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Abstract

Context: Big Data systems are a class of software systems that ingest, store,
process and serve massive amounts of heterogeneous data, from multiple sources.
Despite their undisputed impact in current society, their engineering is still in
its infancy and companies find it difficult to adopt them due to their inherent
complexity. Existing attempts to provide architectural guidelines for their engi-
neering fail to take into account important Big Data characteristics, such as the
management, evolution and quality of the data.
Objective: In this paper, we follow software engineering principles to refine the
λ-architecture, a reference model for Big Data systems, and use it as seed to
create Bolster, a software reference architecture (SRA) for semantic-aware Big
Data systems.
Method: By including a new layer into the λ-architecture, the Semantic Layer,
Bolster is capable of handling the most representative Big Data characteristics
(i.e., Volume, Velocity, Variety, Variability and Veracity).
Results: We present the succesful implementation of Bolster in three industrial
projects, involving five organizations. The validation results show high level of
agreement among practitioners from all organizations with respect to standard
quality factors.
Conclusion: As an SRA, Bolster allows organizations to design concrete ar-
chitectures tailored to their specific needs. A distinguishing feature is that it
provides semantic-awareness in Big Data Systems. These are Big Data sys-
tem implementations that have components to simplify data definition and
exploitation. In particular, they leverage metadata (i.e., data describing data)
to enable (partial) automation of data exploitation and to aid the user in their
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decision making processes. This simplification supports the differentiation of
responsibilities into cohesive roles enhancing data governance.

Keywords: Big Data, Software Reference Architecture, Semantic-Aware, Data
Management, Data Analysis

1. Introduction1

Major Big Data players, such as Google or Amazon, have developed large2

Big Data systems that align their business goals with complex data management3

and analysis. These companies exemplify an emerging paradigm shift towards4

data-driven organizations, where data are turned into valuable knowledge that5

becomes a key asset for their business. In spite of the inherent complexity of6

these systems, software engineering methods are still not widely adopted in their7

construction (Gorton and Klein, 2015). Instead, they are currently developed8

as ad-hoc, complex architectural solutions that blend together several software9

components (usually coming from open-source projects) according to the system10

requirements.11

An example is the Hadoop ecosystem. In Hadoop, lots of specialized Apache12

projects co-exist and it is up to Big Data system architects to select and orches-13

trate some of them to produce the desired result. This scenario, typical from14

immature technologies, raises high-entry barriers for non-expert players who15

struggle to deploy their own solutions overwhelmed by the amount of available16

and overlapping components. Furthermore, the complexity of the solutions17

currently produced, requires an extremely high degree of specialization. The18

system end-user needs to be what is nowadays called a “data scientist”, a data19

analysis expert proficient in managing data stored in distributed systems to20

accommodate them to his/her analysis tasks. Thus, s/he needs to master two21

profiles that are clearly differentiated in traditional Business Intelligence (BI)22

settings: the data steward and the data analyst, the former responsible of data23

management and the latter of data analysis. Such combined profile is rare and24

subsequently entails an increment of costs and knowledge lock-in.25

Since the current practice of ad-hoc design when implementing Big Data26

systems is hence undesirable, improved software engineering approaches special-27

ized for Big Data systems are required. In this paper, we explore the notion of28

Software Reference Architecture (SRA), in order to contribute towards this goal29

by presenting Bolster, a SRA for Big Data systems.30

SRAs are generic architectures for a class of software systems (Angelov et al.,31

2012). They are used as a foundation to derive software architectures adapted to32

the requirements of a particular organizational context. Therefore, they open the33

door to effective and efficient production of complex systems. Furthermore, in an34

emergent class of systems (such as Big Data systems), they make it possible to35

synthesize in a systematic way a consolidated solution from available knowledge.36

As a matter of fact, the detailed design of such a complex architecture has37

already been called as a major Big Data software engineering research challenge38
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(Madhavji et al., 2015; Esteban, 2016). Well-known examples of SRAs include the1

successful AUTOSAR SRA (Martínez-Fernández et al., 2015) for the automotive2

industry, the Internet of Things Architecture (IoT-A) Weyrich and Ebert (2016),3

a SRA for web browsers Grosskurth and Godfrey (2005) and the NIST Cloud4

Computing Reference Architecture (Liu et al., 2012).5

As an SRA, Bolster paves the road to the prescriptive development of software6

architectures that lie at the heart of every new Big Data system. Using Bolster,7

the work of the software architect is not to produce a new architecture from a8

set of independent components that need to be assembled. Instead, the software9

architect knows beforehand what type of components are needed and how they10

are interconnected. Therefore, his/her main responsibility is the selection of11

technologies for those components given the concrete requirements and the12

goals of the organization. Bolster is a step towards the homogeneization and13

definition of a Big Data Management System (BDMS), as done in the past14

for Database Management Systems (DBMS) (Garcia-Molina et al., 2009) and15

Distributed Database Management Systems (DDBMS) (Özsu and Valduriez,16

2011). A distinguishing feature of Bolster is that it provides an SRA for semantic-17

aware Big Data Systems. These are Big Data system implementations that have18

components to simplify data definition and data exploitation. In particular,19

such type of systems leverage on metadata (i.e., data describing data) to enable20

(partial) automation of data exploitation and to aid the user in their decision21

making processes. This definition supports the differentiation of responsibilities22

into cohesive roles, the data steward and the data analyst, enhancing data23

governance.24

Contributions. The main contributions of this paper are as follows:25

• Taking as building blocks the five “V’s” that define Big Data systems (see26

Section 2), we define the set of functional requirements sought in each to27

realize a semantic-aware Big Data architecture. Such requirements will28

further drive the design of Bolster.29

• Aiming to study the related work on Big Data architectures, we perform a30

lightweight Systematic Literature Review. Its main outcome consists on31

the division of 21 works into two great families of Big Data architectures.32

• We present Bolster, an SRA for semantic-aware Big Data systems. Com-33

bining principles from the two identified families, it succeeds on satisfying34

all the posed Big Data requirements. Bolster relies on the systematic35

use of semantic annotations to govern its data lifecycle, overcoming the36

shortcomings present in the studied architectures.37

• We propose a framework to simplify the instantiation of Bolster to different38

Big Data ecosystems. For the sake of this paper, we precisely focus in39

the components of the Apache Hadoop and Amazon Web Services (AWS)40

ecosystems.41

3



• We detail the deployment of Bolster in three different industrial scenarios,1

showcasing how it adapts to the specific requirements posed. Furthermore,2

we provide the results of its validation after interviewing practitioners in3

such organizations.4

Outline. The paper is structured as follows. Section 2 introduces the Big5

Data dimensions and requirements sought. Section 3 presents the Systematic6

Literature Review. Sections 4, 5 and 6 detail the elements that compose Bolster,7

an exemplar case study implementing it and the proposed instantiation method8

respectively. Further, Sections 7 report the industrial deployments and validation.9

Finally, Section 8 wraps up the main conclusions derived from this work.10

2. Big Data Definition and Dimensions11

Big Data is a natural evolution of BI, and inherits its ultimate goal of12

transforming raw data into valuable knowledge. Nevertheless, traditional BI13

architectures, whose de-facto architectural standard is the Data Warehouse14

(DW), cannot be reused in Big Data settings. Indeed, the so-popular characteri-15

zation of Big Data in terms of the three “V’s (Volume, Velocity and Variety)”16

(Jagadish et al., 2014), refers to the inability of DW architectures, which typically17

rely on relational databases, to deal and adapt to such large, rapidly arriving18

and heterogeneous amounts of data. To overcome such limitations, Big Data19

architectures rely on NOSQL (Not Only SQL), co-relational database systems20

where the core data structure is not the relation (Meijer and Bierman, 2011), as21

their building blocks. Such systems propose new solutions to address the three22

V’s by (i) distributing data and processing in a cluster (typically of commod-23

ity machines) and (ii) by introducing alternative data models. Most NOSQL24

systems distribute data (i.e., fragment and replicate it) in order to parallelize25

its processing while exploiting the data locality principle. Ideally, yielding a26

close-to-linear scale-up and speed-up (Özsu and Valduriez, 2011). As enunciated27

by the CAP theorem (Brewer, 2000), distributed NOSQL systems must relax the28

well-known ACID (Atomicity, Consistency, Isolation, Durability) set of properties29

and the traditional concept of transaction to cope with large-scale distributed30

processing. As result, data consistency may be compromised but it enables the31

creation of fault-tolerant systems able to parallelize complex and time-consuming32

data processing tasks. Orthogonally, NOSQL systems also focus on new data33

models to reduce the impedance mismatch (Gray et al., 2005). Graph, key-value34

or document-based modeling provide the needed flexibility to accommodate35

dynamic data evolution and overcome the traditional staticity of relational DWs.36

Such flexibility is many times acknowledged by referring to such systems as37

schemaless databases. These two premises entailed a complete rethought of38

the internal structures as well as the means to couple data analytics on top of39

such systems. Consequently, it also gave rise to the Small and Big Analytics40

concepts (Stonebraker, 2012), which refer to performing traditional OLAP/-41

Query&Reporting to gain quick insight into the data sets by means of descriptive42
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analytics (i.e., Small Analytics) and Data Mining/Machine Learning to enable1

predictive analytics (i.e., Big Analytics) on Big Data systems, respectively.2

In the last years, researchers and practitioners have widely extended the3

three “V’s” definition of Big Data as new challenges appear. Among all existing4

definitions of Big Data, we claim that the real nature of Big Data can be5

covered by five of those “V’s”, namely: (a) Volume, (b) Velocity, (c) Variety,6

(d) Variability and (e) Veracity. Note that, in contrast to other works, we do7

not consider Value. Considering that any decision support system (DSS) is the8

result of a tightly coupled collaboration between business and IT (García et al.,9

2016), Value falls into the business side while the aforementioned dimensions10

focus on the IT side. In the rest of this paper we refer to the above-mentioned11

“V’s” also as Big Data dimensions.12

In this section, we provide insights on each dimension as well as a list of13

linked requirements that we consider a Big Data architecture should fulfill. Such14

requirements were obtained in two ways: firstly inspired by reviewing related15

literature on Big Data requirements (Gani et al., 2016; Agrawal et al., 2011;16

Russom, 2011; Fox and Chang, 2015; Chen and Zhang, 2014); secondly they17

were validated and refined by informally discussing with the stakeholders from18

several industrial Big Data projects (see Section 7) and obtaining their feedback.19

Finally, a summary of devised requirements for each Big Data dimension is20

depicted in Table 1. Note that such list does not aim to provide an exhaustive21

set of requirements for Big Data architectures, but a high-level baseline on the22

main requirements any Big Data architecture should achieve to support each23

dimension.24

2.1. Volume25

Big Data has a tight connection with Volume, which refers to the large26

amount of digital information produced and stored in these systems, nowadays27

shifting from terabytes to petabytes (R1.1). The most widespread solution for28

Volume is data distribution and parallel processing, typically using cloud-based29

technologies. Descriptive analysis (Sharda et al., 2013) (R1.2), such as reporting30

and OLAP, has shown to naturally adapt to distributed data management31

solutions. However, predictive and prescriptive analysis (R1.3) show higher-32

entry barriers to fit into such distributed solutions (Tsai et al., 2015). Classically,33

data analysts would dump a fragment of the DW in order to run statistical34

methods in specialized software, (e.g., R or SAS) (Ordonez, 2010). However, this35

is clearly unfeasible in the presence of Volume, and thus typical predictive and36

prescriptive analysis methods must be rethought to run within the distributed37

infrastructure, exploiting the data locality principle (Özsu and Valduriez, 2011).38

2.2. Velocity39

Velocity refers to the pace at which data are generated, ingested (i.e., dealt40

with the arrival of), and processed, usually in the range of milliseconds to seconds.41

This gave rise to the concept of data stream (Babcock et al., 2002) and creates42

two main challenges. First, data stream ingestion, which relies on a sliding43
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window buffering model to smooth arrival irregularities (R2.1). Second, data1

stream processing, which relies on linear or sublinear algorithms to provide near2

real-time analysis (R2.2).3

4 2.3. Variety
5 Variety deals with the heterogenity of data formats, paying special attention
6 to semi-structured and unstructured external data (e.g., text from social networks,
7 JSON/XML-formatted scrapped data, Internet of Things sensors, etc.) (R3.1).
8 Aligned with it, the novel concept of Data Lake has emerged (Terrizzano et al.,
9 2015), a massive repository of data in its original format. Unlike DW that

10 follows a schema on-write approach, Data Lake proposes to store data as they
11 are produced without any preprocessing until it is clear how they are going to
12 be analyzed (R3.2), following the load-first model-later principle. The rationale
13 behind a Data Lake is to store raw data and let the data analyst decide how
14 to cook them. However, the extreme flexibility provided by the Data Lake is
15 also its biggest flaw. The lack of schema prevents the system from knowing
16 what is exactly stored and this burden is left on the data analyst shoulders
17 (R3.3). Since loading is not that much of a challenge compared to the data
18 transformations (data curation) to be done before exploiting the data, the Data
19 Lake approach has received lots of criticism and the uncontrolled dump of data
20 in the Data Lake is referred to as Data Swamp (Stonebraker, 2014).

2.4. Variability21

Variability is concerned with the evolving nature of ingested data, and22

how the system copes with such changes for data integration and exchange.23

In the relational model, mechanisms to handle evolution of intension (R4.1)24

(i.e., schema-based), and extension (R4.2) (i.e., instance-based) are provided.25

However, achieving so in Big Data systems entails an additional challenge due26

to the schemaless nature of NOSQL databases. Moreover, during the lifecycle of27

a Big Data-based application, data sources may also vary (e.g., including a new28

social network or because of an outage in a sensor grid). Therefore, mechanisms29

to handle data source evolution should also be present in a Big Data architecture30

(R4.3).31

2.5. Veracity32

Veracity has a tight connection with data quality, achieved by means of data33

governance protocols. Data governance concerns the set of processes and decisions34

to be made in order to provide an effective management of the data assets (Khatri35

and Brown, 2010). This is usually achieved by means of best practices. These36

can either be defined at the organization level, depicting the business domain37

knowledge, or at a generic level by data governance initiatives (e.g., Six Sigma38

(Harry and Schroeder, 2005)). However, such large and heterogeneous amount39

of data present in Big Data systems begs for the adoption of an automated data40

governance protocol, which we believe should include, but might not be limited41

to, the following elements:42
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• Data provenance (R5.1), related to how any piece of data can be tracked to1

the sources to reproduce its computation for lineage analysis. This requires2

storing metadata for all performed transformations into a common data3

model for further study or exchange (e.g., the Open Provenance Model4

(Moreau et al., 2011)).5

• Measurement of data quality (R5.2), providing metrics such as accuracy,6

completeness, soundness and timeliness, among others (Batini et al., 2015).7

Tagging all data with such adornments prevents analysts from using low8

quality data that might lead to poor analysis outcomes (e.g., missing values9

for some data).10

• Data liveliness (R5.3), leveraging on conversational metadata (Terrizzano11

et al., 2015) which records when data are used and what is the outcome12

users experience from it. Contextual analysis techniques (Aufaure, 2013)13

can leverage such metadata in order to aid the user in future analytical14

tasks (e.g., query recommendation (Giacometti et al., 2008)).15

• Data cleaning (R5.4), comprising a set of techniques to enhance data16

quality like standardization, deduplication, error localization or schema17

matching. Usually such activities are part of the preprocessing phase,18

however they can be introduced along the complete lifecycle. The degree19

of automation obtained here will vary depending on the required user20

interaction, for instance any entity resolution or profiling activity will infer21

better if user aided.22

Including the aforementioned automated data governance elements into an23

architecture is a challenge, as they should not be intrusive. First, they should24

be transparent to developers and run as under the hood processes. Second, they25

should not overburden the overall system performance (e.g., (Interlandi et al.,26

2015) shows how automatic data provenance support entails a 30% overhead on27

performance).28

2.6. Summary29

The discussion above shows that current BI architectures (i.e., relying on30

RDMS), cannot be reused in Big Data scenarios. Such modern DSS must adopt31

NOSQL tools to overcome the issues posed by Volume, Velocity and Variety.32

However, as discussed for Variability and Veracity, NOSQL does not satisfy key33

requirements that should be present in a mature DSS. Thus, Bolster is designed34

to completely satisfy the aforementioned set of requirements, summarized in35

Table 1.36

3. Related Work37

In this section, we follow the principles and guidelines of Systematic Literature38

Reviews (SLR) as established in (Kitchenham and Charters, 2007). The purpose39

of this review is to systematically analyze the current landscape of Big Data40
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Requirement
1. Volume
R1.1 The BDA shall provide scalable storage of massive data sets.
R1.2 The BDA shall be capable of supporting descriptive analytics.
R1.3 The BDA shall be capable of supporting predictive and prescrip-

tive analytics.
2. Velocity
R2.1 The BDA shall be capable of ingesting multiple, continuous,

rapid, time varying data streams.
R2.2 The BDA shall be capable of processing data in a (near) real-time

manner.
3. Variety
R3.1 The BDA shall support ingestion of raw data (structured, semi-

structured and unstructured).
R3.2 The BDA shall support storage of raw data (structured, semi-

structured and unstructured).
R3.3 The BDA shall provide mechanisms to handle machine-readable

schemas for all present data.
4. Variability
R4.1 The BDA shall provide adaptation mechanisms to schema evolu-

tion.
R4.2 The BDA shall provide adaptation mechanisms to data evolution.
R4.3 The BDA shall provide mechanisms for automatic inclusion of

new data sources.
5. Veracity
R5.1 The BDA shall provide mechanisms for data provenance.
R5.2 The BDA shall provide mechanisms to measure data quality.
R5.3 The BDA shall provide mechanisms for tracing data liveliness.
R5.4 The BDA shall provide mechanisms for managing data cleaning.

Table 1: Requirements for a Big Data Architecture (BDA)

architectures, with the goal to identify how they meet the devised requirements,1

and thus aid in the design of an SRA. Nonetheless, in this paper we do not2

aim to perform an exhaustive review, but to depict, in a systematic manner, an3

overview on the landscape of Big Data architectures. To this end, we perform a4

lightweight SLR, where we focus on high quality works and evaluate them with5

respect to the previously devised requirements.6
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3.1. Selection of Papers1

The search was ranged from 2010 to 2016, as the first works on Big Data2

architectures appeared by then. The search engine selected was Scopus1, as3

it indexes all journals with a JCR impact factor, as well as the most relevant4

conferences based on the CORE index2. We have searched papers with title,5

abstract or keywords matching the terms “big data” AND “architecture”. The6

list was further refined by selecting papers only in the “Computer Science”7

and “Engineering” subject areas and only documents in English. Finally, only8

conference papers, articles, book chapters and books were selected.9

By applying the search protocol we obtained 1681 papers covering the search10

criteria. After a filter by title, 116 papers were kept. We further applied a11

filter by abstract in order to specifically remove works describing middlewares12

as part of a Big Data architecture (e.g., distributed storage or data stream13

management systems). This phase resulted in 44 selected papers. Finally, after14

reading them, sixteen papers were considered relevant to be included in this15

section. Furthermore, five non-indexed works considered grey literature were16

additionally added to the list, as considered relevant to depict the state of the17

practice in industry. The process was performed by our research team, and18

in case of contradictions a meeting was organized in order to reach consensus.19

Details of the search and filtering process are available at (Nadal et al., 2016).20

21 3.2. Analysis
22 In the following subsections, we analyze to which extent the selected Big Data
23 architectures fulfill the requirements devised in Section 2. Each architecture is
24 evaluated by checking whether it satisfies a given requirement (3) or it does not
25 (7). Results are summarized in Table 2, where we make the distinction between
26 custom architectures and SRAs. For the sake of readability, references to studied
27 papers have been substituted for their position in Table 2.

3.2.1. Requirements on Volume28

Most architectures are capable of dealing with storage of massive data sets29

(R1.1). However, we claim those relying on Semantic Web principles (i.e. storing30

RDF data), [A1,A8] cannot deal with such requirement as they are inherently31

limited by the storage capabilities of triplestores. Great effort is put on improving32

such capabilities (Zeng et al., 2013), however no mature scalable solution is33

available in the W3C recommendations3. There is an exception to the previous34

discussion, as SHMR [A14] stores semantic data on HBase. However, this impacts35

its analytical capabilities with respect to those offered by triplestores. Oppositely,36

Liquid [A9] is the only case where no data are stored, offering only real-time37

support and thus not addressing the Volume dimension of Big Data. Regarding38

analytical capabilities, most architectures satisfy the descriptive level (R1.2) via39

1http://www.scopus.com
2http://www.core.edu.au/conference-portal
3https://www.w3.org/2001/sw/wiki/Category:Triple_Store
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Custom Architectures Volume Velocity Variety Variability Veracity
R1.1 R1.2 R1.3 R2.1 R2.2 R3.1 R3.2 R3.3 R4.1 R4.2 R4.3 R5.1 R5.2 R5.3 R5.4

A1 CQELS (Phuoc et al., 2012) 7 3 7 3 3 7 7 3 3 7 3 7 7 7 7

A2 AllJoyn Lambda (Villari et al., 2014) 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7

A3 CloudMan (Qanbari et al., 2014) 3 3 3 7 7 3 3 7 7 7 7 7 7 7 7

A4 AsterixDB (Alsubaiee et al., 2014) 3 3 7 3 7 3 7 3 3 3 3 3 7 7 7

A5 M3Data (Ionescu et al., 2014) 3 3 3 3 7 3 7 3 7 7 7 7 7 7 3

A6 (Twardowski and Ryzko, 2014) 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7

A7 λ-arch. (Marz and Warren, 2015) 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7

A8 Solid (Martínez-Prieto et al., 2015) 7 3 7 3 3 7 7 3 7 7 7 7 7 7 7

A9 Liquid (Fernandez et al., 2015) 7 7 7 3 3 3 3 7 7 7 7 3 7 7 7

A10 RADStack (Yang et al., 2015) 3 3 7 3 3 3 7 3 7 7 7 7 7 7 3

A11 (Kroß et al., 2015) 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7

A12 HaoLap (Song et al., 2015) 3 3 7 7 7 3 7 3 7 7 7 7 7 7 7

A13 (Wang et al., 2015) 3 3 3 7 7 3 3 7 7 7 7 3 3 7 3

A14 SHMR (Guo et al., 2015) 3 3 7 7 7 3 7 3 7 7 7 7 7 7 7

A15 Tengu (Vanhove et al., 2015) 3 3 3 3 3 3 7 3 7 7 3 7 7 7 7

A16 (Xie et al., 2015) 3 3 7 7 7 7 7 3 7 7 7 3 7 3 7

A17 (e Sá et al., 2015) 3 3 3 7 7 3 7 3 7 7 7 7 7 7 3

A18 D-Ocean (Zhuang et al., 2016) 3 3 7 7 7 3 3 3 3 7 7 7 7 7 7

Software Reference Architectures Volume Velocity Variety Variability Veracity
R1.1 R1.2 R1.3 R2.1 R2.2 R3.1 R3.2 R3.3 R4.1 R4.2 R4.3 R5.1 R5.2 R5.3 R5.4

A19 NIST (Grady et al., 2014) 3 3 3 7 7 7 7 3 7 7 3 7 3 3 3

A20 (Pääkkönen and Pakkala, 2015) 3 3 3 3 3 3 3 7 7 7 7 7 7 7 3

A21 (Geerdink, 2015) 3 3 3 7 7 3 3 7 7 7 7 7 7 7 7

Bolster 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Table 2: Fulfillment of each requirement in the related work
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SQL-like [A4,A10,A11,A18] or SPARQL [A1,A8] languages. Furthermore, those1

offering MapReduce or similar interfaces [A2,A3,A6,A13,A14,A15,A20] meet the2

predictive and prescriptive level (R1.3). HaoLap [A12] and SHMR [A14] are3

the only works where MapReduce is narrowed to descriptive queries.4

3.2.2. Requirements on Velocity5

Several architectures are capable of ingesting data streams (R2.1), ei-6

ther by dividing the architecture in specialized Batch and Real-time Layers7

[A2,A6,A7,A10,A11,A15,A20], by providing specific channels like data feeds [A4]8

or by solely considering streams as input type [A1,A8,A9]. Regarding processing9

of such data streams (R2.2), all architectures dealing with its ingestion can addi-10

tionally perform processing, with the exception of AsterixDB [A4] and M3Data11

[A5], where data streams are stored prior to querying them.12

13 3.2.3. Requirements on Variety
14 Variety is handled in diverse ways in the studied architectures. Concerning
15 ingestion of raw data (R3.1), few proposals cannot deal with such requirement,
16 either because they are narrowed to ingest specific data formats [A8,A16], or
17 because specific wrappers need to be defined on the sources [A1,A19]. Concerning
18 storage of raw data (R3.2), many architectures define views to merge and
19 homogenize different formats into a common one (including those that do it
20 at ingestion time) [A4,A5,A10,A12,A14,A15,A17]. On the other hand, the λ-
21 architecture and some of the akin architectures [A2,A6,A7,A11] and [A20] are the
22 only ones natively storing raw data. In schema management (R3.3), all those
23 architectures that favored ingesting and storing raw data cannot deal with such
24 requirement, as no additional mechanism is present to handle it. Oppositely, the
25 ones defining unified views are able to manage them, likewise relational database
26 schemas. There is an exception to the previous discussion, D-Ocean [A18], which
27 defines a data model for unstructured data, hence favouring all requirements.

3.2.4. Requirements on Variability28

Requirements on Variability are poorly covered among the reviewed works.29

Schema evolution is only handled by CQELS [A1], AsterixDB [A4] and D-Ocean30

[A18]. CQELS uses specific wrapper configuration files which via a user interface31

map new elements to ontology concepts. On the other hand, AsterixDB parses32

schemas at runtime. Finally, D-Ocean’s unstructured data model embraces the33

addition of new features. Furthermore, only AsterixDB considers data evolution34

(R4.2) using adaptive query processing techniques. With respect to automatic35

inclusion of data sources (R4.3), CQELS has a service allowing wrappers to36

be plugged at runtime. Moreover, other architectures provide such feature as37

AsterixDB with the definition of external tables at runtime, [A19] providing a38

discovery channel or Tengu [A15] by means of an Enterprise Service Bus.39

3.2.5. Requirements on Veracity40

Few of the studied architectures satisfy requirements on Veracity. All works41

covering data provenance (R5.1) log the operations applied on derived data in42
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order to be reproduced later. On the other hand, measurement of data quality1

(R5.2) is only found in [A19] and [A13], the former by storing such metadata as2

part of its Big Data lifecycle and the latter by tracking data quality rules that3

validate the stored data. Regarding data liveliness (R5.3), [A16] tracks it in order4

to boost reusage of results computed by other users. Alternatively, [A19] as part5

of its Preservation Management activity applies aging strategies, however it is6

limited to its data retention policy. Finally, with respect to data cleaning (R5.4)7

we see two different architectures. In [A5,A13,A17,A19] cleansing processes8

are triggered as part of the data integration phase (i.e. before being stored).9

Differently, [A10,A20] execute such processes on unprocessed raw data before10

serving them to the user.11

3.3. Discussion12

Besides new technological proposals, we devise two main families of works in13

the Big Data architectures landscape. On the one hand, those presented as an14

evolution of the λ-architecture [A7] after refining it [A2,A6,A10,A11,A15]; and,15

on the other hand, those positioned on the Semantic Web principles [A1,A8].16

Some architectures aim to be of general-purpose, while others are tailored to17

specific domains, such as: multimedia data [A14], cloud manufacturing [A3],18

scientific testing [A15], Internet of Things [A2] or healthcare [A13].19

It can be concluded from Table 2 that requirements related to Volume,20

Velocity and Variety are more fulfilled with respect to those related to Variability21

and Veracity. This is due to the fact, to some extent, that Volume, Velocity and22

partly Variety (i.e., R3.1, R3.2) are core functionalities in NOSQL systems,23

and thus all architectures adopting them benefit from that. Furthermore, such24

dimensions have a clear impact on the performance of the system. Most of the25

architectures based on the λ-architecture naturally fulfil them for such reason.26

On the other hand, partly Variety (i.e., R3.3), Variability and Veracity are27

dimensions that need to be addressed by respectively considering evolution and28

data governance as first-class citizens. However, this fact has an impact on the29

architecture as a whole, and not on individual components, hence causing such30

low fulfiment across the studied works.31

4. Bolster: A Semantic Extension for the λ-Architecture32

In this section, we present Bolster, an SRA solution for Big Data systems33

that deals with the 5 “Vs”. Briefly, Bolster adopts the best out of the two34

families of Big Data architectures (i.e., λ-architecture and those relying on35

Semantic Web principles). Building on top of the λ-architecture, it ensures the36

fulfillment of requirements related to Volume and Velocity. However, in contrast37

to other approaches, it is capable of completely handling Variety, Variability38

and Veracity leveraging on Semantic Web technologies to represent machine-39

readable metadata, oppositely to the studied Semantic Web-based architectures40

representing data. We first present the methodology used to design the SRA.41

Next, we present the conceptual view of the SRA and describe its components.42
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4.1. The design of Bolster1

Bolster has been designed following the framework for the design of empirically-2

grounded reference architectures (Galster and Avgeriou, 2011), which consists of3

a six-step process described as follows:4

Step 1: Decision on type of SRA. The first step consists on deciding the type of5

SRA to be designed, which is driven by its purpose. Using the characterization6

from (Angelov et al., 2012), we conclude that Bolster should be of type 5 (a7

preliminary, facilitation architecture designed to be implemented in multiple8

organizations). This entails that the purpose of its design is to facilitate the9

design of Big Data systems, in multiple organizations and performed by a10

research-oriented team.11

Step 2: Selection of design strategy. There are two strategies to design SRAs,12

from scratch or from existing architectures. We will design Bolster based on the13

two families of Big Data architectures identified in Section 3.14

Step 3: Empirical acquisition of data. In this case, we leverage on the Big Data15

dimensions (the five “V’s”) discussed in Section 2 and the requirements defined16

for each of them. Such requirements, together with the design strategy, will17

drive the design of Bolster.18

Step 4: Construction of SRA. The rationale and construction of Bolster is19

depicted in Section 4.2, where a conceptual view is presented. A functional20

description of its components is later presented in Section 4.3, and a functional21

example in Section 5.22

Step 5: Enabling SRA with variability. The goal of enabling an SRA with23

variability is to facilitate its instantiation towards different use cases. To this24

end, we provide the annotated SRA using a conceptual view as well as the25

description of components, which can be selectively instantiated. Later, in26

Section 6, we present methods for its instantiation.27

Step 6: Evaluation of the SRA. The last step of the design of an SRA is its28

evaluation. Here, and leveraging on the industrial projects where Bolster has29

been adopted, in Section 7.2, we present the results of its validation.30

4.2. Adding Semantics to the λ-Architecture31

This is the most widespread framework for scalable and fault-tolerant pro-32

cessing of Big Data. Its goal is to enable efficient real-time data management33

and analysis by being divided into three layers (Figure 1).34

• The Batch Layer stores a copy of the master data set in raw format as data35

are ingested. This layer also pre-computes Batch Views that are provided36

to the Serving Layer.37
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Figure 1: λ-architecture

• The Speed Layer ingests and processes real-time data in form of streams.1

Results are then stored, indexed and published in Real-time Views.2

• The Serving Layer, similarly as the Speed Layer, also stores, indexes and3

publishes data resulting from the Batch Layer processing in Batch Views.4

The λ-architecture succeeds at Volume requirements, as tons of heterogeneous5

raw data can be stored in the master data set, while fast querying through the6

Serving Layer. Velocity is also guaranteed thanks to the Speed Layer, since real-7

time views complement query results with real-time data. For these reasons, the8

λ-architecture was chosen as departing point for Bolster. Nevertheless, we identify9

two main drawbacks. First, as pointed out previously, it completely overlooks10

Variety, Variability and Veracity. Second, it suffers from a vague definition,11

hindering its instantiation. For example, the Batch Layer is a complex subsystem12

that needs to deal with data ingestion, storage and processing. However, as13

the λ-architecture does not define any further component of this layer, its14

instantiation still remains challenging. Bolster (Figure 2) addresses the two15

drawbacks identified in the λ-architecture:16

• Variety, Variability and Veracity are considered first-class citizens. With17

this purpose, Bolster includes the Semantic Layer where the Metadata18

Repository stores machine-readable semantic annotations, in an analogous19

purpose as of the relational DBMS catalog.20

• Inspired by the functional architecture of relational DBMSs, we refine the21

λ-architecture to facilitate its instantiation. These changes boil down to22

a precise definition of the components and their interconnections. We23

therefore introduce possible instantiations for each component by means24

of off-the-shell software or service.25

Finally, note that this SRA aims to broadly cover different Big Data use26

cases, however it can be tailored by enabling or disabling components according27

to each particular context. In the following subsections we describe each layer28

present in Bolster as well as their interconnections. In bold, we highlight the29
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Figure 2: Bolster SRA conceptual view

necessary functionalities they need to implement to cope with the respective1

requirements.2

4.3. Bolster Components3

In this subsection, we present, for each layer composing Bolster, the list of4

its components and functional description.5

4.3.1. Semantic Layer6

The Semantic Layer (depicted blue in Figure 2) contains the Metadata7

Management System (MDM), the cornerstone for a semantic-aware Big Data8

system. It is responsible of providing the other components with the necessary9

information to describe and model raw data, as well as keeping the footprint about10

data usage. With this purpose, the MDM contains all the metadata artifacts,11

represented by means of RDF ontologies leveraging the benefits provided by12

Semantic Web technologies, needed to deal with data governance and assist data13

exploitation. We list below the main artifacts and refer the interested reader14

to (Varga et al., 2014; Bilalli et al., 2016) for further details:15

1. Data analysts should work using their day-by-day vocabulary. With this16

purpose, the Domain Vocabulary contains the business concepts (e.g.,17

customer, order, lineitem) and their relationships (R5.1).18

2. In order to free data analysts from data management tasks and decouple19

this role from the data steward, each vocabulary term must be mapped to20

the system views. Thus, the MDM must be aware of the View Schemata21

(R3.3) and the mappings between the vocabulary and such schemata.22
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3. Data analysts tend to repeat the same data preparation steps prior to1

conducting their analysis. To enable reusability and a collaborative exploita-2

tion of the data, on the one hand, the MDM must store Pre-processing3

Domain Knowledge about data preparation rules (e.g., data cleaning,4

discretization, etc.) related to a certain domain (R5.4), and on the other5

hand descriptive statistics to assess data evolution (R4.2).6

4. To deal with automatic inclusion of new data sources (R4.3), each ingested7

element must be annotated with its schema information (R4.1). To this8

end, the Data Source Register tracks all input data sources together9

with the required information to parse them, the physical schema, and each10

schema element has to be linked to the attributes it populates, the logical11

schema (R3.3). Furthermore, for data provenance (R5.1), the Data12

Transformations Log has to keep track of the performed transformation13

steps to produce the views, the last processing step within the Big Data14

system.15

Populating these artifacts is a challenge. Some of them can be automatically16

populated and some others must be manually annotated. Nonetheless, all of17

these artifacts are essential to enable a centralized master metadata management18

and hence, fulfil the requirements related to Variety, Variability and Veracity.19

Analogously to database systems, data stewards are responsible of populating20

and maintaining such artifacts. That is why we claim for the need that the MDM21

provides a user friendly interface to aid such processes. Finally, note that most22

of the present architectural components must be able to interact with the MDM,23

hence it is essential that it provides language-agnostic interfaces. Moreover, such24

interfaces cannot pose performance bottlenecks, as doing so would highly impact25

in the overall performance of the system.26

4.3.2. Batch Layer27

This layer (depicted yellow in Figure 2) is in charge of storing and processing28

massive volumes of data. In short, we first encounter Batch Ingestion, responsible29

for periodically ingesting data from the batch sources, then the Data Lake,30

capable of managing large amounts of data. The last step is the Batch Processing31

component, which prepares, transforms and runs iterative algorithms over the32

data stored in the Data Lake to shape them accordingly to the analytical needs33

of the use-case at hand.34

Batch Ingestion. Batch sources are commonly big static raw data sets that35

require periodic synchronizations (R3.1). Examples of batch sources can be36

relational databases, structured files, etc. For this reason, we advocate for a37

multiple component instantiation, as required by the number of sources and type.38

These components need to know which data have already been moved to the Data39

Lake by means of Incremental Bulks Scheduling and Orchestration. The40

MDM then comes into play as it traces this information. Interaction between the41

ingestion components and the MDM occurs in a two-phase manner. First, they42
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learn which data are already stored in the Data Lake, to identify the according1

incremental bulk can be identified. Second, the MDM is enriched with specific2

information regarding the recently brought data (R5.3). Since Big Data systems3

are multi-source by nature, the ingestion components must be built to guarantee4

its adaptability in the presence of new sources (R4.3).5

Data Lake. This component is composed of a Massive Storage system (R1.1).6

Distributed file systems are naturally good candidates as they were born to7

hold large volumes of data in their source format (R3.2). One of their main8

drawbacks is that its read capabilities are only sequential and no complex9

querying is therefore feasible. Paradoxically, this turns out to be beneficial for10

the Batch Processing, as it exploits the power of cloud computing.11

Different file formats pursuing high performance capabilities are available,12

focusing on different types of workload (Munir et al., 2016). They are commonly13

classified as horizontal, vertical and hybrid, in an analogous fashion as row-14

oriented and column-oriented databases, respectively.15

Batch Processing. This component models and transforms the Data Lake’s files16

into Batch Views ready for the analytical use-cases. It is responsible to schedule17

and execute Batch Iterative Algorithms, such as sorting, searching, indexing18

(R1.2) or more complex algorithms such as PageRank, Bayesian classification19

or genetic algorithms (R1.3). The processing components, must be designed to20

maximize reusability by creating building blocks (from the domain-knowledge21

metadata artifacts) that can be reused in several views. Consequently, in order22

to track Batch Data Provenance, all performed transformations must be23

communicated to the MDM (R5.1).24

Batch processing is mostly represented by the MapReduce programming25

model. Its drawbacks appear twofold. On one hand, when processing huge26

amounts of batch data, several jobs may usually need to be chained so that27

more complex processing can be executed as a single one. On the other hand,28

intermediate results from Map to Reduce phases are physically stored in hard29

disk, completely detracting the Velocity (in terms of response time).30

Massive efforts are currently put on designing new solutions to overcome31

the issues posed by MapReduce. For instance, by natively including other more32

atomic relational algebra operations, connected by means of a directed acyclic33

graph; or by keeping intermediate results in main memory.34

4.3.3. Speed Layer35

The Speed Layer (depicted green in Figure 2) deals primarily with Velocity.36

Its input are continuous, unbounded streams of data with high timeliness and37

therefore require novel techniques to accommodate such arrival rate. Once38

ingested, data streams can be dispatched either to the Data Lake, in order to39

run historical queries or iterative algorithms, or to the Stream Processing engine,40

in charge of performing one-pass algorithms for real-time analysis.41
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Stream Ingestion. The Stream Ingestion component acts as a message queue1

for raw data streams that are pushed from the data sources (R3.1). Multiple2

sources can continuously push data streams (e.g., sensor or social network data),3

therefore such component must be able to cope with high throughput rates and4

scale according to the number of sources (R2.1). One of the key responsibilities5

is to enable the ingestion of all incoming data (i.e., adopt a No Event Loss6

policy). To this end, it relies on a distributed memory or disk-based storage7

buffer (i.e. event queue), where streams are temporarily stored.8

This component does not require any knowledge about the data or schema of9

incoming data streams, however, for each event, it must know its source and type,10

for further matching with the MDM. To assure fault-tolerance and durability of11

results in such a distributed environment, techniques such as write-ahead logging12

or the two-phase commit protocol are used, nevertheless that has a clear impact13

on the availability of data to next components.14

Dispatcher. The responsibilities of the Dispatcher are twofold. On the one hand,15

to ensure data quality, via MDM communication, it must register and validate16

that all ingested events follow the specified schema and rules for the event on17

hand (i.e., Schema Typechecking (R4.1, R5.2)). Error handling mechanisms18

must be triggered when an event is detected as invalid, and various mitigation19

plans can be applied. The simplest alternative is event rejection, however most20

conservative approaches like routing invalid events to the Data Lake for future21

reprocess can contribute to data integrity.22

On the other hand, the second responsibility of the Dispatcher is to perform23

Event Routing, either to be processed in a real-time manner (i.e., to the24

Stream Processing component), or in a batch manner (i.e., to the Data Lake)25

for delayed process. In contrast to the λ-architecture, which duplicates all input26

streams to the Batch Layer, here only those that will be used by the processing27

components will be dispatched if required. Moreover, before dispatching such28

events, different routing strategies can influence the decision on where data is29

shipped, for instance by means of evaluating QoS cost models or analyzing the30

system workload, as done in (Kroß et al., 2015). Other approaches like sampling31

or load shedding can be used here, to ensure that either real-time processing or32

Data Lake ingestion are correctly performed.33

Stream Processing. The Stream Processing component is responsible of per-34

forming One-Pass Algorithms over the stream of events. The presence of a35

summary is required as most of these algorithms leverage on in-memory stateful36

data structures (e.g., the Loosy Counting algorithm to compute heavy hitters,37

or HyperLogLog to compute distinct values). Such data structures can be lever-38

aged to maintain aggregates over a sliding window for a certain period of time.39

Different processing strategies can be adopted, being the most populars tuple-40

at-a-time and micro-batch processing, the former providing low latency while41

the latter providing high throughput (R2.2). Similarly as the Batch Processing,42

this component must communicate to the MDM all transformations applied to43
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populate Real-time Views in order to guarantee Stream Data Provenance1

(R5.1).2

3 4.3.4. Serving Layer
4 The Serving Layer (depicted red in Figure 2) holds transformed data ready
5 to be delivered to end-users (i.e. it acts as a set of database engines). Precisely,
6 it is composed by Batch and Real-time Views repositories. Different alternatives
7 exist when selecting each view engine, however as they impose a data model (e.g.,
8 relational or key-value), it is key to perform a goal-driven selection according to
9 end-user analytical requirements (Herrero et al., 2016). It is worth noting that

10 views can also be considered new sources, in case it is required to perform trans-
11 formations among multiple data models, resembling a feedback loop. Further,
12 the repository of Query Engines is the entry point for data analysts to achieve
13 their analytical task, querying the views and the Semantic Layer.

Batch Views. As in the λ-architecture, we seek Scalable and Fault-Tolerant14

Databases capable to provide Random Reads, achieved by indexing, and15

the execution of Aggregations and UDFs (user defined functions) over large16

stable data sets (R1.1). The λ-architecture advocates for recomputing Batch17

Views every time a new version is available, however we claim incremental18

approaches should be adopted to avoid unnecessary writes and reduce processing19

latency. A common example of Batch View is a DW, commonly implemented20

in relational or columnar engines. However databases implementing other data21

models such as graph, key-value or documents also can serve the purpose of22

Batch Views. Each view must provide a high-level query language, serving as23

interface with the Query Engine (e.g., SQL), or a specific wrapper on top of it24

providing such funcionalities.25

Real-time Views. As opposite to Batch Views, Real-time Views need to provide26

Low Latency Querying over dynamic and continuously changing data sets27

(R2.1). In order to achieve so, in-memory databases are currently the most28

suitable option, as they dismiss the high cost it entails to retrieve data from disk.29

Additionally, Real-Time views should support low cost of updating in order to30

maintain Sketches and Sliding Windows. Finally, similarly to Batch Views,31

Real-time Views must provide mechanisms to be queried, considering as well32

Continuous Query Languages.33

Query Engines. Query Engines, play a crucial role to enable efficiently querying34

the views in a friendly manner for the analytical task on hand. Data analysts35

query the system using the vocabulary terms and apply domain-knowledge rules36

on them (R1.2, R1.3). Thanks to the MDM artifacts, the system must internally37

perform the translation from Business Requirements to Database Queries38

over Batch and Real-time Views (R3.3), hence making data management tasks39

transparent to the end-user. Furthermore, the Query Engine must provide to40

the user the ability for Metadata Query and Exploration on what is stored41

in the MDM (R5.1, R5.2, R5.3).42
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4.3.5. Summary1

Table 3 summarizes for each component the fulfilled requirements discussed2

in Section 2.3

Component Volume Velocity Variety Variability Veracity
R1.1 R1.2 R1.3 R2.1 R2.2 R3.1 R3.2 R3.3 R4.1 R4.2 R4.3 R5.1 R5.2 R5.3 R5.4

Metadata Management System 3 3 3 3 3 3

Batch Ingestion 3 3 3

Data Lake 3 3

Batch Processing 3 3 3

Stream Ingestion 3 3

Dispatcher 3 3

Stream Processing 3 3

Batch Views 3

Real-time Views 3

Query Engines 3 3 3 3 3 3

Table 3: Bolster components and requirements fulfilled

5. Exemplar Use Case4

The goal of this section is to provide an exemplar use case to illustrate how5

Bolster would accommodate a Big Data management and analytics scenario.6

Precisely, we consider the online social network benchmark described in (Zhang7

et al., 2015). Such benchmark aims to provide insights on the stream of data8

provided by Twitter’s Streaming API, and is characterized by workloads in9

media, text, graph, activity and user analytics.10

11 5.1. Semantic Representation
12 Figure 3 depicts a high level excerpt of the content stored in the MDM. In
13 dark and light blue, the domain knowledge and business vocabulary respectively
14 which has been provided by the Domain Expert. In addition, the data steward
15 has, possibly in a semi-automatic manner (Nadal et al., 2017), registered a
16 new source (Twitter Stream API4) and provided mappings for all JSON fields
17 to the logical attributes (in red). For the sake of brevity, only the relevant
18 subgraph of the ontology is shown. Importantly, to meet the Linked Open Data
19 principles, this ontology should be further linked to other ontologies (e.g., the
20 Open Provenance Model (Moreau et al., 2011)).

5.2. Data Ingestion21

As raw JSON events are pushed to the Stream Ingestion component, they are22

temporary stored in the Event Queue. Once replicated, to guarantee durability23

and fault tolerance, they are made available to the Dispatcher, which is aware on24

how to retrieve and parse them by querying the MDM. Twitter’s documentation5
25

warns developers that events with missing counts rarely happen. To guarantee26

data quality such aspect must be checked. If an invalid event is detected, it27

4https://dev.twitter.com/streaming/overview
5https://dev.twitter.com/streaming/overview/processing
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Figure 3: Excerpt of the content in the Metadata Repository

should be discarded. After this validation, the event at hand must be registered1

in the MDM to guarantee lineage analysis. Furthermore the Dispatcher sends2

the raw JSON event to the Stream Processing and Data Lake components. At3

this point, there is a last ingestion step missing before processing data. The4

first workload presented in the benchmark concerns media analytics, however as5

depicted in Figure 3, the API only provides the URL of the image. Hence, it is6

necessary to schedule a batch process periodically fetching such remote images7

and loading them into the Data Lake.8

5.3. Data Processing and Analysis9

Once all data are available to be processed in both Speed and Batch Layers,10

we can start executing the required workloads. Many of such workloads concern11

predictive analysis (e.g., topic modeling, sentiment analysis, location prediction12

or collaborative filtering). Hence, the proposed approach is to periodically refresh13

statistical models in an offline manner (i.e., in the Batch Layer), in order to14

assess predictions in an online manner (i.e., in the Speed Layer). We distinguish15

between those algorithms generating metadata (e.g., Latent Dirichlet Allocation16

(LDA)) and those generating data (e.g., PageRank). The former will store its17

results in the MDM using a comprehensive vocabulary (e.g., OntoDM (Panov18

et al., 2008)); and the latter will store them into Batch Views. Once events19

have been dispatched, the required statistical model has to be retrieved from the20

MDM to assess predictions and store outcomes into Real-time Views. Finally, as21

described in (Zhang et al., 2015), the prototype application provides insights22
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based on tweets related to companies in the S&P 100 index. Leveraging on the1

MDM, the Query Engine is capable of generating queries to Batch and Real-time2

Views.3

6. Bolster Instantiation4

In this section we list a set of candidate tools, with special focus on the Apache5

Hadoop and Amazon Web Services ecosystems, to instantiate each component6

in Bolster. In the case when few tools from such ecosystems were available,7

we propose commercial tools which were considerd in the industrial projects8

where Bolster was instantiated. Further, we present a method to instantiate9

the reference architecture. We propose a systematic scoring process driven by10

quality characteristics, yielding, for each component, the most suitable tool.11

12 6.1. Available Tools
13 6.1.1. Semantic Layer
14 Metadata Management System. Two different off-the-shelf open source products
15 can instantiate this layer, namely Apache Stanbol6 and Apache Atlas7. Never-
16 theless, the features of the former fall short for the proposed requirements of the
17 MDM. Not surprisingly, this is due to the novel nature of Bolster ’s Semantic
18 Layer. Apache Atlas satisfies the required functionalities more naturally and it
19 might appear as a better choice, however it is currently under heavy development
20 as an Apache Incubator project. Commercial tools such as Cloudera Navigator8

21 or Palantir9 are also candidate tools.

22 Metadata Storage. We advocate for the adoption of Semantic Web storage
23 technologies (i.e. triplestores), to store all the metadata artifacts. Even though
24 such tools allow storing and reasoning over large and complex ontologies, that
25 is not the pursued purpose here, as our aim is to allow a simple and flexible
26 representation of machine-readable schemas. That is why triplestores serve
27 better the purpose of such storage. Virtuoso10 is at the moment the most mature
28 triplestore platform, however other options are available such as 4store11 or
29 GraphDB12. Nonetheless, given the graph nature of triples, any graph database
30 can as well serve the purpose of metadata storage (e.g., AllegroGraph13 or
31 Neo4j14).

6https://stanbol.apache.org
7http://atlas.incubator.apache.org
8https://www.cloudera.com/products/cloudera-navigator.html
9https://www.palantir.com

10http://virtuoso.openlinksw.com
11http://4store.org
12http://graphdb.ontotext.com/graphdb
13http://allegrograph.com
14http://neo4j.com
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6.1.2. Batch Layer1

Batch Ingestion. This components highly depends on the format of the data2

sources, hence it is complex to derive a universal driver due to technological3

heterogeneity. Instantiating this component usually means developing ad-hoc4

scripting solutions adapting to the data sources as well as enabling communication5

with the MDM. Massive data transfer protocols such as FTP or Hadoop’s6

copyFromLocal15 will complement such scripts. However, some drivers for specific7

protocols exist such as Apache Sqoop16, the most widespread solution to load8

data from/to relational sources through JDBC drivers.9

Data Lake. Hadoop Distributed File System and Amazon S3 17 perfectly fit in this10

category, as they are essentially file systems storing plain files. Regarding data11

file formats, some current popular options are Apache Avro18, Yahoo Zebra19 or12

Apache Parquet20 for horizontal, vertical and hybrid fragmentation respectively.13

Batch Processing. Apache MapReduce21 and Amazon Elastic MapReduce22 are14

nowadays the most popular solutions. Alternatively, Apache Spark23 and Apache15

Flink24 are gaining great popularity as next generation replacement for the16

MapReduce model. However, to the best of our knowledge, only Quarry (Jo-17

vanovic et al., 2015) is capable to interact with the MDM and, based on the18

information there stored, automatically produce batch processes based on user-19

defined information requirements.20

6.1.3. Speed Layer21

Stream Ingestion. All tools in the family of “message queues” are candidates22

to serve as component for Stream Ingestion. Originated with the purpose of23

serving as middleware to support enterprise messaging across heterogeneous24

systems, they have been enhanced with scalability mechanisms to handle high25

ingestion rates preserving durability of data. Some examples of such systems26

are Apache ActiveMQ25 or RabbitMQ26. However, some other tools were born27

following similar principles but aiming Big Data systems since its inception,28

being Apache Kafka27 and AWS Kinesis Firehose28 the most popular options.29

15https://hadoop.apache.org/docs/r2.7.1/hadoop-project-dist/hadoop-common/
FileSystemShell.html#copyFromLocal

16http://sqoop.apache.org
17https://aws.amazon.com/s3
18https://avro.apache.org
19http://pig.apache.org/docs/r0.9.1/zebra_overview.html
20https://parquet.apache.org
21https://hadoop.apache.org
22https://aws.amazon.com/elasticmapreduce
23http://spark.apache.org
24https://flink.apache.org
25http://activemq.apache.org
26https://www.rabbitmq.com
27http://kafka.apache.org
28https://aws.amazon.com/kinesis/firehose
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Dispatcher. Here we look for tools that allow developers to define data pipelines1

routing data streams to multiple and heterogeneous destinations. It should also2

allow the developer to programmatically communicate with the MDM for quality3

checks. Apache Flume29 and Amazon Kinesis Streams30 are nowadays the most4

prevalent solutions.5

Stream Processing. In contrast to Batch Processing, it is unfeasible to adopt6

classical MapReduce solutions considering the performance impact they yield.7

Thus, in-memory distributed stream processing solutions like Apache Spark8

Streaming31, Apache Flink Streaming32 and Amazon Kinesis Analytics33 are the9

most common alternatives.10

6.1.4. Serving Layer11

Batch Views. A vast range of solutions are available to hold specialized views. We12

distinguish among three families of databases: (distributed) relational, NOSQL13

and NewSQL. The former is mostly represented by major vendors who evolved14

their traditional centralized databases into distributed ones seeking to improve15

its storage and performance capabilities. Some common solutions are Oracle34,16

Postgres-XL35 or MySQL Cluster36. Secondly, in the NOSQL category we17

might drill-down to the specific data model implemented: Apache HBase37
18

or Apache Cassandra38 for column-family key-value; Amazon DynamoDB39 or19

Voldemort40 for key-value; Amazon Redshift41 or Apache Kudu42 for column20

oriented; Neo4j43 or OrientDB44 for graph; and MongoDB45 or RethinkDB46
21

for document. Finally, NewSQL are high-availability main memory databases22

which usually are deployed in specialized hardware, where we encounter SAP23

Hana47, NuoDB48 or VoltDB49.24

29https://flume.apache.org
30https://aws.amazon.com/kinesis/streams
31http://spark.apache.org/streaming
32https://flink.apache.org
33https://aws.amazon.com/kinesis/analytics
34https://www.oracle.com/database
35http://www.postgres-xl.org
36https://www.mysql.com/products/cluster
37https://hbase.apache.org
38http://cassandra.apache.org
39https://aws.amazon.com/dynamodb
40http://www.project-voldemort.com/voldemort
41https://aws.amazon.com/redshift
42http://getkudu.io
43http://neo4j.com
44http://orientdb.com/orientdb
45https://www.mongodb.org
46https://www.rethinkdb.com
47https://hana.sap.com
48http://www.nuodb.com
49https://voltdb.com
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Real-time Views. In-memory databases are currently the most popular op-1

tions, for instance Redis50, Elastic51, Amazon ElastiCache52. Alternatively,2

PipelineDB53 offers mechanism to query a data stream via continuous query3

languages.4

Query Engine. There is a vast variety of tools available for query engines. OLAP5

engines such as Apache Kylin54 provide multidimensional analysis capabilities,6

on the other hand solutions like Kibana55 or Tableau56 enable the user to easily7

define complex charts over the data views.8

6.2. Component Selection9

Selecting components to instantiate Bolster is a typical (C)OTS (commercial10

off-the-shelf) selection problem (Kontio, 1996). Considering a big part of the11

landscape of available Big Data tools is open source or well-documented, we12

follow a quality model approach for their selection, as done in (Behkamal et al.,13

2009). To this end, we adopt the ISO/IEC 25000 SQuaRE standard (Software14

Product Quality Requirements and Evaluation) (ISO, 2011) as reference quality15

model. Such model is divided into characteristics and subcharacteristics, where16

the latter allows the definition of metrics (see ISO 25020). In the context of17

(C)OTS, the two former map to the hierarchical criteria set, while the latter18

to evaluation attributes. Nevertheless, the aim of this paper is not to provide19

exhaustive guidelines on its usage whatsoever, but to supply a blueprint to be20

tailored to each organization. Figure 4 depicts the subset of characteristics21

considered relevant for such selection. Note that not all subcharacteristics are22

applicable, given that we are assessing the selection of off-the-shelf software for23

each component.24

Figure 4: Selected characteristics and subcharacteristics from SQuaRE

50http://redis.io
51https://www.elastic.co
52https://aws.amazon.com/elasticache
53https://www.pipelinedb.com
54http://kylin.apache.org
55https://www.elastic.co/products/kibana
56http://www.tableau.com
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1 6.2.1. Evaluation Attributes
2 Previously, we discussed that ISO 25020 proposes candidate metrics for
3 each present subcharacteristic. However, we believe that they do not cover the
4 singularities required for selecting open source Big Data tools. Thus, in the
5 following subsections we present a candidate set of evaluation attributes which
6 were used in the use case applications described in Section 7. Each has associated
7 a set of ordered values from worst to better and its semantics.

Functionality. After analyzing the artifacts derived from the requirement elici-8

tation process, a set of target functional areas should be devised. For instance,9

in an agile methodology, it is possible to derive such areas by clustering user10

stories. Some examples of functional areas related to Big Data are: Data and11

Process Mining, Metadata Management, Reporting, BI 2.0 or Real-time Analy-12

sis. Suitability specifically looks at such functional areas, while with the other13

evaluation attributes we evaluate information exchange and security concerns.14

Suitability
Number of functional areas targeted in the project which benefit
from its adoption.

Interoperability
1, no input/output connectors with other considered tools
2, input/output connectors available with some other considered
tools
3, input/output connectors available with many other considered
tools

Compliance
1, might rise security or privacy issues
2, does not raise security or privacy issues

15

Reliability. It deals with trustworthiness and robustness factors. Maturity is16

directly linked to the stability of the software at hand. To that end, we evaluate17

it by means of the Semantic Versioning Specification57. The other two factors,18

Fault Tolerance and Recoverability, are key Big Data requirements to ensure the19

overall integrity of the system. We acknowledge it is impossible to develop a20

fault tolerant system, thus our goal here is to evaluate how the system reacts in21

the presence of faults.22

57http://semver.org
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Maturity
1, major version zero (0.y.z)
2, public release (1.0.0)
3, major version (x.y.z)

Fault Tolerance
1, the system will crash if there is a fault
2, the system can continue working if there is a fault but data might
be lost
3, the system can continue working and guarantees no data loss

Recoverability
1, requires manual attention after a fault
2, automatic recovery after fault

1

2 Usability. In this subcharacteristic, we look at productive factors regarding the
3 development and maintenance of the system. In Understandability, we evaluate
4 the complexity of the system’s building blocks (e.g., parallel data processing
5 engines require knowledge of functional programming). On the other hand,
6 Learnability measures the learning effort for the team to start developing the
7 required functionalities. Finally, in Operability, we are concerned with the
8 maintenance effort and technical complexity of the system.

Understandability
1, high complexity
2, medium complexity
3, low complexity

Learnability
1, the operating team has no knowledge of the tool
2, the operating team has small knowledge of the tool and the
learning curve is known to be long
3, the operating team has small knowledge of the tool and the
learning curve is known to be short
4, the operating team has high knowledge of the tool

Operability
1, operation control must be done using command-line
2, offers a GUI for operation control

9

Efficiency. Here we evaluate efficiency aspects. Time Behaviour measures the10

performance at processing capabilities, measured by the way the evaluated tool11

shares intermediate results, which has a direct impact on the response time. On12

the other hand, Resource Utilisation measures the hardware needs for the system13

at hand, as it might affect other coexisting software.14
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Time Behaviour
1, shares intermediate results over the network
2, shares intermediate results on disk
3, shares intermediate results in memory

Resource Utilisation
1, high amount of resources required (on both master and slaves)
2, high amount of resources required (either on master or slaves)
3, low amount of resources required

1

2 Maintainability. It concerns continuous control of software evolution. If a tool
3 provides fully detailed and transparent documentation, it will allow developers
4 to build robust and fault-tolerant software on top of them (Analyzability). Fur-
5 thermore, if such developments can be tested automatically (by means of unit
6 tests) the overall quality of the system will be increased (Testability).

Analyzability
1, online up to date documentation
2, online up to date documentation with examples
3, online up to date documentation with examples and books available

Testability
1, doesn’t provide means for testing
2, provides means for unit testing
3, provides means for integration testing

7

8 Portability. Finally, here we evaluate the adjustment of the tool to different
9 environments. In Adaptability, we analyse the programming languages offered

10 by the tool. Instability and Co-existence evaluate the effort required to install
11 such tool and coexistence constraints respectively.

Adaptability
1, available in one programming language
2, available in many programming languages
3, available in different programming languages and offering API
access

Instability
1, requires manual build
2, self-installing package
3, shipped as part of a platform distribution

Co-existence
1, cannot coexist with other selected tools
2, can coexist with all selected tools

12

6.3. Tool Evaluation13

The purpose of the evaluation process is, for each of the candidate tools to14

instantiate Bolster, to derive a ranking of the most suitable one according to the15

evaluation attributes previously described. The proposed method is based on16

the weighted sum model (WSM), which allows weighting criteria (wi) in order to17

prioritize the different subcharacteristics. Weights should be assigned according18
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to the needs of the organization. Table 4 depicts an example selection for the1

Batch Processing component for the use case described in Section 7.1.2. For2

each studied tool, the Atomic and Weighted columns indicate its unweighted (fi)3

and weighted score (wifi), respectively using a range from one to five. For each4

characteristic, the weighted average of each component is shown in light grey5

(i.e., the average of each weighted subcharacteristic
∑

i fi/
∑

i wi). Finally, in6

black, the final score per tool is depicted. From the exemplar case of Table 4,7

we can conclude that, for the posed weights and evaluated scores, Apache Spark8

should be the selected tool, in from of Apache MapReduce and Apache Flink9

respectively.10

Evaluated Software
Apache Spark Apache MapReduce Apache Flink

Characteristic Subcharacteristic Weight Atomic Weighted Atomic Weighted Atomic Weighted

Functionality
Suitability 2 3 6 2 4 3 6

Interoperability 3 3 9 1 1 1 3
Compliance 1 2 2 2 2 2 2

2.83 1.50 1.83

Reliability
Maturity 1 3 3 3 3 1 1

Fault Tolerance 5 3 15 3 15 3 15
Recoverability 2 2 4 2 4 2 4

2.75 2.75 2.50

Usability
Understandability 5 2 10 3 15 2 10

Learnability 3 4 12 4 12 2 6
Operability 2 2 4 1 2 2 4

2.60 2.90 2.00

Efficiency Time Behaviour 3 3 9 1 3 3 9
Resource Utilisation 4 1 4 2 8 1 4

1.86 1.57 1.86

Maintainability Analyzability 4 3 12 3 12 2 8
Testability 2 2 4 1 2 1 2

2.67 2.33 1.67

Portability
Adaptability 3 2 6 1 3 2 6
Instability 4 3 12 3 12 2 8

Co-existence 1 2 2 2 2 2 2
2.50 2.13 2.00
2.53 2.27 2.00

Table 4: Example tool selection for Batch Processing

7. Industrial Experiences11

In this section we depict three industrial projects, involving five organizations,12

where Bolster has been successfully adopted. For each project, we describe the13

use case context and the specific Bolster instantiation in graphical form. Finally14

we present the results of a preliminary validation that measure the perception of15

Bolster from the relevant industrial stakeholders.16
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7.1. Use Cases and Instantiation1

7.1.1. BDAL: Big Data Analytics Lab2

This project takes place in a multinational company in Barcelona58. It runs3

a data-driven business model and decision making relies on predictive models.4

Three main design issues were identified: (a) each department used its own5

processes to create data matrices, which were then processed to build predictive6

models. For reusability, data sets were preprocessed in ad-hoc repositories7

(e.g., Excel sheets), generating a data governance problem; (b) data analysts8

systematically performed data management tasks, such as parsing continuous9

variable discretization or handling missing values, with a negative impact on10

their efficiency; (c) data matrices computation resulted in an extremely time11

consuming process due to their large volumes. Thus, their update rate was12

usually in the range of weeks to months.13

The main goal was to develop a software solution to reduce the exposure14

of data analysts to data management and governance tasks, as well as boost15

performance in data processing.16

Bolster Instantiation. Bolster ’s Semantic Layer allowed the organization to17

overcome the data governance problem, consider additional data sources, and18

provide automation of data management processes. Additionally, there was a19

boost of performance in data processing thanks to the distributed computing20

and parallelism in the storage and processing of the Batch and Serving Layers.21

The nature of the data sources and analytical requirements did not justify the22

components in the Speed Layer, thus Bolster ’s instantiation was narrowed to23

Batch, Semantic and Serving Layers. Figure 5 depicts the tools that compose24

Bolster ’s instantiation instantiation for this use case.25

7.1.2. H2020 SUPERSEDE Project26

The SUPERSEDE59 project proposes a feedback-driven approach for software27

life-cycle management. It considers user feedback and runtime data as an28

integral part of the design, development, and maintenance of software services29

and applications. The ultimate goal is to improve the quality perceived by30

software end-users as well as support developers and engineers to make the31

right software adaptation and evolution decisions. Three use cases proposed by32

industrial partners, namely: Siemens AG Oesterreich (Austria), Atos (Spain)33

and SEnerCon GmbH (Germany), are representative of different data-intensive34

application domains in the areas of energy consumption management in home35

automation and entertainment event webcasting.36

SUPERSEDE’s Big Data architecture is the heart of the analysis stage37

that takes place in the context of a monitor-analyze-plan-execute (MAPE) pro-38

cess (Kephart et al., 2007). Precisely, some of its responsabilities are (i) collecting39

and analyzing user feedback from a variety of sources, (ii) supporting decision40

58No details about the company can be revealed due to non-disclosure agreements.
59https://www.supersede.eu/
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Figure 5: Bolster instantiation for the BDAL use case

making for software evolution and adaptation based on the collected data, and1

(iii) enacting the decision and assessing its impact. This set of requirements2

yielded the following challenges: (a) ingest multiple fast arriving data streams3

from monitored data and process them in real-time, for instance with sliding4

window operations; (b) store and integrate user feedback information from mul-5

tiple and different sources; (c) use all aforementioned data in order to analyze6

multi-modal user feedback, identify profiles, usage patterns and identify relevant7

indicators for usefulness of software services. All implemented in a performance8

oriented manner in order to minimize overhead.9

Bolster Instantiation. Bolster allowed the definition of a data governance proto-10

col encompassing the three use cases in a single instantiation of the architecture,11

while preserving data isolation. The Speed Layer enabled the ingestion of contin-12

uous data streams from a variety of sources, which were also dispatched to the13

Data Lake. The different analytical components in the Serving Layer allowed14

data analysts to perform an integrated analysis. Figure 6 depicts the tools that15

compose Bolster ’s instantiation for this use case.16

7.1.3. WISCC: World Information System for Chagas Control17

The WISCC project funded by the World Health Organization (WHO) is18

part of the Programme on Control of the Chagas disease. The goal of this project19

is to control and eliminate the Chagas disease, one of the 17 diseases in the 201020

first Report on Neglected Tropical Diseases. To this end, the aim is to build an21

information system serving as an integrated repository of all information, from22

different countries and organizations, related to the Chagas disease. Such holistic23

view should aid scientists to derive valuable insights and forecasts, leading to24

Chagas’ eradication.25
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Figure 6: Bolster instantiation for the SUPERSEDE use case

The role of the Big Data architecture is to ingest and integrate data from1

a variety of data sources and formats. Currently, the big chunk of data is2

ingested from DHIS260, an information system where national ministries enter3

data related to inspections, diagnoses, etc. Additionally, NGOs make available4

similar information according to their actions. The information dealt with5

is continuously changing by nature at all levels: data, schema and sources.6

Thus, the challenge falls in the flexibility of the system to accommodate such7

information and the one to come. Additionally, flexible mechanisms to query8

such data should be defined, as future information requirements will be totally9

different from today’s.10

Bolster Instantiation. Instantiating Bolster favored a centralized management,11

in the Semantic Layer, of the different data sources along with the provided12

schemata, a feature that facilitated the data integration and Data Lake manage-13

ment tasks. Similarly to the BDAL use case, the ingestion and analysis of data14

was performed with batch processes, hence dismissing the need to instantiate15

the Speed Layer. Figure 7 depicts the tools that compose Bolster ’s instantiation16

for this use case.17

18 7.1.4. Summary
19 In this subsection, we discuss and summarize the previously presented in-
20 stantiations. We have shown how, as an SRA, Bolster can flexibly accomodate
21 different use cases with different requirements by selectively instantiating its
22 components. Due to space reasons, we cannot show the tool selection tables per

60https://www.dhis2.org
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Figure 7: Bolster instantiation for the WISCC use case

component, instead we present the main driving forces for such selection using1

the dimensions devised in Section 2. Table 5 depicts the key dimensions that2

steered the instantiation of Bolster in each use case.3

Use Case Volume Velocity Variety Variability Veracity
BDAL 3 3 3 3

SUPERSEDE 3 3 3 3

WISCC 3 3 3

Table 5: Characterization of use cases and Big Data dimensions

Most of the components have been successfully instantiated with off-the-shelf4

tools. However, in some cases it was necessary to develop customized solutions to5

satisfy specific project requirements. This was especially the case for the MDM,6

for which off-the-shelf tools were unsuitable in two out of three projects. It is7

also interesting to see that, due to the lack of connectors between components,8

it has been necessary to use glue code techniques (e.g., in WISCC dump files to9

a UNIX file system and batch loading in R).10

11 7.2. Validation
12 The overall objective of the validation is to “assess to which extent Bol-
13 ster leads to a perceived quality improvement in the software or service targeted
14 in each use case”. Hence, the validation of the SRA involves a quality evaluation
15 where we investigated how Big Data practitioners perceive Bolster ’s quality im-
16 provements. To this end, as before, we rely on SQuaRE’s quality model, however
17 now focusing on the quality-in-use model. The model is hierarchically composed
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by a set of characteristics and sub-characteristics. Each (sub-)characteristic is1

quantified by a Quality Measure (QM), which is the output of a measurement2

function applied to a number of Quality Measure Elements (QME).3

7.2.1. Selection of participants4

For each of the five aforementioned organizations, in the three use cases,5

a set of practitioners was selected as participants to report their perception6

about the quality improvements achieved with Bolster using the data collection7

method detailed in Section 7.2.2. Care was taken in selecting participants with8

different backgrounds (e.g., a broad range of skills, different seniority levels) and9

representative of the actual target population of the SRA. This is summarized in10

Table 6, which depicts the characteristics of the respondents in each organization.11

Recall that the SUPERSEDE project involves three industrial partners, hence12

we refer to SUP-1, SUP-2 and SUP-3, respectively Siemens, Atos and SEnerCon.13

ID Org. Function Seniority Specialties
#1 BDAL Data analyst Senior Statistics
#2 BDAL SW architect Junior Non-relational databases, Java
#3 SUP-1 Research scientist Senior Statistics, machine learning
#4 SUP-1 Key expert Senior Software engineering
#5 SUP-1 SW developer Junior Java, security
#6 SUP-1 Research scientist Senior Stream processing, semantic web
#7 SUP-2 Dev. team head Senior CDN, relational databases
#8 SUP-2 Project manager Senior Software engineering
#9 SUP-3 SW developer Junior Web technologies, statistics
#10 SUP-3 SW developer Junior Java, databases
#11 SUP-3 SW architect Senior Web technologies, project leader
#12 WISCC SW architect Senior Statistics, software engineering
#13 WISCC Research scientist Senior Non-relational databases, semantic web
#14 WISCC SW developer Junior Java, web technologies

Table 6: List of participants per organization

7.2.2. Definition of the data collection methods14

The quality characteristics were evaluated by means of questionnaires. In15

other words, for each characteristic (e.g., trust), the measurement method was the16

question whether a participant disagrees or agrees with a descriptive statement.17

The choice of the participant (i.e., the extent of agreement in a specific rating18

scale) was the QME. For each characteristic, a variable numbers of QMEs were19

collected (i.e., one per participant). The final QM was represented by the mean20

opinion score (MOS), computed by the measurement function
∑N

i QMEi/N ,21

where N is the total number of participants. We used a 7-values rating scale,22

ranging from 1 strongly disagree to 7 strongly agree. Table 7 depicts the set of23

questions in the questionnaire along with the quality subcharacteristic they map24

to.25
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Subcharacteristic Question

Usefulness • The presented Big Data architecture would be useful in
my UC

Satisfaction • Overall I feel satisfied with the presented architecture
Trust • I would trust the Big Data architecture to handle my UC

data
Perceived Relative
Benefit • Using the proposed Big Data architecture would be an

improvement with respect to my current way of handling
and analyzing UC data

Functional Com-
pleteness • In general, the proposed Big Data architecture covers the

needs of the UC (subdivided into user stories)

Functional Appro-
priateness

• The proposed Big Data architecture facilitates the storing
and management of the UC data
• The proposed Big Data architecture facilitates the
analysis of historical UC data
• The proposed Big Data architecture facilitates the
real-time analysis of UC data stream
• The proposed Big Data architecture facilitates the
exploitation of the semantic annotation of UC data
• The proposed Big Data architecture facilitates the
visualization of UC data statistics

Functional Correct-
ness • The extracted metrics obtained from the Big Data

architecture (test metrics) match the results rationally
expected

Willingness to
Adopt • I would like to adopt the Big Data architecture in my UC

Table 7: Validation questions along with the subcharacteristics they map to

7.2.3. Execution of the validation1

The heterogeneity of organizations and respondents called for a strict plan-2

ning and coordination for the validation activities. A thorough time-plan was3

elaborated, so as to keep the progress of the evaluation among use cases. The4

actual collection of data spanned over a total duration of three weeks. Within5

these weeks, each use case evaluated the SRA in a 3-phase manner:6

1. (1 week): A description of Bolster in form of an excerpt of Section 4 of this7

paper was provided to the respondents, as well as access to the proposed8

solution tailored to each organization.9

2. (1 hour): For each organization, a workshop involving a presentation on10

the SRA and a Q&A session was carried out.11

3. (1 day): The questionnaire was provided to each respondent to be answered12

within a day after the workshop.13
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Figure 8: Validation per Quality Factor

Once the collection of data was completed, we digitized the preferences1

expressed by the participants in each questionnaire. We created summary2

spreadsheets merging the results for its analysis.3

7.2.4. Analysis of validation results4

Figure 8 depicts, by means of boxplots, the aggregated MOS for all respon-5

dents (we acknowledge the impossibility to average ordinal scales, however we6

consider them as their results fall within the same range). The top and bottom7

boxes respectively denote the first and third quartile, the solid line the median8

and the whiskers maximum and minimum values. The dashed line denotes the9

average, and the diamond shape the standard deviation. Note that Functional10

Appropriateness is aggregated into the average of the 5 questions that com-11

pose it, and functional completeness is aggregated into the average of multiple12

user-stories (a variable number depending on the use case).13

We can see that, when taking the aggregated number, none of the character-14

istics scored below the mean of the rating scale (1-7) indicating that Bolster was15

on average well-perceived by the use cases. Satisfaction sub-characteristics (i.e.,16

Satisfaction, Trust, and Usefulness) present no anomaly, with usefulness standing17

out as the highest rated one. As far as regards Functional Appropriateness,18

Bolster was perceived to be overall effective, with some hesitation with regard19

to the functionality offered for the semantic exploitation of the data. All other20

scores are considerably satisfactory. The SRA is marked as functionally complete,21

and correct, and expected to bring benefits in comparison to current techniques22

used in the use cases. Ultimately this leads to a large intention to use.23

Discussion. We can conclude that generally user’s perception is positive, being24

most answers in the range from Neutral to Strongly Agree. The preliminary25

assessment shows that the potential of the Bolster SRA is recognized also in the26

industry domain and its application is perceived to be beneficial in improving27
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the quality-in-use of software products. It is worth noting, however, that some1

respondents showed reluctancy regarding the Semantic Layer in Bolster. We2

believe this aligns with the fact that Semantic Web technologies have not yet3

been widely adopted in industry. Thus, lack of known successful industrial use4

cases may raise caution among potential adopters.5

8. Conclusions6

Despite their current popularity, Big Data systems engineering is still in its7

inception. As any other disruptive software-related technology, the consolidation8

of emerging results is not easy and requires the effective application of solid9

software engineering concepts. In this paper, we have focused on an architecture-10

centric perspective and have defined an SRA, Bolster, to harmonize the different11

components that lie in the core of such kind of systems. The approach uses the12

semantic-aware strategy as main principle to define the different components13

and their relationships. The benefits of Bolster are twofold. On the one hand, as14

any SRA, it facilitates the technological work of Big Data adopters by providing15

a unified framework which can be tailored to a specific context instead of a set16

of independent components that are glued together in an ad-hoc manner. On17

the other hand, as a semantic-aware solution, it supports non-expert Big Data18

adopters in the definition and exploitation of the data stored in the system by19

facilitating the decoupling of the data steward and analyst profiles. However,20

we anticipate that in the long run, with the maturity of such technologies, the21

role of software architect will be replaced in favor of the database administrator.22

In this initial deployment, Bolster includes components for data management23

and analysis as a first step towards the systematic development of the core24

elements of Big Data systems. Thus, Bolster currently maps to the role played25

by a relational DBMS in traditional BI systems. As future work, we foresee the26

need to design a generic tool providing full-fledged functionalities for Metadata27

Management System.28
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