
Cost Model for Pregel on GraphX

Rohit Kumar1,2, Alberto Abelló2, and Toon Calders1,3

1Department of Computer and Decision Engineering
Université Libre de Bruxelles, Belgium

2Department of Service and Information System Engineering
Universitat Politécnica de Catalunya (BarcelonaTech), Spain

3Department of Mathematics and Computer Science
Universiteit Antwerpen, Belgium

Abstract. The graph partitioning strategy plays a vital role in the over-
all execution of an algorithm in a distributed graph processing system.
Choosing the best strategy is very challenging, as no one strategy is al-
ways the best fit for all kinds of graphs or algorithms. In this paper, we
help users choosing a suitable partitioning strategy for algorithms based
on the Pregel model by providing a cost model for the Pregel implemen-
tation in Spark-GraphX. The cost model shows the relationship between
four major parameters: 1) input graph 2) cluster configuration 3) algo-
rithm properties and 4) partitioning strategy. We validate the accuracy
of the cost model on 17 different combinations of input graph, algorithm,
and partition strategy. As such, the cost model can serve as a basis for
yet to be developed optimizers for Pregel.

1 Introduction

Large graphs with millions of nodes and billions of edges are becoming quite
common now. Social media graphs, road network graphs, and relationship graphs
between buyers and products are some of the examples of large graphs gener-
ated and processed regularly [3]. With the increase in size of these graphs, the
classical approach of graph processing is becoming insufficient [8, 7]. Hence, to
address these shortcomings, vertex-centric programming models [10] have been
proposed to transform the way graph problems are managed. Pregel [11] is one
such programming models which supports distributed (parallel) graph compu-
tations. Many distributed graph computing (DGC) systems like PowerGraph [4]
and Spark-GraphX [15] provide implementations of the Pregel model for graph
computations. DGC systems distribute the graph computation by partitioning
the graph over different nodes of a cluster.

There are many partitioning strategies proposed in literature [14, 12, 4] for
performing efficient graph computations on DGC systems. Most of the DGC sys-
tems provide the same programing model and offer similar features and strategies
to use. Depending on the internal implementation of these strategies and algo-
rithms, the systems can give different performance. Even once a user has decided

a system to use, there are not enough guidelines on which partitioning strategy
to use for which application or graph. Verma et.al. in [13] attempts to address
this question with an experimental comparison of different partitioning strate-
gies on three different DGC systems resulting in a set of rules. However, there is
no clear theoretical justification of why one partitioning strategy performs bet-
ter than another depending on a particular combination of graph and algorithm.
Moreover, the paper does not consider the cluster properties which according
to our cost model, is one of the parameters in deciding the best partitioning
strategy. In this paper, we address this question by providing a cost model for
the Pregel implementation in GraphX. Cost models are used in the database
community for query plan evaluation. We contend that DGC systems should be
able to choose the best partitioning strategy for a given graph and algorithm
using our cost model in iterative graph computations.

Concretely, in this paper, we make the following contributions: (i) we for-
mulate a cost model to capture the different dominating factors involved in the
Pregel model (Section 3); (ii) we validate our cost model on GraphX by estimat-
ing the computation time and comparing it with real execution time (Section 4).
To the best of our knowledge this is the first work in which a cost model based
approach has been proposed for Pregel to help users to choose the best parti-
tioning strategy. Similar cost models could be obtained for Pregel on other DGC
systems.

2 Background

In this section, we present background information on (1) the Pregel model, and
(2) the different partitioning strategies we used in the experiments.

2.1 Pregel Model

In order to render graph computations more efficient, new graph programming
models such as Pregel have been introduced [11]. In Pregel, graph algorithms
are expressed as iterative vertex-centric computations which can be easily and
transparently distributed automatically. We illustrate this principle with the fol-
lowing graph algorithm CC for computing connected components in a graph: we
start with assigning to each vertex a unique identifier. In the first step each ver-
tex sends a message with its unique identifier to all its neighbors. Subsequently,
for each vertex the minimum is computed of all incoming identifiers. If this min-
imum is lower than its own identifier, the vertex updates its internal state with
this new minimum and sends a message to its neighbors to notify them of its new
minimum. This process continues until no more messages are sent. It is easy to
see that this iteration will terminate and that the result will be that each vertex
holds the minimal identifier over all vertices in its connected component, which
can then serve as an identifier of that connected component.

As we can see in this example, a user of Pregel only has to provide the
following components:

Fig. 1. An example of Pregel model consisting of three vertices.

– Initialization: one initial message per vertex. In the case of CC, this initial
message contains the unique identifier of that vertex;

– Function to combine all incoming messages for a vertex. In our example, the
combine function takes the minimum over all incoming identifiers.

– A function called the vertex program to update the internal state of the
vertex if the minimum identifier received is less than the current identifier
of the vertex.

– A function to send the vertex current identifier to its neighbors. In CC, the
internal state of a vertex is updated only if the vertex receives a identifier
smaller than it is already storing. Only in that case messages are sent to its
neighbors with this updated minimum.

Figure 1 illustrate this programming model; every iteration of running the vertex
program and combining the messages that will be input for the next iteration is
called a super-step. In the first super-step every vertex is activated and executes
its vertex program. In Figure 1, the vertex programs are called “tasks” and the
blue lines represent messages sent between vertices. In the second super-step in
this figure, vertex 1 does not receive any message and hence will not be active in
super-step 2. Vertex 2 receives two messages which are combined and the vertex
program is executed. Similarly, vertex 3 receives one message and executes its
vertex program. The time it takes for each task could be different and hence
there is a synchronization barrier after every super-step. Finally, in super-step 4
no messages are generated and the computation stops.

The main benefit of the Pregel programming model is that it provides a
powerful language in which many graph algorithms can be expressed in a natural
way. At the same time, however, the programs are flexible enough to allow for
automatically and transparently distributing their execution as we will see in
next section.

2.2 Partitioning

There are two kinds of partitioning strategies for distributed graph processing:
1) vertex-cut [4] and 2) edge-cut [6, 1]. In vertex-cut partitioning the edges are
assigned to partitions and thus the vertices can span partitions i.e vertices are
replicated or mirrored across partitions. In edge-cut, the vertices are partitioned
and the edge can span across partitions i.e edge is replicated or mirrored across
partitions. GraphX utilizes the vertex-cut partitioning strategy. In vertex-cut
partitioning, the goal of a partitioning strategy is to partition the edges such
that the load (number of edges) in every partition is balanced and vertex repli-
cation (number of mirrors of vertex) is minimum. Average replication factor is
a common metric to measure the effectiveness of vertex-cut partitioning.

The simplest vertex-cut partitioning strategy is to partition edges using a
hash function. GraphX [15] has two different variants for this: Random Vertex
Cut (RVC) and Canonical Random Vertex Cut (CRVC). Given a hash function
h, RVC assigns an edge (u, v) based on the hash of the source and destination
vertex (i.e. A(u, v) = h(u, v) mod k). CRVC partitions the edge regardless of
the direction and hence an edge (u, v) and (v, u) will be assigned to the same
partition. CRVC or RVC provides a good load balance due to the randomness in
assigning the edges but do not grantee any upper bound on the replication factor.
There is another strategy which uses two-dimensional sparse matrix and is sim-
ilar to grid partitioning [5], EdgePartition2D [2]. In EdgePartition2D partitions
are arranged as a square matrix, and for an edge it picks a partition by choosing
column on the basis of the hash of the source vertex and row on the basis of
the hash of the destination vertex. It ensures a replication factor of (2

√
N − 1)

where N is the number of partitions. In practice, these approaches result in large
number of vertex replications and do not perform well for a power-law graphs.

Recently, a Degree-Based Hashing (DBH) algorithm [14] was introduced with
improved grantees on replication factor for power-law graphs. DBH partitions
edges based on the hash of its lowest degree end point thus forcing replication
of high degree vertices. GraphX does not provide an implementation for this
strategy. Thus, we implemented DBH and used it in our experiments to compare
with other partitioning strategies provided in GraphX.

3 Cost Model for Pregel GraphX

In section 3.1, we present the implementation details of the Pregel model in
GraphX with the help of a Business Process Model and Notation (BPMN) dia-
gram. Then in Section 3.2, we use the BPMN diagram to derive the cost model
for the Pregel model in GraphX.

3.1 Pregel Model in GraphX

GraphX is built on top of Apache Spark which uses a distributed data structure
called Resilient Distributed Datasets (RDD) [16]. A graph in GraphX is rep-
resented as a pair of vertex and edge property collections namely VertexRDD

Fig. 2. BPMN diagram representing the Pregel computation model.

and EdgeRDD . The VertexRDD contains all the vertices of the graph and acts
as the master copy, which runs the updateVertex program. The EdgeRDD
contains all the edge attributes and the vertex ids of the source and destination
vertices. During Pregel execution, a materialized view (EdgeTripletRDD) is cre-
ated by joining VertexRDD and EdgeRDD for the set of active vertices. The
RDDs are partitioned across the cluster nodes and the computation happens in
a shared-nothing architecture. The VertexRDD is partitioned randomly based
on the hash of the vertex id and the EdgeRDD is partitioned using the graph
partitioning strategy provided (vertex-cut strategies discussed in Section 2.2).
EdgeTripletRDD is partitioned using the same partitioner used by EdgeRDD .

The Pregel computation in GraphX consists of four phases: Initialization, Ap-
ply, Gather and Reduce. The Initialization happens only once and the other three
repeat in a loop until the program stops or a given maximal number of super-
steps is exceeded. The Initialization phase, is executed by the driver/master as
a single instance. The other three phases run in multiple instances. Each in-
stance is processing of one partition of either the VertexRDD or EdgeRDD .
After the Initialization phase the Apply phase runs one instance per partition
of the VertexRDD and updates the vertices state. Then the Gather phase runs
one instance per partition of the EdgeRDD to fetch the latest copy of the vertex
state from VertexRDD and generate messages for next super-step. The Gather
phase does a local reduce of the messages as well by combining all the messages
generated for the same vertex on each instance. Finally, the reduce phase does
a global reduce by combining of all the messages generated for the same vertex
at vertex partitions. The reduce phase runs one instance per partition of the
VertexRDD . Figure 2 shows all the phases and precedences. Please note, unlike
the ideal Pregel model where every vertex could execute the vertex program in
parallel and send and receive messages in parallel, in GraphX the parallelization
is at the level of an instance or partition. For example, the vertex program of
CC algorithm in GraphX will run during the Apply phase in parallel for every
partition of the VertexRDD . Inside one partition of a VertexRDD , the vertex
program will run in sequence for all the vertices.

3.2 The Cost model formulation

For the sake of simplicity of the cost model we make following assumptions:

1. All the nodes in the cluster have the same characteristics, i.e. they have
same processing speed, IO and network bandwidth. This assumption does
not reduce the applicability of the model, since extending it to heterogeneous
nodes is straight forward.

2. Resource scheduling is not considered and hence, we assume all the instances
run in parallel. This assumption is a natural choice to maximize performance
as it offers maximum parallelization. To ensure this we just need to make
sure that we keep the number of partitions to be equal to the number of
available workers in the cluster.

From the BPMN diagram in Figure 2, it is clear that the cost of the Pregel
job is the sum of the costs of four phases. We represent the cost of the Initializa-
tion phase as a function cInit which depends on: the vertices (V), the algorithm
(A) which determines the cost of creating the initial message and its size, and
finally, the number of vertex partitions to which the initial message will be sent.
We combine the remaining three: Apply, Gather and Reduce phases, in function
cSuperStep, representing the cost of the subsequent super-steps. Let s be the
number of super-steps. Hence, we can represent the cost of the Pregel model
(cPregel) as shown in Equation (1). For a super-step i the cost cSuperStep de-
pends on: currently active vertices (Vi), currently active edges (Ei) and the mes-
sages (Mi−1) generated in previous super-step. How a vertex or an edge becomes
active depends on the algorithm (A). We define Av, As, and Am as three func-
tions for updateVertex, sendMsg, and mergeMsg programs respectively.
Additionally, cSuperStep also depends on how Vi and Ei is partitioned (i.e.,
vertex partitioning strategy (Pv) and edge partitioning strategy (Pe)).

cPregel(V,E, s,A, Pe, Pv) := cInit(V,A, |Pv|)

+

s∑
i=1

cSuperStep(Vi, Ei, A,Mi−1, Pe, Pv)
(1)

The Apply, Gather and Reduce phases run in sequence and hence the cost of
one super-step is the sum of the cost of each phase. But, as shown in the BPMN
diagram there are multiple instances of each phase. As per our assumption,
we have all the instances running in parallel in the cluster. Hence, we denote
the cost of running one phase as the maximum cost among all the instances
of that phase. There are tasks inside each phase which run sequentially except
in the case of Reduce phase where there is only one task. Let |Pv| and |Pe| be
number of vertex and edge partitions respectively, and q (0 ≤ q ≤ |Pv|) and k
(0 ≤ k ≤ |Pe|) as corresponding index of vertex or edge partition. We define,
Ek

i ⊂ Ei as set of active edges on a partition k; V k
i as set of vertices at super-

step i in edge partition k which is either a source or destination vertex of an
active edge Ek

i ; V q
i ⊂ Vi as set of active vertices in vertex partition q; Mk

i as

set of messages generated in super-step i in edge partition k; Mq
i ⊂Mi as set of

messages received in super-step i in vertex partition q. We represent the cost of
each super-step as shown in Equation (2).

cSuperStep(Vi, Ei, A,Mi−1, Pe, Pv) := max
0≤q≤|Pv|

{cApply(V q
i ,M

q
i−1, Av, Pe, Pv)}

+ max
0≤k≤|Pe|

{cGather(Ek
i ,M

k
i , V

k
i , As, Am, Pe)}

+ max
0≤q≤|Pv|

{cReduce(Mq
i , V

q
i , Am, Pe, Pv)}

(2)

As shown in Figure 2, the Apply phase has two tasks:

– The first task is to run the updateVertex program on the active vertices.
It runs sequentially for every vertex in the local partition. Hence, the total
cost of the first task is defined as the sum of the cost of running the updat-
eVertex program for every active vertex in the partition, which depends
on the vertex state, the input message and the algorithmic characteristics.
We capture all this as a function cV ertexProg and assume its cost is known
to the user defining the algorithm.

– The second task is to write the updated vertex attributes to file so that it can
be sent to required edge partitions. It consists of creating |Pe| different file
segments, one for each edge partition. The writing is buffered, so each write
task writes in an internal memory buffer of size Bs, and when the buffer
is full, the content is flushed to the file segment. For example, in Figure 3a
the mapper node having the vertex partition 1 with vertices a, b, c, d will
create two files. As one vertex can have its replication in more than one edge
partition, it needs to be written in more than one file segment. Let V ∗qi ⊆ V q

i

be the set of vertices which updated their state after the first task. We define
replication(v) as the number of replication of vertex v in edge partitions
and sizeOf(v) as the size of vertex object v in bytes. Hence, the total blocks
written would be equal to the size of every vertex object times its replication.
Let Bw be the cost of writing one block and Bs be the size of one block,
hence the total cost for this task would be Bw × Total bytes written

Bs
.

Apart from the cost of the above mentioned task we define α1 as a constant to
capture some housekeeping tasks done by Spark (like task scheduling) for this
phase. We use α2 and α3 as separate constant costs for the other two phases.
The cost of Apply phase is given as the sum of the cost of the two task and the
constant α1 in Equation (3).

cApply(V q
i ,M

q
i−1, Av, Pe, Pv) :=

∑
v∈V q

i

cV ertexProg(v,Mq
i−1(v), Av)

+ βw ×

⌈∑
v∈V ∗q

i
sizeOf(v)× replication(v)

Bs

⌉
+ α1

(3)

1 a,b,c attributes in
list

2 a,c,d attributes in
list

a b

 c

VertexRDD Partition 1

Shuffle file 1 Shuffle file 2

a b

b c

a c

c a

a d

Edge RDD partition 1 Edge RDD partition 2

Mapper node 1

Reducer node 1 Reducerr Node 2

Buffer

Bucket 1 Bucket 2

1 a,b,c attributes in list 2 a,c,d attributes in list

d

Memory Buffer Memory Buffer

RDD RDD

(a) Apply - Gather Phase

Message RDD partition 1

Mapper node 1

Bucket 1

a amsg1

b bmsg1

c cmsg1

d dmsg1

Bucket 2

a amsg1

b bmsg1

c cmsg1

d dmsg1

Message RDD partition 2

Mapper node 2

Bucket 1

a amsg2

d dmsg2

e emsg1

Bucket 2

a amsg2
d dmsg2

e emsg1

 Buffer Buffer

Reducer node 1 (containing the vertex RDD with vertex a, b and c)

a mergeMsg(amsg1,amsg2)

c cmsg1

b bmsg1

Memory Buffer

Shuffle file 1 Shuffle file 2 Shuffle file 1 Shuffle file 2

Message RDD partition 1

AppendOnlyMap

(b) Gather - Reduce Phase

Fig. 3. Data shuffle between the phases. Dashed arrows represent in-memory data
transfer, Solid arrows represent memory to local disk write and dotted arrows represent
remote disk to memory read.

The Gather phase consists of four tasks :

– The first task consists of reading the file segments created in the previous
phase. For simplicity, we focus only on the remote reads as local reads are
quite fast and do not affect the overall cost significantly. Each file will be
read and deserialized to create or update an AppendOnlyMap (an internal
data structure used by Spark to create an RDD). In this case there is only
one key in the map (the partition id) and the value is a list with vertex
attributes. For example, as shown in Figure 3a there is only one record in
the map with key “1” and value a list of vertex attributes of a, b and c.
The AppendOnlyMap is then converted into an RDD and combined with
EdgeRDD to generate EdgeTripletRDD . As the number of records in the
map is just one, the cost of this task is due to the size of the list. Let V ∗i
be the set of all vertices which got updated in previous phase, then the list
of vertices read in this task is given as V k

i ∩ V ∗i . We represent the total
cost of this task as total bytes read multiplied by the cost of reading and
deserializing one byte (βr).

– The second task consists of running the sendMsg program on every ac-
tive edge. It depends on the attributes of the source and destination ver-
tices and the algorithm definition As. We capture this cost as a function
cSendProg. Hence, the total cost for this task is given as the sum of run-
ning the cSendProg for every active edge.

– The third task consist of running the mergeMsg program to combine all
the messages generated for a vertex v ∈ V k

i . We define the cost of run-
ning mergeMsg program which combines two messages as cMergeProg.
It depends on the algorithm definition Am. We define Mk

i (v) as the set of
messages generated for a vertex v. mergeMsg will run |Mk

i (v)| − 1 times.
– The final task is the shuffle write task, which consists of writing to disk the

final list of reduced messages M̂k
i as shown in Figure 3b. The writing will

be buffered as in the Apply phase, but the number of records written will

be equal to the number of final messages (|M̂k
i |). One message can belong

only to one shuffle file, hence the total blocks written would be size of all
messages divided by the block size.

The cost of the Gather phase is defined as the sum of the cost of the four tasks
and the constant α2 given in Equation (4).

cGather(Ek
i ,M

k
i , V

k
i , As, Am, Pe) := βr ×

∑
v∈V k

i ∩V ∗
i

sizeOf(v)

+
∑

(u,v)∈Ek
i

cSendProg(u, v,As)

+ cProcess(Mk
i , V

k
i , Am)

+ βw ×

⌈∑
m∈M̂k

i

sizeOf(m)

Bs

⌉
+ α2

(4)

Where,

cProcess(Mk
i , V

k
i , Am) :=

∑
v∈V k

i

(
|Mk

i (v)| − 1
)
× cMergeProg(Am) (5)

The Reduce phase consists of only one task which is to fetch the messages gener-
ated in the previous phase and reduce the messages for the same vertex into one
message. For example, as shown in Figure 3b amsg1 and amsg2 are fetched from
two mappers and reduced into one message for vertex a. Unlike the read in the
Gather phase, in this phase the number of records in the AppendOnlyMap will
be equal to the numbers of messages. For example, as shown in Figure 3 there is
one record in the shuffle file for the Gather phase where as upto 3 records in the
shuffle file for the Reduce phase. The size of each message record is constant,
hence the cost of the read is dominated by the number of records and not the
size of the record. We define γ as the constant cost of reading and updating the
AppendOnlyMap per record. Thus, we can define cost for the read task as γ
times number of records fetched. The reducing of the messages can start as soon
as there are two messages for the same vertex. As Spark uses parallel threads to
read data and process data, there will be an overlap in the execution of these
tasks. Hence, in a multi-core system, as soon as first block of messages is read,
it can start processing the messages while in parallel keep fetching remaining

blocks. Let C be the number of cores in a cluster node; hence C threads can
fetch data in parallel. Let b be the number of blocks of messages received in this
phase and M b represent the set of messages in the bth block. Then, the overall
cost of this phase is given as the sum of the cost of fetching the first block plus
the cost of processing all messages (if processing is slower than fetching) or the
cost of fetching remaining blocks plus processing the last block (if fetching is
slower than processing) as expressed in Equation (6).

cReduce(Mq
i , V

q
i , Am, Pe, Pv) := γ × |M1|

+ max {cProcess(Mq
i , V

q
i , Am),

γ

C
×
∑

2≤j≤b

|M j |+ C × cProcess(M b, V q
i , Am)}

+ α3

(6)

For a single core node, the fetching of data and processing can not run in parallel,
hence Equation (6) simplifies to the sum of the cost of fetching all messages and
processing them as given in Equation (7).

cReduce(Mq
i , V

q
i , Am, Pe, Pv) := γ × |Mq

i |
+ cProcess(Mq

i , V
q
i , Am) + α3

(7)

4 Experimental Validation of the Cost Model

In this section, we describe the experimental setup to obtain the cluster specific
variables (α1, α2, α3, βr, βw and γ) in the cost model and then share the results
of the validation of the cost model on different configurations.

4.1 Experiment Configuration and Setup

There are four main parameters which affect the execution of a GraphX Pregel
job: 1) Cluster setup, 2) Input Graph, 3) Partitioning Strategy, and 4) Graph
Algorithm to be executed. In our experiments, we always keep the cluster setup
constant and vary the other three. All experiments are done on a cluster with a
master node and 5 worker nodes. All nodes are Linux systems with Intel Xeon
E5-2630L v2 a 2.40 GHz processor, 1 TB SATA-3 Hard disk, 128 GB RAM, and
4 GB Ethernet. We deployed Spark 2.0.2 in cluster mode with each worker node
having 1 executor with 1 thread and 45 GB RAM assigned to it.

Input Graph: We used three real world datasets: the CollegeMsg network
is a directed graph of messages sent between users on a Facebook-like platform at
UC-Irvine; Higgs activity time (Higgs) is a dataset which provides information
about activity on Twitter during the discovery of the Higgs boson particles (both
datasets were taken from the SNAP repository [9]); Apart from this, we also use
a re-tweet network collected from information about activity on Twitter during
the Punjab Election 2017 (twitter) in India collected by ourselves for 3 days.

Partitioning Strategy: We use three partitioning strategies in the experi-
ments: EdgePartition2D; Canonical Random Vertex Partitioning(CRVC) (both
strategies provided by the default GraphX API) and our own implementation of
Degree Based hashing (DBH). As explained earlier, these partitioning strategies
only partition the EdgeRDD . For VertexRDD we used the default random Hash
Based partitioner provided by Spark. The number of partitions was equal to 5
in all experiments.

Graph Algorithm: We used the classical PageRank and Connected Com-
ponent algorithms in our experiments.

4.2 Estimating α1, α2, α3, βr, βw and γ

Monitoring the factors in the cost model is not straightforward. Hence, we ap-
plied following simplifications to approximate the value of the constant param-
eters:

1. We used the same code provided in GraphX for the Page Rank and Con-
nected component algorithms but just added additional counters on each of
the three GraphX functions to keep a count of how many times the updat-
eVertex, sendMsg and mergeMsg programs were executed in each task
of a super-step.

2. The execution time of the three functions is very small and difficult to mon-
itor precisely. A more accurate measurement of these functions allows for
a more accurate estimation of the cluster constants in the formula, hence
we introduced a constant time delay of 1 millisecond in all three functions.
This constant time delay is only for accurate estimation of the cluster pa-
rameters and does not affect the cost model accuracy. Let count(f) be the
number of times a program f is executed in an instance. This enables us to
approximate:

–
∑
cV ertexProg(v,Mq

i−1(v), Av) = count(updateVertex)× 1 msec
–
∑
cSendProg(u, v,As) = count(sendMsg)× 1 msec

–
∑(
|Mk

i (v)| − 1
)
× cMergeProg(Am) = count(mergeMsg)× 1 msec

3. We kept the number of edge partitions, vertex partitions and number of
nodes in the cluster equal, so that every node in the cluster is processing
only one partition of the VertexRDD and EdgeRDD (i.e |Pe| = |Pv| = N).

4. Every node has only one core assigned to it (i.e C = 1), hence we can use
Equation 7 for the reduce phase.

We used twitter graph data with the CRVC partitioning strategy and the
Page Rank algorithm to estimate the constants α1, α2, α3, βr, βw and γ of the
cost model. We used the SPARK UI API (a monitoring service provided by
Spark) to get the run time of each phase separately and other factors of the
cost model. Since we used a shared cluster while running the experiments, we
repeated the experiments 10 times and took the minimum execution time of a
super-step as the baseline cost of that super-step, assuming that higher time to
execute the same super-step is due to the interferences with parallel executions

(a) Apply Phase (b) Gather Phase

(c) Reduce Phase

Fig. 4. Using Linear curve fitting to estimate the variables in the cost model

of other processes on the cluster. cInit is a constant one time cost for a graph
and algorithm and do not change based on the partitioning strategy hence we
do not estimate this cost for every partitioning strategy.

We estimated the value of α1 and βw from Equation 3 by substituting the val-
ues of all other factors. For every super-step, we replaced cApply by the execution
time of the phase,

∑
cV ertexProg(v,Mq

i−1(v), Av) by count(updateVertex)
and the number of blocks written by total bytes written divided by 32 MB (the
default value of Bs in Spark), for the task which took the maximum time for
this phase. Substituting these values, results in a linear equation of the form
Y = βw × X + α1 where Y = cApply − count(updateVertex) and X is the
number of blocks written. We got the value of X and Y for all the super-steps and
obtained α1 and βw by ordinary least square (OLS) method. The result of the
linear curve fitting is show in Figure 4a. We get α1 = 1.366 msec and βw = 100.77
msec/block with a R-squared value of 0.9815. We believe the deviation(outliers)
from the line is due to discretization of the write bytes into number of buckets as
for some cases the last bucket would be almost full and for some it will be almost
empty resulting in different write time. Similarly, we estimated α2 and βr from
Equation 4 by replacing βw with 100.77; cGather by the stage execution time.
For the right hand side parameters of the equation we substituted values for the
longest running task. Hence, we replaced

∑
v∈V k

i ∩V ∗
i
sizeOf(v) by the volume of

remote bytes read by the task, cProcess(Mk
i , V

k
i , Am) by count(mergeMsg),∑

(u,v)∈Ek
i
cSendProg(u, v,As) by count(sendMsg) and the number of blocks

written by the volume of total bytes written by the task divided by 32 MB. Sub-

Dataset Algorithm

Partition Strategy

EdgePartition2D CRVC DBH

CollegeMsg
PageRank 96.4 97.9 97.7

CC 97.6 96.1 96.7

twitter

PageRank 97.7 - 99.3

CC 98.9 98.7 97.1

Higgs
PageRank 94.6 97.2 99.8

CC 97.9 95.9 94.9

Table 1. Prediction accuracy(%) of the cost model for different combinations of
dataset, partitioning strategy and graph algorithm.

stituting these values, results in a linear equation of the form Y = βr ×X +α2,
where Y = cGather − count(mergeMsg) − count(sendMsg) − βw × #blocks
and X is remote bytes read. After applying OLS we get α2 = 43.214 msec and
βr = 0.012 msec/byte with a R-squared value of 0.953 as shown in Figure 4b.
Similarly, from Equation 7 we get a linear equation of the form Y = γ×X +α3

where, Y = cReduce − count(mergeMsg) and X is the number of message
records. We get α3 = 17.367 msec and γ = 0.0405 msec/record with R-squared
value of 0.993 as shown in Figure 4c.

4.3 Cost model validation

We used 3 different graph data, 3 different edge partitioning strategy and 2
different graph algorithms in our experiments resulting in 18 different combina-
tions of graph, partitioning strategy and algorithm. In order to validate the cost
model, we estimated the cluster constants α1, α2, α3, βr, βw and γ in the cost
model for graph= twitter, partitioning strategy=CRVC and algorithm= Page
Rank (Section 4.2), then we used other 17 combinations of graph, partitioning
strategy and algorithm to estimate the execution cost. We replace the values of
α1, α2, α3, βr, βw and γ in the cost model and predict the job execution time by
measuring other attributes required by the cost model. Then we estimate the
accuracy of the cost model by comparing with the actual execution time of all
the super-steps. We report the prediction accuracy in Table 1. We get 96.9% av-
erage accuracy in predicting the job execution time in 17 different combination
with minimum accuracy of 94.6% and maximum accuracy of 99.8%.

5 Concluding remarks

We presented a cost model to estimate the execution cost of Pregel-based al-
gorithms on Spark GraphX and evaluated on different combinations of input
graph, algorithm and partitioning strategy. We see from the cost model that the
overall execution time depends on different factors such as: the execution time
of each function (i.e., updateVertex, sendMsg and mergeMsg); the cluster

configuration (such as data transfer between different nodes). The cost model
depends on many variables which are not known before hand and hence, for an
optimizer, they will need to be estimated. In future work, we will experiment
by varying the different dominating factors in the cost model, to see how they
determine the best partitioning strategy.

Acknowledgement

This research has been supported by FNRS Grant. The student is also part of
IT4BI DC program.

References

1. Barnard, S.T.: Parallel multilevel recursive spectral bisection. In: Proceedings of
the 1995 ACM/IEEE conference on Supercomputing. p. 27. ACM (1995)

2. Çatalyürek, Ü.i.t.V., Aykanat, C., Uçar, B.: On two-dimensional sparse matrix par-
titioning: Models, methods, and a recipe. SIAM Journal on Scientific Computing
(2010)

3. Ching, A., Edunov, S., Kabiljo, M., Logothetis, D., Muthukrishnan, S.: One trillion
edges: Graph processing at facebook-scale. VLDB (2015)

4. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: Dis-
tributed graph-parallel computation on natural graphs. In: OSDI (2012)

5. Jain, N., Liao, G., Willke, T.L.: Graphbuilder: scalable graph etl framework. In:
GRADES (2013)

6. Karypis, G., Kumar, V.: Multilevel graph partitioning schemes. In: ICPP (3) (1995)
7. Kumar, R., Calders, T.: Information propagation in interaction networks. In: Pro-

ceedings of the 20th International Conference on Extending Database Technology,
EDBT 2017 (2017)

8. Kumar, R., Calders, T., Gionis, A., Tatti, N.: Maintaining sliding-window neigh-
borhood profiles in interaction networks. In: ECML-PKDD. Springer (2015)

9. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data (Jun 2014)

10. Lumsdaine, A., Gregor, D., Hendrickson, B., Berry, J.: Challenges in parallel graph
processing. Parallel Processing Letters (2007)

11. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. In: SIGMOD (2010)

12. Petroni, F., Querzoni, L., Daudjee, K., Kamali, S., Iacoboni, G.: Hdrf: stream-based
partitioning for power-law graphs. In: CIKM. ACM (2015)

13. Verma, S., Leslie, L.M., Shin, Y., Gupta, I.: An experimental comparison of parti-
tioning strategies in distributed graph processing. Proc. VLDB Endow. (2017)

14. Xie, C., Yan, L., Li, W.J., Zhang, Z.: Distributed power-law graph computing:
Theoretical and empirical analysis. In: Advances in Neural Information Processing
Systems (2014)

15. Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: Graphx: A resilient distributed
graph system on spark. In: GRADES. ACM (2013)

16. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. USENIX Association (2012)

