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2 Université Libre de Bruxelles (ULB), Brussels, Belgium
{aalseraf,toon.calders}@ulb.ac.be

3 Universiteit Antwerpen (UAntwerp), Antwerp, Belgium
toon.calders@uantwerp.be

Abstract. With the arrival of Data Lakes (DL) there is an increasing
need for efficient dataset classification to support data analysis and in-
formation retrieval. Our goal is to use meta-features describing datasets
to detect whether they are similar. We utilise a novel proximity mining
approach to assess the similarity of datasets. The proximity scores are
used as an efficient first step, where pairs of datasets with high proximity
are selected for further time-consuming schema matching and dedupli-
cation. The proposed approach helps in early-pruning unnecessary com-
putations, thus improving the efficiency of similar-schema search. We
evaluate our approach in experiments using the OpenML online DL,
which shows significant efficiency gains above 25% compared to match-
ing without early-pruning, and recall rates reaching higher than 90%
under certain scenarios.

1 Introduction

Data Lakes (DL) [1] are huge data repositories covering a wide range of het-
erogeneous topics and business domains. Such repositories need to be effectively
governed to gain value from them; they require the application of data gov-
ernance techniques for extracting information and knowledge to support data
analysis and to prevent them from becoming an unusable data swamp [1]. This
involves the organised and automated extraction of metadata describing the
structure of information stored [15], which is the main focus of this paper.

The main challenge for data governance posed by DLs is related to informa-
tion retrieval: identify related datasets to be analysed together as well as dupli-
cated information to avoid repeating analysis efforts. To handle this challenge
it was previously proposed in [2] to utilise schema matching techniques which
can identify similarities between attributes of different datasets. Most techniques
proposed by the research community [4] are designed for 1-to-1 schema matching
applications that do not scale up to large-scale applications like DLs prone to
gather thousands of datasets.
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To facilitate such holistic schema matching and to deal with the sheer size
of the DL, [4] proposed to utilise the strategy of early pruning which limits
the number of comparisons of pairs of datasets. We apply this approach in this
paper by proposing a technique which approximates the proximities of pairs of
datasets using similarity-comparisons of their meta-features. More specifically,
we use a supervised machine learning approach to model topic-wise related clas-
sification of datasets. We then utilise this model in assigning proximities between
new datasets and those already in the DL, and then predicting whether those
pairs should be compared using schema matching (i.e., have related informa-
tion) or not. We implement this technique in the datasets-proximity (DS-Prox)
approach presented in this paper. Our focus is on early-pruning of unneces-
sary dataset comparisons prior to applying state-of-the-art schema matching
and deduplication (the interested reader is referred to [4, 13] for more details on
such techniques).

Our contributions include the following: 1. a novel proximity mining ap-
proach for calculating the similarity of datasets (Section 4), 2. applying our new
technique to the problem of early-pruning in holistic schema matching and dedu-
plication within different scenarios for maintaining the DL (Sections 2, 3), and
finally, 3. testing the proposed proximity mining approach on a real-world DL
to demonstrate its effectiveness and efficiency in early-pruning (Section 5).

2 Problem Statement

Our goal is to automate information profiling, defined in [2], which aims at effi-
ciently finding relationships between datasets in large heterogeneous repositories
of flat semi-structured data (i.e., tabular data like CSV, web tables, spreadsheets,
etc.). Those repositories usually include datasets uploaded multiple times with
the same data but with different transformed attributes. Such datasets are struc-
tured as groups of instances describing real-world entities, where each instance
is expressed as a set of attributes describing the properties of the entity. We
formally define a dataset D as a set of instances D = {I1, I2, ...In}. The dataset
has a schema of attributes S = {A1, A2, ...Am}, where each attribute Ai has a
fixed type, and every instance has a value of the right type for each attribute. We
focus on two types of attributes: continuous numeric attributes and categorical
nominal attributes, and two types of relationships for pairs of datasets [D1, D2]:

– Rel(D1, D2): Related pairs of datasets describe similar real-world objects or
concepts from the same domain of interest. These datasets store similar in-
formation in (some of) their attributes. Typically, the information contained
in such attributes partially overlap. An example would be a pair of datasets
describing different human diseases, like one for diabetes patients and an-
other for hypertension patients. The datasets will have similar attributes
(partially) overlapping their information like the patient’s age, gender, and
some common lab tests like blood samples.

– Dup(D1, D2): Duplicate pairs of datasets describe the same concepts. They
convey the same information in most of their attributes, but such information
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can be stored using differences in data. For example, two attributes can
describe the weight of an object but one is normalised between 0 and 1 and
the other holds the raw data in kilograms. Both attributes are identified to
be representing similar information although their data are not identical.

Examples. We scrutinise the relationship between two pairs of datasets in Fig.
1. Each dataset has a set of attributes. An arrow links similar attributes be-
tween two datasets. For example, attributes ‘A1’ from D2 and D3 are nominal
attributes with two unique values, making them similar. A numeric attribute like
‘A2’ in D2 holds similar data as attributes ‘A3’ and ‘A4’ from D3, as expressed
by the intersecting numeric ranges. In our approach we extract meta-features
from the datasets (for this example, the number of distinct values and means re-
spectively) to assess the similarity between attributes of a given pair of datasets.
The Rel and Dup properties are then used to express datasets similarities. For
example, Dup(D1, D2) returns ‘1’ because they have similar information in most
attributes (even though ‘A5’ and ‘A3’ do not match). Based on these two prop-
erties, our proposed approach will indicate whether two datasets are possibly
related (e.g., Rel(D2, D3) =‘1’) and should be considered for further scrutinis-
ing by schema matching, or if they are possibly duplicated (e.g., Dup(D1, D2)
=‘1’) and should be considered for deduplication efforts.

D2: census_data D3: health_data

A1: type {f,m} A1: gender {female,male} 

A2: age { 0<A2<100} 

A3: age { 30<A3<60} A3: race {01,02,03,04} 

A2: Ethnicity {AS,AF,ER,LT} 

A4: Household { 0<A4<16} A4: Temp { 35<A4<42} 

A5: income { 50k<A5<300k} A5: H_rate { 40<A5<160} 

Rel(D2,D3) = 1
Dup(D2,D3) = 0D1: 1992_city_data 

A1: salary {25k<A1<600k} 

A2: age { 20<A2<97} 

A3: family_Size { 2<A3<11} 

A4: identity {w,m,t}

A5: house_type {h,t,v,s,p,l} ...

Rel(D1,D2) = 1
Dup(D1,D2) = 1

. . .

. . .

Fig. 1: Similarity relationships between two pairs of datasets

Scenarios. We aim at governing the DL by maintaining the Rel and Dup re-
lationships between the datasets it contains. We consider two typical scenarios.
In scenario (a), we want to dredge a data swamp which we don’t know any
relationships for, thus, for all pairs in the DL we need to find if they are related
or duplicated. In scenario (b), we have an existing DL for which we know all
relationships between the datasets. However, given the dynamic nature of DLs
new datasets are frequently ingested. Thus, we need to compare this dataset
against the datasets already in the DL to find its relationships with them.

3 Related Work

As described in [15], metadata describing the information stored in datasets
need to be collected to effectively govern big data repositories. Such metadata
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are usually automatically collected across multiple datasets using data profiling
techniques like schema matching [11], which seeks to identify schematic over-
laps between datasets. This involves detecting related objects (instances or at-
tributes) and matching instances between two different schemata [4]. The main
line of research in this field is focused around improving the efficiency of match-
ing techniques for two very large schemata. In our research, however, we focus on
matching attributes between multiple large amounts of schemata, closely related
to the field of holistic schema matching [4, 13]. A more restrictive case of schema
matching involves deduplication [13]; finding highly overlapping instances [6].
Similar to our special requirements for schema matching, we also seek to detect
duplicated schemata instead of instances. This is when schemata have similar
overlapping attributes, not necessarily the same instances.

As described in [4], it is recommended to utilise early-pruning mechanisms for
holistic schema matching, which filters out unnecessary matching efforts using
less complex techniques. This is commonly done using similarity search tech-
niques which seek to eliminate unnecessary comparisons of datasets [12]. Several
techniques for instance-based matching were proposed including techniques like
clustering [3, 6, 8], hashing [12], and indexing [10, 12]. Alternatively, we propose
to focus on attribute-based matching across multiple-schemata for governing the
DL which needs new and efficient techniques. This field was not sufficiently stud-
ied before, with only preliminary results in [14]. We propose a new approach
utilising a novel technique of computationally cheaper meta-features proximity
comparisons. We seek to prevent unnecessary and expensive schema matching
computations in further steps. We propose a machine learning approach for
early-pruning that is based on metadata collected from datasets. Such learning
techniques were proposed for future research in similarity search [5] where they
use a supervised machine learning model based on SVM to find similar strings
for deduplication. [5] shows that using machine learning leads to more accurate
similarity search from different domains of knowledge.

4 The DS-Prox Approach

We propose a proximity computation based on overall meta-features extracted
from the datasets, which we call DS-Prox. We are seeking to have approximate
similarity comparisons of pairs of datasets for the early-pruning task. Here we
apply cheap computation steps for the overall similarity search, to prevent fur-
ther expensive detailed analysis of the content of datasets which are estimated to
be dissimilar. Similar to our previous work in [2], we seek to profile the datasets
ingested in the DL by extracting some meta-features describing the overall con-
tent and attributes in the datasets. We compute distances between each of the
meta-features as proximity metrics. We take a sample of pairs of datasets which
are analysed by a data analyst and annotated whether they hold related or du-
plicate data by means of the Rel and Dup properties. Rel and Dup are boolean
functions retrieving either 1 (similar/duplicate respectively) or 0 (dissimilar/not
duplicate). We then use machine learning techniques over the proximity metrics
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to create two independent models which can classify pairs of datasets according
to Rel(D1, D2) and Dup(D1, D2) respectively. The classification models are used
to score pairs of datasets with a similarity measure Sim(D1, D2). The similarity
score ‘Sim’ is defined independently for each of the relationships Rel(D1, D2)
and Dup(D1, D2) as a number between 0 and 1, where 0 means dissimilar and
1 means most similar: Sim(D1, D2) ∈ [0, 1].

4.1 The Meta-Features Distance Measures

Table 1: DS-Prox meta-features
Type Meta-feature Description

General
Number of Instances The number of instances in the dataset
Number of Attributes The number of attributes in the dataset
Dimensionality The ratio of number of attributes to number of

instances

Attributes by Type
Number per Type The number of attributes per type (Nominal or

Numerical)
Percentage per Type The percentage of attributes per type (Nominal

or Numerical)

Nominal Attributes
Average Number of Values The average number of distinct values per nom-

inal attribute
Standard Deviation of Number of Values The standard deviation in the number of distinct

values per nominal attribute
Minimum/Maximum Number of Values The minimum and maximum number of distinct

values per nominal attribute

Numeric Attributes
Average Numeric Mean The average of the means of all numeric at-

tributes
Standard Deviation of the Numeric Mean The standard deviation of the means of the nu-

meric attributes
Minimum/Maximum Numeric Mean The minimum and maximum mean of numeric at-

tributes

Missing Values

Missing Attribute Count The number of attributes with missing values
Missing Attribute Percentage The percentage of attributes with missing values
Minimum/Maximum Number of Missing Values The minimum and maximum number of instances

with missing values per attribute
Minimum/Maximum Missing Values Percent-
age

The minimum and maximum percentage of in-
stances with missing values per attribute

Mean Number of Missing Values The mean number of missing values from each
attribute

Mean Percentage of Missing Values The mean percentage of missing values from each
attribute

For each dataset in the DL, we extract meta-features using data profiling tech-
niques. This includes general statistics about the dataset and its attributes as
described in Table 1. Our purpose for those meta-features is to describe the gen-
eral structure and content of the datasets for an approximate comparison using
our proximity metric and classification models. We compute distances for each
meta-feature mi from Table 1 between each pair of datasets [D1, D2] using equa-
tion 1 which gives the relative difference as a number between 0 and 1. Those
distances we feed to the supervised machine learning algorithm in our approach.

distmi
(D1, D2) =

max{mi(D1),mi(D2)} −min{mi(D1),mi(D2)}
max{mi(D1),mi(D2)}

(1)

4.2 The Approach

The approach proposed for early-pruning depends on classical machine learning
which is divided into two phases: Supervised Learning Phase and Scoring and
Classification Phase. In the first phase, which can be seen in Fig. 2, we build
a classification model for each of the properties Rel and Dup using supervised
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learning techniques. First, for each dataset we extract its meta-features from
Table 1 which returns its data profile (In Fig. 2 we see a sample of two meta-
features: number of attributes ‘nAttr’, and number of instances ‘nIns’). Then, for
each dataset, we generate all pairs with each of the other datasets and compute
the distances between their meta-features using Equation 1. We also present
the pairs of datasets to a human-annotator who manually decides whether they
satisfy (assign ‘1’) or not satisfy (assign ‘0’) Rel(D1, D2) and Dup(D1, D2). Any
pair annotated as a match for Dup(D1, D2) must also be annotated as a match
for Rel(D1, D2) (i.e., all duplicate pairs of datasets are also related). We feed
both the annotated pairs of datasets with their distances as training examples
to a learner which creates two classifiers: Mrel and Mdup.

Fig. 2: DS-Prox: supervised machine learning

In the second phase, we apply the classifiers to the scenarios discussed in
Section 2, to score each new pair of previously unseen datasets. In scenario (a),
we have a setting where there are two DLs. DL1 has a group of datasets which
have previously known annotations of all their Rel(D1, D2) and Dup(D1, D2)
relationships between all pairs of datasets. On the other hand, DL2 is without
any annotations of such relationships and is therefore a data swamp we would
like to dredge. Therefore, we need to learn the models for Rel(D1, D2) and
Dup(D1, D2) from DL1 and apply them to DL2 which has different datasets.
In scenario (b), we have an existing DL for which we know all relationships
between the datasets. We need to deal with a new dataset as it arrives in this
DL. We learn the models from the DL, and we apply them to each new dataset
Di ingested within the same DL. The models should identify all datasets in the
DL which are related or duplicate of Di.

When applying the classifiers, we compute for each pair of datasets the simi-
larity score of Simrel(D1, D2) and Simdup(D1, D2) using the classifiers extracted
in the previous phase. The Sim score is the positive-class distribution value gen-
erated by each classifier. The predicted distribution-value achieved for the ‘true’
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class from each classifier is checked against a minimum threshold to indicate
whether the pair of datasets are overall related or duplicates. In our approach,
pairs of datasets are evaluated first if they match the Dup(D1, D2) relation-
ship (indicating that it also matches Rel(D1, D2)). If it fails this duplicate test,
then we evaluate if the pair still satisfies Rel(D1, D2). The output classifiers can
classify in the future any new pairs of datasets as either related or duplicate
according to two matching approaches: 1-to-1 matching or cluster matching.
1-to-1 matching: all pairs satisfying Rel(D1, D2) and Dup(D1, D2) need to be
selected for further schema matching and deduplication. The calculations are
performed under the assumption that each and every pair of matching datasets
should be correctly identified using our models.
Cluster-based matching: It is common to use clustering based approaches
for the matching process [3, 4, 8]. Groups of datasets with close proximity are
segmented into clusters. In our case, the relationship Rel can be used to cluster
the datasets in the DL, after all relationships are discovered. We therefore relax
our requirements for the second phase so that a new dataset should match with
any single dataset in the same cluster in order to consider it a positive match.
Therefore, if a dataset matches one or more dataset(s) from a cluster, we consider
all pairs of datasets in this cluster as positively matching pairs (even if the
classifier did not indicate a positive match for some of those pairs separately).
The rationale behind this approach is that in a real holistic schema matching
setting, a new dataset ingested should be compared to all the datasets in a
cluster it matches to. Clustering can take place after schema matching identifies
the relationships between datasets (which is outside the scope of this paper, but
the reader can refer to [3, 8] for such clustering in instance-based matching).

We illustrate our general approach with a toy example in Fig. 3. Suppose
we have two meta-features nIns and nAttr for each dataset. To classify a pair
[(nIns1, nAttr1) , (nIns2, nAttr2)] we compute the relative differences. In Fig.
3(a) we have plotted (∆nIns,∆nAttr) for all pairs in the training data. ‘+’
indicates a matching pair, ‘-’ a non-matching pair. Based on this data we learn
a classifier, for instance a separating hyperplane as shown in Fig. 3(a) by the
red line. Here, for simplification, we show pairs of datasets plotted based on
the distances of only two meta-features (nIns and nAttr). The actual approach
would consider all meta-features in Table 1.

(a) (b)

Fig. 3: DS-Prox cut-off thresholds tuning
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Most classification models produce a score instead of a binary output. In the
example of the separating hyperplane the obtained distance to the hyperplane
can be used as a score. This score can be compared against different cut-off
thresholds to decide on the final classification ‘+’ or ‘-’. The threshold can be
chosen to lead to different results, as seen in Fig. 3(b). If we choose the cut-off
threshold ‘C1’ we restrict the classifier to return less pairs of high proximity
(i.e., low distance), leading to lower recall but less work. Alternatively, if we
alter the cut-off threshold to ‘C2’, we relax the classifier to return pairs of lower
proximity. This leads to more pairs (i.e., more work) returned by the classifier
as positive matches and higher recall of positive cases, but, with more pairs
marked incorrectly as matching. Therefore, the cut-off threshold can be tweaked
by the data scientist according to practical requirements in order to increase
recall at the expense of more work or vice versa. This is the trade-off which we
seek to optimise in our experiments when selecting different thresholds. We can
use different thresholds ‘crel’ and ‘cdup’ for each of the classifiers evaluated. This
means that we consider a positive match if the classifier scores a new pair of
datasets with a score greater than the threshold as in Equations (2) and (3).

Rel(D1, D2) =

{
1, Simrel(D1, D2) > crel
0, otherwise

(2)

Dup(D1, D2) =

{
1, Simdup(D1, D2) > cdup

0, otherwise

(3)

The complexity of our approach is quadratic in the number of datasets, how-
ever, it applies the cheapest computational steps for early-pruning (just comput-
ing distances in Equation 1 and the classifier scoring model on each pair). This
way, we save unnecessary expensive schema matching processing in later steps.

5 Experimental Evaluation

We tested an implementation of the DS-Prox approach on OpenML1, which can
be considered an online DL. It consists of different datasets covering heteroge-
neous topics, each having a name and a description.

5.1 Datasets

The main challenge is to create the ground-truth which we use to evaluate our
approach. To achieve this, we created an experimental environment where we
extracted the following independent sets of datasets from OpenML:

– Restricted-topics sample: First, we extract some datasets by topic us-
ing 11 keywords-search over OpenML, e.g., “Disease”, “Cars”,“Flights”,
“Sports”, etc. This restricted sample consists of 130 datasets and we consider
them to be similar if they belong to the same topic.

1 http://www.openml.org
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– All-topics sample: This is an independent set of other datasets collected
from OpenML. To collect this sample, we scraped the OpenML repository to
extract all datasets not included in the restricted-topics sample and having
a description of more than 500 characters. Out of the 514 datasets retrieved
we selected 213 with descriptive descriptions (i.e., excluding datasets whose
descriptions do not allow to interpret its content and to assign a topic).

Therefore, we created two new groups of datasets from OpenML for our ex-
periments, each having its own independent set of datasets without any overlap.
Having two independent sets strengthens our results and allows us to generalise
our conclusions. A domain expert and one of the authors collaborated to manu-
ally label the pairs of datasets with the same topic as duplicated and / or related.
The interested reader can download the two annotated datasets from GitHub2.
The details of each sample is summarised in Table 2, which lists the number of
datasets, the number of topics, top topics by the number of datasets, and the
number of related and duplicated pairs per sample.

Table 2: A description of the OpenML samples collected
Sample Datasets Topics Top Topics Rel(D1,D2) Dup(D1,D2)

Restricted-
topics

130 29 Diseases (45), Health (31), Cars (13),
Academic Courses (6), Sports (5)

1205 72

All-topics 213 79 computer software defects (17), citi-
zens census data (12), digit handwriting
recognition (12), Diseases (11)

570 128

Table 3: An example of pairs of datasets from the all-topics sample from OpenML
No. DID 1 Dataset 1 DID 2 Dataset 2 Topic Relationship

1 23 cmc 179 adult Census Data related

2 14 mfeat-fourier 1038 gina agnostic Digit Handwriting Recognition related

3 55 hepatitis 171 primary-tumor Disease related

4 189 kin8nm 308 puma32H Robot Motion Sensing duplicate

5 1514 micro-mass 1515 micro-mass Mass Spectrometry Data duplicate

Some of the pairs from the all-topics sample can be seen in Table 3. Dataset
with ID 23 should match all datasets falling under the topic of ‘census data’ like
dataset 179. Both datasets have data about citizens from a population census.
In rows 4 and 5 we can see examples of duplicated datasets, which have highly
intersecting data in their attributes. Duplicate pairs in row 4 have the same
number of instances, but described with different number of attributes, which
are overlapping. The duplicate pairs in row 5 have identical number of attributes,
yet, the attributes are transformed using pre-processing techniques and there are
different number of instances between both datasets, so in essence the second
dataset is a transformed and cleaned version of the first. We aim to detect such
kind of scenarios using our DS-Prox approach.

5.2 Experimental Setup

In order to evaluate our approach, we create an experimental setup where we
have two sets of datasets for each experiment: 1. Training set and 2. Test set. The

2 https://github.com/AymanUPC/datasets proximity openml
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training set is used in the supervised learning phase to create the classification
models. The classification models are then evaluated using the test set. We use
the restricted-topics sample as a training set, and we use both the restricted-
topics and the all-topics samples in the scoring phase as test sets to evaluate our
approach. We describe how we used those samples to create the training and
test sets within our experiments for the two scenarios from Section 2:

– Scenario (a) from Section 2: We evaluate our approach by using the restricted-
topics sample as the training set and the all-topics sample as the test set.
In this case the testing set is an independent collection of datasets. We
evaluate both of the 1-to-1 matching and cluster matching approaches for
Rel(D1, D2). We also evaluate the 1-to-1 matching with Dup(D1, D2).

– Scenario (b) from Section 2: We evaluate our approach using a leave-one-
out (LOO) variant evaluation method and the restricted-topics sample. Here
we remove a dataset and all its pairs from the original training set and we
use those pairs for evaluation of the output classifiers as a separate test set.
We also remove all duplicate pairs of this dataset from the training set to
guarantee independence between the training and evaluation environments.
We repeat this for every dataset in the input training set. We use the 1-to-1
matching approach in our evaluation.

To execute our experiments, we profile the datasets to extract their meta-
features. We use the training set of annotated datasets with the WEKA3 tool to
create the classification models using different supervised techniques: Bayesian
(Bayesian Network with K2 search, Näıve Bayes) , Regression (LogitBoost) ,
Support Vector Machines (Sequential Minimal Optimization) , and Deci-
sion Trees (Random Forest). We also use Ensemble Learners [7]: AdaBoost
(with Decision Stump classifier), Classification Via Regression (with M5 Tree
classifier), and Random Subspace (with Regression Tree classifier). We tested
different techniques because it was suggested by [7] that some individual tech-
niques can outperform the ensemble learners in classification problems. We eval-
uate the classifiers with 10 different cut-off thresholds for ‘crel’ and ‘cdup’ from
Equations (2) and (3), in order to cover a wide range of values. We benchmark
the techniques against the decision table technique [9] which simply assigns the
majority class based on matching the features to a table of learned examples.

5.3 Results

We evaluate the effectiveness of our approach using the recall, precision, and
efficiency-gain measurements, as described in Equations (4),(5) and (6) respec-
tively. Here, TP means true-positives which are the pairs of datasets correctly
classified by the classifier. FN are false negatives, FP are false-positives, TN are
true-negatives, and N indicates the total number of possible pairs of datasets.
The efficiency gain measures the amount of reduction in work required, in terms
of number of pairs of datasets eliminated by the classifier.

3 https://weka.wikispaces.com/Use+WEKA+in+your+Java+code
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recall =
TP

TP + FN
(4) precision =

TP

TP + FP
(5) efficiency − gain =

TN + FN

N
(6)

We change the cut-off thresholds, and we aim to maximize this as much as
possible while maintaining the highest recall possible. The effectiveness of our
approach is evaluated by recall and precision. By applying our approach with
the different scenarios and relationships, we conduct 4 sets of experiments as in
Table 4. The results are depicted in the graphs in Fig. 4.

The measures shown in the graphs are all averages from all datasets involved
in the test sets for a specific data mining technique and a certain cut-off threshold
for the proximity score (darker points have higher cut-off values). The common
measure for all graphs, which is the recall plotted on the y-axis, is highlighted
by having some of its main values labelled on each graph. Graphs (a) and (b) are
the same graphs as (c) and (d) respectively but for the 1-to-1 matching approach
applied with the different scenarios. We select for the experiments certain target
results, which are minimum expected values for each measure. All area above
those values are shaded as follows: Min. recall: 0.75 for 1-to-1 matching &
0.9 for cluster matching, Min. efficiency gain: 0.33 for 1-to-1 matching &
0.25 for cluster matching, Min. precision: 0.25 for all approaches. This means
that we were targeting at least 75% recall rate for 1-to-1 matching and 90%
recall rate for the cluster based matching (which improves our previous results
in [2]). We aimed for at least 25% efficiency gains with the cluster matching
approach, which exceeds those achieved in [3]. However, we acknowledge that
their approach applied to instances-matching within the same dataset, not cross-
schema attribute-matching as in our case. For experiment 4 for Dup(D1, D2),
we aim for a min. recall of 0.9, min. efficiency gain of 0.75, and min. precision of
0.33. In real-world applications, the data scientist can choose different minimum
thresholds for each measure according to practical requirements.

5.4 Discussion

General trend. From the results depicted in Fig. 4, the optimum technique
and cut-off threshold is the one in the top-right quadrant of each graph, op-
timising both measures plotted. The recall-precision and recall-efficiency plots
follow the general trend expected which indicate the trade-off between both
measures in each plot, yet, more optimised solutions are possible for balancing
recall-efficiency, as seen by the classifiers performing in the top-right quadrant.
As the cut-off thresholds increase, there is a drop in recall against an increasing
efficiency gain. Still, the top mining techniques and thresholds can be used to
achieve high efficiency gain and recall. This is discussed for each property below.
As the precision rates are generally low, we conclude that our approach can only
be used as an early-pruning step, and should be followed by other more expensive
and more detailed matching steps. Yet, a good compromise can still achieve high
recall and efficiency gains; efficiency gains up to 0.5 for Rel and 0.8 for Dup. Such
efficiency gains can make an important difference for computationally-expensive
applications of holistic schema matching in the DL environment.
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Table 4: A description of the experiments conducted
Experiment Graphs in Fig.4 Matching Approach Scenario Relationship

1 row 1: (a) and (b) 1-To-1 (b) Rel(D1, D2)

2 row 2: (c) and (d) 1-To-1 (a) Rel(D1, D2)

3 row 3: (e) and (f) Cluster-based (a) Rel(D1, D2)

4 row 4: (g) and (h) 1-To-1 (a) Dup(D1, D2)
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Fig. 4: Recall-efficiency plots (left column) and recall-precision plots (right col-
umn) for experiments 1,2,3 and 4 in each row



13

Rel evaluation. The recall-efficiency plots indicated that it was possible to
achieve an optimum technique and threshold in the top-right quadrant, which
represent the compromise of not sharply losing recall with higher efficiency gain.
For example, from Fig. 4 (e) for experiment 3, using the AdaBoost technique
at a threshold of 0.5 can lead to 0.42 efficiency gains while still maintaining
0.95 recall. If a recall of 1.0 is required, then this can be achieved by the cut-off
threshold of 0.3 for the same technique, but only 0.13 efficiency gain is achieved.
The data scientist will have to decide if this efficiency gain is sufficient and
whether a recall rate of 100% is critical in their application, else, a 0.05 drop
in recall should be allowed to achieve much higher efficiency gain using the
techniques and thresholds in the top quadrant. For the 1-to-1 matching in Fig. 4
(c), we can achieve 0.75 recall and 0.35 efficiency gain. There is a drop in recall,
as would be expected, because the classifier has more challenges in matching
all possible ‘related’ datasets, while in the cluster matching approach, a single
match to a dataset in a cluster acts like a pivot which results in matching all
the required related datasets in the same cluster. The cluster-matching approach
shows an improved performance over the 1-to-1 matching approach, therefore it
is recommended to use DS-Prox with the clustering-based approach.

Dup evaluation. For the results in Fig. 4 (g) and (h), the top performing
techniques were Random subspace and Random Forest at 0.2 cut-off thresholds.
This achieved about 0.97 recall and 0.76-0.8 efficiency gain. The baseline method
was not able to differentiate at different cut-off thresholds, and had best recall
of 0.65, except for the lowest cut-off of 0.1 where it achieved a jump to 0.94
recall. Since the recall was very high for our target efficiency gain using the
1-to-1 approach, the cluster-based approach did not yield any better results.

Baseline comparisons. Different techniques can yield better results than the
baseline for several of our experiments. There is not one single technique which
is best, yet, ensemble learners tend to perform better than their counterparts.
However, simple techniques like logistic regression and Näıve Bayes can still
have good performance as seen in the graph (e) top-right quadrant. The base-
line technique was never in the top-quadrant of graph (e) and many techniques
outperformed it. In the 1-to-1 matching in graphs (a) and (c), the baseline clas-
sifier was comparable with the other techniques. The top techniques include the
iterative optimiser in graph (c) with 0.75 recall and 0.35 efficiency gain. Nearly
1.0 recall was possible using the same classifier at a lower threshold, yet with only
0.09 efficiency gain. For experiment 1, Random Forest and Random Subspace
outperformed the baseline with 0.3 cut-off thresholds.

Generalizability. Although our approach is generic and does not apply to a
specific domain only, we note that we do not claim that the classifiers for one
type of data or of a certain domain will have the same guaranteed effectiveness
when applied in another setting. The approach might need to be adjusted and
retrained within other settings. Albeit, our results from experiments 2 and 3 show
a positive indicator of the possibility to train the model on specific domains,
independent of those used in the test set (or real-world setting), and still be
effective. We think that this needs further experimentation in the future.
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6 Conclusion and Future Work

This paper presented a novel approach of similarity search within a DL based
on a proximity mining technique for early-pruning in holistic dataset schema
matching and deduplication applications. The approach uses supervised machine
learning techniques based on meta-features describing semi-structured datasets.
Experiments on a real-life DL demonstrate the effectiveness in achieving high
recall rates and efficiency gains. Proposed techniques support data governance
in the DL by identifying relationships between datasets. The drawback of our
approach, however, is that it needs some manual effort to annotate training
examples for the classifiers. In the future, we will test the generalizability of ap-
plying the same classifier to different data sources. We plan to experiment with
more detailed meta-features which might lead to improved results. We will also
test our approach on other kinds of semi-structured data (like RDF or XML).
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1. Abelló, A.: Big Data Design. In: Proceedings of ACM DOLAP. pp. 35–38 (2015)
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