregation, we
instead propose two variations of a greedy solution to tackle the problem
and examine different solution spaces. In particular, the greedy approaches

100

4. Constraint-based FO Aggregation

process FOs that belong to a node incrementally by evaluating binary ag-
gregations in order to reduce complexity. Evaluation is based on different
metrics in order to examine whether further aggregation is favored or not.
The metrics take into account both the capacity limitations of the node and
the objective of the market actor who controls the FOs of the node.

4.1 Constraint and target related distances

As mentioned in Section 1, in order to guarantee a normal grid operation,
the node value shall be within the bounds imposed by the constraint. In this
chapter, we handle the constraint as a function.

Definition 21. We define a (constant) positive constraint function c(t)=y, t∈Z,
y∈N0, where t is the time and y the amount.

For instance, given a constraint function c(t)=300, the valid amount range is
[-300, 300]. In cases where the node value is outside the constraint bounds, a
node violation occurs, see for instance 4 in Figure 5.1. When this happens,
the electrical grid is not reliable and the distribution system operator, who
is responsible for the grid, needs to expand and update the power system
infrastructure. Updating the grid is a very expensive and time consuming
procedure. In our work, since the node value is formed by the assignments
of the FOs, we correlate an assignment to the constraint function. We consider
the distance of each slice of an assignment (positive or negative) to be zero
when it is within the range because no grid problems occur. Otherwise, we
take into account the distance to the constraint function.

Definition 22. We define the distance of a slice of an assignment, Dc(as_f .s(i)),
to a constraint function c as equal to zero if the absolute slice amount is smaller or
equal to c. Otherwise, Dc(as_f .s(i)) is equal to the difference between the absolute
amount value of the slice and the constraint, i.e., Dc(as_f .s(i)) = max(0, |s(i).am| −
c(s(i).ts)) where as_ f = 〈s(1), ..., s(|P(f)|)〉 and i ∈ [1, |P(f)|]. Consequently, we
define distance of an assignment as_ f , Dc(as_f), to a constraint function c to be
the sum of all its slice distances to c, i.e., Dc(as_f) = ∑

|P(f)|
i=1 Dc(as_f .s(i)).

The objective of the market actor controlling the FOs of a node, e.g., an aggre-
gator, is formulated through a target function. Target expresses the optimal
schedule, without considering the constraint, and can be used to represent an
optimal business goal, e.g., optimal price/amount correlation. Target might
contradict the constraint and it could lead to AFOs with assignments that
violate the constraint, see for instance 2 in Figure 5.1. We define both the
target function and the assignment distance to the target function as follows:

101

Chapter 5. Aggregating Energy Flexibilities under Constraints

Definition 23. We define a (constant) signed target function g(t) = a, where t ∈ Z

is the time and a ∈ Z the amount.

Definition 24. We define the distance of an assignment as_ f to a target function
g, Dg(as_f), as equal to the sum of the absolute differences between g and the amount
values of all the slices of the assignment, i.e., Dg(as_ f) = ∑m

i=1
(
|g(s(i).ts) −

s(i).am|
)
, as_ f = 〈s(1), ..., s(m)〉.

In our work, we take into account both the capacity limitations of the grid
and the market actor’s objective. Thus, we consider both the distance to the
constraint and the target function to evaluate our results. In particular, we
take into account the sum of the distances (target and constraint) and we use
weights (coefficients) to prioritize the constraint violation. Of course, when
constraint is respected, only the distance to the target function is taken into
account.

Definition 25. We define the distance of an assignment as_ f to a target func-
tion g and a constraint function c, Dg,c(as_f), as the weighted sum of its tar-
get and constraint distances with weights α and β respectively, i.e., Dg,c(as_f) =
α ·Dg(as_f) + β ·Dc(as_f), α, β ∈ R.

As mentioned in Section 2, since an FO f captures a set of assignments (L(f)),
there is at least one assignment of f that has the smallest distance.

Definition 26. We define the target_to_constraint distance of a FO f to a target
function g and a constraint function c, Dg,c(f), as the minimum distance among all
its assignments to g and c, i.e., Dg,c(f) = minas_ f∈L(f) Dg,c(as_f).

Example 4.1
For instance, given α = 1, β = 10, c(t) = 2, and g(t) = 3, an assignment
of f a

12 in Figure 5.3 with the minimum distance is: as_ f a
12 = [1, 3] where

Dg,c(as_f a
12) = 1 · 0 + 10 · 1 = 10 = Dg,c(f a

12). On the contrary, an assign-
ment of f b

12 with the minimum distance is: as_ f b
12 = 〈[1, 2], [1, 2]〉 where

Dg,c(as_f b
12) = 1 · (1 + 1) + 10 · 0 = 2 = Dg,c(f b

12).

4.2 Aggregation techniques

We now present our 2 heuristic constraint-based FO aggregation techniques.
Both the techniques are variations of the same abstract Greedy algorithm
(Algorithm 11). They start by selecting (Line 2) the FO (fnom) with the
maximum target_to_constraint distance (max f∈SF(Dg,c(f)). The reason is that
apart from reducing the number of the AFOs, aggregation shall also pro-
duce FOs that are closer to the target in order to improve scheduling results.

102

4. Constraint-based FO Aggregation

Algorithm 11 Abstract Greedy
Input: SF - set of FOs; g,c - a target and a constraint function
Output: SF - set of AFOs

1: ftmp ← null; fa ← null;
2: fnom ←SelectNomFO(SF); SF← SF \ fnom;
3: while ∃ f ∈SF not aggregated do
4: { fa, ftmp} ←BestAggregation(SF, fnom)
5: if Dg,c(fa)<Dg,c(fnom) then
6: SF← SF \ ftmp; fnom ← fa
7: else
8: AnnotateAsAFO(fnom)
9: SF← SF∪ fnom

10: fnom ← SelectNomFO(SF); SF← SF \ fnom;
11: end if
12: end while
13: return SF

Algorithm 12 Simple Greedy extends Greedy (same input and output as
Greedy)

1: function BestAggregation(SF, fnom)
2: ftmp←ClosestToZeroDistance(SF)
3: fa ←BinaryAggregation(fnom, ftmp)
4: return { fa, ftmp}
5: end function

Thus, starting aggregation with FOs with high “distances” (used instead of
target_constraint distance for simplification) is desirable and increases the
chance of reducing the overall distance. Then, the selected FO, fnom, is re-
moved from the initial set (Algorithm 11, Line 2).

Afterwards, algorithm continues until all FOs are aggregated The two
variations of Greedy examine different FOs to produce an AFO, i.e., fa
(Line 4). If there is an AFO (fa) with smaller distance than fnom, the algo-
rithm continues aggregation with the aggregated one and removes ftmp from
the initial set SF (Line 6). Otherwise, it annotates fnom as AFO and continues
by selecting another fnom from the non-aggregated ones (Lines 8–10). The
algorithm stops when all the FOs are annotated as AFOs (Line 4) and returns
set SF with the AFOs (Line 13).

Simple Greedy (SG). Apart from fnom, SG also selects a single FO ftmp
to examine whether it will aggregate them or not (Algorithm 12, Line 2). In
particular, it selects the FO (ftmp) among the set that has the closest to zero
distance to increase the chances of reducing the distance of fnom. Then, in

103

Chapter 5. Aggregating Energy Flexibilities under Constraints

Algorithm 13 Exhaustive Greedy extends Greedy
1: function BestAggregation(SF, fnom)
2: fa ← fnom; ftmp ← null;
3: for all f ∈ SF do
4: fy ←BinaryAggregation(fnom, f)
5: if Dg,c(fy)< Dg,c(fa) then
6: fa ← fy; ftmp ← f ;
7: end if
8: end for
9: return { fa, ftmp}

10: end function

Algorithm 14 Best binary aggregation function
Input: fnom, ftmp - FOs
Output: fa - an AFO

1: function BinaryAggregation(fnom, ftmp)
2: fa ← fnom
3: for all alignment al of { fnom,, ftmp} do
4: fx ←AGG-2-to-1(fnom, ftmp, al)
5: if Dg,c(fx)<Dg,c(fa) then
6: fa ← fx
7: end if
8: end for
9: return fa

10: end function

each step, it examines all the potential aggregations between the two FOs, i.e,
fnom and ftmp to identify the AFO that reduces the distance of fnom (Algo-
rithm 12, Line 3).

Exhaustive Greedy (EG). EG explores a larger solution space than SG. In
particular, during each step, it examines all the potential binary aggregations
between fnom and all the FOs in set SF (Algorithm 13, Line 3) compared to
SG that examines only the binary aggregations among fnom and one FO from
SF. EG then stores the AFO with the smallest distance (Line 6). When the
comparisons finish, it returns the AFO with the minimum distance (fa) and
the FO (ftmp) that participated in the production of fa (Line 9).

Constraint allocation feature. Since aggregation should lead to a valid
schedule, it is desirable to examine, after each step, whether the node con-
straint is respected or not. However, this would require to schedule during
each step the current FOs/AFOs, i.e., solve the UC problem. Due to the fact
that the UC problem is an NP-complete problem [32], our aggregation algo-

104

5. Experimental Evaluation

Device EST tf #slices Min amounts af

EV (day) 6 5 4 U∗{5, 7} U{0, 2}
EV (night) N∗(18, 1), [17, 20] N(10, 1), [8, 12] U{3, 4} U{5, 7} U{0, 2}
CW (day) N(16, 1), [15, 17] U{1, 3} U{2, 4} U{3, 4}, U{1, 2} 0

CW (night) N(20, 1), [19, 21] N(8, 1), [5, 10] U{2, 4} U{3, 4}, U{1, 2} 0
HP (day) N(13, 1), [12, 14] N(3, 1), [1, 5] U{4, 7} U{5, 8} U{0, 2}

HP (night) 17 3 U{3, 6} U{5, 8} U{0, 2}
WT, PV (day) N(14, 1), [13, 15] U{3, 4} U{4, 10} U{8, 10} U{0, 2}

WT, PV (night) N(23, 1), [22, 24] U{1, 4} U{5, 8} U{8, 10} U{0, 2}

Table 5.1: Flex-objects characteristics, U∗: uniform distribution, N∗: Gaussian distribution

rithms instead act preventively in terms of constraint handling. In particular,
it is possible for both algorithms to consider a constraint value lower than the
original one. For instance, we typically allocate the constraint to 50% of its
original value. As a result, the allocation feature obstructs aggregation to vi-
olate the constraint. Consequently, in cases where more than one AFOs have
slice amounts closer to the constraint, it increases the chance for scheduling
to form a node value that respects the constraint.

5 Experimental Evaluation

5.1 Experimental setup

We experimentally evaluate the proposed techniques in complex congestion
scenarios. Our experiments are based on power characteristics from real
loads (e.g., [3, 84]) that show similar use behavior and are complemented
with potential flexibility, e.g., [69]. One amount unit corresponds to 0.5kW.
We use a mixed portfolio of FOs that represents a variety of devices and char-
acteristics regarding flexibility and power demand/supply. In particular, we
generate 6 datasets of FOs with different sizes to be able to examine the scal-
ability of the techniques in terms of input. The sizes of the datasets follow an
arithmetic progression with both initial term and common difference equal
to 500 FOs. Thus, the last dataset has 3K FOs. In order to create imbalances
and congestion situations, the number of the negative FOs is 10% of every
dataset.

In particular, 40% of the positive FOs represent electrical vehicles (EVs),
30% represent heat pumps (HPs), and 30% clothes washers (CWs). The neg-
ative FOs represent wind turbines (WT) and photovoltaics (PV) that are less
flexible with longer profiles. We allocate FOs during day time and night time
for all the devices (50%-50%). Details about the characteristics of the datasets
are shown in Table 5.1.

Moreover, for comparison reasons we use two baseline aggregation tech-
niques. We compare our techniques with Start Alignment (SA) aggrega-
tion [75] (see Section 3.1 where all the FOs are aggregated into one FO). We

105

Chapter 5. Aggregating Energy Flexibilities under Constraints

500 1500 3000

Flex-offers input

-4000

-2000

0

2000

4000

6000

8000
P

e
a

k
s
 (

a
m

o
u

n
t)

target constraint In. SA SAG SG EG

500 1000 1500 2000 2500 3000

Flex-offers input

0

500

1000

1500

2000

A
g

g
re

g
a

te
d

 f
le

x
-o

ff
e

rs
 (

o
u

tp
u

t)

SA

SAG

SGR

EGR

(a) Peaks (b) #aggregated FOs

Fig. 5.4: 500− 3K FOs, target=3.5K, constraint=3K, constraint aggregation allocation = 1.5K,
Dg,c(f) = 1 ·Dg + 10000 ·Dc

also use a Start Alignment with Grouping (SAG) aggregation technique where
a grouping phase is used in advance [75]. Consequently, FOs with the same
earliest start time and the same time flexibility are grouped together and SA
is applied on each group. As a result, for each group of FOs, a single AFO is
produced.

In order to examine whether an aggregation result allows the constraint to
be respected or not, we implemented a stochastic scheduling technique based
on the Evolutionary Algorithm (EA) proposed in [80]. EA is applied on a set
of FOs (aggregated or not) and forms the node value with the possible mini-
mum distance to target and constraint function. We see in Figure 5.5 how the
node value is formed when EA is applied on the results of each aggregation
technique along with the constraint and the target function values.

The experiments were conducted on a 2.9 GHz Intel core i7 processor
with two cores, physical memory of 8 GB, and MacOS. The techniques are
implemented in Java 1.8.

5.2 Use case

We examine our techniques in a case where target is greater than the con-
straint so that a bottleneck appears. The grid power capacity constraint used
in the experiments represents medium voltage grids, e.g., [25]. Target is
3500kW and constraint is 3000kW. We use a 0.5kW granularity (≈0.16‰ of
the constraint value) and thus achieve a very fine resolution. We also use the
constraint allocation feature. Thus, the constraint value used by the aggrega-
tion techniques is 1500. We set the target coefficient to 1 and we use a very
high value for the constraint coefficient (10K) when the distance is computed,
in order to prioritize the constraint respect.

106

5. Experimental Evaluation

0 10 20 30

Time horizon

-4000

-2000

0

2000

4000

N
o

d
e

 v
a

lu
e

 (
a

m
o

u
n

t)

target

constraint

In.

SAG

EG

Violations

Fig. 5.5: 3K Flex-offers input

In Figure 5.4a, we see how the highest and the lowest node values (amount
peaks) are formed when EA is applied on the initial (“In.” label) non-
aggregated set and on the aggregation result of each technique. For a better
illustration we show the cases where the input is 500, 1500 and 3000 FOs.
We see in Figure 5.4a that when the input size is 500, the peaks formed by
EA (scheduling) are quite far away from the constraint and as the input size
is increased, the peaks approach and finally exceed the constraint. In the
same figure, we also observe that when the input size is small (500), all the
techniques lead to scheduling that respects the constraint. When the size is
increased to 1.5K FOs, SA violates the constraint, and in the last case of 3K
FOs only EG respects the constraint.

Regarding the number of the AFOs, we see that SA produces only one
AFO in all the input cases (Figure 5.4b) and its time flexibility is always 1,
i.e., the minimum among all the FOs. We also notice that SAG, due to the
grouping that applies, produces a low number of AFOs and also achieves
a similar to the initial time flexibility distribution among the AFOs, see Fig-
ure 5.4c. However, the aggregation result of SAG violates the constraint when
the input is increased to 2.5K and 3K (shown in Figure 5.4a). Furthermore,
in Figure 5.5, we see how the node value is formed based on EA when the
aggregation input is 3K. In the same figure, we notice that SAG not only vi-
olates the constraint, but there is also violation in 5 out of the 28 scheduling
points (≈18% of the time horizon).

Regarding SG, the number of AFOs scales linearly with the input size and
achieves a time flexibility higher than EG. However, EG is the only algorithm
that forms a node value that respects the constraint in all the input cases. It
maintains the number of AFOs low (93% input reduction on average) and
uses time flexibility to lead to a schedule that respects the constraint. That
is why it has the lowest average time flexibility and a distribution with low

107

Chapter 5. Aggregating Energy Flexibilities under Constraints

In. SAG SG EG In. SAG SG EG

0

4

8

12

In. SAG SG EG

0

4

8

12

T
im

e
 f

le
x
ib

ili
ty

3K FOs

500 FOs 1500 FOs

500 1000 1500 2000 2500 3000

Flex-offers input

0

20

40

60

80

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

SA

SAG

SG

EG

(a) Time flexibility (b) Processing time

Fig. 5.6: 500− 3K FOs, target=3.5K, constraint=3K, constraint aggregation allocation = 1.5K,
Dg,c(f) = 1 ·Dg + 10000 ·Dc

boundaries, see Figure 5.6a.
Regarding the processing time, EG is the slowest algorithm due to the

high number of comparisons it requires. It shows a similar to linear growth
rate behavior, see Figure 5.6b. SG is fast since it only compares just two FOs
in every step. Similarly, SA and SAG are the fastest algorithms due to the
very low number of aggregations they perform.

Experimental summary. We observe that SG is fast and respects the con-
straint while SA does not. When size increases (>2K FOs), both SG and SAG
violate the constraint. On the other hand, EG examines a larger solution
space and leads to results that respect the constraint when the input size is
large, see Figure 5.5, case of 3K FOs. It is indicative that even when we apply
EA on the initial set of 3K FOs for 10 minutes, it still cannot provide a result
that respects the constraint, see Figure 5.5 label “In.”. On the contrary, EG
uses approximately 67 seconds for its execution and EA applied afterwards
produces the first result that respects the constraint in approximately two
seconds. That means that EG is able to provide filtered inputs to scheduling
so that initially unsolvable cases can be solved. However, when the input is
large, EG requires high processing times. It requires 24.08 min. to process a
dataset of 10K FOs.

6 Related Work

The role of an aggregator that handles flexible loads has been investigated in
many previous works, e.g., [29, 33]. Such works use highly complex models
and focus on controlling and scheduling methods. Their main characteris-
tic is that the aggregator operates as an aggregated load controller that tries

108

7. Conclusion and future work

to follow a power reference and eventually tackles the scheduling problem to
offer DR and ancillary services, e.g., [18]. On the contrary, in our work we use
a low complexity generic model to represent energy flexibilities, namely flex-
offers (FOs). Moreover, the main goal of our techniques is to produce flexible
and non-scheduled AFOs that can be traded as commodities in emerging
energy flexibility markets. Thus, our proposed techniques, SG and EG, pro-
duce AFOs that can lead to normal grid operation and use a generic target
function that can capture overall business case scenarios.

Furthermore, there is an extensive literature tackling the UC problem
(scheduling), e.g., [49, 50]. In [80] the aggregation of FOs before schedul-
ing showed an improvement of scheduling results compared to applying
scheduling individually. Our work can be also applied in advance of schedul-
ing process and not only reduces the complexity of the UC problem, but in
addition, partially handles scheduling goals as it “filters” invalid results and
improves their quality.

7 Conclusion and future work

This chapter introduces constraint-based aggregation over a generic data
model that captures flexibilities in time and amount dimensions. It pro-
poses two techniques that take into account the power capacity constraint
limitations imposed by the grid. Moreover, the chapter evaluates the pro-
posed techniques in complex congestion scenario. The experimental evalu-
ation shows that the proposed techniques can efficiently aggregate FOs and
at the same time enable scheduling to respect the grid constraints, unlike
existing techniques.

In our future work, we will focus on enhancing our techniques by au-
tomating the setting of aggregation parameters through sampling techniques.
Moreover, we will extend our proposed algorithms to investigate the financial
perspective of constraint-based aggregation on the future energy market.

109

Chapter 5. Aggregating Energy Flexibilities under Constraints

110

Chapter 6

Trading Aggregated
Flex-Offers via Flexible
Orders

The paper has been published in the
DBTR series, Aalborg University 2017.
The layout of the paper has been revised.

Copyright is with the authors: Emmanouil Valsomatzis and Torben
Bach Pedersen, Alberto Abelló. Published in the DBTR series of Aalborg
University 2017.

Abstract

Flexibility of small loads, in particular from Electric Vehicles (EVs), has recently at-
tracted a lot of interest due to their possibility of participating in the energy market
and the new commercial potentials. Different from existing works, the aggregation
techniques proposed in this chapter produce flexible aggregated loads from EVs tak-
ing into account technical market requirements. The produced aggregated flexible
loads fulfill the energy market requirements. They can be transformed into flexible
orders and can be further traded in the day-ahead market by a Balance Responsible
Party (BRP). As a result, the BRP achieves more than 27% cost reduction in energy
purchase based on 2016 real electricity prices.

111

Chapter 6. Trading Aggregated Flex-Offers via Flexible Orders

1 Introduction

The integration of EVs into the Smart Grid reveals new business opportuni-
ties by exploiting their inherent flexibility [37, 44]. A market actor that con-
trols the charging rate and time of a portfolio of EVs could acquire financial
gain from energy arbitrage [11, 19]. The energy required to charge (and/or
discharge) the EVs can be traded through bids in day-ahead and/or regu-
lation market at a minimum cost [71]. Numerous of research studies focus
on trading the required energy to charge EVs taking into account different
parameters.

An optimization charging approach of EVs that activates the participation
in both day-ahead and regulation markets is proposed in [10]. Scheduling
techniques of EV charging that aim to the maximization of the market ac-
tor’s profit and take into account electricity price uncertainty are suggested
in [85] and [94]. A risk-based scheduling framework for charging EVs is
also proposed in [90]. The suggested algorithm is based on day-ahead prices
and takes into account driving activity uncertainties in order to minimize the
charging cost of the EVs. Similarly, a day-ahead optimization technique for
scheduling EVs considering the impact on the day-ahead prices is suggested
in [48]. Both optimization and heuristic techniques for optimal charging of
EVs aiming to the maximization of the revenue by utilizing energy storage
are proposed in [40].

The main characteristic of the research tackling the energy trading of flex-
ible EV loads is the output of the proposed techniques, i.e., an aggregated
scheduled load. Unlike other works, we introduce 3 aggregation techniques
that produce flexible aggregated loads that can be traded in the market. As
a result, the market, not the market actor, schedules the loads from the EVs
as part of the trading process, minimizing the uncertainty of bidding. For
instance, instead of placing a bid to purchase 30MW in hour 3, the market
actor places a bid to purchase 30MW in any hour between hour 1 and 5. The
market determines the activation time of the bid. In many cases the technical
trading details of the market are omitted and the realization of the suggested
techniques becomes very difficult. For instance, the proposed scheduling
technique in [24] offers less than 200kW in less than an hour in the regu-
lation power market where the minimum bid is 10MW, in full hours [11].
The bidding strategies proposed in [9] and the high power fluctuations of the
scheduling outputs in [10] and in [71], would require single hour indepen-
dent bids [67] that might not fulfill the energy requirements. A conservative
bidding approach for the bidding strategy proposed in [86] covers less than
50% of the energy needed to charge the EVs. On the contrary, in our work
we use real technical market requirements derived from a specific order (bid)
type, i.e., flexible order, as objectives of our proposed techniques.

112

2. Preliminaries

Contributions. First, we describe both the so-called flex-offer (flex-offer)
model, which captures the flexibility of the EVs, and a realistic market frame-
work where the flexibility is traded. Second, we investigate the market-based
FO aggregation problem and its complexity. Third, we introduce 3 heuris-
tic algorithms that take into account real market requirements and produce
flexible aggregated FOs that can be further traded through flexible orders in
the market. Finally, we compare our proposed techniques with 2 base-line
approaches and evaluate both the technical and the financial aspect of their
results based on real market prices. We show that our proposed techniques
achieve more than 20% cost reduction on average in the purchased energy
required to charge from 5K to 40K EVs.

The chapter is organized as follows: we introduce the preliminary defini-
tions in Section 2 and we present the problem formulation of market-based
aggregation in Section 3. In Section 4, we propose 3 heuristic market-based
aggregation techniques and we experimentally evaluate them in Section 5.
We conclude the chapter in Section 6.

2 Preliminaries

In this section, we describe the model of the appropriate device that can be
used to trade flexibility and the market framework that is used for trading.

2.1 Electric vehicle model

We consider the energy used to charge EVs to be appropriate for flexible
energy trading. The reason is that the lithium-ion batteries of EVs are ample
power demand devices and their charge can be time shifted when the EVs are
plugged-in for more hours than needed for charging. We take into account
EVs that can be continuously charged with a power-constant voltage (CP-CV)
option [81] and their charge is taking place within 20% and 90% of the state
of charge (SOC) so that the battery life is preserved [54].

In our work, because we take into account time shifted loads, we use the
flex-offer (FO) concept [75] to represent the charging of a flexible EV. Thus, we
consider an flex-offer f to be a tuple f = (T(f), P(f)) where T(f) is the start
charging flexibility interval and P(f) is the power profile. T(f) = [tes, tls]
where tes and tls are the earliest start charging time and latest start charging time,
respectively. We consider time flexibility (t f) to be the difference between tls
and tes. The power profile is a sequence of (m ∈ N>0) consecutive slices,
P(f) = 〈s(1), . . . , s(m)〉 where a slice s(i) has a power value p measured in kW.
The duration of slices is 1 hour.

For instance, an EV is plugged-in at a house between 1 and 8 a.m. The
EV continuously utilizes 3.7kW for 3.3 hours to be charged. However, energy

113

Chapter 6. Trading Aggregated Flex-Offers via Flexible Orders

trading occurs hourly and we also use hourly resolution to model the EVs
charging. To respect the hourly granularity, we equally distribute the sum
of the energy needed during the first and the last regular charging hours
and we reduce power deviations in the model. Therefore, we assume that
the EV mentioned above consumes 2.4kWh both during the first and the
last charging hours and 3.7kWh during the intermediate hours. The EV can
be modeled by an FO f=([1, 4], 〈2.4, 3.7, 3.7, 2.4〉), see Figure 6.1a. Next, we
describe the market framework where such FOs shall be traded.

2.2 Market framework

The Nordic/Baltic market for electrical energy named Nord Pool is consid-
ered in our work. Nord Pool is one of the most mature energy markets [87]
and Europe’s leading power market [67]. It consists of the day-ahead (Elspot)
and intra-day markets. We focus on Elspot because it has one of the largest
turnovers in the Nordic system and it also supports flexible energy trad-
ing [11]. Trading in Elspot occurs daily through orders (bids). The orders
specify the energy amount a BRP desires to buy/sell and the price BRP is
willing to pay/be paid for the corresponding energy. Since 2016, Elspot sup-
ports flexible orders [67].

When a BRP places a flexible order in Elspot, it states the name, the time
interval, the price limit, the volume, and the duration of the order. The time
unit is one hour and volume is expressed in MW. The duration expresses the
number of hours during which the order can be activated. The time interval
must exceed the duration by at least one hour and expresses the potential
activation times of the order. A BRP can place 5 flexible orders during a
trading day.

Hypothetically, a BRP could purchase the energy needed to charge the
above mentioned flexible EV, represented by FO f through a flexible order.
The duration of a flexible order is mapped to the number of slices of f , the
volume to the power of the slices, and the time interval to the time flexibility
of f . For instance, a BRP could place a flexible order named “F1”, with du-
ration 4 hours and time interval from 1 to 8. The volume of F1 is 0.0037MW
(in order to satisfy all the slices) and its price limit is 35 euros/MWh. How-
ever, the energy needed to charge a single EV is too small to be traded in
Elspot. In particular, the minimum contract size and the volume trade lot for
a flexible order are both 100kW, while the power used by an EV is a few kW.
Moreover, when the duration of a flexible order is more than one hour, the
volume needed for these hours shall be constant. As a result, it is necessary
to aggregate FOs to trade the flexible loads of the EVs through flexible orders
in Elspot market.

The flexible order is activated in the time interval that optimizes social
welfare provided that the price is respected [67]. Given F1 in a liquid market,

114

3. Problem Formulation

Time
0

+ tf(f)=3tes tls

P
o

w
e
r

1

2

3

1

4

5

4

Slice

 S
(2)

2 3 5

Slice

 S
(1)

6

Slice

 S
(4)

Slice

 S
(3)

0 2 4 6 8 10 12

Time slot (day hours)

0

10

20

30

40

50

P
ri
c
e

 (
E

u
ro

/M
W

h
)

Flexible order price limit

Potential bid activation times

Plug in charging

Flexible order

activation

(a) (b)

Fig. 6.1: An examle of an FO and a flexible purchase order

the order is activated when the cost of buying the required energy is mini-
mized. For instance, we see in Figure 6.1b that F1 is activated in time slots
3, 4, 5, and 6 where the price is 25 euros/MWh. Thus, the energy needed
to charge the EV costs 25 · 0.0037 · 4 = 0.37 euros. On the contrary, if time
flexibility of the EV is disregarded, its charging occurs based on a price inde-
pendent order and its plug-in time (time slot 1-4 in Figure 6.1b). In that case
and according to Figure 6.1b, the cost is 33 · 0.0037 · 2+ 25 · 0.0037 · 2 = 0.4292
euros, 16% more than the cost achieved by flexible order F1. The absolute
difference (imbalance) between the purchased energy and the energy needed
is traded in the balance market and usually for a higher price than the one in
Elspot. Consequently, the BRP desires to be as precise as possible regarding
the purchased energy from Elspot.

3 Problem Formulation

In this section, we show how aggregation of FOs that represent flexible charg-
ing loads of EVs can fulfill the requirements of flexible purchase orders. We
also introduce the problem of market-based aggregation.

3.1 FO aggregation

Based on [75], FO aggregation is the function that given a set of FOs F,
produces a set of aggregated FOs AF where |AF| ≤ |F|. Due to the time
flexibility of the FOs, there are different alignment combinations that can
lead to different AFOs. According to start-alignment FO aggregation, the
earliest start charging time of an aggregated FO (AFO) fa is the mini-
mum earliest start charging time among all the FOs that produced it, i.e.,
fa.tes = min f∈F′(f .tes), F′ ⊆ F. The latest start charging time of fa is the
sum of its tes and the minimum time flexibility among all the FOs in F′, i.e.,

115

Chapter 6. Trading Aggregated Flex-Offers via Flexible Orders

0

+

Time

Time

AGGREGATION

f3

tf(f3)=1

tes tls

0

+

tf(f2)=1

tes tls

0

+

f123
tf(f123)=1

tes tls

0

+

P
o
w

er

f1
tf(f1)=4

tes tls

f2
P
o
w

er
P
o
w

er

Time

AGGREGATION

0

+

f12

tf(f12)=1

tes tls

0

+

P
o
w

er

f1

tf(f1)=3

tes tls

0

+

f3

tf(f3)=1

tes tls

tes

P
o
w

er
P
o
w

er

P
o
w

er

1

2

1

2

1

2

1

2

1

2

3

1

2

1

2

3

2 3 41 5

΄

΄

2 3 41 5

2 3 41 5

2 3 41 5 2 3 41 5

2 3 41 5

2 3 41 5

0

+

Time

f3

tf(f3)=1

tes tls

0

+

tf(f2)=1

tes tlsf2

P
o
w

er
P
o
w

er

1

2

1

2

2 3 41 5

2 3 41 5

3

(a) (b)

spt

spt

Fig. 6.2: Flex-offer aggregation according to different alignments

fa.tls = fa.tes + min f∈F(t f (f)). The power profile of fa is produced by sum-
ming up the power profiles of the FOs when they are aligned according to
their earliest start charging time.

For instance, we see in Figure 6.2a three FOs, f1 = ([1, 5], 〈1, 1〉) f2 =
([2, 3], 〈1, 1〉), and f3 = ([4, 5], 〈1〉), that produce AFO f123 where f123.tes =
f1.tes = 1 and f123.tls is the sum of f123.tes and time flexibility of f2 or f3,
i.e., f123.tls = 2. The power profile of f123 is produced by summing up the
power profiles of f1, f2, and f3 based on their alignments. Thus, f123.s(1).p =
f1.s(1).p = 1, f123.s(2).p = f1.s(2).p + f2.s(1).p = 2, f123.s(3).p = f2.s(2).p = 1,
and f123.s(4).p = f3.s(1).p = 1.

Due to the time flexibility of the FOs, there are different alignment com-
binations that can lead to different AFOs. For instance, given the 3 FOs
f1, f2, f3 in Figure 6.2 with time flexibility 4, 1, and 1, respectively, there are
20 (5 · 2 · 2) alignment combinations. As a result, based on different align-
ments, time flexibility of the FOs can be adjusted accordingly and different
power profiles for the AFOs are produced.

Moreover, a set of FOs can be partitioned and each subset can produce an

116

3. Problem Formulation

AFO. Consequently, the output size of aggregation can be greater than one.
For instance, we see in Figure 6.2b that the output of aggregation is 2 AFOs,
i.e., f12 and f3. In particular, FO f1 is aligned with f2 and time flexibility of f1
is adjusted so that its f1.t′es is equal to f2.tes. Consequently, the power profiles
of f1 and f2 are summed up and they produce AFO f12.

3.2 Market-based Flex-Offer aggregation

Given a portfolio, the goal of a BRP is to maximize its profit by purchasing,
for the minimum price, the energy that it sells to its customers. We consider
flexible EVs to be part of a BRP’s portfolio and, since the energy purchase
takes place through orders, we examine if the energy needed to charge the
flexible EVs can be purchased through flexible orders. The purchasing strat-
egy of a BRP depends on many different factors, e.g., the content of the
portfolio (factories, households, etc.) and pricing forecast. The strategy is out
of scope of this work and left for Future work. However, since a flexible or-
der has in general a higher probability to achieve a lower purchase price, we
consider the goal of a BRP to be the maximization of the purchased energy
through flexible orders.

In order for an FO to fulfill the flexible order requirements, the FO must
have (1) time flexibility at least one and (2) between 1 and 23 slices. Moreover,
since the minimum contract size and the trade lot of a flexible order are both
100kW, (3) the values of the slices of the FOs shall be multiples of 100kW. In
our work, we introduce market-based FO aggregation to be the aggregation that
given a set of FOs, outputs at least one AFO that fulfills the flexible order
requirements. For illustrating purposes, we assume in our example below
that both the volume and the trade lot for a flexible order is 2kW instead of 100kW.
For instance, we see in Figure 6.2 that none of the individual FOs fulfills the
power profile requirements of a flexible order (2kW). Thus, market-based FO
aggregation is necessary. In that case, market-based FO aggregation produces
AFO f12 that fulfills the flexible-order requirements since its time flexibility
is 1 and the power of both the slices equals to 2, see Figure 6.2b. FO f3 is also
part of the aggregation output, but it is not a valid AFO because it does not
fulfill the power profile requirement, i.e., its slice amount is lower than 2.

The flexible EVs are represented by a set of FOs. For instance, 5000 EVs
that are part of a BRP’s portfolio are represented by a set of FOs F. Each EV
is an FO f of the set, i.e., f ∈ F, f = (T(f), P(f)), T(f) = [tes, tls], P(f) =
〈s(1), . . . , s(m)〉. A BRP must aggregate the FOs to produce AFOs that fulfill
the flexible order requirements and can be further placed in the market as
flexible orders. The volume of energy is expressed through the sum of the
slices of the FOs and the power of each slice must be a multiple of 100kW.
However, due to technical charging characteristics (EV power demand is in
the interval [3.7kW,11kW] for household charging), we take into account a

117

Chapter 6. Trading Aggregated Flex-Offers via Flexible Orders

power range to define the valid power amounts. Thus, instead of considering
exact multiples of 100kW for the power amount of each slice, we permit an
insignificant amount deviation of ekW per slice, e.g., 5kW. When the financial
evaluation of market-based aggregation occurs, the deviated amount will be
considered to be traded in balance market, see Section 2.2. Hence, the prob-
lem of maximizing the bidden energy through flexible orders given a set of
FOs is formulated as follows:

Maximize ∑
fa∈A

∑
s∈P(fa)

s.p

subject to A = MAGG(F), 1 ≤ |A| ≤ 5

∀ fa ∈ A, t f (fa) ≥ 1

∀ fa ∈ A, 1 ≤ |P(fa)| ≤ 23

∀ fa ∈ A, ∀s ∈ P(fa),

s.p = x · 100kW± ekW, x ∈N>0, e ∈ [0, 5]

Market-based FO aggregation complexity. Given a set of flex-offers F,
the number of aggregation results that can be produced is: ∑5

k=1 {
|F|
k } · avg(al)

where avg(al) is the average number of alignments per partition [31]. For in-
stance, given a set with 100 flex-offers and 20 alignments per partition on
average, there are in total 1.3148 · 1069 potential aggregation results (approxi-
mately the estimated number of atoms in the Milky Way Galaxy) that have to
be examined in order to find the optimal one. Furthermore, tackling the prob-
lem as an Integer Linear Programming (ILP) problem, requires on the order
of O(avg(al) · |F| · ∑5

k=1 {
|F|
k }) decision variables to identify the partition(s)

and the aggregation(s) that maximize the bidden energy. The complexity of
the problem is thus too high to be solved by state-of-the-art solvers [58]. The
reader can find a comprehensive version of the complexity analysis in Ap-
pendix A of the chapter.

4 Heuristic solutions

Due to the unrealistically large solution space, we instead propose 3 vari-
ations of a heuristic algorithm, i.e., Heuristic Market-based Aggregation Main
Algorithm (HMAMA) that tackles the market-based aggregation problem.

4.1 Heuristic Market-based Aggregation Main Algorithm

The goal of HMAMA is to produce AFOs that respect the flexible order re-
quirements while avoiding the high complexity of the problem and at the
same time provide good results in terms of bidden energy amount. Thus,
given a set of FOs F, HMAMA (Algorithm 15) performs incremental binary

118

4. Heuristic solutions

Algorithm 15 Heuristic Market-Based Aggregation
Input: F - set of flex-offers, e - amount deviation
Output: AF - set of aggregated flex-offers

1: continue← true, AF← ∅
2: while continue = true do
3: ppt← 23, spt← 100
4: PF, UF, fini, tft←Initialize(F)
5: PF, AF←Process(PF, AF, fini, tft, ppt, spt, e)
6: F, continue←Examine(PF, UF, AF, continue)
7: end while
8: return Top5EnergyAFOs(AF)

aggregations so that the produced AFOs increase the captured energy in
each step. In addition, the algorithm maps the flexible order requirements
to threshold parameters that must be respected during the performed aggre-
gations. Consequently, it introduces 3 thresholds, namely, the slice power
(spt), time flexibility (tft), and power profile (ppt) thresholds that correspond
to flexible order requirements. It sets spt to 100 since flexible orders must
have multiples of 100kW power. Moreover, HMAMA assigns 1 and 23 to tft
and ppt, respectively, since flexible orders must have a time interval of 1 and
duration at most 23 hours. Permitted amount deviation is represented by e
that is assigned values from 0kW to 5kW.

The body of HMAMA consists of 3 phases (functions), i.e., initializa-
tion, processing, and examination (Lines 2–7). During the initialization phase
(Line 4), HMAMA identifies the FO with which to start binary aggregations
(fini) and the subset of the FOs (PF) that participates in the aggregations.
Then, during the processing phase (Line 5), it produces all the potential bi-
nary aggregations between fini and the FOs in PF to produce AFOs that fulfill
the flexible order requirements. Afterwards, during the examination phase
(Line 6), HMAMA examines whether it shall restart using the remaining FOs
or terminate.

4.2 Main Algorithm variants

The initialization phase is salient for the outcome of the algorithm as it mainly
defines the solution space that the algorithm explores. Hence, we introduce
3 variants of HMAMA that have different initialization phases, namely, the
Largest Profile (LP), Dynamic Profile (DP), and Dynamic Time Flexibility (DTF).

LP focuses on producing AFOs with many slices because an FO with
many slices usually captures large energy amounts. On the other hand, given
an FO with many slices, it is very difficult to fulfill the flexible order amount
requirements and, especially, the slice amount equality required. For this

119

Chapter 6. Trading Aggregated Flex-Offers via Flexible Orders

Algorithm 16 Longest Profile - Initialization phase
1: function Initialize(F)
2: fini ←SelectAmongLongestTheMostFlexibleFO(F)
3: return F \ fini, ∅, fini, 1
4: end function

Algorithm 17 Initialization phase - Dynamic Profile algorithm
1: function Initialize(F)
2: uf ←UpperFenceProfileSize(F)
3: PF←FOsWithProfileAtLeastUF(F, uf)
4: fini ←SelectTheMostFlexibleFOAmongLongest(PF)
5: return PF \ fini, F \ PF, fini, 1
6: end function

reason, DP excludes from aggregation the FOs with extremely large profiles
(outliers). DTF focuses on time flexibility of the FOs that has a prominent
role in aggregation since it is directly correlated to the alignments. Thus,
DTF takes into account the time flexibility distribution of the initial set and
gradually excludes from aggregation the FOs with low time flexibility com-
pared to the initial set.

LP - Initialization phase. LP starts by selecting the most flexible FO
among the ones with the largest profile size (Algorithm 16, Line 2). An FO
with large profile size and high time flexibility has high probability to time-
wise overlap with profiles of other FOs. So, AFOs that fulfill the flexible order
requirements through different alignments can be produced. LP uses the
initial set F as the processing set PF (Line 3) and then executes the processing
and examination phase.

DP - Initialization phase. During the initialization phase, DP divides
the initial set F into 2 subsets. First, DP computes the upper fence (uf) [55]
of the power profile size of the FOs in F (Algorithm 17 Line 2). Then, it
stores in PF the FOs that have profile size of at most uf (Line 3). It selects as
fini the most flexible FO in PF among the ones with the longest profile and
removes it from PF (Lines 4–5). For instance, given the set F in Figure 6.3a
({ f1, . . . , f6}), uf is 4, see Figure 6.3b. DP excludes f1, which has a very long
profile compared to the other FOs (red circle in Figure 6.3b), from F and
selects FO f6 as fini. FOs with very long profiles have difficulties satisfying
the slice equality and it is likely that they have small time flexibility due to
their long profiles (e.g., many charging hours for the EVs). Thus, they have
less potential alignments to further satisfy the flexible order requirements.
Then, DP continues aggregation with the processing and examination phase
using PF, i.e., F \ { fini ∪ f1}.

120

4. Heuristic solutions

Time

P
o

w
e
r

tf(f3)=2

tf(f5)=7

tf(f1)=8

tf(f4)=7

tf(f6)=8

tf(f2)=6

0

0

0

0

0

f1

f2

f3

f4

f5

f6

DTF

2

4

6

8

T
im

e
 f

le
x
ib

ili
ty

DL

2

4

6

8

N
u

m
b

e
r

o
f

s
lic

e
s

f3

f
1

(a) (b) (c)

Fig. 6.3: DL and DTF example, profile size and time flexibility box plots

Algorithm 18 Initialization phase - Dynamic Time Flexibility
1: function Initialize(F)
2: tft←LowerFenceTimeFlexibility(F)
3: PF←FOsWithTimeFlexibilityAtLeasttft(F, tft)
4: fini ←SelectTheMostFlexibleFOAmongLongest(PF)
5: return PF \ fini, F \ PF, fini, tft
6: end function

DTF - Initialization phase. DTF takes into account the time flexibility
distribution of the initial set F and excludes FOs with low time flexibility
compared to the initial set. It computes the lower fence of time flexibility
distribution of F and sets the time flexibility threshold (tft) equal to the lower
fence [55] (Algorithm 18 Line 2). It splits F based on the lower fence of the
time flexibility distribution in the set. It stores the FOs with time flexibility at
least tft in PF (Line 3). DTF then selects fini from PF (Line 4). As a result, the
algorithm excludes the FOs that have very small time flexibility. For instance,
given the set F in Figure 6.3a, tft equals 6, Figure 6.3c. Thus, DTF excludes f3,
which has very low time flexibility compared to the other flex-offers in the
set, from F, see the blue circle in Figure 6.3c. DTF then sets tft to 6, selects FO
f1 as fini, and continues aggregation with PF, i.e., F \ { fini ∪ f3}. FOs with
small time flexibility have lower probability to contribute in aggregation due
to the low number of alignments that they have. Moreover, by setting tft
equal to the lower fence, DTF reduces the number of examined alignments
and consequently the complexity of the algorithm. Thus, AFOs with greater
time flexibility are more likely to be produced.

Processing phase. In the processing phase, HMAMA examines all the

121

Chapter 6. Trading Aggregated Flex-Offers via Flexible Orders

Algorithm 19 Processing phase
1: function Process(PF, AF, fini, tft, ppt, spt, e)
2: PFtmp ← ∅, fa ← null
3: for all f ∈ PF do
4: fcand ← null, bestCV ← ∞
5: for all alignment al of { fini, f } do
6: fx ←BinaryAggregation(fini, f , al, tft, ppt)
7: if RMSE(fx, spt)<RMSE(fini, spt) then
8: if CV(fx)<bestCV then
9: bestCV ←CV(fx), fcand ← fx

10: end if
11: end if
12: end for
13: if fcand 6= null then
14: PFtmp ← PFtmp ∪ f , fini ← fcand
15: end if
16: if ∀s ∈ P(fini), spt− e < s.p < spt + e then
17: fa ← fini
18: PF← PF \ PFtmp
19: PFtmp ← ∅, spt← spt+100
20: end if
21: end for
22: return PF, AF∪ fa
23: end function

potential binary aggregations between fini and the FOs in PF defined in the
initialization phase. The FOs are examined in descending order according
to their time flexibility. FOs with high time flexibility have more potential
to participate in an aggregation that fulfills the flexible order requirements
because of high number of alignments.

HMAMA examines, through the potential alignments, all the binary ag-
gregations that fulfill the time flexibility tft and the power profile thresholds
ppt (Algorithm 19, Lines 3–5). Among the AFOs that reduce the root mean
square error (RMSE) between fini and the slice power threshold spt, it chooses
the one with the minimum coefficient of variation (CV) (Lines 7–11). By pro-
moting the reduction of RMSE, the produced AFO fcand has a power profile
closer to spt. In particular, the use of RMSE during aggregation prevents the
increase of profile length of the potential AFO and contributes to the produc-
tion of slices with values closer to spt. Consequently, alignments that lead to
power profiles that time-wise overlap each other are preferred for aggrega-
tion. Moreover, because the slices of an AFO might have power deviations,
the second condition of CV (Line 9) is used. A low CV of fcand contributes

122

4. Heuristic solutions

Algorithm 20 Examination phase
1: function Examine(PF, UF, AF, continue)
2: if PF∪UF=∅ OR (|AF|≥5 and

totalEnergy(PF∪UF)<Energy5thAFO(AF)) then
3: continue← f alse
4: end if
5: return PF∪UF, continue
6: end function

to the elimination of power profile deviations and to the production of AFOs
with slice power amounts closer to each other. For instance, given the FOs
in Figure 6.2 and spt equal to 3, the RMSE between the slices of AFO f12 and
spt is equal to 1 and lower than the RMSE between the longest FO f123 and
spt, which is 1.8028. Similarly, f12 and f123 have CV equal to 0 and 0.4, respec-
tively, with f12 having no power fluctuations. Thus, the reduction of RMSE
and CV lead to AFOs that fulfill the flexible order energy requirements.

When an AFO with power amounts around spt is produced, an e kW
deviation per slice is permitted (Algorithm 19 Line 16). At that point, an
AFO fa that fulfills the flexible order criteria is produced (Line 17). The
FOs that participate in aggregation are temporally stored (Line 14) and when
an AFO fa is produced, they are removed from PF (Line 18). Then, spt is
increased by 100 (Line 19) so that AFOs with larger energy are produced
during the following aggregation. As a result, the processing phase produces
an AFO that captures large amounts of energy and fulfills the time flexibility
and power amount requirements of a flexible order. When all the FOs in
PF are processed, HMAMA returns both PF and the output set AF with the
aggregated FO fa (Line 22).

Examination phase. During the examination phase, HMAMA first exam-
ines if there are any FOs in either PF or UF to further continue aggregation
(Algorithm 20 Line 2). In case, the total energy of the remaining FOs is larger
than the 5th in descending size energy AFO, HMAMA continues using the re-
maining FOs (Line 5). Otherwise, HMAMA does not continue the execution
(Line 3). As a result, the algorithm ensures that the remaining FOs cannot
produce an AFO with energy greater than one of the 5 produced AFOs. Since
the 5 AFOs with the most energy will be transformed to flexible orders, the
algorithm terminates (Algorithm 15 Line 8).

123

Chapter 6. Trading Aggregated Flex-Offers via Flexible Orders

Distr. Mean St. dev Min Max

Battery capacity (kWh) UD∗ 23 4 16 30
Arrival time TGD∗ 19:00 2h 16:00 1:00

Departure time TGD∗ 7:00 2h 5:00 12:00
Initial Battery SOE (%) TGD∗ 75 25 20 85
∗ UD: uniform distribution, TGD: truncated Gaussian distribution

Table 6.1: EV data probability distribution

5 Experimental Evaluation

5.1 Experimental setup

We consider a BRP managing a portfolio of EVs represented by flex-offers.
The BRP utilizes our proposed aggregation algorithms to produce AFOs that
respect the flexible order requirements. The BRP transforms the 5 AFOs
which capture the highest amount of energy to flexible orders and trades
them in Elspot. In order to examine the scalability of our proposed algo-
rithms, we create 8 differently-sized flex-offer datasets, from 5K to 40K flex-
offers (multiples of 5K), with characteristics based on the probability distribu-
tions suggested in [81]. Moreover, we consider that all EVs use the charging
option described in Section 2.1 and need to be fully charged. Thus, the initial
SOC of all EVs is within [20%, 85%], while they must be charged up to 90%.
Details about the characteristics of the datasets are in Table 6.1.

We compare our techniques with two baseline aggregation tech-
niques [75]. We use Start-Alignment (SA) aggregation, see Section 3.1 and
Start-Alignment Grouping (SAG) aggregation. SAG groups together FOs that
have both the same earliest start charging time and the same time flexibility
and then applies SA on each group. As a result, it produces one AFO per
group. We evaluate our techniques in terms of output size (#AFOs), partic-
ipation of FOs in aggregation, percentage of energy traded in the market,
running time, and both time flexibility and profile length of AFOs.

5.2 Market-based aggregation results

Output size. SA always produces one AFO whereas SAG produces more
than 100 AFOs in all cases. Both LP and DP produce less than or equal to 5
AFOs in all cases. DTF produces more than 5 AFOs in 75% of the cases as the
energy threshold is activated in a later step compared to the other techniques
due to the division of the processed set.

Time flexibility and profile length. Regarding the baseline techniques,
SA produces long AFOs with very low time flexibility as it aggregates all
FOs into one. On the contrary, SAG produces short and time flexible AFOs

124

5. Experimental Evaluation

LP DP DTF SA SAG

2

4

6

8

10
T

im
e

 f
le

x
ib

ili
ty

LP DP DTF SA SAG

4

6

8

10

12

P
ro

fi
le

 l
e

n
g

th

(a) Avg. time flexibility (b) Avg. profile length

Fig. 6.4: Average time flexibility and average profile length

due to the grouping phase it applies, see Figure 6.4a, b. LP uses as initial
FO (fini) the longest FO of the dataset. Usually, such an FO has low time
flexibility and so do the produced AFOs. Due to the long profile of fini, LP
might utilize all the time flexibility of the remaining FOs to produce an AFO
that reduces the distance to the power profile threshold (ppt). Consequently,
LP produces long AFOs with very low time flexibility, see Figure 6.4a, b.
The AFOs produced by DP are more flexible than the ones from LP since
DP applies a dynamic profile size approach and excludes from aggregation
very long FOs. As a result, FOs with similar profiles are aggregated together
and less time flexibility is required to find a proper alignment that minimizes
the distance to ppt. Consequently, AFOs with less slices compared to LP are
produced, see Figure 6.4b. Finally, DTF produces the most flexible AFOs
among our proposed techniques. We see in Figure 6.4b that the average
time flexibility of the produced AFOs is greater than 4 in all datasets. DTF
achieves it by utilizing the time flexibility threshold. However, DTF produces
long AFOs, similar to LP, because it also selects as fini the longest AFO of the
processed set, see Figure 6.4b.

Participation and traded energy. In order to quantify the participation
of FOs in aggregation, we take into account only the FOs that participate
in the aggregation of the 5 (or less) largest in energy AFOs, i.e., the AFOs
that are transformed into flexible orders. Similarly, we compute the traded
energy by taking into account only the energy captured by the AFOs that are
transformed to flexible orders.

SA aggregates all FOs into one AFO and thus participation in aggregation
is 100%, see Figure 6.5a. The slices of the AFO have very high power differ-
ences and since a flexible order requires a flat power profile, the power of the
highest slice is considered for the whole profile of the AFO. As a result, on
average, 2.5 times the energy captured by that AFO is traded, see Figure 6.5b.

125

Chapter 6. Trading Aggregated Flex-Offers via Flexible Orders

5K 10K 15K 20K 25K 30K 35K 40K

Dataset size (FOs)

0

20

40

60

80

100
P

a
rt

ic
ip

a
ti
o

n
 (

%
) LP

DP

DTF

SA

SAG

5K 10K 15K 20K 25K 30K 35K 40K

Dataset size (FOs)

0

50

100

150

200

250

T
ra

d
e

d
 e

n
e

rg
y
 (

%
) LP

DP

DTF

SA

SAG

(a) Participation in aggregation (b) Energy bidden

Fig. 6.5: Participation of FOs and energy bidden

On the contrary, SAG produces too many AFOs and since only the 5 largest
are traded, we see a very low participation percentage and the lowest percent-
age of traded energy among the techniques (69.7% on average). In general,
the longest AFOs capture more energy as they have more slices and more FOs
participate in their aggregation. Thus, LP, which produces the longest AFOs,
obtains both the highest participation percentage (98.6%) and energy bidden
percentage (97.5%) in all the cases, see in Figure 6.5a, b. DTF follows with an
average participation value of 94.4% and 91.7% percentage of bidden energy.
DP has the lowest percentage in both participation and energy bidden, 94.2%
and 88.8% on average respectively. The reason is that DP excludes very long
FOs, which usually capture large energy, from aggregation.

Processing time. Both SA and SAG are fast techniques with processing
times below one second as they examine a very small solution space and do
not consider the market requirements. LP is the fastest among all our pro-
posed techniques since it efficiently activates the energy threshold, see Fig-
ure 6.6a. The processing time of DP follows a close to linear growth rate.
DTF has an increasing trend for processing time, but it shows similar pro-
cessing times for datasets with different sizes, e.g., for datasets with 30K and
35K FOs. The reason is that the processing time is highly driven by the num-
ber of initialization phases. The size of the dataset might increase, but the
new added FOs might lead to less initialization phases and therefore to less
aggregation comparisons. That is why we also notice that both processing
time and number of initialization phases follow similar patterns. Whenever
the number of initialization phases is increased compared to the previous
dataset, processing time also increases. For instance, we see in Figure 6.6b
that when the size of the dataset is increased from 15K to 20K for both LP
and DTF, the number of initialization phases is reduced. As a result, the
processing time is similar for both the datasets and slightly increases for the

126

5. Experimental Evaluation

10K 20K 30K 40K

Dataset size (FOs)

0

100

200

300
P

ro
c
e

s
s
in

g
 t

im
e

 (
s
e

c
) LP

DP

DTF

SA

SAG

10K 20K 30K 40K

Dataset size (FOs)

0

50

100

150

200

#
 i
n

it
ia

liz
a

ti
o

n
 p

h
a

s
e

s

LP

DP

DTF

(a) Processing time (b) # of initialization phases

Fig. 6.6: Processing time and number of initialization phases for all datasets

25K. Eventually, when the size of the dataset is further increased, it becomes
more difficult for DTF to fulfill the market requirements and thus both the
initialization phases and the processing time are highly increased.

5.3 Financial evaluation

Since the overall goal of a BRP is to trade the AFOs in the market using flex-
ible orders, we financially evaluate our aggregation techniques. We compare
the cost of buying the energy needed to charge the EVs based on plug-in time
(traditional approach) with the cost of charging the EVs by utilizing flexible
orders. Moreover, in order to compare our techniques with the optimal solu-
tion, we consider a fictitious scenario where each FO directly participates in
the market without aggregation and each EV is charged when the charging
cost is minimized.

Due to the fact that flexibility appears during the night [40], we consider
a 48 hours trading period with a repetition of the 24h Elspot average prices
of 2016 [67], see price curve in Figure 6.7a. In the same figure, we illustrate
the time and the energy amount used to charge the 40K dataset based on our
techniques, the two baseline techniques, the plug-in times of the EVs, and the
optimal charging. We see that the charging of the EVs based on the plug-in
time occurs when the prices are still high and it does not take advantage of
the price drop that occurs in the night of the first 24 hours.

SA and SAG produce AFOs that do not fulfill the market requirements.
As a result, more energy than it is needed has to be traded in the market. In
particular, SA trades 1.52 times more energy than needed to charge the EVs.
Thus, the surplus energy is traded in the regulation market and it results
in losses for the BRP, see negative cost reduction in Figure 6.7b. Regarding
SAG, the produced AFOs capture a low percentage of the energy needed

127

Chapter 6. Trading Aggregated Flex-Offers via Flexible Orders

15 20 25 30 35
Time horizon

0

40

80

120

160
M

W

20

25

30

35

40

E
u

ro
/M

W
h

Price

LP

DP

DTF

SA

SAG

Plug-in charging

Optimal charging

5K 10K 15K 20K 25K 30K 35K 40K

Dataset size (FOs)

-10

-5

0

5

10

15

20

25

C
o

s
t

re
d

u
c
ti
o

n
 (

%
)

LP

DP

DTF

SA

SAG

Opt. sch.

(a) Charging time vs pricing (b) Cost reduction

Fig. 6.7: Charging times and pricing for 40K dataset, and cost reduction for all datasets

and they also require extra energy to be traded in order to fulfill the market
requirements. Consequently, the cost reduction due to the flexible orders
trading is compensated by the losses from the surplus energy trading. As
a result, we see only 1.1% cost reduction on average when SAG is applied.
On the contrary, the optimal charging option charges all the EVs when the
price has the lowest value. That is why we see a spike in the graph reaching
180MW after the 24th hour.

Our proposed aggregation techniques also take advantage of the lowest
prices. LP produces long AFOs which expand over many hours and have
low time flexibility. That is why we see in Figure 6.7a that part of the charg-
ing occurs when the prices are high. DTF produces AFOs that are also long,
but they are more flexible than the AFOs produced by LP. Therefore, EVs
are charged when prices are a bit lower and DTF achieves a higher cost re-
duction, Figure 6.7b. Finally, DP produces short and flexible AFOs. As a
result, it takes advantage of the lowest prices occurring only for a few hours,
see Figure 6.7a.

When the energy for the 40K FOs dataset is bought based on the plug-
in times of the EVs, it costs 7, 521 euros. On the contrary, when LP, with
the highest participation, is applied on the 40K dataset, 39, 584 flex-offers
participate in aggregation, see first bar (98.96%) in Figure 6.5a. The 39, 584
flex-offers produce 5 AFOs which are further transformed to flexible orders.
The cost of buying the energy needed for the 5 AFOs is computed based on
the flexible orders trading and it is 5851 euros, see Figure 6.7a. The price also
includes the cost (0.40 euro) of the imbalances (62kW) of the flexible orders,
see Section 2.2. The energy needed for the remaining 416 (40, 000− 39, 584)
flex-offers is bought based on their plug-in time and it is 117 euros. Thus,
the overall energy bought to charge 40K EVs, when LP is used, costs 5, 851 +
117 = 5, 968 euros. Therefore, LP achieves a 20.65% cost reduction in energy

128

5. Experimental Evaluation

0 100 200 300

Days of 2016

0

200

400

600

800

C
o

s
t

re
d

u
c
ti
o

n
 (

%
)

50 100 150
0

50

100

Fig. 6.8: Cost reduction based on DP

buying, see LP bar for 40K dataset in Figure 6.7b.
We see in Figure 6.7b that DP achieves on average a 23.01% cost reduc-

tion. DTF follows with 19.87% and LP with 19.29% average cost reduction
respectively. The cost reduction based on the optimal solution is 26.01% on
average. Thus, LP, DTF, and DP achieve 74.2%, 76.4%, and 88.5% of the opti-
mal cost reduction, respectively. Notably, the cost reduction that DP achieves
only for the flex-offers that participate in aggregation is on average 96.6% of
the optimal one.

In Figure 6.8, we illustrate the cost reduction that DP achieves during 2016
(leap year). We consider 365 trading periods of 48 hours. The first trading
period includes both the 1st and the 2nd day of 2016. The second trading
period includes the 2nd and the 3rd day of 2016 and so on. The average
cost reduction is 27.57% and, interestingly, we notice at the end of the year a
cost reduction of more than 800%. The reason is that for several consecutive
days, Elspot prices were negative early in the morning and even reached −53
euros/MWh on the 27th of December at 3:00.

Summary: By applying our proposed techniques on the aforementioned
365 trading periods, DP achieves the highest cost reduction in 52% of the
periods and DTF achieves the highest cost reduction in the remaining 48% of
the periods. The reason is that the financial impact of the techniques is highly
correlated with the pricing curve of the trading period. Thus, in cases where
the price drops for only few hours close to the plug-in charging time, DP is
the most suitable technique. On the other hand, when the price drops for
longer periods but much later than the plug-in charging time, DTF achieves
a higher reduction than DP.

129

Chapter 6. Trading Aggregated Flex-Offers via Flexible Orders

6 Conclusion and Future work

This chapter investigates the market-based aggregation problem using the
FO model that captures flexible charging loads of EVs. It proposes 3 market-
based FO aggregation techniques that efficiently aggregate loads from thou-
sand of EVs taking into account real market requirements. Consequently,
the techniques produce aggregated FOs that can be further transformed to
flexible orders and be traded in the energy market. The chapter financially
evaluates the proposed techniques based on real electricity prices and shows
that a 27% cost reduction on energy purchase can be achieved via flexible
orders.

In our future work, we will enrich our techniques considering pricing
forecast models and uncertainty in driving patterns. Moreover, we will ex-
amine a price-maker market scenario and different market strategies for the
BRPs.

A Appendix

In this appendix, we describe the complexity of market-based flex-offer ag-
gregation.

A.1 Number of solutions

Given a set of flex-offers F, there are {|F|k } ways (Stirling numbers of the
second kind [31]) to partition the |F| flex-offers into k subsets. Applying ag-
gregation on each subset produces an AFO. In market-based FO aggregation,
the size of the output is between 1 and 5. Thus, k can be assigned values
from 1 to 5. Therefore, there are {|F|1 } ways to partition |F| flex-offers into 1

non-empty subset of flex-offers. There are {|F|2 } ways to partition the |F| flex-
offers into 2 non-empty subsets, where the aggregated flex-offers are 2 and
so on, given |F| flex-offers, there are {|F|1 }+ {

|F|
2 }+ · · ·+ {

|F|
5 } = ∑5

k=1 {
|F|
k }

ways to partition the flex-offers.
Moreover, the number of the different aggregated flex-offers depends on

the alignments of the flex-offers that participate in aggregation and thus on
their time flexibility. In particular, given a set of flex-offers SF (SF⊆F) with
time flexibility tf (f1), . . . , tf (f|SF|) respectively, the number of the aggregation

results (aggregated flex-offers) that can be produced is: ∏
|SF|
i=1 tf (fi).

Example A.1
Given a set with 100 flex-offers there are ∑5

k=1 {
100

k } = 6.5738 · 1067 poten-
tial partitions that can produce from 1 to 5 AFOs. Assuming a lower bound

130

A. Appendix

of 4 alignments per partition on average, there are in total 4 · 6.5738 · 1067 =
2.62952 · 1068 potential aggregation results that have to be examined in or-
der to find the optimal one.

A.2 Integer Linear Programming problem complexity

Given a set of flex-offers F, there are {|F|k } ways (Stirling numbers of the
second kind [31]) to partition the |F| flex-offers into k subsets. Applying ag-
gregation on each subset produces an AFO. In market-based FO aggregation,
the size of the output is between 1 and 5. Thus, k can be assigned values
from 1 to 5. Therefore, there are {|F|1 } ways to partition |F| flex-offers into 1

non-empty subset of flex-offers. There are {|F|2 } ways to partition the |F| flex-
offers into 2 non-empty subsets, where the aggregated flex-offers are 2 and
so on... Given |F| flex-offers, there are {|F|1 }+ {

|F|
2 }+ · · ·+ {

|F|
5 } = ∑5

k=1 {
|F|
k }

ways to partition the flex-offers. As a result, tackling the market-based aggre-
gation problem as an Integer Linear Programming (ILP) problem, requires on
the order of O(|F| ×∑5

k=1 {
|F|
k }) decision variables to identify the partition(s)

that maximizes the bidden energy.
Moreover, the number of the different aggregated flex-offers depends on

the alignments of the flex-offers and thus on their time flexibility. Therefore,
for each FO, all potential start charging times have to be examined and that
requires a number of decision variables equal to the time flexibility. Hence,
given an average time flexibility tf of set F, the number of the decision vari-
ables needed to identify the partitions and the aggregations that maximize
the bidden energy is on the order of O(tf × |F| ×∑5

k=1 {
|F|
k }).

For instance, given a set with 100 flex-offers there are ∑5
k=1 {

100
k } =

6.5738 · 1067 potential partitions that can produce from 1 to 5 AFOs. Thus,
100 · 6.5738 · 1067 variables are needed to identify the proper subset(s) for all
the FOs. Moreover, given an average time flexibility of 5, 5 · 100 · 6.5738 ·
1067 = 3.2869 · 1070 variables are needed to identify the aggregation result
that maximizes the bidden energy.

131

Chapter 6. Trading Aggregated Flex-Offers via Flexible Orders

132

Chapter 7

Conclusions and Future
Research Directions

Abstract

This chapter summarizes the conclusions and directions for future work presented
in Chapter 2 - Chapter 6 and across the whole thesis.

1 Summary of Results

The thesis presents different types of aggregation techniques for flex-offers
that enable them to be traded in a flexibility market. According to the De-
mand Response concept, the energy flexibility of individual prosumers can
contribute to increasing the use of energy from RES and confronting the
Smart Grid challenges. Subsequently, flex-offers, which capture energy flex-
ibility, become valuable and the TotalFlex project aims to design a market
where flex-offers can be traded. However, flex-offers cannot be traded unless
they are aggregated. As a result, the Ph.D. project introduces flex-offer ag-
gregation techniques that efficiently aggregate flex-offers, reduce scheduling
complexity, and enable flex-offers to be traded in the market. The proposed
aggregation techniques focus on energy balancing issues, electrical grid con-
straints handling, and market trading. In the rest of the section, the outcome
of each chapter is summarized and the overall contribution of the Ph.D. thesis
is discussed.

Chapter 2 introduces several flexibility measurements to measure and
evaluate the flexibility of both individual flex-offers and groups of flex-offers.
Flexibility measurements are also used for the design and the evaluation of
aggregation techniques and their outcome. Since a flex-offer captures flexibil-

133

Chapter 7. Conclusions and Future Research Directions

ity in time and energy dimensions, the introduced flexibility measurements
take into account the effect of dimensions both individually and combined.
Depending on the scenario according to which flexibility is used and the
type of the flex-offers that are considered, different flexibility measurements
can be used. In cases where mixed flex-offers participate in aggregation and
energy balancing is an aggregation requirement, the product, the assignment
and the vector flexibility measurements can be used. They all capture the
combined effect of time and energy dimensions, and both time and energy
flexibility are essential for aggregation techniques to achieve energy balanc-
ing. Moreover, the participation of both positive and negative flex-offers is es-
sential for balance aggregation, while the produced aggregated flex-offers are
usually mixed flex-offers. All the aforementioned flexibility measurements
can efficiently capture flexibility of all types of flex-offers. Under a scenario
where flex-offers are traded and the desirable flexibility has to be quantified
and compared either on an individual or a grouped level, measurements that
capture time and energy flexibility individually might be used, e.g., the time
and energy flexibility, the absolute and the relative area-based flexibility.

Chapter 3 presents the base-line start alignment aggregation and the start-
alignment aggregation with grouping. An extensive experimental setup of
differently sized datasets shows that the techniques efficiently aggregate flex-
offers and minimize the flexibility losses. The experiments also show the
trade-off between aggregation and flexibility. In particular, the number of ag-
gregated flex-offers is driven by the selected grouping parameters. When the
grouping parameters favor aggregation and reduce the number of produced
aggregated flex-offers, flexibility losses increase. Chapter 3 also presents a
disaggregation technique with processing time that scales linearly with the
aggregation processing time. In addition, Chapter 3 introduces 5 balance
aggregation techniques and examines them under an energy scenario where
zero absolute balance is possible. Both exhaustive and zero terminated ex-
haustive search are able to identify the minimum absolute balance. However,
they have extremely high processing times when the size of the input ex-
ceeds the few thousand flex-offers. Similarly, dynamic simulated annealing
achieves a low absolute balance, but it also has a very high computational
time when the size of the initial flex-offers is increased. On the contrary, the
two proposed heuristic techniques, so-called simple and exhaustive greedy,
achieve a close to optimum absolute balance and low processing times. In
particular, both simple and exhaustive greedy achieve better absolute bal-
ance than the start alignment aggregation and exhaustive greedy shows lower
flexibility losses than simple greedy. However, simple greedy is faster than
exhaustive greedy as it explores a smaller solution space.

Chapter 4 examines the aggregation techniques in terms of scalability and
grouping parameters using from 11K to 90K flex-offers. The experimental
setup shows that there are cases where the grouping parameters favor start

134

1. Summary of Results

alignment aggregation and the technique outperforms the greedy approaches
in terms of balance. However, there are cases where the datasets include flex-
offers with low time flexibility and thus, start alignment has very high flexi-
bility losses. This occurs when the time flexibility tolerance is increased and
the number of aggregated flex-offers is also greater than when zero grouping
parameters are used. On the contrary, the greedy techniques show a better
balance outcome when flex-offers with low time flexibility and long profiles
participate in aggregation. Particularly, in cases where grouping parameters
have values above zero, the two deviations of the greedy techniques outper-
form start alignment in terms of balance and flexibility losses. The proposed
balance aggregation techniques in Chapter 3 and Chapter 4 reduce the num-
ber of flex-offers and, at the same time, produce aggregated flex-offers with
desirable balance. Flex-offers are also the scheduling problem input and a
high number of flex-offers results in extremely high processing times for
scheduling techniques. As a result, the complexity of the scheduling problem
is reduced and, at the same time, one of its main goals is partially fulfilled,
i.e., to identify schedules that balance out energy demand and supply.

Chapter 5 presents two constraint-based aggregation techniques that take
into account technical constraints imposed by the power capacity of the elec-
trical power grid. In particular, Chapter 5 shows the extremely high com-
plexity of the constraint-based aggregation problem and introduces two vari-
ations of a greedy algorithm, i.e., the simple and the exhaustive greedy. The
experimental setup discussed in Chapter 5 considers a bottleneck of electrical
grid where several thousands of devices represented by flex-offers are con-
nected to the grid. Moreover, Chapter 5 compares the proposed constraint-
based aggregation techniques to the baseline aggregation techniques intro-
duced in Chapter 3. Part of the experimental setup is also the application of
a stochastic scheduling algorithm that is applied on the result of each aggre-
gation technique. The scheduling algorithm schedules the produced aggre-
gated flex-offers, in order to identify a scheduling that respects the electrical
grid constraint (valid schedule). The experimental results show that all the
aggregation techniques lead to a valid schedule when the size of the input is
considerably small. As the input size is increased, start alignment fails to pro-
duce a result that can lead to a valid schedule. When the input size exceeds
2K flex-offers, only exhaustive greedy leads to a valid schedule. However, ex-
haustive greedy explores a larger solution space and it is the slowest among
the techniques. Simple greedy is faster than exhaustive greedy and achieves
less time flexibility losses, yet it produces more aggregated flex-offers. The
reason is that exhaustive greedy exploits the time flexibility of the flex-offers
to produce aggregated flex-offers that can lead to a valid schedule. In the case
where the input size is 3K flex-offers and the scheduling algorithm is applied
on the initial (non-aggregated) flex-offers, it cannot identify a valid schedule
even after 10 minutes of execution. On the contrary, when the scheduling

135

Chapter 7. Conclusions and Future Research Directions

algorithm is combined with exhaustive greedy, a valid schedule is generated
in less than 70 seconds taking into account both aggregation and scheduling
processing times.

Chapter 6 presents three market-based aggregation techniques. The pro-
posed aggregation techniques consider the market requirements as hard con-
straints and thus, the produced aggregated flex-offers always fulfill the mar-
ket requirements. Subsequently, the flex-offers can be transformed to flexible
orders and be traded in the day-ahead market. The experimental datasets
used in Chapter 6 consist of flex-offers that represent EVs and the size of the
datasets is from 5K to 40K. All the proposed aggregation techniques show a
very high participation percentage of the flex-offers in aggregation. Hence,
the vast majority of the flex-offers participating in aggregation can also be
traded in the market via flexible orders. The produced aggregated flex-offers
that are traded in the market also capture a very high percentage of energy
compared to the energy captured by the initial population of flex-offers.
On the contrary, start alignment aggregation with grouping as introduced
in Chapter 3 achieves to trade subsequently lower amounts of energy com-
pared to the market-based aggregation techniques. Chapter 6 also financially
evaluates the proposed aggregation techniques based on real market prices
in 2016. All proposed techniques achieve more than 19% cost reduction in
all cases compared to the cost of purchasing energy based on the plug-in
times of the EVs. On the contrary, start alignment with grouping aggrega-
tion achieves extremely low cost reductions. Moreover, start alignment ag-
gregation achieves negative cost reductions. Furthermore, the market-based
aggregation techniques take advantage of the negative prices that appeared
late in December 2016. As a result, the BRP, which handles the portfolio of
flex-offers, can trade the flex-offers via flexible orders and gain up to 7 times
the cost of charging them based on their plug-in time.

To conclude, the Ph.D. thesis demonstrates the prominent role of energy
flexibility in the Smart Grid and the importance of aggregation in supporting
that role. The Ph.D. thesis shows that through aggregation, energy flexibility
can be used to balance out energy demand and supply and to confront elec-
trical grid constraints. Additionally, the proposed aggregation techniques
reduce the complexity of the scheduling problem and partitially fulfill the
scheduling objectives. Thus, there are cases where aggregation is combined
with scheduling and a valid solution is identified, whereas applying schedul-
ing individually fails to provide a valid solution. The output of the aggrega-
tion techniques is still energy flexibility but at an aggregated level. Finally,
the Ph.D. thesis shows that the trading of such aggregated flexibilities can be
realized given current real market scenarios.

136

2. Future Research Directions

2 Future Research Directions

A discussion about the future research directions across the whole Ph.D. the-
sis follows.

Regarding Chapter 2, a commonly accepted flexibility measurement is
still pending. Chapter 2 suggests several flexibility measurements that can be
used under different energy scenarios taking into account different devices.
However, a generic flexibility measurement that could capture the require-
ments defined by Chapter 2 is still pending. Moreover, flexibility is also used
by the scheduling process. Therefore, the impact that different measurements
have on the outcome of the scheduling process shall be investigated.

In the case of Chapter 3, the grouping phase plays an important role in
implementing balance aggregation techniques. In particular, it reduces the
high complexity of the problem, but at the same time it reduces the chances
of identifying the optimum solution. Therefore, more advanced grouping so-
lutions and their integration with the aggregation techniques shall be further
examined to reduce the processing time and minimize the absolute balance.

The comprehensive experimental setup in Chapter 4 shows the correlation
between the characteristics of the datasets and the performance of aggrega-
tion techniques. Depending on the time flexibility and the profile length dis-
tributions that the flex-offers follow, the appropriate aggregation technique
shall be applied. Thus, sampling techniques in order to identify the distribu-
tions that the dataset follows shall be introduced.

The heuristic techniques introduced in Chapter 5 are based on binary
aggregations and face challenges identifying a valid solution when the input
size is increased considerably. Thus, potential statistical measurements on the
overall population shall be used during each execution step of the techniques
to improve their efficiency. Moreover, the financial impact of the constraint-
based aggregation shall be evaluated and the participation of the flex-offers
in aggregation shall also be prioritized. As a result, more flex-offers and
subsequently more prosumers will financially benefit from the constraint-
based aggregation solutions.

Several future research directions also exist for the market-based aggre-
gation techniques discussed in Chapter 6. In particular, the proposed tech-
niques shall also take into account price signal forecasts so that the cost re-
duction of the purchase energy is maximized. Moreover, a market scenario
where trading of flex-offers might influence the energy price shall also be
considered, as the traded volumes of the aggregated flex-offers are relatively
high. Finally, there is also uncertainty in flexibility, e.g., in driving patterns,
that should be taken into consideration during aggregation as well.

Overall, the Smart Grid faces many challenges and even more due to in-
creasing intermittent RES. Energy flexibility shall be used on a large scale to

137

Chapter 7. Conclusions and Future Research Directions

support Smart Grid in achieving its goals. As a result, aggregation techniques
for energy flexibility should support a very big number of flex-offers from
different geographical areas. A hierarchical aggregation approach that could
solve local electrical grid congestions at a local level and reassure energy
balance on a broader level (e.g., national) will be required. Additionally, po-
tential contradictions among the goals of aggregation at different geograph-
ical areas and levels should also be confronted. Finally, due to the high
complexity of the aggregation problem, distributed and parallel processing
techniques should also be investigated.

138

Bibliography

References

[1] Totalflex project, link: www.totalflex.dk.

[2] E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines: A
Stochastic Approach to Combinatorial Optimization and Neural Computing.
Wiley, 1 edition, 1988.

[3] J. Acosta, K. Combe, S. Djokic, and I. Hernando-Gil. Performance as-
sessment of micro and small-scale wind turbines in urban areas. Systems
Journal, 6:152–163, 2012.

[4] M. Aigner. A characterization of the bell numbers. Discrete Mathematics,
205:207 – 210, 1999.

[5] M. Albano, L. L. Ferreira, L. M. Pinho, and A. R. Alkhawaja. Message-
oriented middleware for smart grids. Computer Standards & Interfaces,
38:133 – 143, 2015.

[6] A. Arasu and J. Widom. Resource Sharing in Continuous Sliding-
Window Aggregates. In International conference on Very Large Data Bases
(VLDB), pages 336–347, 2004.

[7] E. W. E. Association. Creating the internal energy market in europe.
Technical report, European Wind Energy Association, 2012.

[8] B. Bach, D. Wilhelmer, and P. Palensky. Smart buildings, smart cities and
governing innovation in the new millennium. In 8th IEEE International
Conference on Industrial Informatics (INDIN), pages 8–14, 2010.

[9] L. Baringo and R. S. Amaro. A stochastic robust optimization approach
for the bidding strategy of an electric vehicle aggregator. Electric Power
Systems Research, 146:362 – 370, 2017.

[10] R. J. Bessa, M. A. Matos, F. J. Soares, and J. A. P. Lopes. Optimized bid-
ding of a ev aggregation agent in the electricity market. IEEE Transactions
on Smart Grid, 3:443–452, 2012.

[11] B. Biegel, L. H. Hansen, J. Stoustrup, P. Andersen, and S. Harbo. Value
of flexible consumption in the electricity markets. Energy, 66:354 – 362,
2014.

[12] B. Biegel, M. Westenholz, L. H. Hansen, J. Stoustrup, P. Andersen, and
S. Harbo. Integration of flexible consumers in the ancillary service mar-
kets. Energy, 67:479 – 489, 2014.

139

www.totalflex.dk

References

[13] M. Boehm, L. Dannecker, A. Doms, E. Dovgan, B. Filipič, U. Fischer,
W. Lehner, T. B. Pedersen, Y. Pitarch, L. Šikšnys, and T. Tušar. Data
management in the mirabel smart grid system. In Proceedings of the 2012
Joint EDBT/ICDT Workshops, pages 95–102, 2012.

[14] M. H. Böhlen, J. Gamper, and C. S. Jensen. How Would You Like to
Aggregate Your Temporal Data? In International Symposium on Temporal
Representation and Reasoning, pages 121–136, 2006.

[15] M. H. Böhlen, J. Gamper, and C. S. Jensen. Multi-dimensional Aggrega-
tion for Temporal Data. In International Conference on Extending Database
Technology (EDBT), pages 257–275, 2006.

[16] M. Bucher, S. Chatzivasileiadis, and G. Andersson. Managing flexibility
in multi-area power systems. CoRR, abs/1409.2234, 2014.

[17] J. Cabot, J.-N. Mazón, J. Pardillo, and J. Trujillo. Specifying aggrega-
tion functions in multidimensional models with OCL. In International
Conference on Conceptual Modeling, pages 419–432, 2010.

[18] H. Cai, A. Hutter, E. Olivero, P. Roduit, and P. Ferrez. Load shifting for
tertiary control power provision. In 2015 IEEE 5th International Conference
on Power Engineering, Energy and Electrical Drives (POWERENG), pages
469–475, 2015.

[19] Y. Cao, S. Tang, C. Li, P. Zhang, Y. Tan, Z. Zhang, and J. Li. An optimized
ev charging model considering tou price and soc curve. IEEE Transactions
on Smart Grid, 3:388–393, 2012.

[20] C.-Y. Chow, M. F. Mokbel, and T. He. Aggregate Location Monitoring
for Wireless Sensor Networks: A Histogram-Based Approach. In In-
ternational Conference on Mobile Data Management: Systems, Services and
Middleware (MDM), pages 82–91, 2009.

[21] K. Clement-Nyns, E. Haesen, and J. Driesen. The impact of charging
plug-in hybrid electric vehicles on a residential distribution grid. Power
Systems, 25:371–380, 2010.

[22] L. N. D. Brodén, C. Sandels. Assessment of congestion management
potential in distribution networks using demand-response and battery
energy storage. In 2015 IEEE Power Energy Society Innovative Smart Grid
Technologies Conference (ISGT), pages 1–10, 2015.

[23] W. H. Day and H. Edelsbrunner. Efficient algorithms for agglomerative
hierarchical clustering methods. Journal of Classification, 1:7–24, 1984.

140

References

[24] I. Diaz De Cerio Mendaza, I. Szczesny, J. Pillai, and B. Bak-Jensen. De-
mand response control in low voltage grids for technical and commercial
aggregation services. IEEE Transactions on Smart Grid, 7:2771–2780, 2016.

[25] W. P. Distribution. Generation capacity register. https://www.
westernpower.co.uk/Connections/Generation. Accessed: 2016-05-05.

[26] H. Farhangi. The path of the smart grid. IEEE Power and Energy Magazine,
8:18–28, 2010.

[27] L. L. Ferreira, L. Siksnys, P. Pedersen, P. Stluka, C. Chrysoulas,
T. le Guilly, M. Albano, A. Skou, C. Teixeira, and T. Pedersen. Arrow-
head compliant virtual market of energy. In Proceedings of the 2014 IEEE
Emerging Technology and Factory Automation (ETFA), pages 1–8, 2014.

[28] D. Gao, J. A. G. Gendrano, B. Moon, R. T. Snodgrass, M. Park, B. C.
Huang, and J. M. Rodrigue. Main Memory-Based Algorithms for Effi-
cient Parallel Aggregation for Temporal Databases. Distributed and Par-
allel Databases, 16:123–163, 2004.

[29] X. Geng and P. Khargonekar. Electric vehicles as flexible loads: Algo-
rithms to optimize aggregate behavior. In 2012 IEEE Third International
Conference on Smart Grid Communications (SmartGridComm), pages 430–
435, 2012.

[30] J. Gordevičius, J. Gamper, and M. Böhlen. Parsimonious temporal ag-
gregation. In International Conference on Extending Database Technology
(EDBT), pages 1006–1017, 2009.

[31] R. L. Graham. Concrete mathematics: a foundation for computer science.
Pearson Education India, 1994.

[32] X. Guan, Q. Zhai, and A. Papalexopoulos. Optimization based meth-
ods for unit commitment: Lagrangian relaxation versus general mixed
integer programming. In IEEE Power Engineering Society General Meeting
(PESGM), volume 2, pages 1095–1100, 2003.

[33] H. Hao, B. Sanandaji, K. Poolla, and T. Vincent. Aggregate flexibility of
thermostatically controlled loads. Power Systems, 30:189–198, 2015.

[34] H. Hermanns and H. Wiechmann. Future design challenges for elec-
tric energy supply. In IEEE Conference on Emerging Technologies Factory
Automation, pages 1–8, 2009.

[35] S. Hosseini, A. Khodaei, and F. Aminifar. A novel straightforward unit
commitment method for large-scale power systems. IEEE Transactions on
Power Systems, 22:2134–2143, 2007.

141

https://www.westernpower.co.uk/Connections/Generation
https://www.westernpower.co.uk/Connections/Generation

References

[36] G. Hou, R. Yao, J. Ren, and C. Hu. A clustering algorithm based on
matrix over high dimensional data stream. In International conference on
Web Information Systems and Mining (WISM), pages 86–94, 2010.

[37] J. Hu, H. Morais, T. Sousa, and M. Lind. Electric vehicle fleet man-
agement in smart grids: A review of services, optimization and control
aspects. Renewable and Sustainable Energy Reviews, 56:1207 – 1226, 2016.

[38] C. S. Jensen, D. Lin, and B. C. Ooi. Continuous Clustering of Moving
Objects. Knowledge and Data Engineering, IEEE Transactions on, 19:1161–
1174, 2007.

[39] C. Jin and J. G. Carbonell. Incremental aggregation on multiple continu-
ous queries. In International conference on Foundations of Intelligent Systems
(ISMIS), pages 167–177, 2006.

[40] C. Jin, J. Tang, and P. Ghosh. Optimizing electric vehicle charging with
energy storage in the electricity market. IEEE Transactions on Smart Grid,
4:311–320, 2013.

[41] D. Kaulakienė, L. Šikšnys, and Y. Pitarch. Towards the automated ex-
traction of flexibilities from electricity time series. In Proceedings of the
Joint EDBT/ICDT 2013 Workshops, pages 267–272, 2013.

[42] S. Kazarlis, A. Bakirtzis, and V. Petridis. A genetic algorithm solution
to the unit commitment problem. IEEE Transactions on Power Systems,
11:83–92, 1996.

[43] R. E. Korf. A new algorithm for optimal bin packing. In Eighteenth
National Conference on Artificial Intelligence, pages 731–736, 2002.

[44] T. K. Kristoffersen, K. Capion, and P. Meibom. Optimal charging of
electric drive vehicles in a market environment. Applied Energy, 88:1940
– 1948, 2011.

[45] F. Kupzog and C. Roesener. A closer look on load management. In 2007
5th IEEE International Conference on Industrial Informatics, volume 2, pages
1151–1156, 2007.

[46] J. A. Lee and M. Verleysen. M.: Generalization of the lp norm for time
series and its application to self-organizing maps. In In: COTTRELL,
M. (Hrsg.): Proceedings of Workshop on Self-Organizing Maps (WSOM), S.
733–740, 2005.

[47] G. Lei, X. Yu, X. Yang, and S. Chen. An incremental clustering algorithm
based on grid. In 2011 Eighth International Conference on Fuzzy Systems
and Knowledge Discovery (FSKD), volume 2, pages 1099–1103, 2011.

142

References

[48] Z. Liu, Q. Wu, S. Huang, L. Wang, M. Shahidehpour, and Y. Xue. Op-
timal day-ahead charging scheduling of electric vehicles through an ag-
gregative game model. IEEE Transactions on Smart Grid, PP, 2017.

[49] T. Logenthiran, D. Srinivasan, A. Khambadkone, and H. N. Aung. Mul-
tiagent system for real-time operation of a microgrid in real-time digital
simulator. IEEE Transactions on Smart Grid,, 3:925–933, 2012.

[50] T. Logenthiran, D. Srinivasan, and A. M. Khambadkone. Multi-agent
system for energy resource scheduling of integrated microgrids in a dis-
tributed system. Electric Power Systems Research, 81:138 – 148, 2011.

[51] J. Lopes, F. Soares, and P. Almeida. Integration of electric vehicles in the
electric power system. Proceedings of the IEEE, 99:168–183, 2011.

[52] J. B. Macqueen. Some methods of classification and analysis of multi-
variate observations. In 5th Berkeley Symposium on Math. Stat. and Prob,
pages 281–297, 1967.

[53] E. Malinowski and E. Zimányi. Advanced Data Warehouse Design: From
Conventional to Spatial and Temporal Applications. Springer, 1 edition, 2008.

[54] F. Marra, G. Y. Yang, C. Træholt, E. Larsen, C. N. Rasmussen, and S. You.
Demand profile study of battery electric vehicle under different charging
options. In Power and Energy Society General Meeting, IEEE, pages 1–7,
2012.

[55] B. I. Michael Frigge, David C. Hoaglin. Some implementations of the
boxplot. The American Statistician, 43, 1989.

[56] MIRABEL Consortium. The MIRABEL project, 2010. http://www.
mirabel-project.eu/.

[57] R. Mitra, V. Arya, B. Sullivan, R. Mueller, H. Storey, and G. Labut. Us-
ing analytics to minimize errors in the connectivity model of a power
distribution network. In Proceedings of the 2015 ACM Sixth International
Conference on Future Energy Systems, pages 179–188, 2015.

[58] H. Mittelmann. Benchmark of commercial LP solvers. http://plato.
asu.edu/ftp/lpcom.html, 2016.

[59] A. H. Mohsenian-Rad, V. W. S. Wong, J. Jatskevich, R. Schober, and
A. Leon-Garcia. Autonomous demand-side management based on
game-theoretic energy consumption scheduling for the future smart
grid. IEEE Transactions on Smart Grid, 1:320–331, 2010.

143

http://www.mirabel-project.eu/
http://www.mirabel-project.eu/
http://plato.asu.edu/ftp/lpcom.html
http://plato.asu.edu/ftp/lpcom.html

References

[60] B. Moon, I. Fernando Vega Lopez, and V. Immanuel. Efficient Algo-
rithms for Large-Scale Temporal Aggregation. Knowledge and Data Engi-
neering, IEEE Transactions on, 15:744–759, 2003.

[61] B. Neupane, T. B. Pedersen, and B. Thiesson. Evaluating the value of
flexibility in energy regulation markets. In Proceedings of the 2015 ACM
Sixth International Conference on Future Energy Systems, pages 131–140,
2015.

[62] N. P. Padhy. Unit commitment-a bibliographical survey. IEEE Transac-
tions on Power Systems, 19:1196–1205, 2004.

[63] N. H. Park and W. S. Lee. Statistical grid-based clustering over data
streams. ACM Special Interest Group on Management of Data (SIGMOD)
Record, 33:32–37, 2004.

[64] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson. A foundation for captur-
ing and querying complex multidimensional data. Information systems,
26:383–423, 2001.

[65] M. Petersen, K. Edlund, L. Hansen, J. Bendtsen, and J. Stoustrup. A
taxonomy for modeling flexibility and a computationally efficient algo-
rithm for dispatch in smart grids. In American Control Conference, pages
1150–1156, 2013.

[66] K. Pollhammer, F. Kupzog, T. Gamauf, and M. Kremen. Modeling of
demand side shifting potentials for smart power grids. In AFRICON,
pages 1–5, 2011.

[67] N. pool AS. Nord pool market. http://www.nordpoolspot.com.

[68] S. Rezaee, E. Farjah, and B. Khorramdel. Probabilistic analysis of plug-
in electric vehicles impact on electrical grid through homes and parking
lots. Sustainable Energy, IEEE Transactions on, 4:1024–1033, 2013.

[69] I. Sajjad, G. Chicco, and R. Napoli. Demand flexibility time intervals for
aggregate residential load patterns. In IEEE PowerTech, pages 1–6, 2015.

[70] F. Salah, J. P. Ilg, C. M. Flath, H. Basse, and C. van Dinther. Impact of
electric vehicles on distribution substations: A swiss case study. Applied
Energy, 137:88 – 96, 2015.

[71] M. R. Sarker, Y. Dvorkin, and M. A. Ortega-Vazquez. Optimal partici-
pation of an electric vehicle aggregator in day-ahead energy and reserve
markets. IEEE Transactions on Power Systems, 31:3506–3515, 2016.

[72] R. Sibson. SLINK: An optimally efficient algorithm for the single-link
cluster method. The Computer Journal, 16:30–34, 1973.

144

http://www.nordpoolspot.com

References

[73] L. Šikšnys, M. E. Khalefa, and T. B. Pedersen. Aggregating and disaggre-
gating flexibility objects. In Scientific and Statistical Database Management:
24th International Conference, Proceedings, pages 379–396, 2012.

[74] L. Siksnys, C. Thomsen, and T. B. Pedersen. Mirabel dw: Managing
complex energy data in a smart grid. In Proceedings of the 14th Interna-
tional Conference on Data Warehousing and Knowledge Discovery (DaWaK),
pages 443–457, 2012.

[75] L. Siksnys, E. Valsomatzis, K. Hose, and T. B. Pedersen. Aggregating
and disaggregating flexibility objects. Knowledge and Data Engineering,
IEEE Transactions on, 27:2893–2906, 2015.

[76] Y. N. Silva, A. M. Aly, W. G. Aref, and P.-A. Larson. SimDB: A similarity-
aware database system. In ACM Special Interest Group on Management of
Data (SIGMOD), pages 1243–1246, 2010.

[77] Y. N. Silva, W. G. Aref, and M. H. Ali. Similarity Group-By. In IEEE
International Conference on Data Engineering (ICDE), pages 904–915, 2009.

[78] D. Srinivasan and J. Chazelas. A priority list-based evolutionary algo-
rithm to solve large scale unit commitment problem. In International
Conference on Power System Technology, volume 2, pages 1746–1751, 2004.

[79] T. Tusar, E. Dovgan, and B. Filipic. Evolutionary scheduling of flexi-
ble offers for balancing electricity supply and demand. In 2012 IEEE
Congress on Evolutionary Computation, pages 1–8, 2012.

[80] T. Tušar, L. Šikšnys, T. B. Pedersen, E. Dovgan, and B. Filipič. Using
aggregation to improve the scheduling of flexible energy offers. Interna-
tional Conference on Bioinspired Optimization Methods and their Applications,
pages 347–358, 2012.

[81] S. I. Vagropoulos, D. K. Kyriazidis, and A. G. Bakirtzis. Real-time charg-
ing management framework for electric vehicle aggregators in a market
environment. IEEE Transactions on Smart Grid, 7:948–957, 2016.

[82] E. Valsomatzis, K. Hose, and T. B. Pedersen. Balancing energy flexibili-
ties through aggregation. In Proceedings of the Second International Work-
shop on Data Analytics for Renewable Energy Integration (DARE), pages 17–
37, 2014.

[83] E. Valsomatzis, T. B. Pedersen, A. Abelló, and K. Hose. Aggregating
energy flexibilities under constraints. In 2016 IEEE International Con-
ference on Smart Grid Communications (SmartGridComm), pages 484–490,
Nov 2016.

145

References

[84] M. van der Kam and W. van Sark. Smart charging of electric vehicles
with photovoltaic power and vehicle-to-grid technology in a microgrid;
a case study. Applied Energy, 152:20 – 30, 2015.

[85] S. Vandael, B. Claessens, D. Ernst, T. Holvoet, and G. Deconinck. Rein-
forcement learning of heuristic ev fleet charging in a day-ahead electric-
ity market. IEEE Transactions on Smart Grid, 6:1795–1805, 2015.

[86] M. G. Vayá and G. Andersson. Optimal bidding strategy of a plug-in
electric vehicle aggregator in day-ahead electricity markets under uncer-
tainty. IEEE Transactions on Power Systems, 30:2375–2385, 2015.

[87] R. Weron. Modeling and Forecasting Electricity Loads and Prices. John Wiley
& Sons Ltd, 2006.

[88] D.-J. Won and S.-I. Moon. Optimal number and locations of power qual-
ity monitors considering system topology. Power Delivery, 23:288–295,
2008.

[89] J. Yang and J. Widom. Incremental computation and maintenance of
temporal aggregates. The International Journal on Very Large Data Bases
(VLDB), 12:262–283, 2003.

[90] L. Yang, J. Zhang, and H. V. Poor. Risk-aware day-ahead scheduling
and real-time dispatch for electric vehicle charging. IEEE Transactions on
Smart Grid, 5:693–702, 2014.

[91] D. Zhang. Aggregation computation over complex objects. PhD thesis, Uni-
versity of California, Riverside, USA, 2002.

[92] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data
clustering method for very large databases. In ACM Special Interest Group
on Management of Data (SIGMOD), pages 103–114, 1996.

[93] Z. Zhang, Y. Yang, A. K. H. Tung, and D. Papadias. Continuous k-means
Monitoring over Moving Objects. Knowledge and Data Engineering, IEEE
Transactions on, 20:1205–1216, 2008.

[94] J. Zhao, C. Wan, Z. Xu, and J. Wang. Risk-based day-ahead scheduling of
electric vehicle aggregator using information gap decision theory. IEEE
Transactions on Smart Grid, 8:1609–1618, 2017.

146

Paper A

Towards Constraint-based
Aggregation of Energy
Flexibilities

The paper has been published in the
Proceedings of the Seventh International Conference on Future Energy Systems
Poster Sessions (e-Energy ’16), Waterloo, Canada, 2 pages, 2016.
The layout of the paper has been revised.
DOI: http://dx.doi.org/10.1145/2939912.2942351

Abstract

The aggregation of energy flexibilities enables individual producers and/or consumers
with small loads to directly participate in the emerging energy markets. On the other
hand, aggregation of such flexibilities might also create problems to the operation of
the electrical grid. In this chapter, we present the problem of aggregating energy
flexibilities taking into account grid capacity limitations and introduce a heuristic
aggregation technique. We show through an experimental setup that our proposed
technique, compared to a baseline approach, not only leads to a valid unit commitment
result that respects the grid constraint, but it also improves the quality of the result.

1 Introduction

The emergence and wide-spread use of electric vehicles (EVs) and heat-
pumps in the transport and heating/cooling sectors pose new challenges
to existing distribution grids [21]. The high power requirements of these

147

Paper A. Towards Constraint-based Aggregation of Energy Flexibilities

new devices can lead to significant congestions in the distribution grids (e.g.,
at specific peak-hours), which were not originally designed to support such
power hungry devices. Such load-sensitive grid locations, i.e., bottlenecks,
can be found at different elements of the low and high voltage grid [70], e.g.,
a distribution transformer (0.4-1kV) with a maximum power value of a few
hundred kWs serving from a few (e.g., in North America) to several hun-
dreds of households (e.g., in Europe). Operating the grid over such capacity
limits might lead to significant losses of supply quality, breakdown of power
equipment, or even power outages.

One idea to mitigate this problem is to reinforce the grid, which can be
costly. A more cost-efficient approach [22] is to take advantage of the pro-
sumers’ inherent flexibility (e.g., using vehicle-to-grid) and off-load electric-
ity demand from peak hours to other hours. Here, business entities called
aggregators play a crucial role, as they are able to (1) aggregate flexibility
from thousands of prosumers, (2) perform local demand/supply balancing,
and/or (3) trade aggregated flexibility in a flexibility market [27]. In their
day-to-day operations, flexible load aggregation is essential for being able to (1)
produce “large-enough” commodities that are valuable on the market and (2)
reduce the complexity of flexibility management and activation, i.e., solving
the Unit Commitment (UC) problem [79]. However, to include grid capacity
constraints into flexibility management routines (e.g., trading), the aggrega-
tors require novel techniques to effectively aggregate flexibility under grid
capacity constraints. Unfortunately, no such techniques are currently avail-
able.

Consider two EVs, the batteries of which need to be (partially) charged.
The first EV needs to be charged between hour 1 and 4, and it requires at least
1kWh and at most 2kWh delivered in 1 hour. Similarly, the second EV needs
to be charged between hour 1 and 3, and it requires at least 2kWh and at most
3kWh delivered also in 1 hour. Flexible loads from such EVs can be modelled
as two independent flex-offers (FOs) [75], shown as f1 and f2 in Figure A.1.
In the figure, f1 and f2 take their basic form, covering only 1 time period
(slice) of length 1 (hour); [tes, tls] depicts the start time flexibility, specifying
the time range in which a load should be activated by the aggregator; and
the dashed area depicts the amount flexibility, specifying the range of energy
amounts in which specific amounts should be activated. Now, assume that
the aggregator needs to combine f1 and f2 into an aggregated FO (AFO)
f a
12 by adjusting the respective time flexibility and amount flexibility bounds.

Further, assume that there is a fixed constraint of 2kW which the two EVs
should respect at every hour while consuming electricity, see Figure A.1.
Clearly, this constraint will be violated if f a

12 is produced so that both EVs
start charging at the same time (both at hour 1 or 2), as seen in Figure A.1a.
However, if f a

12 is produced so that the second EV starts charging 1 hour after
the first, then, as seen in Figure A.1b, f b

12 represents an AFO, which allows

148

2. Flex-Offer aggregation problem

(a) (b)

Fig. A.1: Two flex-offers producing two different AFOs

the aggregator to respect the grid capacity constraint while allocating loads
of the two EVs. Next, we present an FO aggregation technique that takes into
account such grid constraints.

2 Flex-Offer aggregation problem

2.1 Problem definition

In the general case [75], these are N FOs to be aggregated to M AFOs (N >>
M) and the goal is to reduce M while retaining the flexibility (solution space)
of FOs such that there exists at least 1 instantiation of FOs which allows
respecting the grid constraints. However, as seen in Figure A.1, there are
K possibilities to aggregate just 2 FOs, where K is based on the product
of the FO’s start time flexibility (tls − tes + 1), making the problem much
more harder in the case of N FOs. For instance, given 5 FOs with start time
flexibility equal to 3, there exist in total B|5| · 35 = 12636 combinations to
produce AFO sets, where Bn is the nth Bell number. Thus, we introduce a
heuristic aggregation technique to aggregate N FOs to M AFOs.

149

Paper A. Towards Constraint-based Aggregation of Energy Flexibilities

2.2 Heuristic constraint-based aggregation

During aggregation, apart from the constraint, we also introduce a reference
schedule that represents the business objective of the aggregator. We consider
the distance of an FO to the constraint to be the sum of the minimum absolute
differences between all the potential energy amounts of the FO slices and
the constraint. Similarly, we compute the distance of an FO to the reference
schedule. Thus, we consider the overall distance of an FO to the constraint
and the reference schedule to be the sum of both distances. We prioritize
respecting the constraint by using a very high coefficient for the constraint
distance compared to a very low one for the reference schedule distance.
We propose a greedy aggregation technique named Exhaustive Greedy (EG)
based on binary aggregations.

Given a set F of FOs, EG starts by selecting and removing from F the FO
fnom most distant to the constraint. Then, in each step, it examines all the
potential aggregations between fnom and the remaining FOs in F. If there is
an AFO, fa, that reduces the distance of fnom, it removes the FO that par-
ticipated in the aggregation of fa and further continues aggregation with fa.
Otherwise, EG inserts fnom in the output set F′ and continues aggregation by
selecting a new fnom until F is empty. When F is empty, EG returns set F′

that contains all the AFOs.

3 Preliminary results

We use a dataset of 100 flex-offers representing a fleet of EVs plugged into
a charging park of a workplace. The flex-offers have the same start time
flexibility characteristics and similar amount flexibility bounds. Their start
time flexibility is equal to 8 and their tes equal to 2. The number of slices and
the minimum amount requirements per slice follow a uniform distribution
over the interval [3, 6] and [6, 9], respectively. The amount flexibility values
of the flex-offers follow a uniform distribution over the interval [0,3].

We examine a case where the business objective of the aggregator is
in harmony with the grid constraint, i.e., the reference schedule value
(300)<constraint (500). In order to evaluate our technique in terms of con-
straint respect, we apply a UC algorithm (UCA) [79], both on the initial FOs
set and on the aggregation result. UCA forms the amount of the examined
bottleneck by activating the FOs (or AFOs) for the examined time horizon.
We also use for comparison, the Start Alignment (SA) aggregation introduced
in [75]. Our proposed technique prioritizes the constraint respect and leads
to a UC result that respects the constraint, see Figure A.2a. On the contrary,
we see that SA violates the constraint. Moreover, when EG is combined with
UCA, they provide a smaller overall distance to the constraint and the refer-
ence schedule, than when UCA is applied individually under a time limit of

150

4. Conclusions

0 2 4 6 8 10 12

Time horizon

0

200

400

600

800
B

o
tt

le
n

e
c
k
 a

m
o

u
n

t
target

constraint

UCA alone

SA+UCA

EG+UCA

violations

UCA alone EG+UCA
0

200

400

600

800

1000

O
v
e

ra
ll
 d

is
ta

n
c
e

 ref. sche. = 300, constraint = 500

(a) UC solution (b) Overall distance

Fig. A.2: Set of 100 flex-offers with similar flexibilities.

20 seconds, see Figure A.2b.

4 Conclusions

This chapter is a first attempt to aggregate energy flexibilities taking into
account power capacity constraints imposed by the electrical grid. We show
that our proposed aggregation technique can respect the constraint imposed
by the grid where a previous technique leads to violations. In the future,
we will investigate our technique in more complex scenarios and examine a
hierarchical approach taking into account the grid structure.

151

	Front page
	Abstract
	Abstract in Danish / Resumé
	Abstract in Spanish / Resumen
	Acknowledgements
	Contents
	Thesis Details
	1 Introduction
	1 Background and Motivation
	2 Life-cycle of Flex-offers
	3 Thesis overview
	3.1 Chapter 2: Measuring and Comparing Energy Flexibilities
	3.2 Chapter 3: Aggregating and Disaggregating Flexibility Objects
	3.3 Chapter 4: Balancing Energy Flexibilities through Aggregation
	3.4 Chapter 5: Aggregating Energy Flexibilities under Constraints
	3.5 Chapter 6: Trading Aggregated Flex-Offers via Flexible Orders
	3.6 Appendix A

	4 Structure of the Thesis

	2 Measuring and Comparing Energy Flexibilities
	1 Introduction
	2 Preliminaries
	3 Flexibility Definitions and Measures
	3.1 Time and energy flexibility
	3.2 Combined flexibility measures

	4 Discussion
	5 Related work
	6 Conclusion and future work

	3 Aggregating and Disaggregating Flexibility Objects
	1 Introduction
	2 Problem Formulation
	3 Aggregation and Disaggregation
	4 N-to-M Aggregation
	4.1 Overview of the N-To-M aggregation
	4.2 Logical phases of the N-To-M Aggregation
	4.3 Algorithms for the N-To-M Aggregation
	4.4 M-to-N Disaggregation and Discussion

	5 Balance Aggregation
	6 Experimental Evaluation
	6.1 Experimental setup
	6.2 N-to-M aggregation
	6.3 Balance aggregation
	6.4 Experiment Summary

	7 Related work
	8 Conclusion and Future Work
	A Appendix
	A.1 Proof of amount conservation
	A.2 Complexities of N-to-1 aggregation functions
	A.3 Complexities of N-to-M aggregation sub-functions
	A.4 Complexity of N-to-M aggregation
	A.5 Complexity of the simple greedy balance aggregation technique

	4 Balancing Energy Flexibilities through Aggregation
	1 Introduction
	2 Related work
	3 Preliminaries
	4 Balance aggregation
	4.1 Flex-offer Aggregation
	4.2 Balance aggregation

	5 Experimental Evaluation
	5.1 Experimental setup
	5.2 Absolute balance
	5.3 Flexibility loss
	5.4 Execution time and aggregated flex-objects count.

	6 Conclusion and Future Work

	5 Aggregating Energy Flexibilities under Constraints
	1 Introduction
	2 Background and preliminaries
	3 Problem Formulation
	3.1 Traditional FO aggregation
	3.2 Constraint aggregation objectives and complexity

	4 Constraint-based FO Aggregation
	4.1 Constraint and target related distances
	4.2 Aggregation techniques

	5 Experimental Evaluation
	5.1 Experimental setup
	5.2 Use case

	6 Related Work
	7 Conclusion and future work

	6 Trading Aggregated Flex-Offers via Flexible Orders
	1 Introduction
	2 Preliminaries
	2.1 Electric vehicle model
	2.2 Market framework

	3 Problem Formulation
	3.1 FO aggregation
	3.2 Market-based Flex-Offer aggregation

	4 Heuristic solutions
	4.1 Heuristic Market-based Aggregation Main Algorithm
	4.2 Main Algorithm variants

	5 Experimental Evaluation
	5.1 Experimental setup
	5.2 Market-based aggregation results
	5.3 Financial evaluation

	6 Conclusion and Future work
	A Appendix
	A.1 Number of solutions
	A.2 Integer Linear Programming problem complexity

	7 Conclusions and Future Research Directions
	1 Summary of Results
	2 Future Research Directions
	Bibliography
	References

	A Towards Constraint-based Aggregation of Energy Flexibilities
	1 Introduction
	2 Flex-Offer aggregation problem
	2.1 Problem definition
	2.2 Heuristic constraint-based aggregation

	3 Preliminary results
	4 Conclusions

