

T BII

D C

Requirement-driven Design and

Optimization of Data-Intensive

Flows

Ph.D. Dissertation

Petar Jovanovic

Dissertation submitted July, 2016

A thesis submitted to Universitat Polit�ecnica de Catalunya, BarcelonaTech

(UPC) and the Faculty of Engineering at Universit�e Libre De Bruxelles (ULB),

in partial ful�llment of the requirements within the scope of the IT4BI-DC

programme for the joint Ph.D. degree in computer science. The thesis is not

submitted to any other organization at the same time.

To my family

Mojoj porodici

Thesis submitted: July, 2016

UPC Main Ph.D. Supervisors: Prof. Alberto Abell�o

Prof. Oscar Romero

Universitat Polit�ecnica de Catalunya,

BarcelonaTech, Barcelona, Spain

ULB Ph.D. Supervisor: Prof. Toon Calders

Universit�e Libre de Bruxelles, Brussels, Bel-

gium

PhD Series: Barcelona School of Informatics, Universitat

Polit�ecnica de Catalunya, BarcelonaTech

© Copyright by Petar Jovanovic. Author has obtained the right to include

the published and accepted articles in the thesis, with a condition that they

are cited, DOI pointers and/or copyright/credits are placed prominently in the

references.

Printed in Spain, 2016

Curriculum Vitae

Petar Jovanovic

Petar Jovanovic graduated with honors from high-school gymnasium Milo�s

Savkovi�c, in 2006, with specialization in math and natural sciences, in his

hometown of Arandelovac (Serbia).
In August 2010, he graduated Software Engineering, at the School of Elec-

trical Engineering, University of Belgrade. In October 2010, he continued his

education at the Barcelona School of Informatics (FIB), Universitat Polit�ecnica

de Catalunya (UPC), and graduated Master in Computing, with specialization

in Information Systems, in July 2011.

In October 2011, he decided to pursue his PhD studies under the supervision

of professors Alberto Abell�o and Oscar Romero inside the Group of Information

Modelling and Processing (MPI), at the department of Service and Information

System Engineering (ESSI), at Universitat Polit�ecnica de Catalunya. In 2013,

he has been awarded a four year PhD grant by the Spanish Ministry of Edu-

cation, Culture, and Sport, under the FPU grant program. During his master

and PhD program, he has been working on the problems of requirement-driven

design and optimization of data-intensive �ows in Business Intelligence systems.

His research interests mainly fall into the business intelligence �eld, namely:

Big Data management, Management and optimization of data-intensive �ows,

Data warehousing, ETL, Distributed data processing, MapReduce, Hadoop

ecosystem.

During his PhD studies, with MPI research group he has been part of

the research project funded by the Spanish Ministry of Science and Inovation

(TIN2011-24747), working on the development of new techniques for informa-

tion integration (2012-2014). Additionally, with his supervisors Alberto Abell�o

and Oscar Romero, he has participated in the collaborative research project

between Universitat Polit�ecnica de Catalunya and HP Labs, Palo Alto, Califor-

vii

Curriculum Vitae

nia (USA). From the HP Labs' side, the project was led and supervised by the

HP Labs' senior researcher Alkis Simitsis. This project focused on automat-

ing the logical design and optimization of hybrid data �ows, enabling engine

independent design and composition of data �ows spanning di�erent execution

and storage engines, hence enabling inter-engine management and optimiza-

tion of hybrid data �ows. The project also included two research stays (July

- September 2012, and March - July 2013) at the HP Labs facilities in Palo

Alto, California, where Petar was also working on the development of HP Labs'

proprietary Hybrid Flow Management System (HFMS).

In 2014, Petar joined the Erasmus Mundus Joint Doctorate program of In-

formation Technologies for Business Intelligence, Doctoral College (IT4BI-DC),

and continued his PhD studies in cohort with Universit�e Libre de Bruxelles

(ULB). Professor Toon Calders from ULB has joined the supervision of his

PhD thesis as a host co-advisor.

As part of his joint PhD studies, Petar performed two research stays at

Universit�e Libre de Bruxelles, his host university, working with professor Toon

Calders (September - December 2014, and August - November 2015). For both

of these research stays, he was awarded with competitive research stay grants

by the Spanish Ministry of Education, Culture, and Sport, under the FPU

Estancias Breves grant program.

He has published 13 peer-reviewed publications, including 3 JCR indexed

journal articles, 1 Springer LNCS journal article, 2 research track, full confer-

ence papers, 3 full workshop papers, and 4 tool demonstrations. During the

collaborative research project with HP Labs, he also co-authored 2 patent ap-

plications with the researchers from HP Labs (Alkis Simitsis and Kevin Wilkin-

son).

He has been one of the initiators and developer inside the Quarry project

at Universitat Polit�ecnica de Catalunya, which aims to automate the complex

and time-consuming task of the incremental data warehouse (DW) design from

high-level information requirements. This project is one of the main contribu-

tions of his PhD work, and during the years, the project has gathered several

researchers, PhD, master, and bachelor students.

Petar has also participated in teaching and advisory work at Universitat

Polit�ecnica de Catalunya. During spring semesters of 2013/2014, 2014/2015,

and 2015/2016, he has taught lab sessions of the Data Warehousing course,

in the Master in Innovation and Research in Informatics (MIRI), at Barcelona

School of Informatics. In addition, in 2016, he has also taught lab sessions of

the Big Data Management and Analytics (BDMA) postgraduate program, at

UPC School of Professional and Executive Development. Besides that, he has

also co-advised 7 master thesis and 1 �nal (bachelor) degree project.

viii

Abstract

Data have become number one assets of today's business world. Thus, its ex-

ploitation and analysis attracted the attention of people from di�erent �elds

and having di�erent technical backgrounds. Data-intensive �ows are central

processes in today's business intelligence (BI) systems, deploying di�erent tech-

nologies to deliver data, from a multitude of data sources, in user-preferred and

analysis-ready formats. However, designing and optimizing such data �ows, to

satisfy both users' information needs and agreed quality standards, have been

known as a burdensome task, typically left to the manual e�orts of a BI system

designer. These tasks have become even more challenging for next generation

BI systems, where data �ows typically need to combine data from in-house

transactional storages, and data coming from external sources, in a variety

of formats (e.g., social media, governmental data, news feeds). Moreover, for

making an impact to business outcomes, data �ows are expected to answer

unanticipated analytical needs of a broader set of business users' and deliver

valuable information in near real-time (i.e., at the right time). These chal-

lenges largely indicate a need for boosting the automation of the design and

optimization of data-intensive �ows.

This PhD thesis aims at providing automatable means for managing the

lifecycle of data-intensive �ows. The study primarily analyzes the remain-

ing challenges to be solved in the �eld of data-intensive �ows, by performing

a survey of current literature, and envisioning an architecture for managing

the lifecycle of data-intensive �ows. Following the proposed architecture, we

further focus on providing automatic techniques for covering di�erent phases

of the data-intensive �ows' lifecycle. In particular, the thesis �rst proposes

an approach (CoAl) for incremental design of data-intensive �ows, by means of

multi-�ow consolidation. CoAl not only facilitates the maintenance of data �ow

designs in front of changing information needs, but also supports the multi-�ow

optimization of data-intensive �ows, by maximizing their reuse. Next, in the

data warehousing (DW) context, we propose a complementary method (ORE)

for incremental design of the target DW schema, along with systematically trac-

ing the evolution metadata, which can further facilitate the design of back-end

data-intensive �ows (i.e., ETL processes). The thesis then studies the problem

ix

of implementing data-intensive �ows into deployable formats of di�erent execu-

tion engines, and proposes the BabbleFlow system for translating logical data-

intensive �ows into executable formats, spanning single or multiple execution

engines. Lastly, the thesis focuses on managing the execution of data-intensive

�ows on distributed data processing platforms, and to this end, proposes an

algorithm (H-WorD) for supporting the scheduling of data-intensive �ows by

workload-driven redistribution of data in computing clusters. The overall out-

come of this thesis is building an end-to-end platform for managing the lifecycle

of data-intensive �ows, called Quarry. The techniques proposed in this thesis,

plugged to the Quarry platform, largely facilitate the manual e�orts, and assist

users of di�erent technical skills in their analytical tasks. Finally, the results of

this thesis largely contribute to the �eld of data-intensive �ows in today's BI

systems, and advocate for further attention by both academia and industry to

the problems of the design and optimization of data-intensive �ows.

Acknowledgments

In the following few lines, I would like to thank to all the people with whom

I shared the path towards the completion of this PhD thesis, and who helped

me grow both personally and professionally.

Initially, I would like to thank my advisors from Universitat Polit�ecnica

de Catlunya, Dr. Alberto Abell�o and Dr. Oscar Romero, for their constant

guidance and support throughout my master and PhD studies. Their inspiring

ideas and their knowledge and expertise helped me shape my research path

and bring a real novelty into the �eld. But most importantly, their abundant

patience and the collaborative atmosphere made me persist on the path and

improve the quality of my work. I also want to thank my advisor from Univer-

sit�e Libre de Bruxelles, Dr. Toon Calders, whose support and guidance in the

second part of my PhD thesis have been really valuable to conclude this work.

I especially want to thank him for hosting me and working together during my

research stays at Universit�e Libre de Bruxelles.

In addition to my advisors, during my PhD studies I had a fortune and a

real honor to meet and collaborate with Dr. Alkis Simitsis, a senior researcher

from HP Labs. Alkis' expertise in the �eld of ETL and data-intensive �ows

helped me advance and clarify my doubts about the topic. Alkis also hosted

me twice during my research stays at HP Labs in Palo Alto. I would �rst like

to thank him for giving me this great opportunity, and for all the valuable

discussions, advices and encouragements that have kept me believe in my ideas

and my work.

Moreover, I want to thank all my colleagues from the DTIM group and

the IT4BI-DC program at Universitat Polit�ecnica de Catlunya, and all my

colleagues from Universit�e Libre de Bruxelles. They have always been there to

help, and really made me feel like part of the team. Thank you guys for all the

collaborative work we have done together, and for all the inspiring discussions

about research, life, politics.... during our lunch and co�ee breaks.

A special thanks to all the bachelor and master students that I have co-

advised during the last �ve years, for their great e�orts, and the hard work

they invested into building our Quarry platform.

I would like to thank to the anonymous reviewers as well as to researchers

xi

from many conferences, who provided great ideas and priceless feedback in

di�erent stages of this work.

I would like to express my deepest gratitude to my family, to whom I devote

this thesis. To my mom and dad, for their unconditional love, support, and

foremost sacri�ce during all these years. They have always been a rock to hold

on and inspiring examples of hard work, honesty, and lifelong values. I thank

them for believing in me, and for encouraging me to follow my path and grow

into an independent person I am today. I am especially grateful to my big

sister, Nevena, who has always been my tailwind and my reality check. I thank

her for her love, support, advices, talks, and for making me a stronger and

better person.

Last but not least, I would also like to thank my friends. To my friend Mila,

who, although remotely, has been a real support and a second sister during all

these tough years. I would also like to thank my colleague and a great friend

Jovan, for always being there when I needed help and for all the valuable talks

and memories we have shared. I would especially like to thank my friend,

�atmate, and really more like a Spanish brother, Silverio, with who I worked,

discussed, argued, laughed, joked, lived and shared many unforgettable lifetime

moments in the past �ve years.

Thanks to all the people that contributed to my personal and professional

life!

This work has been possible thanks to the Spanish FPU grant FPU12/04915,

and FPU Grants for Research Stays (Estancias Breves) EST13/00944 and

EST14/00548. Parts of this work have been partially supported by the Spanish

Ministerio de Ciencia e Innovaci�on under project TIN2011-24747, and by the

Secreteria d'Universitats i Recerca de la Generalitat de Catalunya under 2014

SGR 1534.

Contents

Curriculum Vitae vii

Abstract ix

Thesis Details xix

1 Introduction 1

1 Background and Motivation . 1

2 The Lifecycle of Data-intensive Flows 3

2.1 Research Problems and Challenges 4

3 Structure of the Thesis . 7

4 Thesis Overview . 8

4.1 Chapter 2: A Uni�ed View of Data-Intensive Flows in

Business Intelligence Systems: A Survey (The State of

the Art) . 10

4.2 Chapter 3: Incremental Consolidation of Data-Intensive

Multi-�ows (Data Flow Integrator) 11

4.3 Chapter 4: A Requirement-Driven Approach to the De-

sign and Evolution of Data Warehouses (Target Schema

Integrator) . 12

4.4 Chapter 5: Engine Independence for Logical Analytic F-

lows (Data Flow Deployer) 14

4.5 Chapter 6: Supporting Job Scheduling with Workload-

driven Data Redistribution (Data Flow Scheduler) . . . 15

5 Contributions . 16

2 A Uni�ed View of Data-Intensive Flows in Business Intelligence Sys-

tems: A Survey 19

1 Introduction . 20

2 Example Scenario . 23

3 Methodology . 25

3.1 Selection process . 26

xiii

Contents

3.2 Phase I (Outlining the study setting). 26

3.3 Phase II (Analyzing the characteristics of data-intensive

�ows). 29

3.4 Phase III (Classi�cation of the reviewed literature). . . 30

4 De�ning dimensions for studying data-intensive �ows 31

4.1 Data Extraction . 31

4.2 Data Transformation . 33

4.3 Data Delivery . 34

4.4 Optimization of data-intensive �ows 34

5 Data Extraction . 35

5.1 Structuredness . 35

5.2 Coupledness . 36

5.3 Accessability . 38

5.4 Discussion . 38

6 Data Transformation . 40

6.1 Malleability . 40

6.2 Constraintness . 42

6.3 Automation . 43

6.4 Discussion . 45

7 Data Delivery . 46

7.1 Interactivity . 46

7.2 Openness . 48

7.3 Discussion . 50

8 Optimization of data-intensive �ows 50

8.1 Optimization input . 50

8.2 Dynamicity . 52

8.3 Discussion . 52

9 Overall Discussion . 53

9.1 Architecture for managing the lifecycle of data-intensive

�ows in next generation BI systems 54

10 Conclusions . 58

3 Incremental Consolidation of Data-Intensive Multi-�ows 59

1 Introduction . 60

2 Overview . 62

2.1 Running Example . 62

2.2 Preliminaries and Notation 64

2.3 Problem Statement . 68

3 Data Flow Consolidation Challenges 70

3.1 Operation reordering . 71

3.2 Operations comparison 74

4 Consolidation Algorithm . 75

4.1 Computational complexity 81

xiv

Contents

5 Evaluation . 83

5.1 Prototype . 83

5.2 Experimental setup . 83

5.3 Scrutinizing CoAl . 84

6 Related Work . 87

7 Conclusions and Future Work 89

8 Acknowledgments . 89

4 A Requirement-Driven Approach to the Design and Evolution of Data

Warehouses 91

1 Introduction . 92

2 Overview of our Approach . 95

2.1 Running example . 95

2.2 Formalizing Information Requirements 96

2.3 Formalizing the Problem 100

2.4 ORE in a Nutshell . 102

3 Traceability Metadata . 106

4 The ORE Approach . 109

4.1 Matching facts . 111

4.2 Matching dimensions . 113

4.3 Complementing the MD design 115

4.4 Integration . 116

5 Theoretical Validation . 118

5.1 Soundness and Completeness 118

5.2 Commutativity and Associativity 122

5.3 Computational complexity 122

6 Evaluation . 124

6.1 Prototype . 125

6.2 Output validation . 126

6.3 Experimental setup . 127

6.4 Scrutinizing ORE . 128

6.5 The LEARN-SQL Case Study 133

7 Related Work . 140

8 Conclusions and Future Work 142

9 Acknowledgements . 143

5 Engine Independence for Logical Analytic Flows 145

1 Introduction . 146

2 Problem Formalization . 147

2.1 Preliminaries . 147

2.2 Logical and physical �ows 148

2.3 Normalized �ow . 148

2.4 Dictionary . 149

xv

Contents

2.5 Conversion process . 149

2.6 Problem statements . 150

3 Architecture . 151

3.1 System overview . 151

3.2 Example . 152

3.3 Flow encoding . 152

3.4 Dictionary . 154

3.5 Error handling . 155

4 Physical to Logical . 156

4.1 Single �ow . 156

4.2 Multi-�ow import . 158

5 Flow Processor . 161

6 Logical to Physical . 162

6.1 Creating an engine speci�c �ow 162

6.2 Code generation . 164

7 Evaluation . 167

7.1 Preliminaries . 167

7.2 Experiments . 168

8 Related Work . 172

9 Conclusions . 173

6 H-WorD: Supporting Job Scheduling in Hadoop with Workload-driven

Data Redistribution 175

1 Introduction . 176

2 Running Example . 178

3 The Problem of Skewed Data Distribution 179

4 Workload-driven Redistribution of Data 181

4.1 Resource requirement framework 181

4.2 Execution modes of map tasks 182

4.3 Workload estimation . 184

4.4 The H-WorD algorithm 185

5 Evaluation . 186

6 Related Work . 189

7 Conclusions and Future Work 190

8 Acknowledgements . 191

7 Conclusions and Future Directions 193

1 Conclusions . 193

2 Future Directions . 197

Bibliography 199

References . 199

xvi

Contents

Appendices 215

A Quarry: Digging Up the Gems of Your Data Treasury 217

1 Introduction . 218

2 Demonstrable Features . 219

2.1 Requirements Elicitor 221

2.2 Requirements Interpreter 221

2.3 Design Integrator . 221

2.4 Design Deployer . 223

2.5 Communication & Metadata Layer 223

2.6 Implementation details 224

3 Demonstration . 224

4 Acknowledgements . 225

xvii

Contents

xviii

Thesis Details

Thesis Title: Requirement-driven Design and Optimization of Data-

Intensive Flows

Ph.D. Student: Petar Jovanovic

Supervisors: Prof. Alberto Abell�o, Universitat Polit�ecnica de Catalunya,

BarcelonaTech, Barcelona, Spain (UPC Main Supervisor)

Prof. Oscar Romero, Universitat Polit�ecnica de Catalunya,

BarcelonaTech, Barcelona, Spain (UPC Co-Supervisor)

Prof. Toon Calders, Universit�e Libre de Bruxelles, Brussels,

Belgium (ULB Supervisor)

The main body of this thesis consist of the following papers.

[1] Petar Jovanovic, Oscar Romero, Alberto Abell�o. A Uni�ed View of

Data-Intensive Flows in Business Intelligence Systems: A Survey. Trans.

Large-Scale Data- and Knowledge-Centered Systems, InPress (2016)

[2] Petar Jovanovic, Oscar Romero, Alkis Simitsis, Alberto Abell�o. In-

cremental Consolidation of Data-Intensive Multi-Flows. IEEE Trans.

Knowl. Data Eng. 28(5): 1203-1216 (2016)

[3] Petar Jovanovic, Oscar Romero, Alkis Simitsis, Alberto Abell�o, Daria

Mayorova. A requirement-driven approach to the design and evolution of

data warehouses. Inf. Syst. 44: 94-119 (2014)

[4] Petar Jovanovic, Alkis Simitsis, Kevin Wilkinson. Engine independence

for logical analytic �ows. ICDE 2014: 1060-1071

[5] Petar Jovanovic, Oscar Romero, Toon Calders, Alberto Abell�o. H-WorD:

Supporting Job Scheduling in Hadoop with Workload-driven Data Redis-

tribution, accepted for publication at 20th East-European Conference on

Advances in Databases and Information Systems, August 2016.

In addition to the main papers, the following peer-reviewed publications have

also been made.

xix

Thesis Details

• Journal articles:

[1] Vasileios Theodorou, Petar Jovanovic, Alberto Abell�o, Emona Nak-

u�ci. Data generator for evaluating ETL process quality. Inf. Syst.

InPress (2016)

• Conference and workshop full papers:

[2] Petar Jovanovic, Oscar Romero, Alkis Simitsis, Alberto Abell�o. In-

tegrating ETL Processes from Information Requirements. DaWaK

2012: 65-80

[3] Petar Jovanovic, Oscar Romero, Alkis Simitsis, Alberto Abell�o. ORE:

an iterative approach to the design and evolution of multi-dimensional

schemas. DOLAP 2012: 1-8

[4] Emona Naku�ci, Vasileios Theodorou, Petar Jovanovic, Alberto Ab-

ell�o. Bijoux: Data Generator for Evaluating ETL Process Quality.

DOLAP 2014: 23-32

[5] Rizkallah Touma, Oscar Romero, Petar Jovanovic: Supporting Data

Integration Tasks with Semi-Automatic Ontology Construction.

DOLAP 2015: 89-98

• Tool demonstrations:

[6] Petar Jovanovic, Oscar Romero, Alkis Simitsis, Alberto Abell�o. Re-

quirement-Driven Creation and Deployment of Multidimensiona-

l and ETL Designs. ER Workshops 2012: 391-395

[7] Alkis Simitsis, Kevin Wilkinson, Petar Jovanovic. xPAD: a platform

for analytic data �ows. SIGMOD Conference 2013: 1109-1112

[8] Petar Jovanovic, Alkis Simitsis, Kevin Wilkinson. BabbleFlow: a

translator for analytic data �ow programs. SIGMOD Conference

2014: 713-716

[9] Petar Jovanovic, Oscar Romero, Alkis Simitsis, Alberto Abell�o, H�ec-

tor Cand�on, Sergi Nadal. Quarry: Digging Up the Gems of Your

Data Treasury. EDBT 2015: 549-552

This thesis has been submitted for assessment in partial ful�llment of the PhD

degree. The thesis is based on the submitted or published scienti�c papers

which are listed above. Parts of the papers are used directly or indirectly in

the extended summary of the thesis.

xx

Chapter 1

Introduction

1 Background and Motivation

We have certainly entered the era in which data volumes are uncontrollably

generated with immense speeds, by humans, as well as by machines. To make

the situation clearer, until 2014 we had that �the amount of data collected in

the last two years is higher than the amount of data collected since the dawn

of time� [11]. At the same time, data and even more the knowledge extracted

from them, have become number one assets in businesses world-wide, namely

�the gems of the enterprise� [146]

The companies thus strive to obtain information from these data, and ac-

quire useful knowledge for making their business and strategic decisions. Tra-

ditional business intelligence (BI) systems were introduced to support such

strategic needs of business users [119]. Intuitively, a BI system typically �refers

to a set of tools and techniques that enable a company to transform its busi-

ness data into timely and accurate information for the decisional process, to be

made available to the right persons in the most suitable form� [139].

For enabling smoother data analysis, a variety of data transformations need

to be applied over raw data. Besides well-studied relational algebra operations

(e.g., selection, join, Cartesian product) [171], other, more complex, and typ-

ically ad hoc built operations are additionally required to conform the raw

data to the formats suitable to end users' analytical needs (e.g., data cleaning,

pivot, data mappers, or in general operators with black-box semantics [186]).

As pointed out in [186], the situation becomes more challenging, as these data

transformations typically need to be combined in a work�ow.

A prominent solution studied in the past twenty years for enabling data

analysis over historical data is data warehousing (DW). The �rst and the most

complete de�nition of a DW is given by Bill Inmon in 1992 [82]: �A data ware-

house is a subject-oriented, integrated, time-variant and non-volatile collection

1

Chapter 1. Introduction

of data in support of management's decision making process�. Intuitively, a DW

system assumes a uni�ed data storage, typically modeled following the multidi-

mensional (MD) paradigm [140], to support analytical needs of business users.

In the back stage, a DW system includes a batched data work�ow known as

extract-transform-load (ETL) process, responsible for orchestrating the �ow of

data from relevant data sources towards a data warehouse. The complexity

and high costs of building an ETL process have been largely discussed both by

practitioners and researchers in the peak years of data warehousing [169, 185],

reporting that the correct ETL process implementation can take up to 80% of

the entire DW project [170].

The situation, however, has become unbearable for traditionally built BI

systems [119], given the inherent complexity that the new data characteristics

(a.k.a., BigData) brought into picture. As initially de�ned [81], the three main

challenges, also known as the 3 V's of BigData are: large volumes of data

being collected (i.e., volume), growing speed in which data are arriving into

systems (i.e., velocity), and plethora of di�erent formats in which these data

are supplied (i.e., variety).

At the same time, the high dynamics of global markets demand moving

from typical long-term and strategic only, towards medium and short term

(i.e., tactical and operational) decision making, such that it �provides the right

information to the right people at the right time so they can make a positive

impact on business outcomes� [50]. In addition, businesses have become more

situation-dependent, thus combining in-house data with external data sources

(e.g., govermental data, social networks, open data initiatives) has become

essential for providing useful, context-aware knowledge to decision makers [110].

Lastly, there is also a demand for more agility in the BI systems development

in order to more easily accommodate new, unanticipated, or changed needs of

a broader set of business users [34, 79].

These challenges inevitably required changes in the roadmap for previ-

ously long-lasting, BI and DW projects [119], which typically, as other soft-

ware projects, required long requirement elicitation cycles, followed by several,

mostly manual rounds of reconciliation and redesigning, before all the business

needs were met [146].

Being the most complex part of BI projects, but at the same time the

most critical processes in today's BI applications, problems related to data

work�ows, like ETL processes, still occupy the attention of both researchers

and practitioners. For meeting complex requirements of next generation BI

systems [87], we often need an e�ective combination of the traditionally batched

ETL processes that populate a DW from integrated data sources, and more

real-time and operational data �ows that integrate source data and provide

results to users at runtime. Thus, throughput this document, we use the term

data-intensive �ow (DIF), or simply, data �ow, for capturing in a more general

manner the variety of data work�ows in the next generation BI systems.

2

2. The Lifecycle of Data-intensive Flows

2 The Lifecycle of Data-intensive Flows

Data-intensive �ows are critical processes in BI applications with the common

goal of delivering the data in user-preferred and analysis-ready formats, from

a multitude of data sources. In general, a DIF starts by extracting data from

individual data sources, cleans and conforms extracted data to satisfy certain

quality standards and business requirements, and �nally brings the data to end

users.

Similar to other software products, the lifecycle of a DIF in BI applications

typically consists of several phases. We further de�ne the lifecycle of DIFs (see

Figure 1.1), and give an overview of its phases, along with example approaches

that either fully or partially facilitate them.

Fig. 1.1: The lifecycle of DIFs in BI applications

• Requirements analysis. The lifecycle of DIFs starts by eliciting and ana-

lyzing user requirements. In the context of data-centric (analytical) appli-

cations, user requirements are typically related to the analytical needs of

end users, hence they express the information or knowledge a user wants

to acquire from input data. We further refer to them as information

requirements.

3

Chapter 1. Introduction

• Design. The next phase is dedicated to the conceptual and logical design

of DIFs that will answer the information requirements of end users. Hav-

ing a plethora of di�erent commercial and open-source design tools in the

market, the research has been rather focused on providing a uni�ed way

for the conceptual or logical design of data �ows.

• Optimization. Being time-critical processes in BI application, a special

attention is dedicated to the optimization of DIFs. Thus, once a DIF is

designed to answer user information requirements, the following phase

deals with optimizing the data �ow considering other, non-functional,

requirements, e.g., performance, reliability, fault-tolerance, to mention a

few [176]. Consequently, a considerable amount of research has been ded-

icated to the problems of non-functional requirements of DIFs, especially

to the problems of optimizing their performance.

• Implementation. Furthermore, once a DIF is designed to satisfy both

information and non-functional requirements, in the following phase a

designer needs to select the execution engine(s) for executing DIFs. Con-

sequently, conceptual or logical DIFs need to be translated to the format

of the engine of choice (e.g., SQL, PIG scripts, Java/Scala/Python code).

• Testing. Given the inherent complexity of DIFs in BI applications, veri-

fying and testing DIFs for satisfying both information and non-functional

requirements represents an important part of the DIF lifecycle. Testbed

platforms with benchmarking and syntactic data generation functionali-

ties are needed to support the DIF evaluation tasks.

• Execution. Once ready, the execution of DIFs needs to be properly sched-

uled and monitored at the selected execution engine(s). Today, execution

environments are typically distributed (e.g., organized in a form of a com-

puting cluster), and shared among various applications coming from one

or many users. Thus, proper scheduling and runtime optimization are

essential for achieving better performance of DIFs and better resource

utilization of a computing cluster.

• Maintenance. Lastly, once in place, DIFs are subject to changes, either

due to the changed end users' information requirements, or to changes of

the considered data sources. Thus, maintenance techniques, capable of

e�ciently accommodating such changes to the existing DIFs are needed.

2.1 Research Problems and Challenges

The businesses today are undoubtedly in a need for the means to support

and automate the complex DIF lifecycle. To this end, this PhD thesis focuses

4

2. The Lifecycle of Data-intensive Flows

on studying the current �eld of DIFs in BI applications, and providing the

techniques and tools for facilitating di�erent phases of the DIF lifecycle.

Current research approaches have dealt with some of the problems in the

DIF lifecycle. To this end, we start by surveying the current state of the art

in data-intensive �ows. We present the results of this survey in detail, later in

Chapter 2, while here we give a brief overview of the main remaining challenges

for the lifecycle of DIFs.

Requirements analysis. Analyzing user requirements and systematically in-

corporating them into a design of DIFs has been typically overlooked in real BI

projects, and left to more ad hoc techniques, leading many of them to failure.

Some attempts towards systematic requirements analysis have been undertaken

(e.g., [65, 196]), but they still require long processes of collecting the require-

ments at di�erent levels of abstraction and their analysis before manually in-

corporating them into a DIF design. Other works identi�ed this problem and

proposed some automation to such time-lasting process (e.g., [146]). However,

the automation required lowering the level of abstraction for de�ning infor-

mation requirements, tightening them to the multidimensional model notation

(i.e., facts and dimensions of analysis). Recently, an extensive study has been

performed [60] to identify how decision support system approaches �t the tradi-

tional requirements engineering framework (i.e., [132]). As a result, the authors

identi�ed a need for a systematic and structured requirements analysis process

for further raising the level of automation for the design of decision support

systems (including the design of DIFs), while at the same time keeping the

requirements analysis aware of all stakeholder needs.

Design. In reality, DIFs are currently mostly built in an engine-speci�c

manner, in a variety of tools, each with its own speci�c proprietary format

[128]. These tools typically do not provide any automation for the design and

optimization of DIFs. Thus, we identify a need for providing the re-engineering

support for the DIF's design, with the aim of raising the abstraction of physical

DIFs to more logical and conceptual levels. This will further facilitate engine-

independent analysis and optimization of DIFs, as well as their redeployment

to the same or di�erent execution engine(s). Current research appraoches for

the DW design were mainly focused either on providing a uni�ed notation for

modeling DIFs (e.g., [12, 180, 190]), or on supporting their design, e.g., by

providing design guidelines [96], frameworks for assising designers [189, 13], or

by automating the design of DIFs [44, 146]. However, these approaches still lack

the automation support for identifying more complex data transformations,

typical for analytic needs of today's business users, like data cleaning, machine

learning algorithms, etc.

Optimization. When it comes to the optimization of DIFs, most of the

current approaches (e.g., [158, 26, 78, 101]) have focused on optimizing the

performance of data �ow executions, typically following the principles of tra-

ditional relational query optimization [84]. Others have also considered other

5

Chapter 1. Introduction

non-functional requirements, e.g., reliability, fault-tolerance, recoverability, to

mention a few [161]. In addition, the traditional problem of multi-query opti-

mization [150] has also been identi�ed as advantageous for optimizing today's

DIFs, especially for the case of batched data �ows, for which the joint execu-

tion by means of operation and data reuse is found to be especially bene�cial

[24, 94]. However, current approaches have dealt with the problem focusing

on a limited set of relational algebra operations, thus not taking into account

the variability and complexity of data transformations typically required in to-

day's DIFs. Moreover, the current approaches for multi-�ow optimization have

not studied the bene�ts of equivalence �ow transformations (i.e., operation

reordering) for boosting the reuse of data and operations among DIFs.

Implementation. Approaches here have mostly dealt with the problem of

deciding the execution engine(s) and implementation for DIFs [102, 181]. Some

approaches also focused on automating the translation of a conceptual design

of DIFs to the logical and physical level, thus generating an executable code

for their execution (e.g., by means of model transformations from UML [120],

or from BPMN [13, 195]). However, these approaches were mostly tied to

a speci�c model transformation and thus to a single prede�ned executable

format for DIF implementation. However, in today's BI applications, complex

DIFs can span multiple execution engines, and thus require �exibility for the

deployment over di�erent execution engines [162].

Testing. Even though testing is an important phase of the DIF lifcycle,

it is one of the least supported phases in the literature. The approaches that

automate the design of DIFs, do incorporate the veri�cation and validation

checks for assuring the correctness of DIFs and their compliance to informa-

tion requirements. However, testing DIFs for other (non-functional) require-

ments has been mainly overlooked and left to the manual e�orts of a designer.

To this end, some approaches further focused on supporting benchmarking of

DIFs (e.g., [157, 159, 25]), while others also tackled the problem of automatic

data generation to support evaluating the quality of DIFs (e.g., [178]). How-

ever, there is still a lack of a uni�ed (end-to-end) solution (i.e., a testbed) for

evaluating DIFs for both information and non-functional requirements.

Execution. In the context of scheduling the execution of DIFs, one of the

biggest challenges, especially in the case of distributed data processing sys-

tems, is boosting the proximity of input data to the data processing tasks,

for reducing network tra�c costs (a.k.a., data locality). Currently used data

processing engines mostly rely on simple techniques for scheduling DIFs (e.g.,

Capacity [3] and Fair [4] scheduling in Hadoop ecosystem [191]), which focus

on exploiting data locality and thus bringing data processing tasks to the re-

sources where their input data is stored (i.e., query shipping). However, with

�blindly� favoring query shipping (over data shipping), skewed distribution of

data in the cluster can severely a�ect the performance of DIFs. Therefore,

many research attempts have dealt with this problem, typically making a bal-

6

3. Structure of the Thesis

ance between query shipping and data shipping, e.g., [194, 72]. Data shipping,

on the other side, can also a�ect the execution of data processing tasks in a

DIF, as they are additionally deferred waiting for their input data to arrive.

Therefore, distributed data processing systems require more advanced schedul-

ing techniques that would (based on the estimated or predicted workload of

executing DIFs), schedule data processing tasks to optimize the performance

of DIFs, and as well, schedule the data shipping actions in advance to avoid

additionally deferring tasks' executions.

Maintenance. While many appraoches have dealt with either manual or

automated design of DIFs, they typically do not provide any support for the

redesign of DIFs in front of di�erent evolution changes. Some of the cur-

rent approaches have focused on dealing with the changes of involved data

sources (e.g., [13, 129]). However, there is a lack of support for the evolution

of DIFs in front of new, changed, or removed information requirements. We

thus identify a need for supporting incremental design of DIFs and the means

to e�ciently accommodate the changed information needs of end users in the

existing DIF design. Moreover, when it comes to the DW context, no existing

evolution approaches up to now have dealt with the problem of target schema

and ETL process evolution, at the same time, hence they have typically over-

looked how the changes at the DW schema a�ect the design of the back-end

DIFs, i.e., ETL process.

Starting from the identi�ed challenges in managing the lifecycle of DIFs, this

PhD thesis further aims at addressing some of these challenges and providing

methods and tools for facilitating di�erent phases of the DIF lifecycle, namely,

design, optimization, implementation, execution, and maintenance.

3 Structure of the Thesis

The results of this PhD thesis are reported inside the �ve main chapters of

this document (i.e., Chapter 2 - Chapter 6). Each chapter is self-contained,

corresponding to an individual research paper, and hence it can be read in

isolation. There can be some overlaps of concepts, examples, and texts in

the introduction and preliminaries sections of di�erent chapters as they are

formulated in relatively similar kind of settings. Due to di�erent timelines

in which these works have been done, as well as the research teams in which

we have worked, there may also be some discrepancies in the terminology for

some of the concepts. However, the terminology and notation used in each of

the works have been clearly de�ned and formalized in each particular chapter.

One important di�erence is the term used for denoting a concept of DIFs.

In some works they are actually called data-intensive �ows (chapters 2 and

3), in some analytic �ows (Chapter 5), while in others they are termed more

speci�cally to the scenario in which they are deployed (e.g., ETL processes

7

Chapter 1. Introduction

in Chapter 4 and Appendix A, and MapReduce jobs in Chapter 6). All of

them refer to the general concept of data-intensive �ows, de�ned earlier in this

chapter. In addition, Appendix A refers to a published tool demonstration of

the Quarry platform, which deploys the modules resulted from this PhD thesis'

work.

The papers included in this thesis are listed below. Chapter 2 is based on

Paper 1, Chapter 3 is based on Paper 2, Chapter 4 is based on Paper 3, Chapter

5 is based on Paper 4, Chapter 6 is based on Paper 5, and Appendix A is based

on Paper 6.

1. Petar Jovanovic, Oscar Romero, Alberto Abell�o. A Uni�ed View of Data-

Intensive Flows in Business Intelligence Systems: A Survey, accepted with

revision for publication in Trans. Large-Scale Data- and Knowledge-

Centered Systems, (2016)

2. Petar Jovanovic, Oscar Romero, Alkis Simitsis, Alberto Abell�o. In-

cremental Consolidation of Data-Intensive Multi-Flows. IEEE Trans.

Knowl. Data Eng. 28(5): 1203-1216 (2016)

3. Petar Jovanovic, Oscar Romero, Alkis Simitsis, Alberto Abell�o, Daria

Mayorova. A requirement-driven approach to the design and evolution of

data warehouses. Inf. Syst. 44: 94-119 (2014)

4. Petar Jovanovic, Alkis Simitsis, Kevin Wilkinson. Engine independence

for logical analytic �ows. ICDE 2014: 1060-1071

5. Petar Jovanovic, Oscar Romero, Toon Calders, Alberto Abell�o. H-WorD:

Supporting Job Scheduling in Hadoop with Workload-driven Data Redis-

tribution, accepted for publication at 20th East-European Conference on

Advances in Databases and Information Systems, August 2016.

6. Petar Jovanovic, Oscar Romero, Alkis Simitsis, Alberto Abell�o, H�ector

Cand�on, Sergi Nadal. Quarry: Digging Up the Gems of Your Data Trea-

sury. EDBT 2015: 549-552

4 Thesis Overview

In this section, we provide a brief overview of the results of this PhD thesis.

In particular, we �rst give a holistic overview of the thesis' contributions to

the management of the DIF lifecycle (i.e., the Quarry project), and then we

provide an overview of the contributions of each chapter of this thesis.

Quarry is the backbone project of this PhD thesis. Its main goal is to pro-

vide a system for facilitating and automating di�erent phases of the lifecycle of

analitical infrastructures, like DW systems. In particular, Quarry is envisioned

8

4. Thesis Overview

as an end-to-end platform for assisting users of various technical skills in man-

aging the incremental design and deployment of DIFs, by automating the phys-

ical design of a DIF from high-level information requirements. Quarry provides

means for e�ciently accommodating the design of a MD schema and DIFs to

new or changed information needs of its end-users. Finally, Quarry facilitates

the deployment of the generated designs over an extensible list of execution

engines. Deployed designs are then available for further �ne tuning, schedul-

ing, and execution. The overview of Quarry's functionalities are illustrated in

Figure 1.2.

Fig. 1.2: The Quarry project

Quarry starts either from high-level information requirements expressed in

terms of analytical needs of end users (e.g., [65, 146]), or the engine (implemen-

tation) speci�c formats (e.g., SQL query, scripts; [93]). Information require-

ments collected from end users (requirement elicitor) are further translated to

the logical designs of DIFs that answer such requirements (requirement inter-

preter). In addition, in the case of a DW system, a target MD schema design is

generated to support the storage of the data processed by the given DIF (i.e.,

ETL process). Independently of the way end users translate their informa-

tion requirements into the corresponding logical designs (e.g., automatically

[146, 18], or manually [13, 189]), Quarry provides automated means for inte-

grating these designs into a uni�ed design satisfying all requirements met so

far (�ow integrator & multi-�ow optimizer).

On the one hand, data �ow integrator incrementally consolidates DIFs sat-

isfying individual information requirements, and facilitates the maintenance of

DIFs in front of new, changed, or removed information requirements. While

building a uni�ed data-intensive multi-�ow satisfying all the requirements, data

�ow integrator accounts for the cost of produced data �ows and optimizes

DIFs for joint (multi-�ow) execution. For instance, by maximizing the reuse of

data and operations and hence, maximizing the throughout of DIFs' execution.

9

Chapter 1. Introduction

On the other hand, target schema integrator provides means for facilitating the

incremental design of the target MD schema, hence accommodating the new or

changed information requirements of end users to the existing design. Impor-

tantly, while incrementally building the target schema, target schema integrator

keeps traces of the transformations needed to adapt the existing schema to the

changed information requirements, which can then be used for conforming the

back stage DIFs (i.e., ETL processes).

Quarry further facilitates the implementation and deployment of designed

DIFs, by means of translating them to the physical formats executable on

di�erent execution engines (�ow deployer). Flow deployer also enables the

multi-engine execution of DIFs, by providing the capablities of decomposing

a DIF, and hence supporting approaches for execution engine selection (e.g.,

[102, 162]). Finally, Quarry assists the execution of deployed DIFs (�ow ex-

ecutor), through optimally scheduling them over the available resources (data

�ow scheduler). Furthermore, data �ow executor is in charge of submitting the

execution of scheduled DIFs to the selected execution engine(s) and monitor-

ing their progress. As a result of their execution, DIFs supply end users with

valuable data ready for further analysis and exploitation, e.g., online analytical

processing (OLAP), reporting, data mining, visualization.

More details about the complete Quarry system [90] are provided in Ap-

pendix A of this document. In the following subsections we give an overview of

the Quarry components that resulted from this PhD thesis, which are further

explained in detail in the corresponding chapters of this document.

4.1 Chapter 2: A Uni�ed View of Data-Intensive Flows in Busi-
ness Intelligence Systems: A Survey (The State of the Art)

Being a rather complex and broad �eld of research, problems related to DIFs h-

ave been typically addressed individually by di�erent research approaches.

Moreover, depending on the application requirements of DIFs, they are mostly

separately studied for the case of back-end, batched ETL processes in DW sys-

tems, and more real-time and operational data �ows that integrate source data

at runtime. However, the next genaration BI systems require e�ective combi-

nation of the traditional, batched decision making processes, with on-the-�y

DIFs to satisfy analytic needs of today's business users (e.g., [9, 42, 73]). For

example, a part of the in-house company's sales data, periodically loaded to a

DW by an ETL process, can at runtime be joined with up-to-date Web data

to make more context-aware business decisions. To build such demanding sys-

tems, one must �rst have a clear understanding of the foundation of di�erent

data-intensive �ow scenarios and the challenges they bring.

To this end, in Chapter 2, we present a comprehensive survey of today's re-

search on data-intensive �ows and the related fundamental �elds of the database

theory. The study is based on a set of dimensions describing the important chal-

10

4. Thesis Overview

lenges of data-intensive �ows in the next generation BI setting. On the one

hand, the results of this survey provide us with a clear understanding of the

foundations of DIFs, while on the other hand, identi�ed characteristics help us

de�ne the main remaining challenges in the �eld of DIFs. Finally, as the main

outcome of this survey, we outlined the envisioned architecture of next gener-

ation BI systems, focusing on managing the lifecycle of data-intensive �ows,

which represents the framework of this PhD thesis study.

4.2 Chapter 3: Incremental Consolidation of Data-Intensive Multi-
�ows (Data Flow Integrator)

A data integration process combines data residing in various data sources and

provides a uni�ed view of this data to a user [106]. For instance, in a data

warehousing (DW) context, data integration is implemented through back-

end, batched ETL processes. Generally, data integration processes are typically

represented in a form of a DIF that extracts, cleans, and transforms data from

multiple, often heterogeneous data sources, and �nally delivers data to users

for further analysis or visualization. As we discuss in Chapter 2, there are

various remaining challenges related to the design and optimization of DIFs.

In Chapter 3, we focus on the challenges of incremental design and maintenance

of DIFs.

A major problem that BI decision-makers face relates to the evolution of

business requirements. These changes are more frequent at the early stages of

a BI project [34] and in part, this is due to a growing use of agile method-

ologies in data �ow design and BI systems in general [79]. But changes may

happen during the entire BI lifecycle. Having an up-and-running DW system

satisfying an initial set of requirements is still subject to various changes as the

business evolves. The DIFs, as other software artifacts, do not lend themselves

nicely to evolution events and in general, due to their complexity, maintain-

ing them manually is hard. The situation is even more critical in today's BI

settings, where on-the-�y decision making requires faster and more e�cient

adaptation to changes. Changes in business needs may result in new, changed,

or removed information requirements. Thus having an incremental and agile

solution that can automatically absorb occurred changes and produce a �ow

satisfying the complete set of requirements would largely facilitate the design

and maintenance of DIFs.

At the same time, in an enterprise environment, data is usually shared

among users with varying technical skills and needs, involved in di�erent parts

of a business process. Typical real-world data-intensive workloads have high

temporal locality, having 80% of data reused in a range from minutes to hours

[36]. However, the cost of accessing these data, especially in distributed sce-

narios, is often high [24], while intertwined business processes often imply over-

lapping of data processing. For instance, a sales department may analyze the

11

Chapter 1. Introduction

revenue of the sales for the past year, while �nance may be interested in the

overall net pro�t. Computing the net pro�t can largely bene�t from the total

revenue already computed for the sales department and thus, it could bene�t

from the sales data �ow too. Such data �ow reuse could result in a signi�cant

reduction in design complexity, but also in intermediate �ow executions and

thus, in total execution time too [24].

In Chapter 3, we present Consolidation Algorithm (CoAl), our approach to

e�cient, incremental consolidation of DIFs. CoAl deals with design evolution

by providing designers with an agile solution for the design of DIFs. CoAl can

assist the early stages of the design process when for only a few requirements

we need to build a running data �ow from scratch. But, it also helps during

the entire lifecycle of a DIF, when the existing data �ow must be e�ciently

accommodated to satisfy new, changed, or removed information requirements.

CoAl reduces design complexity with aggressive information and software reuse.

Per requirement, it searches for the largest data and operation overlap in the

existing data �ow design. To boost the reuse of existing design elements when

trying to satisfy a new information requirement (i.e., when integrating a new

data �ow), CoAl aligns the order of data �ow operations by applying generic

equivalence rules. Note that in the context of data integration, the reuse of

both data and code besides reducing �ow complexity, might also lead to faster

execution, better resource usage, and higher data quality and consistency [24,

94, 148].

CoAl also accounts for the cost of produced data �ows when searching for

opportunities to integrate new data �ows. CoAl uses a tunable cost model to

perform multi-�ow, logical optimization, while creating a uni�ed �ow design

that satis�es all information requirements. Here, we focus on maximizing the

reuse of data and operations, but the algorithm can be con�gured to work with

di�erent cost models, taking into account di�erent quality factors of data �ows

(e.g., [161]).

4.3 Chapter 4: A Requirement-Driven Approach to the Design
and Evolution of Data Warehouses (Target Schema Integra-
tor)

As mentioned earlier, DW systems have been widely recognized to successfully

support strategic decision making. The most common design approach suggests

building a centralized decision support repository (like a DW) that gathers the

organization's data and which, to better support its analytical tasks, follows

a multidimensional (MD) design [140]. The MD design is distinguished by

the fact/dimension dichotomy, where facts represent the subjects of analysis

and dimensions show di�erent perspectives from which the subjects can be

analyzed. In the context of DW systems, the batched, periodically executed

DIFs (i.e., ETL processes) typically populate a uni�ed DW storage. Thus,

12

4. Thesis Overview

the design and evolution of the target schema represents an additional design

challenge, having that a design of DIFs is largely dependent on the constraints

implied by the target DW schema (see Chapter 2).

While the design of DW systems has been typically considered as static,

the dynamic nature of the businesses today requires a more agile approach for

building the components of a DW system. Typically, assuming that all infor-

mation and business requirements are available from the beginning and remain

intact is not realistic. Indeed, the complexity of the monolithic approach for

building a DW satisfying all information requirements, has also been largely

characterized in the literature as a stumbling stone in DW projects, and di�er-

ent techniques, like the Data Warehouse Bus Architecture [97], were proposed

as a step-by-step approach for building a DW. However, such design guidelines

still assume a tremendous manual e�ort from a DW architect and hence, DW

experts still encounter the burdensome and time-lasting problem of translating

end user's information requirements into an appropriate DW design.

Therefore, automating the design process would largely support DW design-

ers during the complex and time-lasting DW projects. Moreover, automation is

also recognized as a way to assure the inherent contraints of a DW design (i.e.,

MD integrity constraints of target schemas [114]). Various approaches thus rec-

ognized the need for automation, and proposed the solution for generating the

MD schema design either from data source (i.e., supply-driven; [168, 131, 142]),

or from information requirements (i.e., demand-driven; [69, 115, 146]). Other

approaches have also proposed hybrid solutions, combining both information

about data sources and information requirements (e.g., [113]). However, the

evolution of the design and integration of new information requirements is

mostly overlooked, or at best left to be done manually, following the proposed

guidelines (e.g., [69, 115]).

To cope with such complexity (both at the beginning of the design pro-

cess and when potential evolution events occur), in Chapter 4, we present a

semi-automatic method called ORE, for creating DW designs in an iterative

fashion based on a given set of information requirements. We start from MD

interpretations of individual requirements and present an iterative method that

consolidates them into a single, uni�ed MD schema design satisfying the entire

set of information requirements. ORE is useful for the early stages of a DW

project, when we need to create an MD schema design from scratch, but it

can also serve during the entire DW lifecycle to accommodate potential evo-

lution events. The correctness of the proposed MD schemata is guaranteed

according to the MD integrity constraints [114]. While incrementally building

a MD schema design of a DW, ORE systematically traces the meta data about

the required schema transformation actions in the case of evolution changes.

On the one side, such metadata is used for enabling designers to reconsider

some of the previous design choices, while on the other side, it also provides

a valuable information for adapting back-end ETL processes to the evolution

13

Chapter 1. Introduction

changes. Moreover, being highly correlated artifacts in a DW system, having

semi-automatic methods for incremental design of MD schema and ETL pro-

cesses (i.e., ORE and CoAl), both methods can bene�t from the information

inferred by one another. For instance, the aggregation and normalization levels

of the produced MD schema could be considered, since this would a�ect the way

the appropriate ETL process is tailored (i.e., trade-o�s between materialized

views and OLAP querying). Similarly, checkpointing or bottlenecks detected

at the ETL level may cause some changes at the MD schema for the sake of

performance.

4.4 Chapter 5: Engine Independence for Logical Analytic Flows
(Data Flow Deployer)

As we previously discussed, the design of DIFs may be done either from high

level information requirements, in which case the design is �rst typically done

at the conceptual or logical (engine independent) level, or in the case of smaller,

ad hoc projects, the design is typically done directly at the physical (engine

speci�c) level. In both cases, given modern enterprise environments, answering

business needs in the most e�cient manner, may require complex DIFs that in-

tegrate data sources from diverse sets of storage repositories, as well as comput-

ing from di�erent execution engines, typically deployed by today's enterprises,

such as Map-Reduce systems, stream processing systems, statistical analysis

engines.

On the one side, creating and deploying such complex DIFs for di�erent

execution engines is labor-intensive, time-consuming, and error prone. On the

other side, having a DIF spanning di�erent execution engines often conceals

possibilities for more extensive optimization actions, as engines typically con-

sider parts of these �ows in isolation, hence the holistic picture of such (hybrid

[163]) data �ows is not available. Thus, data �ow designers are in a need for

a notion of engine independence for logical analytic �ows. Just as logical data

independence insulates a data modeler from physical details of the relational

database, there are bene�ts in designing �ows at a logical level and using au-

tomation to implement the �ows.

In Chapter 5, we present a system (called BabbleFlow) that provides en-

gine independence for DIFs. We �rst describe a language for encoding �ows

at a logical level, namely xLM. Furthermore, we study how a previously de-

signed logical �ow (e.g., by means of our CoAl approach), can be automatically

translated to a physical �ow (and executable code) for a targeted processing

engine(s). Lastly, we also show how existing, physical �ows, written for speci�c

processing engines, can be imported, composed in a single (hybrid) �ow, and

converted to a logical �ow that is engine independent.

Other tools, like ETL design GUIs, o�er to some extent separation between

logical design and implementation, but the design is still tool-speci�c. Our

14

4. Thesis Overview

work here goes beyond that. We envision hybrid data �ow processors, like

Hybrid Flow Management System (HFMS) proposed in [164], where logical

�ows may span multiple engines, which can be seen as peers enabling data and

function shipping between all. Such functionalities largely support inter-engine

optimization of these hybrid �ows. Besides optimization, one might decompose

a single, large, complex DIF into smaller sub�ows to reduce contention in a

workload or to improve maintainability of the �ow. Another, not unusual

scenario for hybrid data-intensive ecosystems is to have an algorithm encoded

for one engine (e.g., written in Map-Reduce) that one wishes to apply to data

in a di�erent engine (e.g., database). So, rather than shipping the data to the

algorithm, our data �ow translation techniques enable shipping the algorithm

to the data.

In Chapter 5, our focus is not on speci�c �ow processors or use cases.

Rather, our goal is to support, on the one side, creating complex (hybrid) data

�ows in an engine independent manner, as well as to support deployment of

previously built DIFs over a variety of execution engines.

4.5 Chapter 6: Supporting Job Scheduling with Workload-driven
Data Redistribution (Data Flow Scheduler)

Once the designed DIFs are deployed to the selected execution engines, one

may assume that their execution can be handed to the engine speci�c plan-

ner and executor (e.g., Apache Hadoop YARN [191]). While this is true in

most of the cases, still a �ow designer may choose not to simply rely on the

provided functionality of these data processing engines. Consider for instance

distributed data processing systems, like Hadoop, which have emerged as a ne-

cessity for processing, in a scalable manner, large-scale data volumes in clusters

of commodity resources. While they typically provide fault-tolerant, reliable,

and scalable platforms for distributed data processing, the network tra�c is

identi�ed as a bottleneck for the performance in most of these systems [85].

Current scheduling techniques in Hadoop typically follow a query shipping

approach where the tasks are brought to their input data, hence data locality

is exploited for reducing network tra�c. However, such scheduling techniques

make these systems sensitive to the speci�c distribution of data in the cluster,

and when skewed, it can drastically a�ect the performance of data processing

applications. At the same time, underlying distributed data storage systems,

which are typically independent of the application layer, do not consider the

imposed workload when deciding data placements in the cluster. For instance,

Hadoop Distributed File System (HDFS) places data block replicas randomly

in the cluster following only the data availability policies, hence without a

guarantee that data will be uniformly distributed among DataNodes [156].

Some of them provide certain rebalancing techniques, which are however still

blindly done, without considering the real workload imposed by executing DIFs.

15

Chapter 1. Introduction

In Chapter 6, we address these challenges and present a workload-driven ap-

proach for data redistribution, called H-WorD, to support scheduling of DIFs.

H-WorD leverages on having a complete overview of the cluster workload and

automatically decides on a better redistribution of workload and data. We ex-

emplify our approach using a well-known MapReduce model [43], implemented

inside the Apache Hadoop system [191].

In particular, H-WorD comprises an algorithm for supporting scheduling

of DIFs with workload-driven data redistribution. H-WorD starts from a set

of previously pro�led DIFs (e.g., MapReduce jobs) that are planned for exe-

cution in the cluster; e.g., a set of jobs currently queued for execution in a

batch-queuing grid manager system. The cluster workload is initialized follow-

ing commonly used scheduling techniques (i.e., exploiting data locality, hence

performing query shipping). Then, H-WorD iteratively reconsiders the current

workload distribution by proposing di�erent execution scenarios (e.g., executing

map tasks on nodes without local data, hence performing also data shipping).

In each step, it estimates the e�ect of a proposed change to the overall clus-

ter workload, and only accepts those that potentially improve certain quality

characteristics.

We focus here on improving the overall makespan of the jobs that are

planned for execution. As a result, after selecting execution scenarios, H-

WorD identi�es the tasks of DIFs that would require data shipping (i.e., trans-

ferring their input data from a remote node). On the one hand, our techniques

can be used o�ine, complementary to existing MapReduce scheduling tech-

niques, to automatically instruct redistribution of data beforehand. On the

other hand, our �nal goal here envisions more sophisticated scheduling tech-

niques where H-WorD can be used on the �y, to take advantage of a priori

knowing potentially needed data transfers, and leveraging on idle network cy-

cles to schedule such data transfers in advance, without deferring other tasks'

executions.

5 Contributions

The �rst contribution of this PhD thesis is the study of the current �eld of DIFs.

In particular, we survey the existing approaches focusing on the characteristics

that best describe the challenges of moving towards next-generation BI systems.

We analyze both the foundational work of the database theory, and recent

approaches for DIFs. As a result, we envision an architecture for managing

the complexity of the DIF lifecycle in the next generation BI setting. The

results of this study further help us to identify the remaining challenges for the

DIF lifecycle that require further attention.

Furthermore, we map the main contributions of this PhD thesis to the

corresponding phases of the DIF lifecycle that they facilitate.

16

5. Contributions

• Design. In the context of the design of DIFs, we provide support for

re-engineering DIFs coming from a variety of engine-speci�c formats, in

order to enable further engine-independent composition, analysis, and

optimization of DIFs. In particular, we �rst de�ne a logical (engine-

independent) format, called xLM, as well as an extensible translation

method for converting �ows coming from di�erent engines into a logical

format. Moreover, we also provide support for the composition of hybrid

data �ows, by means of building a uni�ed logical DIF, that in reality can

span multiple storage and execution engines.

• Optimization. We provide support for multi-�ow optimization of DIFs.

In particular, we provide a novel algorithm, called CoAl for consolidating

DIFs. We de�ne generic methods for reordering and comparing data �ow

operations, which are applied while searching for a consolidation solution

to increase data and operation reuse.

• Implementation. We propose an extensible method, called BabbleFlow,

for supporting the implementation and deployment of DIFs on a variety of

execution engines. Such method can be used complementary with engine

selection or multi-engine optimization approaches to assist the optimal

deployment of DIFs over the selected engines.

• Execution. We provide support for scheduling the execution of DIFs.

In particular, we introduce a novel algorithm, named H-WorD, that led

by the real workload of DIFs, decides on data redistribution that would

improve the performance of executing these DIFs in a distributed data

processing system.

• Maintenance. Lastly, we also largely support the maintenance of DIFs in

front of the evolving business needs. In particular, we present a semi-

automatic approach to the incremental design of data-intensive �ows (i.e.,

CoAl). We de�ne a framework for accommodating new, changed, or re-

moved information requirements into an existing DIF design. Moreover,

in the case of new information requirements, the CoAl algorithm tackles

the problem of integrating new data �ows from the context of data and

code reuse. In addition, in the DW context, we also tackle the problem of

supporting the evolution of a target MD schema design in front changed

business needs. We propose a novel method, called ORE for accommodat-

ing changed business needs to the existing MD schema design, by means

of e�ciently integrating target MD schemata coming from di�erent in-

formation requirements. Lastly, we introduce the traceability metadata

structure to systematically record valuable information about the MD

schema integration, thus providing valuable information for supporting

the redesign of back-end ETL processes.

17

Chapter 1. Introduction

18

Chapter 2

A Uni�ed View of Data-Intensive

Flows in Business Intelligence

Systems: A Survey

The paper has been accepted for publication in the

in Transactions on Large-Scale Data- and Knowledge-Centered Systems, 2016.

The layout of the paper has been revised.

DOI: TBD

Springer copyright/ credit notice:

© 2016 Springer. Reprinted, with permission, from Petar Jovanovic, Os-

car Romero, and Alberto Abell�o, A Uni�ed View of Data-Intensive Flows in

Business Intelligence Systems: A Survey, Transactions on Large-Scale Data-

and Knowledge-Centered Systems, 2016

Abstract

Data-intensive �ows are central processes in today's business intelligence (BI)

systems, deploying di�erent technologies to deliver data, from a multitude of

data sources, in user-preferred and analysis-ready formats. To meet complex

requirements of next generation BI systems, we often need an e�ective combina-

tion of the traditionally batched extract-transform-load (ETL) processes that

populate a data warehouse (DW) from integrated data sources, and more real-

time and operational data �ows that integrate source data at runtime. Both

academia and industry thus must have a clear understanding of the foundations

of data-intensive �ows and the challenges of moving towards next generation

BI environments. In this chapter we present a survey of today's research on

19

Chapter 2. A Uni�ed View of Data-Intensive Flows in Business Intelligence
Systems: A Survey

data-intensive �ows and the related fundamental �elds of database theory. The

study is based on a proposed set of dimensions describing the important chal-

lenges of data-intensive �ows in the next generation BI setting. As a result of

this survey, we envision an architecture of a system for managing the lifecycle of

data-intensive �ows. The results further provide a comprehensive understand-

ing of data-intensive �ows, recognizing challenges that still are to be addressed,

and how the current solutions can be applied for addressing these challenges.

1 Introduction

Data-intensive �ows are critical processes in today's business intelligence (BI)

applications with the common goal of delivering the data in user-preferred and

analysis-ready formats, from a multitude of data sources. In general, a data-

intensive �ow starts by extracting data from individual data sources, cleans

and conforms extracted data to satisfy certain quality standards and business

requirements, and �nally brings the data to end users.

In practice, the most prominent solution for the integration and storage of

heterogeneous data, thoroughly studied in the past twenty years, is data ware-

housing (DW). A DW system assumes a uni�ed database, modeled to support

analytical needs of business users. Traditionally, the back stage of a DW sys-

tem comprises a data-intensive �ow known as the extract-transform-load (ETL)

process responsible of orchestrating the �ow of data from data sources towards a

DW. ETL is typically a batch process, scheduled to periodically (e.g., monthly,

daily, or hourly) load the target data stores with fresh source data. In such a

scenario, limited number of business users (i.e., executives and managers) are

expected to query and analyze the data loaded in the latest run of an ETL

process, for making strategic and often long-term decisions.

However, highly dynamic enterprise environments have introduced some

important challenges into the traditional DW scenario.

• Up-to-date information is needed in near real-time (i.e., right-time [70])

to make prompt and accurate decisions.

• Systems must provide the platform for e�ciently combining in-house data

with various external data sources to enable context-aware analysis.

• Systems must be able to e�ciently support new, unanticipated needs of

broader set of business users at runtime (i.e., on-the-�y).

These challenges have induced an important shift from traditional business

intelligence (BI) systems and opened a new direction of research and practices.

The next generation BI setting goes by various names: operational BI (e.g.,

[40, 50]), live BI (e.g., [42]), collaborative BI (e.g., [19]), self-service BI (e.g.,

[7]), situational BI (e.g., [110]). While these works look at the problem from

20

1. Introduction

di�erent perspectives, in general, they all aim at enabling the broader spectrum

of business users to access a plethora of heterogeneous sources (not all being

under the control of the user's organization and known in advance), and to ex-

tract, transform and combine these data, in order to make right-time decisions.

Consequently, here, we generalize these settings and use the common term next

generation BI, while for the old (DW-based) BI setting we use the term tradi-

tional BI. An interesting characterization of the next generation BI setting is

given by Eckerson [50]: "...operational BI requires a just-in-time information

delivery system that provides the right information to the right people at the

right time so they can make a positive impact on business outcomes."

Obviously, in such a scenario periodically scheduled batch loadings from

preselected data stores have become unrealistic, since fresh data are required

in near real-time for di�erent business users, whose information needs may not

be known in advance. In fact, e�ectively integrating the traditional, batched

decision making processes, with on-the-�y data-intensive �ows in next gen-

eration BI systems is discussed to be important to satisfy analytic needs of

today's business users (e.g., [9, 42, 73]). For example, a part of in-house com-

pany's sales data, periodically loaded to a DW by an ETL, can be at runtime

crossed with the Web data to make context-aware analysis of business decisions.

To build such demanding systems, one must �rst have a clear understanding

of the foundation of di�erent data-intensive �ow scenarios and the challenges

they bring.

From a theoretical perspective, handling data heterogeneity has been sep-

arately studied in two di�erent settings, namely data-integration and data ex-

change. Data integration has studied the problem of providing a user with a

uni�ed virtual view over data in terms of a global schema [106]. User queries

over the global schema, are then answered by reformulating them on-the-�y in

terms of data sources. On the other side, data exchange has studied the prob-

lem of materializing an instance of data at the target that re�ects the source

data as accurately as possible and can be queried by the user, without going

back to the original data sources [55].

A recent survey of ETL technologies [186] has pointed out that the data

exchange problem is conceptually close to what we traditionally assume by an

ETL process. Intuitively, in an ETL process, we also create an instance at

the target, by means of more complex data transformations (e.g., aggregation,

�ltering, format conversions, deduplication). However, the trends of moving

towards the next generation BI settings have brought back some challenges

initially studied in the �eld of data integration, i.e., requiring that the user

queries should be answered by extracting and integrating source data at run-

time. Moreover, the next generation BI settings brought additional challenges

into the �eld of data-intensive �ows (e.g., low data latency, context-awareness).

Right-time decision making processes demand close to zero latency for data-

intensive �ows. Hence the automated optimization of these complex �ows is

21

Chapter 2. A Uni�ed View of Data-Intensive Flows in Business Intelligence
Systems: A Survey

a must [42, 78], not only for performance, but also for other quality met-

rics, like fault-tolerance, recoverability, etc. [161]. Considering the increasing

complexity of data transformations (e.g., machine learning, natural language

processing) and the variety of possible execution engines, the optimization of

data-intensive �ows is one of the major challenges for next generation BI sys-

tems.

Even though the above �elds have been studied individually in the past,

the literature still lacks a uni�ed view of data-intensive �ows. In this chapter,

we aim at studying the characteristics of data-intensive �ows in next genera-

tion BI systems. We focus on analyzing the main challenges in the three main

stages when executing data-intensive �ows, i.e., (1) data extraction, (2) data

transformation, and (3) data delivery. Having low data latency as an impor-

tant requirement of data-intensive �ows in the next generation BI setting, we

additionally analyze the main aspects of data �ow optimization. We analyzed

these four areas inside the two main scenarios for data-intensive �ows: (a) pe-

riodically executed, batched processes that materialize and load data at the

target data store for future analysis (extract-transform-load - ETL), and (b)

on-the-�y, instantaneous data �ows executed on demand upon end-users' query

(extract-transform-operate - ETO).

In addition, we identify that a well-known BigData challenge, namely, one

of the so called 3 V's [81] (i.e., massive volumes of data), is an important one

also for the design and even more deployment of data-intensive �ows in next-

generation BI systems. However, the approaches that deal with such challenge

represent a separate and rather extensive �eld of research, which is out of

scope of this study. We thus refer an interested reader to [35] for more detailed

overview of the approaches dealing with the BigData challenges.

As the �rst result, we identify the main characteristics of data-intensive

�ows, focusing on those that best describe the challenges of moving towards the

next generation BI setting. Then, in terms of these characteristics we classify

the approaches, both from the foundational works and more recent literature,

tackling these characteristics at di�erent levels. On the one hand, the results

provide us with a clear understanding of the foundations of data-intensive �ows,

while on the other hand, identi�ed characteristics help us de�ning the challenges

of moving towards the next generation BI setting.

Finally, as the main outcome of this study, we outlined the envisioned ar-

chitecture of next generation BI systems, focusing on managing the complete

lifecycle of data-intensive �ows.

Contributions. In particular, our main contributions are as follows.

• We analyzed current approaches, scrutinizing the main aspects of data-

intensive �ows in today's BI environments.

• We de�ne the main characteristics of data-intensive �ows, focusing on

22

2. Example Scenario

those that best describe the challenges of a shift towards the next gener-

ation BI.

• In terms of the dimensions de�ned from these characteristics, we analyze

both the foundational work of database theory, and recent approaches for

data-intensive �ows, at di�erent levels of these dimensions.

• Resulting from this study, we envision an architecture for managing the

complexity of data-intensive �ows in the next generation BI setting.

• Finally, we indicate the remaining challenges for data-intensive �ows,

which require further attention from both academia and industry.

Outline. In Section 2, we �rst introduce an example scenario used to sup-

port our discussions throughout this chapter. We then in Section 3, describe

the methodology used in our study, and outline the main study setting. Next,

in Section 4 we discuss the process of de�ning the dimensions that are further

used for studying data-intensive �ows. In Sections 5 - 8, we analyze di�erent

approaches from data-intensive �ows inside the previously de�ned dimensions.

In Section 9 we provide the overall discussion and introduce an envisioned ar-

chitecture of a system for managing data-intensive �ows in the next generation

BI setting, while in Section 7, we conclude this chapter.

2 Example Scenario

We �rst introduce an example scenario to support discussions throughout this

chapter and to motivate our study. Our example scenario is motivated by the

data model introduced for the BigData benchmark (a.k.a. BigBench) in [62],

which extends the TPC-DS benchmark1 for the context of BigData analytics.

Notice that we adapted their scenario to make the examples more intuitive

and suitable to our discussions. In particular, besides the typical operations

found in relational database systems, i.e., Join, Selection (Filter), Aggregation

(Aggr.), Sort, and Distinct (Remove Duplicates), in the following example sce-

narios, we also introduce more complex operations typically found in today's

data-intensive �ows; that is, (1) User De�ned Functions (UDF) that may im-

plement either simple arithmetic expressions or complex, typically black-box

operations, (2) Match that implements more relaxed join or lookup semantics

(e.g., using approximate string matching), and (3) Sentiment Analysis that typ-

ically applies natural language processing techniques for extracting subjective

(opinion) information from the Web sources (e.g., forums, social networks).

In general, we consider a simple case of a retail company that has di�er-

ent databases that support its daily operational processes. These databases

1http://www.tpc.org/tpcds/spec/tpcds_1.1.0.pdf (last accessed 4/4/2014)

23

http://www.tpc.org/tpcds/spec/tpcds_1.1.0.pdf

Chapter 2. A Uni�ed View of Data-Intensive Flows in Business Intelligence
Systems: A Survey

Fig. 2.1: Example 1.1: ETL to analyze revenue share from a promotion

cover the information about di�erent items (i.e., products) o�ered for the sale,

company's customers, their orders, shipping information, etc. Periodically, the

company launches campaigns and puts some product on a promotion.

Scenario 1. Originally, the company has used a traditional BI system with a

centralized DW that is loaded by means of di�erent ETL �ows (one of which is

conceptually depicted in Figure 2.1). Users in this scenario are typically upper

management executives that analyze the enterprise-wide data (e.g., items and

their sales) to make decisions for making strategic actions (e.g., launching

promotional campaigns).

Example 1.1. In the speci�c example in Figure 2.1, the ETL �ow is period-

ically executed to load the DW with information about the percentage of the

revenue share made from the items that were on the promotion. Quarterly,

the management analyzes how the previous business decisions on promotional

campaigns a�ected the revenue.

Scenario 2. While the above setting has served the company well in having

a periodical feedback about the previous strategic decisions, today's dynamic

markets require more prompt reaction to the potentially occurring problems

(e.g., hourly or daily). The company thus noticed that instead of waiting for

the sales data to analyze the success of the promotional campaign, they can

potentially bene�t from the opinions that customer may leave about the cam-

paign and product items, in the form of reviews over the Web (e.g., social

networks) and react faster to improve the potential revenue. Moreover, the

company also noticed that such an analysis should be decentralized to the re-

gional and local representatives and available to a broader set of users involved

in the business process. As fast decisions are needed, the users must be able

to make them at right time (i.e., "...before a problem escalates into a crisis

or a �eeting opportunity disappears..." [50]). We consider the two following

24

3. Methodology

Fig. 2.2: Example 2.1: ETO to predict the success of a promotion

Fig. 2.3: Example 2.2: ETO to analyze the trends for launching a new promotion

business requirements posed on-the-�y, and the two data-intensive �ows that

answer them, conceptually depicted in Figure 2.2 and Figure 2.3.

Example 2.1. In the former example (Figure 2.2), a regional manager de-

cides to analyze the potential success of the promotional campaign launched

on Friday, after the �rst weekend, by inspecting the sentiment (i.e., opinions)

of the real and potential customers about the product items that are included

in the promotion.

Example 2.2. The latter example (Figure 2.3), on the other hand, analyzes

the currently trending product items and user opinions about them for deciding

which items to include in the next promotional campaign.

In both cases, business users interactively make on-the-�y and context-

aware analysis, in order to quickly react and improve their business decisions.

3 Methodology

We further introduce the methodology used for studying data-intensive �ows

and outline the resulting study setting. We start by introducing the process of

selecting the literature to be included in this study. The study further includes

three consecutive phases, which we explain in more detail in the following

subsections.

25

Chapter 2. A Uni�ed View of Data-Intensive Flows in Business Intelligence
Systems: A Survey

3.1 Selection process

The literature exploration started with the keyword search of the relevant works

inside the popular research databases (i.e., Scopus2 and Google Scholar3). In

Phase I, we focused on the keywords for �nding seminal works in the DW

and ETL �eld (i.e., �data warehousing�, �ETL�, �business intelligence�), as well

as the most relevant works on the next generation BI (i.e., �next generation

business intelligence�, �BI 2.0�, �data-intensive �ows�, �operational business in-

telligence�). While in the case of traditional DW and ETL approaches we en-

countered and targeted the most in�uential books from the �eld (e.g., [96, 82])

and some extensive surveys (e.g., [186]), in the case of the next generation BI

approaches, we mostly selected surveys or visionary papers on the topic (e.g.,

[7, 9, 42, 40, 73]). Furthermore, the following phases included keyword search

based on the terminology found in the created study outline (see Figure 2.4),

as well as the identi�ed dimensions (see Figure 2.5).

Rather than being extensive in covering all approaches, we used the fol-

lowing criteria for prioritizing and selecting a representative initial set of ap-

proaches that we studied.

• The relevance of the works to the �eld of data-intensive �ows and the

related topics, i.e., based on the abstract/preface content we discarded

the works that did not cover the topics of interest.

• The importance of the works, i.e., number of citations, importance of the

venue (e.g., ranking of the conference4 or impact factor of the journal5).

• The maturity of the works, i.e., extensiveness and completeness of a the-

oretical study or a survey, experimental results, applicability in the real

world.

Furthermore, we also followed the snowballing technique and included, previ-

ously not found, but relevant approaches referenced from the initial ones.

3.2 Phase I (Outlining the study setting).

First phase included the review of the seminal works on traditional data-

intensive �ows, ETL, and data warehousing in general; as well as the relevant

works discussing the next generation BI systems and their main challenges on

moving toward (near) real-time data analysis.

As a result, we outline the setting for studying data-intensive �ows. Specif-

ically, in our study we aim at analyzing two main scenarios of data-intensive

�ows present in today's BI settings, namely:

2https://www.scopus.com/
3https://scholar.google.com
4CORE conference ranking: http://portal.core.edu.au/conf-ranks/
5Thomas Reuters Impact Factor: http://wokinfo.com/essays/impact-factor/

26

3. Methodology

• extract-transform-load (ETL). In the traditional BI setting, data are ex-

tracted from the sources, transformed and loaded to a target data store

(i.e., a DW). For posing analytical queries (e.g., OLAP), the business

users in such a scenario solely rely on the data transferred in periodically

scheduled time intervals, when the source systems are idle (e.g., at night

time).

• extract-transform-operate (ETO). Next generation BI has emerged as a

necessity of companies for combining more instantaneous decision making

with traditional, batched processes. In such a scenario, a user query, at

runtime, gives rise to a data �ow that accesses the data sources and

alternatively crosses them with already loaded data to deliver an answer.

Kimball and Caserta [96] introduced the following de�nition of an ETL pro-

cess "A properly designed ETL system extracts data from the source systems,

enforces data quality and consistency standards, conforms data so that separate

sources can be used together, and �nally delivers data in a presentation-ready

format so that application developers can build applications and end users can

make decisions."

Being general enough to cover the setting of data-intensive �ows studied in

this chapter (i.e., both previous scenarios), we follow this de�nition and �rst

divide our study setting into three main stages, namely:

i Data extraction. A data-intensive �ow starts by individually accessing var-

ious (often heterogeneous) data sources, collecting and preparing data (by

means of structuring) for further processing.

ii Data transformation. Next, the main stage of a data-intensive �ow trans-

forms the extracted data by means of cleaning it for achieving di�erent

consistency and quality standards, conforming and combining data that

come from di�erent sources.

iii Data delivery. This stage is responsible for ensuring that the data, extracted

from the sources, transformed and integrated are being delivered to the end

user in a format that meets her analytical needs.

Related �elds. To complete the data-intensive �ows lifecycle, in addition

to the main three stages, we revisit two �elds closely related to data-intensive

�ows, i.e., data �ow optimization and querying.

iv Data �ow optimization considers data-intensive �ow holistically and studies

the problem of modifying the given data �ow, with the goal of satisfying

certain non-functional requirements (e.g., performance, recoverability, reli-

ability). Obviously, the optimization problem is critical for data �ows in

today's BI systems, where the data delivery is often required in the near

real-time manner.

27

Chapter 2. A Uni�ed View of Data-Intensive Flows in Business Intelligence
Systems: A Survey

In addition, for the completeness of the overall picture, we brie�y analyze

what challenges the two main scenarios in data-intensive �ows (i.e., ETL and

ETO) bring to querying.

v The requirements elicitation and analysis (i.e., querying) stage mainly serves

for posing analytical needs of end users over the available data. This stage

is not actually part of a data-intensive �ow execution, but depending on the

scenario (i.e., either ETO or ETL), can respectively come as a preceding

or subsequent stage for a data-intensive �ow execution. At the lower level

of abstraction, end users' analytical needs are typically expressed in terms

of queries (e.g., SQL), programs (e.g., ETL/MapReduce jobs), or scripts

(e.g., Pig Scripts), which are then automatically translated to data-intensive

�ows that retrieve the needed data. The typical challenges of querying the

data in the next generation BI setting concern the ability of the system

to adapt and complement users' analytical needs by means of discovering

related, external data, and the usability of a BI system for posing analytical

needs by end-users. The former challenge may span from the traditional

DW systems that typically answer user's OLAP queries solely by exploit-

ing the data previously loaded into a DW (by means of an ETL process),

to situation-(context-)aware approaches that considering end user queries,

explore, discover, acquire, and integrate external data [7, 9]. Regarding the

latter challenge, we can also observe two extreme cases: traditional query-

ing by means of standard, typically declarative query languages (e.g., SQL,

MDX), and approaches that enable users to express their (often incomplete)

analytical needs in a more natural and human-preferred manner (e.g., key-

word search, natural language). Recently, some researchers have proposed

more �exible (semi-structured) query language (SQL++) for querying a

variety of both relational and new NoSQL databases that may store data

in a variety of formats, like JSON or XML [125].

Other approaches also tackled the problem of providing a higher level of

abstraction for posing information requirements, more suitable for busi-

ness users. As analyzing information requirements and systematically in-

corporating them into a design of data-intensive �ows has been typically

overlooked in practice, initial e�orts were mostly toward systematic re-

quirements analysis in BI and DW projects (e.g., [65, 196]). However, such

approaches still require long processes of collecting the requirements at dif-

ferent levels of abstraction and their analysis, before manually incorporating

them into a data-intensive �ow design. Thus, they obviously cannot be ap-

plied in ETO scenarios, where the generation of data-intensive �ows to ful�ll

end user analytical needs is expected in near real-time. Other works iden-

ti�ed such problem and proposed certain automation to such time-lasting

process (e.g., [146]). However, the automation required lowering the level

28

3. Methodology

of abstraction for de�ning information requirements, tightening them to

the multidimensional model notation (i.e., facts and dimensions of analy-

sis). As an extension to this approach the authors further tried to raise

the level and provide an abstraction of the data sources' semantics in terms

of a domain ontology, with its graph representation. This has partially

hidden the model speci�c details from business users, and allowed them to

pose information requirements using a domain vocabulary. Recent work in

[60] conducted an extensive study of decision support system approaches,

identifying how they �t the traditional requirements engineering framework

(i.e., [132]). As a result, the authors identi�ed a need for systematic and

structured requirements analysis process for further raising the level of au-

tomation for the design of decision support systems (including the design

of data-intensive �ows), while at the same time keeping the requirements

analysis aware of all stakeholder needs. We have discussed here the main

challenges that requirements elicitation and analysis introduces to the �eld

of data-intensive �ows in the next generation BI setting, but we omit further

analysis as it falls out of the scope of this work.

As a result, we de�ne a blueprint for studying data-intensive �ows, depicted

in Figure 2.4. Going from top down, we depict separately the two main scenar-

ios of data-intensive �ows studied in this chapter (i.e., ETL and ETO). Going

from left to right, the �rst part of Figure 2.4 (i.e., A, E) depicts the charac-

teristics of the data extraction stage in terms of the complexity that di�erent

input data types bring to a data-intensive �ow; then the following part (i.e.,

B, F) covers the characteristics of the data transformation stage; the penulti-

mate part (i.e., C, G) covers the data delivery stage, while the last (most right)

part (i.e., D, H) covers querying. Being rather a holistic �eld (i.e., taking into

account the complete data-intensive �ow), the optimization spans all stages of

data-intensive �ows and it is depicted at the bottom of Figure 2.4.

3.3 Phase II (Analyzing the characteristics of data-intensive �ows).

This phase included the review of the works that scrutinize the characteristics

of data-intensive �ows in both previously de�ned scenarios, i.e., ETL and ETO.

This phase aimed at characterizing data-intensive �ows in terms of the features

that best indicate the movement toward the next generation BI setting.

To this end, we performed an incremental analysis of the included works to

discover the features of data-intensive �ows they have tackled. We started from

the papers that individually covered the traditional and the next generation

BI settings. The identi�ed features are then translated into the dimensions

for studying data-intensive �ows (see Figure 2.5). As new dimensions are dis-

covered, the related papers are reconsidered to analyze their assumptions re-

garding the new dimensions. Each discovered dimension determines the levels,

supported or envisioned by analyzed approaches, in which these approaches

29

Chapter 2. A Uni�ed View of Data-Intensive Flows in Business Intelligence
Systems: A Survey

Fig. 2.4: Study setting for data-intensive �ows

attain the corresponding feature of data-intensive �ows. Eventually, we con-

verged to a stable set of dimensions, which can be further used for studying

and classifying the approaches of data-intensive �ows.

In Section 4, we discuss in more detail the process of discovering dimensions

for studying data-intensive �ows, and further provide their de�nitions.

3.4 Phase III (Classi�cation of the reviewed literature).

In this phase, we further extend the study to the works that more speci�cally

cover the previously discussed areas of data-intensive �ows (i.e., data extrac-

tion, data transformation, data delivery, and data �ow optimization). We clas-

sify the reviewed approaches using the previously de�ned dimensions, which

build our study setting (see Figure 2.5), and present the results of this phase in

Sections 5 - 8. We summarize the classi�ed approaches of the three main stages

(i.e., data extraction, data transformation, and data delivery) respectively in

Tables 2.1 (page 39) - 2.3 (page 49), and the optimization approaches in Table

2.4 (page 53). We mark the level of the particular dimension (i.e., challenge)

30

4. De�ning dimensions for studying data-intensive �ows

that each approach achieves or envisions (i.e., Low, Medium, or High)6.

In addition, we also classify the approaches in Tables 2.1 - 2.4 based on

the fact if they are potentially applicable in ETL, ETO, or both ETL and

ETO scenarios.

Finally, for each reviewed approach we de�ne the technology readiness level,

focusing on the �rst four levels of the European Commission scale [51].

• TRL1 (�basic principles observed�), refers to work that either based on

practical use cases or reviewed literature observes the basic principles

that should be followed in practice (e.g., guidelines, white or visionary

papers)

• TRL2 (�technology concept formulated�), refers to work that provide the-

oretical underpinnings of the studied area, which are not always directly

applicable in practice, but represent an important foundation for princi-

ples that should be followed in practice (e.g., the database theory works

on data exchange and data integration).

• TRL3/TRL4 (�experimental proof of concept�/�technology validated in lab�),

refers to the system-oriented work that provide the proof of concept so-

lution for an observed principle from the previous two levels, validated

either over synthetic (TRL3) or real-world use cases (TRL4).

4 De�ning dimensions for studying data-intensive �ows

For each area in the outlined study setting for data-intensive �ows (Figure 2.4),

we discuss in more detail, and further provide the de�nitions of the dimensions

through which the reviewed works on data-intensive �ows are analyzed (see

Figure 2.4). Then, in the following sections 5 - 8, we discuss in more detail the

works speci�cally covering each of the studied areas.

4.1 Data Extraction

The most commonly discussed challenge when extracting data (e.g., [7, 96])

is related to the format in which the data are provided, i.e., structuredness.

Structuredness determines the level, in which data in data sources under

analysis follow a certain model, constraints or format. It spans from highly

structured data that follow strictly de�ned models and ensures certain con-

straints over data (High), like relational (see top left of Figure 2.4); then semi-

structured data that are represented in a repetitive [83], standard and easily

6The exception to this are the approaches from the data �ow optimization area, for which
we introduced levels that more precisely describe the consequences of their placement inside
the corresponding dimensions. Moreover, in the cases when the approach is completely
independent of the level for a particular dimension, we mark it as non-applicable (N/A).

31

Chapter 2. A Uni�ed View of Data-Intensive Flows in Business Intelligence
Systems: A Survey

Fig. 2.5: Dimensions for studying data-intensive �ows

parsable format, but that do not enforce strong constraints over data (Medium),

like XML, CSV, RDF (see middle left in Figure 2.4); and unstructured data

in a free-form (textual or non-textual) that require smarter techniques for ex-

tracting real value from it (Low), like free text, photos, x-rays, etc. (see bottom

left of Figure 2.4). l

Other characteristics of this stage are related to the degree in which BI

applications need to be coupled with source systems when extracting the data,

i.e., coupledness, and the reliability of accessing these systems, i.e., accessibility.

Coupledness determines the level, in which data-intensive �ows depend on

a speci�c knowledge or components obtained from data sources under analysis.

It spans from typical ETL processes that consolidate organization's (�in-house�)

operational sources with predictable access policies (e.g., DBMS, ERP systems;

see top left of Figure 2.4), using extraction algorithms (e.g., incremental DB

snapshots) that strongly depend on information from source systems (High),

e.g., materialized views DW solutions, triggers, source components modi�ca-

tions; then the systems that use logs, timestamps or other metadata attached

to data sources (Medium); and the scenarios where we cannot expect any in-

advance knowledge about the data sources, but the system needs to discover

and integrate them on-the-�y [9] (Low), e.g., Web data, Link Open Data. l

Accessability determines the level, in which one can guarantee a "non-stop"

access to certain data sources. It spans from "in-house", highly available data

(High), like ERP, ODS systems; then the external data usually provided by data

providers that under SLAs can guarantee certain accessibility to data (Medium);

32

4. De�ning dimensions for studying data-intensive �ows

and external data sources that are completely out of the organization's control

(Low), like open, situational, or Web data. l

4.2 Data Transformation

In this stage, the most common issue is related to the complexity of data

transformations inside a �ow (e.g., [186]), and more speci�cally to the degree

in which we can automate the design of a data-intensive �ow, i.e., automa-

tion. While the design of an ETL process is known to be a demanding task

(e.g., [170]; see the example ETL process in the top middle of Figure 2.4)

and its automation (even partial) is desirable and has been studied in the past

(e.g., [120, 146]), ETO depends on fully automated solutions for answering user

queries at runtime (e.g., by means of reasoning; see Figure 2.4).

Automation determines the level, in which one can automate the design

of data-intensive �ows. It spans from the works that propose modeling ap-

proaches to standardize the design of data �ows, especially in the context of

ETL processes (Low), e.g., [190, 180, 12]; then approaches that provide guide-

lines and/or frequently used patterns to facilitate the design of a data-intensive

�ow (Medium), e.g., [96, 189]; and approaches that attempt to fully automate

the generation of data-intensive �ows as well as their optimization (High), e.g.,

[146, 52, 44]. l

Other important characteristics that distinguish ETO from a traditional

ETL process are the degree of data constraintness that a �ow must ensure, and

the �exibility (i.e., malleability) of a data-intensive �ow in dealing with the

changes in the business context.

Constraintness determines the level, in which data-intensive �ows must

guarantee certain restrictions, constraints, or certain level of data quality over

the output data. It spans from fully constrained data, usually enforcing the MD

model (MD integrity constraints [114]), and high level of data cleanness and

completeness required to perform further data analysis, like OLAP (High);

then, data-intensive �ows that may provide ad-hoc structures for answering

user queries (e.g., reports), without a need to enforce the full completeness and

cleanness of data (Medium); and as an extreme case we consider the concept of

data lakes where no speci�c schema is speci�ed at load time, but rather �exible

to support di�erent analysis over stored and shared data at read-time (Low).l

Malleability determines the level in which a system is �exible in dealing

with the changes in the business context (e.g., new/changed data sources un-

der analysis, new/changed/removed information requirements). It spans from

the traditional DW settings where data sources as well as information require-

ments are static, typically gathered in advance. and are added manually to the

analysis only at design time, while any change would require the redesign of

a complete data-intensive �ow (Low) [96]; then systems that tackle the incre-

mental evolution of data-intensive �ows in front of new requirements and data

33

Chapter 2. A Uni�ed View of Data-Intensive Flows in Business Intelligence
Systems: A Survey

sources (Medium) [89]; and dynamic approaches that consider discovering new,

usually external data at runtime (High) [9]. l

4.3 Data Delivery

For delivering the transformed data at the target, we have identi�ed two main

characteristics that distinguish ETL from ETO, namely the interactivity of

data delivery as perceived by the end-user; and the openness of the delivered

data, which refers to the degree in which the approaches assume the delivered

information to be complete (i.e., closed vs. open world assumption).

Interactivity determines the level in which a system interacts with the end-

user when executing a data-intensive �ow and delivering the data at the output.

It spans from traditional ETL processes that typically deliver the data (i.e.,

materialize the complete data to load a DW) in a batched, asynchronous pro-

cess, without having an interaction with an end-user (Low), then approaches

that based on the overall cost, select data to be partially materialized (e.g.,

loaded in a batch to materialized views), and those that are queried on-the-�y

(Medium); and �nally completely interactive approaches that assume on-the-�y

data �ows which deliver the data to answer user queries for immediate use only,

e.g., for visualization (High). l

Openness determines the level, in which the delivered data are considered

open to di�erent interpretations. It spans from closed-world assumption ap-

proaches typical for traditional databases, where the data are considered com-

plete and any answer to a user query is determined (Low), to open-world as-

sumption approaches, where due to the assumption that data may be incom-

plete, an answer to a user query can be either determined if there exist data

that can prove such an answer, or �unknown� in the case where there is no data

to determine its truthfulness (High). l

4.4 Optimization of data-intensive �ows

Finally, we also discuss the low data latency as an important requirement for

today's data-intensive �ows.

Optimizing data �ows has been one of the main topics in database research

[84]. In this context, we discuss the following two aspects.

Optimization input. This dimension refers to the level at which the op-

timization is provided. It spans from optimizing the way that input data is

stored and processed (e.g., data fragmentation) in order to achieve optimal ex-

ecution (e.g., parallelizing data �ow execution); then optimizing the execution

of single data flows by means of modifying the execution of the data �ow

(e.g., operation reordering, di�erent implementations) to achieve the optimal

execution of a data �ow; and �nally the overall optimization of a multi-flow,

34

5. Data Extraction

where the goal is to achieve the optimal execution for a set of data �ows, rather

than optimizing the execution of a single �ow. l

Dynamicity. Another dimension for studying the optimization of data-inte-

nsive �ows relates to the overhead introduced by the optimization and thus

determines the level of dynamicity of the data �ow optimization process. In

the traditional DW systems, the design and optimization of ETL processes is

done at the design time, once while the process is then executed periodically,

many times. This obviously allows for a higher overhead of the optimization

process and taking into account di�erent metadata (e.g., statistics from the

previous executions of the same �ow). On the other hand, an ETO �ow must

be optimized at runtime, when the analytical query is issued, which introduces

additional challenges into the optimization techniques, especially regarding the

way the statistics are gathered and exploited for optimization. l

5 Data Extraction

In the initial stage of data-intensive �ows, the source systems are identi�ed

and accessed for extracting the relevant data. In the data extraction stage, we

focused on analyzing the three following challenges that characterize the shift

towards the next generation BI settings, namely coupledness, accessibility, and

structuredness, which are subsequently discussed in the following subsections.

5.1 Structuredness

The seminal work on DW systems (e.g., [82]), although mentioned external

unstructured data as an important opportunity for building DW system, have

not in particular tackled the challenges that they bring to the design of the

ETL pipelines. Furthermore, some of the �rst (purely relational) approaches

for the DW system design in the literature (i.e., using materialized views in

[174]), as well as the later extraction techniques (e.g., [104, 109]) assumed

purely relational data sources, thus only supported High structuredness of input

data. [96] considers Medium stucturedness of input data, by providing the

practical guidelines for accessing external data in Web logs or �at �les, and

semi-structured data (i.e., XML; see Figure 2.4(A)).

Example. In our running example, the ETL �ow depicted in Figure 2.4

reads data from the transactional systems supporting daily sales operations.

Notice that besides the challenges that heterogeneity in data sources (both

structural and semantic [166]) brings to the design of an ETL pipeline, well-

structured data sources do not require any special technique for obtaining the

data before the transformation and cleaning starts. However, today, using a

diversity of external and often unstructured data sources is becoming inevitable

and thus the techniques for extracting such data have attracted the attention

35

Chapter 2. A Uni�ed View of Data-Intensive Flows in Business Intelligence
Systems: A Survey

of both academy and industry. In our example scenario, we can see that in-

troducing unstructured data (e.g., free text reviews from the Web) into the

analytical processes of the company (see Figures 2.2 and 2.3) required addi-

tional data processing for extracting relevant information from these sources.

Speci�cally, Sentiment Analysis based on natural language processing (NLP)

is performed over textual data from the Web to extract customer opinions about

the items and the campaign. l

In research, di�erent techniques (e.g., text mining [56], NLP [105, 57], sen-

timent analysis) are proposed to discover data patterns and extraction rules

for extracting relevant data from natural language documents and transform

unstructured data into more explicitly structured formats [30] (e.g., graphs,

trees, relational model). There, approaches are hence able to deal with the

Low structuredness of input data. However, at the same time, they may as-

sume a considerable latency overhead to the execution of the complete data

pipeline and thus introduce an additional challenge to data-intensive �ows. In-

terestingly, the linked data movement [20], on the other side, proposes that

large amounts of external data are already provided in more structured (semi-

structured) formats and semantically interlinked (e.g., using RDF), in order to

facilitate the situation-aware analysis [110] and data exploratory actions [9].

These approaches assume Medium structuredness of input data, ready for the

analytical processes carried out by data-intensive �ows.

5.2 Coupledness

First relational approaches for designing a DW by means of a set of material-

ized views (e.g., [174]) in general allowed very e�cient refreshments processes,

by applying the well-known view maintenance techniques, to either compute

incremental changes in the sources or a complete "rematerialization" of a view.

Both approaches issue queries (maintenance queries) over the data sources, ex-

tract the answer, and load the corresponding views. Such approaches, however,

required a High coupledness to source systems and soon became unrealistic to

support the demands of enterprises to include a variety of external data sources

into their analytical processes.

Example. As we can see from our example scenario, the retail company ini-

tially relied mainly on the internal data sources (e.g., the information about the

sold items), which are periodically transferred to a central DW (see Example

1.1). To lower the data transferred in every execution of the ETL �ow, the

designers have built the �ow to only extract the sales and item data that are

inserted to the sources after the last ETL execution (i.e., snapshot di�erence).

For e�ciently �nding the di�erences in two snapshots of the source data, the

tight (High) coupledness to the considered data sources is needed. On the other

side, in the scenario illustrated in Examples 2.1 and 2.2 (i.e., Figures 2.2 and

2.3, respectively), some data sources (i.e., item reviews from the Web) are

36

5. Data Extraction

not under the control of the company and moreover they may not be known in

advance as their choice depends on the current user needs. Thus, obviously we

cannot depend on having strong knowledge of these kinds of data sources. l

In the context of modern ETL processes, in [186], the author revisits the

approaches for �nding the di�erence of the consecutive snapshots of source

databases (e.g., [104, 109]). However, these snapshot techniques (e.g., times-

tamps, triggers, interpreting the source's logs) still required certain control over

the known source systems (i.e., Medium coupledness). Web-oriented systems

have further imposed more relaxed environments for extracting data located on

disparate Web locations. The most common solution introduced for performing

data integration from disparate sources includes building specialized software

components, called wrappers, for extracting data from di�erent Web sources

(e.g., [61]; see Figure 2.4(E)). Wrappers are typically used in combination with

another component (namely mediator, see Figure 2.4(F)), which, based on a

user query, invokes individual wrappers, and combines (i.e., integrates) data

they return to answer the input query. However, the wrapper/mediator ar-

chitecture still requires a Medium coupledness, as wrapper design highly relies

on the speci�c technology of data source systems, while the changes in the

source systems typically require reconsidering the wrappers' design. Finally,

as we mentioned above, to make the enormously growing data volumes on the

Web available and potentially useful for the enterprise analytical and data dis-

covery actions, the linked and open data movement (e.g., [20]) has proposed

a completely uncoupled environment (i.e., Low coupledness) with the general

idea of having huge amounts of distributed data on the Web semantically inter-

linked and preferably provided in easily parseable formats (e.g., XML, RDF),

see Figure 2.4(E). Approaches that argue for such Low coupled scenarios, envi-

sion architectures that can take the advantage of existing logic-based solutions

for enabling data exploration actions over the external sources [9], and provide

more context-aware data analysis [7].

A separate branch of realated research that strongly argues for High de-

coupling of data sources in data-intensive �ows is Complex Event Processing

(CEP) [37]. The idea here is on enabling on-the-�y processing and combining

of data coming in greater speed and typically from external data sources, with

the goal of detecting di�erent correlations or anomalies happening in the �ex-

ternal world�. Thus, the CEP systems typically decouples from the technical

level information of the data sources (e.g., sensor readings), and rather aims at

detecting events at the application level (e.g., correlations, anomalies). CEP is

rather extensive and separate �elds of research, and to this end, we here give

its high level overview in terms of our analysis dimensions, while for the speci�c

approaches and applications we refer the reader to the survey in [37], which

compares and studies in detail the state of the art approaches in this �eld.

37

Chapter 2. A Uni�ed View of Data-Intensive Flows in Business Intelligence
Systems: A Survey

5.3 Accessability

The practical guidelines for e�ciently building an ETL process in [96] pro-

poses a pre-step of pro�ling data sources for quality, completeness, �tness, and

accessibility. Apart from transactional data sources, dominant in traditional

DW scenarios [82], with typically High accessability or at least predictable

access policies (e.g., nightly time windows), nowadays a vast amount of poten-

tially useful data for an enterprise is coming from remote data sources, over

the global networks, like forums, social networks, and Web in general, [7], see

Figure 2.4(E).

Example. Going back to our example scenario, we can notice that in the

traditional DW environment, the company builds the system based on the

previously elicited business needs and accordingly incorporates internal data

sources (e.g., item and sales) into their analytical processes. ETL �ows (e.g.,

see Figure 2.1) are designed and tested in advance for periodically extracting

the data from pre-selected data sources, relying on the High or predictable

availability of these sources. Conversely, the ETO �ows in Figures 2.2 and 2.3

cannot rely on accessing the data sources at all times, due to remote access

(i.e., Web) and moreover as they can be selected on-the-�y. l

Even though in the linked (open) data movement information about quality

of external data are envisioned to be in the form of catalogs [20], the access to

these data at any moment still cannot be guaranteed (Low accessability), which

brings a new challenge to the process of data extraction in this scenario. In

this context, the authors in [7] study the concept of situational data, which are

usually external to an organization control and hence without a guaranteed ac-

cess, but which in fact play an important role in today's context-aware decision

making. The authors thus propose a �data as a service� solution, where envi-

sioned systems will have a registry of possible data providers, and using Web

service interface partially automate the process of �nding the most appropriate

and currently accessible data source.

5.4 Discussion

We summarize the results of studying the challenges of data extraction stage

(i.e., the classi�cation of the representative approaches) in Table 2.1. As ex-

pected, we have found more matured (i.e., TRL ¥ 2) works dealing with this

stage in the traditional BI setting (i.e., ETL), considering tighter coupledness

to source systems, relying on high accessibility, and expecting structured data.

Several approaches have opened the issue of dynamically accessing external and

unstructured data, focusing mostly on data coming from the Web, while the

majority considered structured (relational) or at most semi-structured (XML)

data.

Data extraction is however an important stage to be reconsidered for to-

38

5. Data Extraction

Table 2.1: Classi�cation of data extraction approaches

Data extraction

ETL vs. Approaches
TRL

Dimensions
ETO AUTHORS, YEAR, [NAME,] REF. struct. access. coupl.

ETL

Inmon, 1992, [82] 1
High High High

Theodoratos & Sellis, 1999, [174] 2
Labio et al. 1996, [104]

3 High N/A Medium
Lindsay et al. 1987, [109]

Kimball & Caserta, 2004, [96] 1 Medium Medium High

ETO

Feldman & Sanger, 2007, [56]
1 Low N/A N/A

Buneman et al., 1997, [30]
Laender et al., 2002, [105] 1 Low Low Medium

Bizer et al., 2009, Linked Data, [20]
1 Medium Low Low

Cugola and Margara, 2012, CEP, [37]
Abell�o et al., 2013, Fusion Cubes, [7]

1 Low Low Low
Abell�o et al., 2015, [9]

G.-Molina et al., 1997, TSIMMIS, [61] 4 Medium High Medium

day's data-intensive �ows, especially taking into account new loosely coupled

BI environments [7]. The main challenges of these (mostly envisioned) ecosys-

tems with low coupledness relate to the fact that data sources are outside of

the organization control, and often not even known in advance. Thus, the

e�cient techniques to discover the relevant data must be deployed. We can

bene�t here from the known techniques proposed to explore the contents on

the Web (e.g., Web crawling). Moreover, being external data sources, the sys-

tems become very sensitive to very probable variability of data formats, as well

as the unde�ned semantics of data coming from these sources. To overcome the

semantics heterogeneity gap between the data sources, and to automate discov-

ering and extracting the data from them, we propose to use the semantic-aware

exploratory mechanisms [9].

Furthermore, as we can see from our example scenario, specialized data

processing (e.g., natural language processing, sentiment analysis, text mining)

should be also considered to extract the relevant information from these, of-

ten unstructured, data sources. However, such complex data transformations

typically a�ect the data latency in a data-intensive �ow, hence in most of the

current approaches this kind of input data transformation has been considered

as part of a pre-processing step. An alternative to this, following the principles

of linked (open) data [20], is to have data published in at least semi-structured

formats (e.g., XML, CSV, RDF), which largely facilitates their further exploita-

tion.

39

Chapter 2. A Uni�ed View of Data-Intensive Flows in Business Intelligence
Systems: A Survey

6 Data Transformation

After data are extracted from selected (often heterogeneous) sources, the �ow

continues with transforming the data for satisfying business requirements and

considered quality standards. Data transformation is characterized as the main

stage of a data-intensive �ow by most of the approaches [96, 186]. The main

dimensions we analyze in the data transformation stage are automation, mal-

leability, and constraintness.

As previously mentioned, from early years, managing heterogeneous data

has brought the attention of database community, and some fundamental works

stem from the database theory �eld (i.e., data integration (e.g., [106, 182]) and

data exchange (e.g., [55])) to tackle this problem from di�erent perspectives.

Both data exchange and data integration problems are based on the concept

of schema mappings, which in general can be seen as assertions that de�ne the

correspondences between source and target schema elements.

In general, a parallelism can be drawn between the theoretical problems

of data exchange and data integration, and what we today consider as data-

intensive �ows. Similar observation has been discussed in [186]. The author

compares data exchange to the traditional DW setting, where data transfor-

mations in the ETL pipeline can be generally seen as schema mappings of the

data exchange setting. However, as also noted in [186], schema mappings, as

de�ned by these theoretical approaches, are typically limited to simple trans-

formations over data and do not e�ciently support typical transformations of

data-intensive �ows (e.g., grouping, aggregation, or �black-box� operations),

nor the diversity of data sources (i.e., only relational or XML data formats

have been considered).

6.1 Malleability

Data-intensive �ows, as other software artifacts, do not lend themselves nicely

to evolution events, and in general, maintaining them manually is hard. The

situation is even more critical in the next generation BI settings, where on-

the-�y decision making requires faster and more e�cient adapting to changed

domain context, i.e., changed data sources or changed information needs.

For considering the former problem, we revisit the foundational works on

data exchange and data integration, which introduced two schema mappings

approaches, i.e., global-as-view (GAV) and local-as-view (LAV) [59, 106].

In the GAV approach, the elements of the global schema are characterized in

terms of a query over the source schemata, which further enables less complex

query answering by simply unfolding global queries in terms of the mapped data

sources. However, GAV mappings lack �exibility in supporting the evolution of

data source schemata, as any change on the sources may potentially invalidate

40

6. Data Transformation

all the mapping assertions (i.e., Low malleability). An example of this approach

is the wrapper/mediator system [61].

Example. As we discussed, in Scenario 1, the company elicits the business

needs prior to designing the DW and ETL �ows (e.g., see Figure 2.1). In

the case a new data source is added, the redesign of the system is performed

o�ine before the ETL �ows are run again. However, notice that in the second

scenario (see Examples 2.1 and 2.2) the �exibility of the system for adding new

data sources must be supported in an "instant" manner, as business needs are

provided on-the-�y and often require a prompt response. l

As opposed to GAV, LAV schema mappings characterize the elements of

source schemata in terms of a query over the global schema. LAV mappings

are intuitively used in the approaches where changes in dynamic data source

schema are more common (e.g., [98]) as it provides Highmalleability of the data

integration systems. We can thus observe that the LAV approach �ts better

the needs of the next generation BI setting, where the variability and number of

data sources cannot be anticipated (e.g., [7, 9]). However, the higher �exibility

of LAV mappings brings the issues of both, the complexity of answering the

user queries and the completeness of the schema mappings. Generally, in LAV,

answering user queries posed in terms of a global schema implies the same logic

as answering queries using materialized views, which is largely discussed as a

computationally complex task [75].

Several approaches further worked on generalizing the concept of schema

mappings by supporting the expressive power of both LAV and GAV, i.e.,

both-as-view (BAV) [116], and global-and-local-as-view (GLAV) [59].

However, as we discussed before such approaches are hardly applicable to

the complex data-intensive �ows. In the context of the traditional DW sys-

tems, some works have studied the management of data-intensive �ows (i.e.,

ETL process) in front of the changes of data source schemata. In [129] the

authors propose a framework for impact prediction of schema changes for ETL

work�ow evolution. Upon the occurred change, the ETL �ow is annotated

with (pre-de�ned) actions that should be taken, and the user is noti�ed in

the case that the speci�c actions require user involvement. Other approaches

(e.g., [89]) have dealt with automatically adapting ETL �ows to the changes

of user's information needs. For each new information requirement, the sys-

tem searches for the way to adapt the existing design to additionally answer

the new requirement, by �nding the maximal overlapping in both data and

transformation. Lastly, some approaches have also dealt with the problem of

adapting DW systems to the changes of the target DW schema. Being a �non-

volatile collection of data� [82], the evolution changes of the target DW schema

are typically represented in terms of di�erent versions of a DW (i.e., multiver-

sion DW). In particular, the most important issue was providing a transparent

querying mechanisms over di�erent versions of DW schemata (i.e., cross-version

querying; [118, 66]). For instance, a solution proposed in [66] suggested keeping

41

Chapter 2. A Uni�ed View of Data-Intensive Flows in Business Intelligence
Systems: A Survey

track of change actions to further enable answering the queries spanning the

validity of di�erent DW versions. These approaches provide a certain (Medium)

level of malleability for data-intensive �ows, but still lack the full automation of

the evolution changes or applicability in the case of unpredictable complexity

of data transformations.

In addition, after data warehousing was established as a de facto way to an-

alyze historical data, the need for more timely data analysis has also emerged in

order to support prompter detection of di�erent anomalies coming from data.

This led researches to rethink the current DW architecture and make it more

malleable to combine both traditionally mid-term and long-term, with �just-

in-time� analysis. This brought the idea of (near) real-time data warehousing

systems. Several approaches discussed the main requirements of such systems

and proposed architectural changes to traditional DW systems for satisfying

these new requirements (e.g., [28, 188]). For instance, besides the main require-

ment of data freshness, [188] has also indicated minimal overhead of the source

system and scalability in terms of input data sources, user queries, and data

volumes, as relevant for these systems. They however pointed out the contra-

diction between users need for maximal data freshness and completeness, and

the high overhead of the traditional DW work�ows that often require costly

data cleaning and transformations. To this end, the approaches in [28] and

[188] discuss both conceptual and technological changes that would balance

the delays in traditional ETL processes. In practice, SAP Business Warehouse

[117] is an example of such system. It provides certain �exibility to traditional

DW systems for enabling on-the-�y analysis at di�erent levels of data, i.e.,

summarized and loaded to a DW, consolidated operational data (operational

data store), or even directly over the transactional data. Their goal is to enable

more real-time data warehousing and a possibility of also including fresh, up-

to-date transactional data to the analysis. Even though the (near) real-time

DW approaches bring more malleability (Medium) to data analysis by combin-

ing historical and on-the-�y analysis, included data are still typically coming

from the in-house and prede�ned data sources.

6.2 Constraintness

What further distinguishes data exchange [55, 99] from the original data inte-

gration setting, is that the target schema additionally entails a set of constraints

that must be satis�ed (together with schema mappings) when creating a target

instance (i.e., High constraintness).

Example. In Figure 2.1, we can notice that for loading data into a DW,

data-intensive �ow must ensure a certain level of data quality to satisfy con-

straints entailed by the DW (e.g., Remove Duplicates in Figure 2.1 removes

the repetitive itemIDs for loading the successFact table into a DW). On the

other side, data-intensive �ows in the next generation BI settings (see Figures

42

6. Data Transformation

2.2 and 2.3), due to their time constraints typically cannot a�ord to ensure full

data quality standards, but is often su�cient to deliver partially cleaned (i.e.,

�right�) data, at the right time to an end-user [50]. l

The work on generalizing schema mappings (GLAV) in [59] also discusses

the importance of adding support for de�ning the constraints on global schema,

but no concrete solution has been provided. In the data integration setting,

although some works did study query answering in the presence of integrity

constraints on global schema [32], (i.e., Medium constraintness), most of the

prominent data integration systems (e.g., [61, 98]) typically do not assume any

constraints in the target schema (i.e., Low constraintness). Furthermore, as

we discussed in the DW context, the design of an ETL process is a�ected by

the integrity constraints typical in a dimensionally modeled DW schema (see

Figure 2.4(C)).

When working with data from unstructured data sources, one may face two

di�erent problems: (1) how to extract useful information from data in unstruc-

tured formats and create more structured representation; and (2) how to deal

with incomplete and erroneous data occurred due to lack of strict constraints in

source data models. The latter problem becomes even more challenging when

the target data stores entail strict constraints as we discussed above. While

the former problem is usually handled by means of data extraction techniques

discussed in the Section 5, the latter is solved at the data transformation stage,

where data are cleaned to ful�ll di�erent quality standards and target constr-

aints. As expected, such a problem has brought the attention of researchers

in the data exchange (e.g., [53]) and data integration (e.g., [47]) �elds. In the

modern DW systems, target data quality and High constraintness is usually

guaranteed as the result of the process called data cleaning. Data cleaning

deals with di�erent data quality problems detected in sources, e.g., lack of in-

tegrity constraints at sources, naming and structural con�icts, duplicates [137].

6.3 Automation

It is not hard to see from the previously discussed problem of data cleaning

and the �ows in the example scenario, that today's data-intensive �ows require

more sophisticated data transformations than the ones (mainly based on logics)

assumed by fundamental approaches of data exchange and data integration. At

the same time, higher automation of the data �ow design is also required to

provide interactive, on-the-�y, analysis.

Example. Loading a DW may require complex data cleaning operations

to ensure the entailed constraints. Obviously, complete automation of the

design of such data-intensive �ows is not realistic and thus the designers in

Scenario 1 usually rely on a set of frequent data transformations when building

ETL �ows (e.g., Join, UDF, and Remove Duplicates in Figure 2.1). But, in

Scenario 2, such an assisted design process is not su�cient, as the �ows for

43

Chapter 2. A Uni�ed View of Data-Intensive Flows in Business Intelligence
Systems: A Survey

answering users' on-the-�y queries (e.g., see Examples 2.1 and 2.2) must be

created instantaneously. This, together with the requirement for lower data

latency, restricted such �ows to more lightweight operations (e.g., Filter or

Match in Figure 2.2). l

Di�erent design tools are available in the market and provide often overlap-

ping functionalities for the design and execution of data-intensive �ows (mostly

ETL; see for example Figure 2.4(B)). The complexity and variability of data

transformations has introduced an additional challenge to the e�orts for provid-

ing a commonly accepted modeling notation for these data �ows. Several works

have proposed di�erent ETL modeling approaches, either ad-hoc [190], or based

on well-known modeling languages, e.g., UML in [180] or BPMN in [12, 195].

However, these modeling approaches do not provide any automatable means

for the design of an ETL process (i.e., Low automation). Some approaches (e.g.,

from UML [120], or from BPMN [13]) are further extended to support certain

(i.e., Medium) automation of generating an executable code from the conceptual

�ow design, by means of model transformations (i.e., Model-driven design).

The design of an ETL process is on the other side described as the most

demanding part of a DW project. As reported in [170] ETL design can take

up to 80% of time of the entire DW project. In [96] the authors give some

practical guidelines for a successful design and deployment of an ETL process,

but without any automatable means (i.e., Low automation), still, a considerable

manual e�ort is expected from a DW designer. In [189], the framework that

uses the ad-hoc modeling notation from [190] is proposed to assist the ETL

design, along with the palette of frequently used ETL patterns (i.e., Medium).

Several approaches went further with automating the conceptual design of

ETL processes. On the one hand, in [167], the authors introduced the design

approach based on Semantic Web technologies to represent the DW domain

(i.e., source and target data stores), showing that this would further enable

automation of the design process by bene�ting from the automatic reasoning

capabilities of an ontology. [146], on the other hand, assumes that only data

sources are captured by means of a domain ontology with associated source

mappings. Both DW and ETL conceptual designs are then generated to sat-

isfy information requirements posed in the domain vocabulary (i.e., ontology).

Finally, [18] entirely rely on an ontology, both for describing source and target

data stores, and corresponding mappings among them. Integration processes

(ETL) are then also derived at the ontological level based on the type of map-

pings between source and target concepts (e.g., equality, containment). How-

ever, even though these approaches enable High automation of the data �ow

design, they work on a limited set of frequent ETL operations.

In parallel, in the �eld of data exchange, [52] proposes a tool (a.k.a. Clio)

that automatically generates correspondences (i.e., schema mappings) among

schemas without making any initial assumptions about the relationships be-

tween them, nor how these schemas were created. Such a generic approach

44

6. Data Transformation

thus supports High automation in creating di�erent schema mappings for both

data integration and data exchange settings. [44] went further to provide the

interoperability between tools for creating declarative schema mappings (e.g.,

Clio) and procedural data-intensive tools (e.g., ETL). Still, such schema map-

pings either cannot tackle grouping and aggregation or overlook complex trans-

formations typical in today's ETL processes. The next generation BI settings,

however, cannot always rely on the manual or partially automated data �ow de-

sign. Moreover, unlike ETL, ETO cannot completely anticipate end user needs

in advance and thus besides the High level of automation, the design process

must also be agile to e�ciently react in front of new or changed business needs

(e.g., [143]).

Table 2.2: Classi�cation of data transformation approaches

Data transformation

ETL vs. Approaches
TRL

Dimensions
ETO AUTHORS, YEAR, [NAME,] REF. autom. malleab. constr.

ETL

Fagin et al., 2003, [55]
2

N/A N/A HighKolaitis, 2005, [99]
Rahm & Hai Do, 2000, [137] 1
Kimball & Caserta, 2004, [96] 1 Low Low High
Vassiliadis et al., 2002, [190]

2 Low Low High
Trujillo & L.-Mora, 2003, [180]

Wilkinson et al., 2010, xLM, [195]
El Akk. et al., 2012, BPMN-ETL [12]

Mu�noz et al., 2009, [120]
3 Medium Medium HighEl Akkaoui et al., 2013, [13]

Vass. et al., 2003, ARKTOS II, [189]
Papastefanatos et al., 2009, [129]
Morzy & Wrembel, 2004, [118]
Golfarelli et al., 2006, [66]

Skoutas & Simitsis, 2007, [167]
3

High Low HighBellatreche et al., 2013, [18]
Fagin et al., 2009, Clio, [52] 4

McDon. et al., 2002, SAP BW, [117] 4 Medium Medium High
ETL & Romero et al., 2011, GEM, [146]

3 High Medium HighETO Dessloch et al., 2008, Orchid, [44]
Jovanovic et al., 2012, CoAl, [89]

ETO

G.-Molina et al., 1997, TSIMMIS, [61] 4 High Medium Low
Kirk et al., 1995, Inf. Manifold, [98] 3

High High Low
Romero & Abell�o, 2014, [143]

1
Abell�o et al., 2014, [9]

McBrien & Pou., 2003, BAV, [116]
2 N/A High MediumFriedman et al., 1999, GLAV, [59]

Cal�i et al., 2004, [31]

6.4 Discussion

As we have seen, in the next generation BI setting (i.e., ETO), where data

sources are often external to the organization control and moreover discovered

45

Chapter 2. A Uni�ed View of Data-Intensive Flows in Business Intelligence
Systems: A Survey

dynamically based on current user needs; a more �exible environment is needed

for e�ciently supporting adding new data sources to analytical processes. The

local-as-view (LAV) schema mapping approaches are more suitable in order to

support the required level of malleability [116, 59]. In the LAV approach, plug-

ging new data sources requires de�ning a mapping of the new source schemata

to the global schema, without a�ecting the existing mappings. However, as we

can see in Table 2.2, currently, most of these techniques are still purely the-

oretical (i.e., TRL � 2), while the high complexity and intractability of LAV

approaches have been widely discussed, and hence represent a serious drawback

for using LAV mappings in near real-time BI environments.

On the other side, some approaches (e.g., [52]) have worked on automating

the creation of such schema mappings, which can be widely applicable for sup-

porting answering information requirements on-the-�y. Even though we notice

the lower requirement for the cleanness and constraintness of output data in

the next generation BI setting (see Table 2.2), which would typically result

with lower complexity of a data �ow, today's BI applications do require rather

complex data analytics, which are typically not supported in the schema map-

ping approaches. Some approaches try to extend this by automating the �ow

design (e.g., [146, 18]), but still with very limited and prede�ned operation

sets (i.e., ETL & ETO). Therefore, automating the creation of more complex

data-intensive �ows (e.g., machine learning algorithms), by means of exploit-

ing di�erent input data characteristics or using metadata mechanisms is still

lacking.

7 Data Delivery

After data from multiple sources are cleaned, conformed, and combined to-

gether, a data-intensive �ow delivers the data in the format suitable to the

user needs either for visualization, or further analysis and querying. In the data

delivery stage, we focus on analyzing the two following dimensions, namely, in-

teractivity and openness, subsequently discussed in the following sections.

7.1 Interactivity

One of the important decisions that should be made while building data-

intensive �ows is the interactivity of the system when delivering data at the

output.

Example. Notice that the ETL �ow in Figure 2.1 is designed to periodi-

cally transfer the complete data about the item sales in a batched back-end

process, so that users may later analyze the subset of these data depending on

their needs (e.g., slicing it only to the sales in the third quarter of the last).

ETO �ows in Figures 2.2 and 2.3, however, instantly deliver the data from

46

7. Data Delivery

the sources that are currently asked by the user (e.g., trends of the past week-

end, and trending product items from the �rst week of March, respectively).

Moreover, such ETO �ows are typical examples of answering ad-hoc and one-

time analytical queries, thus storing their results is usually not considered as

bene�cial. l

Going back again to the fundamental work on data exchange, the data de-

livery in this setting is based on computing a solution, i.e., a complete instance

of the target schema that satis�es both, schema mappings and constraints of

the target schema. The queries are then evaluated over this solution to deliver

the answer to the user. However, due to incompleteness of data and/or schema

mappings, there may be more than one, and theoretically an in�nite number

of valid solutions to the data exchange problem [55]. Answering user queries in

such a case would result in evaluating a query over all possible solutions (i.e.,

�nding the certain answer). To overcome the obvious intractability of query

answering in data exchange, a special class of solutions (universal solutions),

having a homomorphism into any other possible solution, is proposed.

Like in the data exchange setting, materializing the complete data at the

target for the purpose of later answering user queries without accessing the

original data sources, is also considered in the later approaches for designing a

data warehouse (see Figure 2.4(G)), i.e., Low interactivity. As we discussed in

Section 5, a DW has been initially viewed as a set of materialized views (e.g.,

[174]). Similarly, in this case the database speci�c techniques (e.g., incremental

view maintenance) are studied to minimize the size of the data materialized in

each run of refreshment �ows (maintenance queries). However, as DW environ-

ments have become more demanding both considering the heterogeneity and

volume of data, it became unrealistic to consider a DW solely as a set of mate-

rialized views. In addition, many approaches have further studied the modeling

and the design of a target DW schema, which should be able to support analyt-

ical needs of end users. This has resulted in the �eld of multidimensional (MD)

modeling that is based on fact/dimension dichotomy. These works belong to a

broader �eld of MD modeling and design that is orthogonal to the scope of this

chapter, and thus we refer readers to the survey of MD modeling in [140] and

the overview of the current design approaches covered by Chapter 6 in [69].

Conversely, the data integration setting, as discussed in Section 6, does

not assume materializing a complete instance of data at the target, but rather

interactively answering individual user queries (e.g., through a data cube or

a report; see Figure 2.4(G)) posed in terms of a global (virtual) schema (i.e.,

High interactivity). A query is reformulated at runtime into queries over source

schemata, using schema mappings (e.g., [61, 98, 106, 75, 182]). Another ex-

amples of High interactivity are Complex Event Processing and Data Stream

Processing systems. Besides the di�erences these systems have (see their com-

parison in [37]), the common property of these systems is that they provide

on-the-�y delivery of data, with typically low latency, and for the one-time use

47

Chapter 2. A Uni�ed View of Data-Intensive Flows in Business Intelligence
Systems: A Survey

only (e.g., monitoring stocks, fraud detection), without a need to materialize

such data.

In [63], in the context of peer data management, a hybrid solution is pro-

posed based on both data exchange and data integration. The Medium interac-

tivity, by partially materializing data and using a virtual view over the sources

(peers), has been proposed. To this end, the solution presents schema depen-

dencies that can be used both for computing the core and query answering.

The �right� (Medium) level of interactivity is also discussed to be crucial

in the next generation BI setting (e.g., [40]) where a partial materialization is

envisioned for a subset of data with low latency and low freshness requirements

(i.e., for which we can rely on the last batched ETL run). Following the sim-

ilar idea, [134] proposes a framework for combining data-intensive �ows with

user query pipelines and hence choosing the optimal materialization point (i.e.,

Medium interactivity) in the data �ow, based on di�erent cost metrics (e.g.,

source update rates and view maintenance costs). Another �eld of research

also follows the Medium level of interactivity, and proposes an alternative to

traditional ETL processes, where row data are �rst loaded to the target stor-

age, and later, typically on-demand, transformed and delivered to end-users,

i.e., extract-load-transform (ELT). For instance, an example ELT approach in

[193] proposes an ELT architecture that deploys traditional database mecha-

nisms (i.e., hierarchical materialized views) for enabling on-demand processing

of fresher row data previously bulk loaded into a DW.

7.2 Openness

As we have seen, incompleteness in source data (especially in the today's Web

oriented environments, see Scenario 2 in Section 3), brings several challenges

to data-intensive �ows. In addition, when integrating and delivering the data

at the target, due to possibly incomplete (or non-�nite) data, the choice be-

tween two main assumptions should be made, i.e., closed world assumption

(CWA) or open world assumption (OWA). This choice depends on di�erent

characteristics of both, the considered data sources and the expected target.

For the systems, like in-house databases or traditional data warehouse systems,

where the completeness of data can be assumed, CWA is preferable since in

general we do not anticipate discovering additional data (i.e., Low openness).

On the other side, when we assume incomplete data at the sources of analysis,

we can either follow CWA and create a single �nite answer from incomplete

data (e.g., by means of data cleaning process), or OWA which would in general

allow multiple and possibly an in�nite number of interpretations of the answer

at the target, by considering also dynamically added data to the analysis [9]

(i.e., High openness).

Example. In our example scenarios, in the traditional BI setting (Scenario

1), the analysis of the revenue share depends solely on the data about the item

48

7. Data Delivery

sales, currently transferred to DW by means of the ETL process depicted in

Figure 2.1. On the other hand, the next generation BI setting in Scenario 2,

should assume a more open environment, where at each moment depending

on the end user needs (e.g., following trends and opinions about items as in

Examples 2.1 and 2.2) the system must be able to dynamically discover the

sources from which such an information can be extracted (e.g., reviews in

forums). l

Similarly, [130] revisits two main paradigms for the Semantic Web: (1)

Datalog, that follows the CWA, and (2) Classical (standard logics) paradigm

that follows OWA. An important conclusion of this work is that the Datalog

paradigm as well as CWA is more suitable for highly structured environments

in which we can ensure completeness of the data, while the Classical paradigm

and OWA provide more advantages in loosely coupled environments, where the

analysis should not only be limited to the existing (i.e., �in-house�) data.

Moreover, coinciding arguments are found in the �elds of data integration

and data exchange. Intuitively, CWA (i.e., Low openness) is more suitable as-

sumption in data exchange, where query answering must rely solely on data

transferred from source to target using de�ned schema mappings and not on

the data that can be added later [108]. Conversely, more open scenario is typ-

ically expected in data integration systems [46], where additional data can be

explored on-the-�y and added to the analysis [9] (i.e., High openness). How-

ever, the high complexity of query answering under the OWA [130], raises an

additional challenge to the latency of data-intensive �ows, which is critical in

next generation BI systems.

Table 2.3: Classi�cation of data delivery appraoches

Data delivery

ETL vs. Approaches
TRL

Dimensions
ETO AUTHORS, YEAR, [NAME,] REFERENCE interac. open.

ETL

Golfarelli & Rizzi, 2009, [69]

2 Low Low
Fagin et al., 2005, Data Exchange, [55]

Libkin, 2006, [108]
Theodoratos & Sellis, 1999, [174]

ETL & ETO

Dayal et al., 2009, [41] 1
Medium Low

Qu & Dessloch, 2014, [134]
3

Waas et al., 2013, ELT, [193]
Giacomo et al., 2007, [63] 2 Medium Medium

ETO

Cugola & Margara, CEP, 2012, [37] 1 High Medium
Abell�o et al., 2013, Fusion Cubes, [7]

1

High High

Abell�o et al., 2015, [9]
Lenzerini, 2002, Data Integration, [106]

2
Halevy, 2001, [75]
Ullman, 1997, [182]

Doan et al., 2012, Data Integration [46]
Garcia-Molina et al., 1997, TSIMMIS, [61]

3
Kirk et al., 1995, Information Manifold, [98]

49

Chapter 2. A Uni�ed View of Data-Intensive Flows in Business Intelligence
Systems: A Survey

7.3 Discussion

The outcome of studying the data delivery stage of data-intensive �ows can

be seen in Table 2.3. We observed that the same principles for data delivery

(i.e., levels of the studied dimensions in Table 2.3) are followed in approaches

of traditional data exchange [55] and DW settings [69] (i.e., ETL). At the same

time, we also noticed that the similar principles of the data integration setting

[106, 46] are envisioned for next generation BI systems in some of the studied

approachs [7, 9] (i.e., ETO), while others propose a mixed approach [41] (i.e.,

ETL & ETO).

Such observations strongly indicated that the underpinnings for building

a system for managing data-intensive �ows in the next generation BI setting

should be searched in the theoretical �eld of data integration.

Such a trend has been indeed followed in some of the recent approaches.

For example, the idea of creating a uni�ed view over relevant data sources

(i.e., the main principle of the data integration setting), is revisited by some

approaches by creating a common domain vocabulary and integrating it with

existing data sources (e.g., [167, 146]). There, the use of a domain ontology to

reconcile the languages of business and IT worlds when building a BI system

has been proposed. In [146], an ontology is used in combination with schema

mappings to automatically generate ETL pipelines to satisfy information re-

quirements previously expressed in terms of an ontology by an end user. The

approach works with a prede�ned set of data sources which is, as suggested,

suitable for building a DW system, but as data in today's BI settings are com-

ing from disparate and external data sources, the challenge of capturing their

semantics under a common vocabulary brings additional challenges. To this

end, Semantic Web technologies are discussed (e.g., [9]) as a solution both for

capturing the semantics and further interactive exploration of data, facilitated

by the automatic reasoning mechanisms.

8 Optimization of data-intensive �ows

Optimizing the execution of data-intensive �ows, is a necessity, especially taking

into account the next generation BI setting that often requires the �right-time�

delivery of information.

8.1 Optimization input

The problem of data �ow optimization has been considered from early years

of databases from di�erent perspectives, where each of these perspectives may

a�ect di�erent parts of a data �ow.

• Data. The optimization of a data �ow execution can be achieved by

50

8. Optimization of data-intensive �ows

transforming the structure of the original dataset (e.g., by means of data

partitioning [95]). However, notice that simply transforming a dataset

would not achieve a better performance, unless the execution model of

a data �ow is able to exploit such a transformation (e.g., distributed or

parallel data processing [43]).

• Data flow. The most typical case considers the optimization of data

�ow execution by changing the way data are processed, while ensuring

the equivalent semantics of the resulting dataset. Such techniques stem

from the early years of databases, where minimizing data delivery time

by changing the order and selecting the most optimal algorithm for oper-

ations applied over input data has been studied under the name of query

optimization [84]. Moving to the DW environment, which assumes more

complex data transformations than the ones in relational algebra, has

opened a new �eld of study dealing with optimizing ETL processes (e.g.,

[158]). In fact, similar principles to those introduced in query optimiza-

tion (i.e., generating semantically equivalent execution plans for a query

by reordering operations, and then �nding a plan with a minimal cost)

have been applied in [158] and extended to the context of ETL �ows.

Another work [78, 138] has based operation reordering (i.e., plan rewrit-

es) on automatically discovering a set of extensible operation properties

rather than relying solely on algebraic speci�cations, in order to enable

reordering of complex ("black-box") operators. While low data latency

is desirable for ETL processes, due to limited time windows dedicated to

the DW refreshment processes, in the next generation BI setting, having

data-intensive �ows with close to zero latency is a must. Other techniques

include: choosing the optimal implementation for the �ow operations

[181], selecting the optimal execution engine for executing a data �ow

[162, 102], data �ow fragmentation and pipelining [95, 164].

• Multi-flow. In other scenarios, especially in the case of shared execu-

tion resources, the optimization goal may suggest optimizing the overall

execution of a set of data �ows, rather than only the execution of an indi-

vidual �ow. Approaches that deal with this problem fall in two categories.

On the one hand, some approaches assume having a detailed knowledge

of included data �ows and thus try to exploit it and optimize the overall

execution, by means of �nding shared parts of data workloads and reusing

common execution and data [150, 64, 89]. Other approaches however as-

sume only a high level knowledge of included data �ows (e.g., input data

size, execution time, high-level �ow complexity, time constraints for the

�ow execution; [133]). In such cases, the optimization of data �ows pro-

ceeds by selecting the best scheduling for the execution of data-intensive

�ows, while the further optimization of individual data �ows is left to an

51

Chapter 2. A Uni�ed View of Data-Intensive Flows in Business Intelligence
Systems: A Survey

engine-speci�c optimizer [164].

8.2 Dynamicity

While the challenges due to the higher complexity of data transformation has

been largely addressed [158, 78], proposed cost-based techniques often require

certain statistics metadata available for a given data �ow in order to �nd the

optimal con�guration. However, this is typically not the case and gathering

and managing such statistics is not an easy task [74]. [74] proposes a statis-

tics collection framework, by de�ning a set of necessary statistics, as well as

gathering methods. However, this approach although powerful assumes a case

of ETL process �ow, where data �ows are typically designed and optimized in

advance (i.e., at design time), while the statistics gathering depends on the

previous execution of the same ETL process.

Notice that the majority of the optimization approaches discussed in the

previous subsection also assume a static case (see Table 2.4), where data �ows

are optimized once, at design time, and then executed many times. The

exception to this are approaches that besides statically optimizing a data �ow,

also provide dynamic optimization of data �ow executions in terms of runtime

scheduling (i.e., [164, 133, 95]).

Some optimization approaches however propose on-the-�y gathering of statis-

tics, more suitable for the next generation data �ow setting, and applying data

�ow optimization steps at runtime. The approach in [42] proposes perform-

ing micro-benchmarks for building models to estimate the costs of operations

using di�erent implementations or executing them on di�erent engines. They

show how to deal both with the conventional (relational algebra) operators as

well as with complex data transformations typical for the next generation data

�ows (e.g., sentiment or text analysis). The importance of using more accu-

rate statistics for optimizing data �ows in dynamic, cloud-scale environments

has been also discussed in [29]. To deal with uncertainty when optimizing

running data �ows they propose an approach that continuously monitors the

execution of data �ows at runtime, gathers statistics, and re-optimizes data

�ows on-the-�y to achieve better performance. The focus here is however on

the distributed computational model, where execution times are often higher

than in the centralized systems due to necessary synchronization costs, thus

the re-optimization overheads are typically considered as negligible.

8.3 Discussion

In Table 2.4, we summarize the outcome of studying data �ow optimization

approaches in this section. It is easy to see that a static (design time) op-

timization of data �ows has been largely studied in academia. While most

approaches worked on the problem of extending traditional query optimization

52

9. Overall Discussion

Table 2.4: Classi�cation of data �ow optimization approaches

Data �ow optimization

ETL vs. Approaches
TRL

Dimensions
ETO AUTHORS, YEAR, [NAME,] REFERENCE input dynamicity

ETL

Simitsis et al., 2005, [158]

3 Data �ow Design time

Hueske et al., 2012, [78]
Rheinlnder et al., 2015, SOFA, [138]

Tziovara et al., 2007, [181]
Simitsis et al., 2005, [162]
Kougka et al., 2015, [102]

Halasipuram et al., 2014, [74]
Giannikis et al., 2014, SharedDB, [64]

3 Multi-�ow Design time
Jovanovic et al., 2016, CoAl, [89]

ETO

Karagiannis et al., 2013, [95] 3
Data &

Runtime
Data �ow

Dayal et al., 2011, [42]
3

Data �ow RuntimeBruno et al., 2013, [29]
Jarke & Koch, 1984, [84] 2

Simitsis et al., 2013, HFMS, [164] 2
Multi-�ow Runtime

Polo et al., 2014, [133] 3

techniques [84] to support more complex data �ow operations [158, 78], they

typically overlook the importance of having the needed statistics of input data

and data �ow operations to perform cost-based data �ow optimization. Such

design time optimization approaches require higher overhear and are hence

mostly applicable to the traditional BI settings (i.e., ETL). Some of the recent

approaches insist on the importance of having accurate statistics for creating

an optimal execution of a data �ow, both for design time [74] and runtime

scenarios [29]. Still, the challenges for e�ciently gathering and exploiting such

statistics metadata for optimizing data-intensive �ows remain due to the re-

quired close to zero overhead of an optimization process and the "right-time"

data delivery demands in the next generation BI settings (i.e., ETO). To this

end, the existing algorithms proposed for e�ciently capturing the approximate

summaries out of massive data streams [107], should be reconsidered here and

adopted for gathering approximate statistics for data-intensive �ows over large

input datasets.

9 Overall Discussion

Finally, in this section, we summarize the main observations made from the

results of our study and propose the high level architecture for managing the

lifecycle of data-intensive �ows in the next generation BI setting. We also give

further directions for the topics that require special attention of the research

community when studying data-intensive �ows.

We have observed some general trends in studying the �elds related to data-

53

Chapter 2. A Uni�ed View of Data-Intensive Flows in Business Intelligence
Systems: A Survey

intensive �ows. We focused on the �elds of data exchange, data integration,

as well as ETL, and ETO. The need for managing heterogeneous data has

appeared ever since the database systems start being more broadly used (e.g.,

federated databases in the 80's [76]). Besides, even though the system in [155]

from the 70's is argued to be the �rst approach that followed the principles of

data exchange, the data exchange problem has not been formally de�ned until

the early 00's [54]. Likewise, the problem of data integration is studied from

the 90's [61, 182], while the strong theoretical overview of the �eld is given in

the early 00's [106]. Along with these theoretical works, the concept of the

traditional DW setting was de�ned by Bill Inmon in the early 90's [82]. ETL,

as a separate and rather complex process, however, appeared in the late 90's

and the early 00's to replace simple refreshment processes for a DW modeled as

a set of materialized views [186]. We can, however, notice the disparity among

the trends of studying these �elds in the past, showing that they have focused

on solving isolated issues.

In the recent years, business environments became more complex, dynamic

and interconnected, hence more interactive analytic systems to support daily

decision making upon the combination of various (external or internal) data

sources, have become a necessity. Moreover, as discussed throughout this chap-

ter, today's BI environments require e�ciently combining these individual so-

lutions for the problem at hand. To this end, in this chapter, we have given

a uni�ed view of data-intensive �ows, focusing on the challenges that next

generation BI setting has brought. Currently, even though many works under

di�erent names (i.e., from di�erent perspectives) have envisioned and/or pro-

posed conceptual frameworks for next generation BI ecosystems (e.g., [7, 19, 40,

42, 50, 110]), we still lack an end-to-end solution for managing the complete

lifecycle of data-intensive �ows. Going back to Tables 2.1, 2.2, and 2.3, we

can observe a certain overlapping of levels of di�erent dimensions between the

theoretical problem of data exchange and data warehousing approaches (i.e.,

ETL), as well as between data integration and data-intensive �ows in the next

generation BI setting (i.e., ETO).

After drawing a parallelism between the principles of data-intensive �ows

and �elds of data integration and data exchange, we discuss how the knowledge

of the studied �elds can be applied for building data-intensive �ows in the next

generation BI setting.

9.1 Architecture for managing the lifecycle of data-intensive �ows
in next generation BI systems

We additionally observed in Tables 2.1 - 2.3 that the majority of works sup-

porting the idea of the next generation BI setting in fact belong to level 1 of

technical readiness (TRL � 1), as they are mostly visionary works that analyze

the challenges of the next generation BI setting from di�erent perspectives.

54

9. Overall Discussion

Fig. 2.6: Architecture for managing the lifecycle of data-intensive �ows

However, we still lack a complete picture of all the aspects of data-intensive

�ows in this new setting, and to this end, we envision here an architecture of a

system for managing data-intensive �ows (Figure 2.6).

The proposed architecture depicts at high level the main outcome of our

study. It points out the main processing steps which need to be considered

during the lifecycle of a data-intensive �ow. Moreover, the architecture captures

in a holistic way the complete lifecycle of data-intensive �ows, and as such, it

can be seen as a roadmap for both academia and industry toward building

data-intensive �ows in next generation BI systems. In what follows, we discuss

in more detail di�erent architectural modules, and if available, we point out

example approaches that tackle the challenges of such modules.

Going from left to right in Figure 2.6, we observe several modules covering

di�erent parts of the data-intensive �ow lifecycle.

We start with the Query Assistance module that should provide an intuitive

interface to end users when expressing their information requirements. On the

one hand, it should raise the usability of the BI system, for a broader set of

business users. This module should provide a business-oriented view over the

included data sources (e.g., by means of domain ontologies like in [146, 90, 18]).

On the other hand, the Query Assistance module should also facilitate the low

coupledness of data sources and be able to e�ciently connect to a plethora of

external data source repositories. These, preferably semantically enriched data

sources (e.g., linked (open) data; [20]), should supplement user analysis with

context-aware data and thus raise the openness of the delivered results (see

Section 7).

Previously expressed information requirements further need to be automat-

55

Chapter 2. A Uni�ed View of Data-Intensive Flows in Business Intelligence
Systems: A Survey

ically translated in an appropriate data �ow (i.e., the Flow Designer module)

that will satisfy such information requirements. Flow Designer must provide

robustness for such loosely coupled systems in dealing with data sources with

low (non-guaranteed) accessibility. Furthermore, to support the high automa-

tion of the Flow Designer module, the system should �rst revisit the existing

approaches for automatic schema mapping creation (e.g., [52]). Obviously,

these approaches must be extended with more complex data transformations.

First, supporting low structuredness and extracting useful data from unstruc-

tured data sources on-the-�y should be largely supported, as dynamic systems

cannot always rely on having a batched preprocessing step doing so. Further-

more, more complex data analysis (e.g., machine learning algorithms) should

be supported in these data �ows. Here, we can bene�t from exploiting di�erent

data and �ow characteristics (e.g., by revisiting the previously studied �eld of

intelligent assistants for data analysis [153]). Lastly, the Flow Designer mod-

ule should automatically accommodate the �ow to ensure the required level of

data quality and output data constraintness (typically in contradiction with

required data latency) [177]. Importantly, such a design process must be it-

erative to support high malleability of the data �ow design in front of new,

changed, or removed data sources or information requirements.

In the case of partially materializing data, as suggested in [40], the Flow

Designer module should be aware or be able to reconstruct the target schema,

where data are loaded in a previously executed batch process, and further

queried when interactively answering information requirements. Thus, the �nal

data �ow ready for deployment must be integrated from the combination of data

�ows that directly access data sources and querying previously materialized

target data (i.e., the Flow Integrator module). Notice that �nding the optimal

level of partial materialization is still a challenge and must be decided using

previously collected �ow statistics and following desired quality objectives.

Next, the optimization of data-intensive �ows should be e�ciently sup-

ported at di�erent levels of the �ow lifecyle (see Section 8. Initially, when

the integrated data �ow is created to answer a user's requirement at hand,

optimization of a data �ow should be done in combination with selecting the

optimal partial materialization of data [134]. Furthermore, having multiple

data-intensive �ows answering di�erent requirements of end-users waiting for

execution, the system requires an optimal schedule for running these data �ows

over the shared computational resources (e.g., shared, multi-tenant cluster),

i.e., Flow Scheduler module. Lastly, the automatic optimization means must

be also provided when deploying data �ows, for selecting an optimal execution

engine (e.g., [162, 102]), as well as for providing the lower level, engine-speci�c,

optimization of a data �ow (i.e., the Flow Deployer module).

From Figure 2.6 we can observe that the automation of the design and

optimization of data-intensive �ows, as well as the query assistance, must be

largely facilitated by means of di�erent metadata artifacts (i.e., schema map-

56

9. Overall Discussion

pings, domain ontology, �ow and statistics). Indeed, the use of metadata for

automating the design of the next generation data warehouse systems (DW

2.0) has been previously discussed [83], while recently the main challenges of

matadata in the analytical process of the next generation BI systems have been

studied in [184].

Finally, as an important remark, we want to draw a parallelism of the en-

visioned architecture depicted in Figure 2.6, and the traditional architecture

of centralized database management systems (DBMS). First, using declarative

(SQL) queries in a DBMS, end users pose their analytical needs to the system.

While based on the traditional database theory, the semantic optimizer is re-

sponsible for transforming a user query into an equivalent one with a lower cost,

in next generation BI systems, user queries need to be additionally transformed

and enriched to access external data by means of data exploration processes

(i.e., Query Assistance; [9]). Furthermore, similarly to the syntactic optimizer

in the traditional DBMSs, Flow Designer needs to translate an information

requirement to a sequence of operations (i.e., syntactic tree), which represents

a logical plan of a data-intensive �ow execution. The execution plan should be

typically optimized for an individual execution. However, in next generation

BI systems, a data-intensive �ow could also be integrated with other data �ows

for an optimized multi-�ow execution (i.e., Flow Integrator). This conceptu-

ally resembles the well-known problem of multi-query optimization [150], but

inevitably brings new challenges considering the complexity of data �ow op-

erations, which cannot always be presented using algebraic speci�cations [78].

Moreover, the Flow Integrator module should also transform input execution

plan and optimize it considering partial materialization of data, similarly to

the query rewriting techniques for answering queries using materialized views

[75]. Following the traditional DBMS architecture, an integrated execution

plan is then optimally scheduled for execution, together with the rest of the

data �ows in the system (i.e., Flow Scheduler). Lastly, the logical data �ow is

translated into the code of a selected execution engine (e.g., [93, 102]), physi-

cally optimized considering available access structures, and �nally deployed for

execution (i.e., Flow Deployer & Executor). Similarly to the concept of the

database catalog, throughout the lifecycle of a data-intensive �ow, di�erent

metadata artifacts need to be available (e.g., schema mappings, transforma-

tion rules, statistics metadata; see Figure 2.6) to lead the automatic design

and optimization of a data �ow.

The parallelism drawn above �nally con�rms us that the underpinnings of

data-intensive �ows in next generation BI systems should be analyzed in the

frame of the traditional DB theory �eld. Nevertheless, as we showed through

our study, the inherent complexity of today's business environments (e.g., data

heterogeneity, high complexity of data processing) must be additionally ad-

dressed, and comprehensively tackled to provide end-to-end solutions for man-

aging the complete lifecycle of data-intensive �ows.

57

Chapter 2. A Uni�ed View of Data-Intensive Flows in Business Intelligence
Systems: A Survey

10 Conclusions

In this chapter, we studied data-intensive �ows, focusing on the challenges of

the next-generation BI setting. We analyzed the foundational work of database

theory tackling heterogeneity and interoperability (i.e., data exchange and data

integration), as well as the recent approaches both in the context of DW and

next generation BI systems.

We �rst identi�ed the main characteristics of data-intensive �ows, which

built the dimensions of our study setting, and further studied the current ap-

proaches in the frame of these dimensions and determined the level the studied

approaches attain in each of them.

As the main outcome of this study, we outline an architecture for managing

the complexity of data-intensive �ows in the next generation BI setting. We

discuss in particular di�erent components that such an architecture should

realize, as well as the processes that the data-intensive �ow lifecycle should

carry out.

Finally, within the components of the envisioned architecture, we point out

the main remaining challenges that the next generation BI setting brings to

managing data-intensive �ows, and which require special attention from both

academia and industry.

Acknowledgements. This work has been partially supported by the Secrete-

ria d'Universitats i Recerca de la Generalitat de Catalunya under 2014 SGR

1534, and by the Spanish Ministry of Education grant FPU12/04915.

58

Chapter 3

Incremental Consolidation of

Data-Intensive Multi-�ows

The paper has been published in the

IEEE Transactions on Knowledge and Data Engineering, 28(5): pp. 1203-1216

(2016). The layout of the paper has been revised.

DOI: http://dx.doi.org/10.1109/TKDE.2016.2515609

IEEE copyright/ credit notice:

© 2016 IEEE. Reprinted, with permission, from Petar Jovanovic, Oscar Romero,

Alkis Simitsis, and Alberto Abell�o, Incremental Consolidation of Data-Intensive

Multi-�ows, IEEE Transactions on Knowledge and Data Engineering, Vol-

ume:28(5) January (2016)

Abstract

Business intelligence (BI) systems depend on e�cient integration of disparate

and often heterogeneous data. The integration of data is governed by data-

intensive �ows and is driven by a set of information requirements. Designing

such �ows is in general a complex process, which due to the complexity of

business environments is hard to be done manually. In this chapter, we deal

with the challenge of e�cient design and maintenance of data-intensive �ows

and propose an incremental approach, namely CoAl, for semi-automatically

consolidating data-intensive �ows satisfying a given set of information require-

ments. CoAl works at the logical level and consolidates data �ows from either

high-level information requirements or platform-speci�c programs. As CoAl in-

tegrates a new data �ow, it opts for maximal reuse of existing �ows and applies

a customizable cost model tuned for minimizing the overall cost of a uni�ed so-

59

Chapter 3. Incremental Consolidation of Data-Intensive Multi-�ows

lution. We demonstrate the e�ciency and e�ectiveness of our approach through

an experimental evaluation using our implemented prototype.

1 Introduction

The complexity of business environments constantly grows, both with regard to

the amount of data relevant for making strategic decisions and the complexity

of included business processes. Today's dynamic and competitive markets often

imply rapid (e.g., near real-time) and accurate decision making. Relevant data

are stored across a variety of data repositories, possibly using di�erent data

models and formats, and potentially crossed with numerous external sources

for various context-aware analysis. A data integration process combines data

residing on di�erent sources and provides a uni�ed view of this data for a user

[106]. For example, in a data warehousing (DW) context, data integration

is implemented through extract-transform-load (ETL) processes. Generally,

an ETL process represents a data-intensive �ow (or simply, data �ow) that

extracts, cleans, and transforms data from multiple, often heterogeneous data

sources and �nally, delivers data for further analysis.

There are various challenges related to data �ow design. Here we consider

two: design evolution and design complexity.

A major challenge that BI decision-makers face relates to the evolution of

business requirements. These changes are more frequent at the early stages of a

DW design project [34] and in part, this is due to a growing use of agile method-

ologies in data �ow design and BI systems in general [79]. But changes may

happen during the entire DW lifecycle. Having an up-and-running DW system

satisfying an initial set of requirements is still a subject to various changes as

the business evolves. The data �ows populating a DW, as other software ar-

tifacts, do not lend themselves nicely to evolution events and in general, due

to their complexity, maintaining them manually is hard. The situation is even

more critical in today's BI settings, where on-the-�y decision making requires

faster and more e�cient adapting to changes. Changes in business needs may

result in new, changed, or removed information requirements. Thus having an

incremental and agile solution that can automatically absorb occurred changes

and produce a �ow satisfying the complete set of requirements would largely

facilitate the design and maintenance of data-intensive �ows.

In an enterprise environment data is usually shared among users with vary-

ing technical skills and needs, involved in di�erent parts of a business process.

Typical real-world data-intensive workloads have high temporal locality, having

80% of data reused in a range from minutes to hours [36]. However, the cost

of accessing these data, especially in distributed scenarios, is often high [24].

At the same time, intertwined business processes may also imply overlapping

of data processing. For instance, a sales department may analyze the revenue

60

1. Introduction

of the sales for the past year, while �nance may be interested in the overall

net pro�t. Computing the net pro�t can largely bene�t from the total revenue

already computed for the sales department and thus, it could bene�t from the

sales data �ow too. The concept of reusing partial results is not new. Software

and data reuse scenarios in data integration have been proposed in the past,

showing that such reuse would result in substantial cost savings, especially for

large, complex business environments [148]. Data �ow reuse could result in a

signi�cant reduce in design complexity, but also in intermediate �ow executions

and thus, in total execution time too [24].

In this chapter, we address these challenges and present an approach to

e�cient, incremental consolidation of data-intensive �ows. Following common

practice, our method iterates over information requirements to create the �nal

design. In doing that, we show how to e�ciently accommodate a new informa-

tion requirement to an existing design and also, how to update a design in lieu of

an evolving information requirement. To this end, we describe a Consolidation

Algorithm (CoAl) for data-intensive �ows. Without loss of generality, we as-

sume that starting with a set of information requirements, we create a data

�ow per requirement. The �nal design satisfying all requirements comprises

a multi-�ow. As `coal' is formed after the process and extreme compaction of

layers of partially decomposed materials1, CoAl processes individual data �ows

and incrementally consolidates them into a uni�ed multi-�ow.

CoAl deals with design evolution by providing designers with an agile so-

lution for the design of data �ows. CoAl assists the early stages of the design

process when for only a few requirements we need to build a running data �ow

from scratch. But, it also helps during the entire �ow lifecycle when the exist-

ing multi-�ow must be e�ciently accommodated to satisfy new, removed, or

changed information requirements.

CoAl reduces design complexity with aggressive information and software

reuse. Per requirement, it searches for the largest data and operation overlap

in the existing data �ow design. To boost the reuse of existing design elements

when trying to satisfy a new information requirement (i.e., when integrating

a new data �ow), CoAl aligns the order of data �ow operations by applying

generic equivalence rules. Note that in the context of data integration, the reuse

of both data and code (e.g., having a single computation shared by multiple

�ows as depicted in Figure 3.4) besides reducing �ow complexity, might also

lead to faster execution, better resource usage, and higher data quality and

consistency [148, 94].

In addition, since data-intensive �ows comprise critical processes in today's

BI systems, CoAl accounts for the cost of produced data �ows when searching

for opportunities to integrate new data �ows. CoAl uses a tunable cost model

to perform multi-�ow, logical optimization to create a uni�ed �ow design that

1src. Wikipedia

61

Chapter 3. Incremental Consolidation of Data-Intensive Multi-�ows

satis�es all information requirements. Here, we focus on maximizing the reuse

of data and operations, but the algorithm can be con�gured to work with

di�erent cost models, taking into account di�erent quality factors of data �ows

(e.g., [161]).

As a �nal remark, CoAl works at the logical level and is therefore applicable

to a variety of approaches that generate logical data �ows from information

requirements expressed either as high level business objects (e.g., [18, 13, 146])

or in engine speci�c languages (e.g., [92]).

In particular, our main contributions are as follows.

• We present a semi-automatic approach to the incremental design of data-

intensive �ows.

• We introduce a novel consolidation algorithm, called CoAl, that tackles

the data �ow integration problem from the context of data and code reuse,

while at the same time taking into account the cost of the produced data

�ow design.

• We present generic methods for reordering and comparing data �ow op-

erations that are applied while searching for the consolidation solutions

that will increase data and operation reuse.

• We experimentally evaluate our approach by using an implemented pro-

totype. A set of empirical tests have been performed to assess the CoAl's

e�ciency and improvements in overall execution time.

A short version of this chapter was published in Jovanovic et al. [88].

Outline. Section 2 describes a running example and formalizes the problem

at hand. Section 3 discusses the main challenges: operations reordering and

comparison. Section 4 presents the CoAl algorithm. Section 5 reports on our

experimental �ndings. Sections 6 and 7 discuss related work and conclude the

chapter, respectively.

2 Overview

2.1 Running Example

Figure 4.1 shows an abstraction of the TPC-H schema [5]. Figure 3.2 illustrates

four example information requirements extracted from TPC-H queries. In a

sense, our example here is adapted by reverse engineering the use case described

by the TPC-H schema and queries.

We create a data �ow per each requirement in Figure 3.2 (see Figures 3.3 and

3.6). In the literature, there are many methods dealing with such task, either

manually (e.g., [18, 13]) or automatically (e.g., [146]). Independent of a method

62

2. Overview

Fig. 3.1: TPC-H Schema

for creating data �ows from single requirements, CoAl focuses on the problem

of integrating these �ows into a uni�ed �ow that satis�es all requirements.

Consider the DIF-1 and DIF-2 data �ows depicted in Figure 3.3 that satisfy

the requirements IR1 and IR2, respectively. We de�ne the referent data �ow as

the integrated multi-�ow satisfying a number of requirements already modeled

(we start from IR1) and the new data �ow as the �ow satisfying the new

requirement (IR2).

In terms of graphical notation, the squares represent source or target data

stores, whereas the circles represent data �ow operations. Operations of each

data �ow are uniquely named using the following notation:

OPNAME = OPTYPE+OPID+";"+{FLOWIDs}.

Note that the �ow IDs at the end de�ne the set of data �ows that share

the given operation. They are optional and can be omitted for single (non

integrated) data �ows.

Observe that the DIF-1 and DIF-2 data �ows have a number of common

operations. CoAl exploits this and creates an alternative, equivalent data �ow

IR1: Revenue of the sales for the parts ordered in the past year, per

quarter.

IR2: Net pro�t of the sales for the parts ordered in the last year, per

quarter.

IR3: Top 10 automobile industry customers based on the quantity of

shipped parts, ordered in the last year.

IR4: Sorted list of quantities of parts shipped to Spanish customers,

ordered in the last year.

Fig. 3.2: Information Requirements

63

Chapter 3. Incremental Consolidation of Data-Intensive Multi-�ows

satisfying both requirements IR1 and IR2, such that the reuse of the data

stores and operations of DIF-1 is maximal (see Figure 3.4). We then continue

and integrate the remaining requirements to create a uni�ed multi-�ow that

satis�es all four requirements (i.e., IR1-IR4), see Figure 3.7.

2.2 Preliminaries and Notation

We build upon past work on ETL work�ow formalization [158] and model

generic data �ows as follows. A data-intensive �ow (DIF) is formally de�ned

as a directed acyclic graph consisting of a set of nodes (V), which are either data

stores (DS) or operations (O), while the graph edges (E) represent a directed

data �ow among the nodes of the graph pv1 v2q. We write:

DIF � pV,Eq, such that: V � DSYO,

@ePE : Dpv1, v2q, v1PV^ v2P V^ v1 v2
In the rest of this chapter we use the terms '�ow' and 'graph' interchange-

ably, while the above formalization of a data �ow holds for an individual data

�ow, as well as for an integrated multi-�ow.

Data store nodes (DS) can represent either a source data store (DSS, e.g.,

input DB table, �le, etc.) or a result data store which in general is not neces-

sarily materialized (DSR, e.g., output DB table, �le, report, virtual cube, etc.),

i.e., DS � DSSYDSR. Data store nodes are de�ned by a schema (i.e., �nite list

of attributes) and a connection to a source or a target storage for respectively

extracting or loading the data. Furthermore, we formally de�ne a data �ow

operation as a quintuple:

o � pI, O, S,Pre,Postq

• I represents a set of input schemata, where each schema (Ii) characterizes

an input from a single predecessor operation and is de�ned with a �nite

set of attributes coming from that operation (i.e., I � ta1, .., anIu). This

de�nition is generic in that it allows the arbitrary input arity of �ow

operations.

Example. Notice in Figure 3.3 that some operations like UDF3 are unary

and thus have only one input schema, while operations like Join2 are

binary and expect two input schemata. l

• O represents a set of output schemata, where each schema (Oi) charac-

terizes an output to a single succeeding operation and is de�ned with a

�nite set of attributes (i.e., O � ta1, .., anOu).

Example. The operations in DIF-12 of Figure 3.4 can have either a sin-

gle output schema (e.g., UDF3, Filter1, and Aggr4), or as it is the case

of Join2 two equivalent output schemata sending the same data to two

di�erent sub�ows. l

64

2. Overview

Fig. 3.3: Example data-intensive �ows for IR1 and IR2

• S represents the formalization of operator's semantics, i.e., a �nite set

of expressions that interprets the processing semantics of an operator.

Due to their inherent complexity and diversity, in order to automate the

processing of data �ow operations (e.g., comparison, discovery of di�erent

operation properties), we express the semantics of a generic data �ow

operation as a �nite set of normalized expression trees. That is, a binary

search tree, alphanumerically ordered on the expression elements (i.e.,

operators, function calls, variables, and constants), whilst respecting the

valid order of operators when evaluating the expression. CoAl assumes

that the semantics' formalization is generic, and similar formalization

techniques (e.g., [189]) can be used seamlessly in our approach.

Example. To express the semantics of data �ow operations in DIF-1

(Figure 3.3) we build the normalized expression trees showed in Figure

3.5. l

To further determine how the operations' semantics a�ect their interdepen-

dence in a data �ow, we use a set of data �ow operation properties. Relying

solely on a set of algebraic properties of data �ow operations (e.g., [124, 158])

is not enough to take full advantage of the potential for the data �ow analysis.

Di�erent `physio-logical' properties that can be extracted from a data �ow,

additionally boost the automation of the �ow analysis and equivalent opera-

tion reordering. For example, such idea has been introduced for the context

of optimizing generalized MapReduce data �ows by extracting properties like

65

Chapter 3. Incremental Consolidation of Data-Intensive Multi-�ows

Fig. 3.4: Integrated data-intensive multi-�ow (IR1-IR2)

Fig. 3.5: Normalized expression trees (DIF-1 operations)

attribute values [78]. Additionally motivated by this work, we extend and gen-

eralize the idea of having a customizable set of properties characterizing data

�ow operations. In this chapter, we considered the following set of operation

properties:

• Schema (S). Attributes being used, emitted, or removed by an operation.

• Values (V). Attributes whose values are used or produced by an opera-

tion.

• Order (O). Indicator if the order of the tuples (i.e., rows or records)

in the processed dataset a�ects the results or is being produced by an

operation.

We have analyzed the applicability of these properties over the types of

operations in the example ETL tools; both a commercial, i.e., Oracle Warehouse

Builder (OWB 11.2), and an open source data integration (ETL) tool, i.e.,

Pentaho Data Integration (PDI 5.0). This analysis has showed us that these

three properties cover frequently used operations, while our approach is generic

and allows the extension to other categories of data processing operations as

needed.

Furthermore, in terms of these three properties, for each instance of a data

�ow operation, we de�ne pre- (Pre) and post-conditions (Post) of a data �ow

66

2. Overview

Fig. 3.6: Example data-intensive �ows for IR3 and IR4

operation.

Depending on the properties that an operation �consumes� (i.e., the results

of an operation are a�ected by the speci�c value of that input property), we

de�ne the pre-conditions of an operation as follows:

Pre � pSpre, Vpre, Opreq, such that:

• Spre (consumed schema) is a subset of attributes of input schemata (I)

that are used by the operation.

• Vpre (consumed values) is a subset of attributes of the consumed schema

(Vpre � Spre) whose values are used by the operation.

• Opre (consumed order) is a boolean indicator that speci�es whether the

results of the operation processing are a�ected by an order of its input

dataset.

Example. The UDF3 operation of DIF-1 in Figure 3.3 uses the attributes

l_exprice, l_disc, and l_tax from the input (i.e., Spre � tl_exprice, l_disc,
l_taxu), and moreover it uses their values for computing the value of the output

attribute revenue (i.e., Vpre � tl_exprice, l_disc, l_taxu). On the other hand,

notice that the Rename operations in DIF-2, require the attribute qrt at the

input (i.e., Spre � tqrtu), while the value of that attribute is not used by

these operations (i.e., Vpre � H). Likewise, the value of the revenue attribute

67

Chapter 3. Incremental Consolidation of Data-Intensive Multi-�ows

resulting from the UDF operation, is not a�ected by the order of the input

dataset (i.e., Opre � f alse). l

In a similar way, but now depending on the properties an operation �pro-

duces� (i.e., generates the speci�c value of that property at the output), we

de�ne the post-conditions of a data �ow operation as:

Post � pSpost_gen, Spost_rem, Vpost, Opostq, such that:

• Spost_gen (generated schema) is a �nite set of new attributes that the

operation generates at the output.

• Spost_rem (removed schema) is a subset of input attributes that the oper-

ation removes from the output.

• Vpost (produced values) is a �nite set of attributes whose values are either

produced or modi�ed by the operation.

• Opost (produced order) is a boolean indicator that speci�es whether the

operation processing generates a speci�c order of the output dataset.

Note that we need to distinguish two sets (i.e., Spost_gen and Spost_rem) to

specify the schema property of a post-condition in order to determine the de-

pendency of operations in a data �ow. We clarify this when discussing the

generic equivalence rules in Section 3.1.

Example. The operation Aggr4 of DIF-1 in Figure 3.3 modi�es the schema

provided at the input and produces the new schema at the output, removing

all the input attributes (i.e., Spost_rem � t#allu) and generating the grouping

attribute qrt and the aggregated attribute total_revenue (i.e., Spost_gen �

tqrt, total_revenueu). Aggr4 also produces the new value for the aggregated

revenue attribute and the value of the grouping attribute qrt (i.e., Vpost �

tqrt, total_revenueu), and a�ects the order of the output dataset (i.e., Opost �

true). l

For extending the set of considered �physio-logical� properties, an instanti-

ation of each property must be de�ned both at the input (Pre) and the out-

put (Post) of each data �ow operation. If an operation type does not con-

sume/produce a property, the corresponding instantiation is empty (or false,

see the order property).

Finally, notice that the Pre and Post conditions of a data �ow operation

provide the needed knowledge to determine the dependencies among operations

when performing equivalence transformations for reordering operations in a

generic data �ow. We discuss this in more detail in Section 3.1.

2.3 Problem Statement

We formalize the problem of the incremental data �ow consolidation, by in-

troducing the three main design operations to integrate, remove, and change a

data �ow.

68

2. Overview

Integrate a data �ow (�int): When a new information requirement comes,

we need to integrate the data �ow that satis�es it, into the existing data �ow.

Considering that a data �ow at the logical level is modeled as a directed acyclic

graph (DAG), in the context of integrating new data �ow, at each step we

assume two graphs:

• Referent graph. An existing multi-�ow satisfying the n current informa-

tion requirements.

DIFre f � pVre f ,Ere f q : DIFre f (tIR1, .., IRnu

• New graph. A data �ow satisfying the upcoming requirement.

DIFnew � pVnew,Enewq : DIFnew (IRnew

In addition, for each information requirement (IRi) and a data �ow (D-

IFre f), we de�ne a requirement subgraph function (i.e., DIFi � pVi, Eiq � Gp
DIFre f , IRiq), such that G returns a subgraph DIFi of DIFre f , if the requirement

IRi can be satis�ed by DIFre f using DIFi. Otherwise, it returns NULL.
Example. Notice that the shaded subgraph within the multi-�ow DIF-12 in

Figure 3.4, ending in the sales_revenue data store, is a requirement subgraph

satisfying IR1. l

Intuitively, to integrate two data �ow graphs (DIFre f �int DIFnew), we look

for the maximal overlapping of their nodes (i.e., data sources and operations).

As a result, the integrated multi-�ow (i.e., DIFint) must logically subsume the

requirement subgraphs of all the requirements satis�ed by DIFre f and DIFnew
and consequently satisfy the entailed information requirements.

We de�ne the integrate design operation as:

DIFint � DIFre f �int DIFnew � pVint,Eintq, s.t.:

@IRi, i � 1, .., n : GpDIFint, IRiq ¡ NULL,
GpDIFint, IRnewq ¡ NULL.

Thus, we say that: DIFint (tIR1, .., IRn, IRnewu

Example. The multi-�ow integrated from IR1-IR4 is shown in Figure 3.7,

where the overlapping operations are shown inside the shaded areas. l

Remove a data �ow (�rem): In the case a user wants to remove an infor-

mation requirement (IRrem) from her analysis (i.e., DIFre f (tIR1, .., IRnu),

we need to remove its requirement subgraph (i.e., DIFrem � pVrem, Eremq �

GpDIFre f , IRremq), without a�ecting the satis�ability of other requirements.

Formally:

DIFint � DIFre f �rem DIFrem, s.t.:

@IRi, i � t1, .., nuztremu : GpDIFint, IRiq ¡ NULL,
ppVremz

�
@iPt1,..,nuztremu Viq XVintq � H,

ppEremz
�

@iPt1,..,nuztremu Eiq X Eintq � H.

To this end, while integrating data �ows, CoAl maintains metadata, con-

sisting of two maps that for each node (datastore or operation) and edge of

the integrated multi-�ow graph, keeps a share counter for the total number of

69

Chapter 3. Incremental Consolidation of Data-Intensive Multi-�ows

Fig. 3.7: Integrated data-intensive multi-�ow (IR1-IR4)

input data �ows that use that node (i.e., @v P Vint : Dcv ¡ 0) or edge (i.e.,

@e P Eint : Dce ¡ 0). For target data store nodes that satisfy requirements at

hand, CoAl also keeps the requirement identi�er.

Thus, when a user decides to remove an information requirement, the system

will search through its requirement subgraph, starting from a target node, and

decrements the share counter of the visited nodes and edges. If the counter

drops to zero, the system will remove the node or the edge from the graph, as

it is not used by any of the remaining input data �ows anymore.

Change a data �ow (�chg): Similarly, changing an information requirement

(IRchg ; IRchg1), results in modifying the subgraph of a referent data �ow that

satis�es this requirement (DIFchg ; DIFchg1), while preserving the satis�ability

of other requirements in the analysis. Intuitively, the operation for changing a

data �ow can be reduced to the sequence of the previous two operations, i.e.,

remove and integrate. Formally:

DIFint � DIFre f �chg pDIFchg ; DIFchg1q � pDIFre f �rem DIFchgq �int DIFchg1 .

Next, we discuss the challenges in data �ow consolidation and present the

CoAl algorithm.

3 Data Flow Consolidation Challenges

To search for the overlapping between DIF-12 and DIF-3 (i.e., Figures 3.4 and

3.6, respectively), we �rst �nd orders and lineitem as the shared source data

stores. Then, starting from these nodes we proceed with comparing operations

going further in the encompassing subgraphs towards the result data store

70

3. Data Flow Consolidation Challenges

nodes, respectively, Top-10 shipped quantity and sales_revenue. Taking

into account the previous example, we notice several challenges that arise when

searching the overlapping operations in the referent and the new data �ows.

1. Going from the orders nodes in DIF-12 and DIF-3, notice that after the

common Filter operations we identify Join operations in both data �ows,

Join2 and Join3, respectively. However, even though one input of these

Join operations coincides in both �ows, the second input di�ers, and thus

we do not proceed with comparing these operations.

Incremental advancement. To guarantee the semantic overlapping of two

data �ows, we must proceed incrementally starting from the common

source nodes. That is, for comparing any two operations of two data

�ows, we must ensure that the predecessors of both operations coincide.

2. Although we do not compare the two Join operations, we continue our

search. Note that in DIF-3 there is another Join operation (i.e., Join4)

and that it is possible to exchange the order of this operation with the

previously discussed Join3 without a�ecting the semantics of the DIF-3

data �ow. As a result, we �nd a larger set of overlapping operations

between DIF-3 and DIF-12.

Operation reordering. Operation reordering under a set of equivalence

rules is a widely used optimization technique, e.g., for pushing selective

operators early in a �ow. When comparing data �ows we can bene�t from

such technique to boost �nding the maximal overlapping of operations

whilst keeping the equivalent semantics of input data �ows.

3. In each step, like after reordering the Join operations in DIF-3, when we

�nd that the predecessors of two operations coincide, we proceed with

comparing these two operations. Thus the comparison of data �ow oper-

ations arises a third challenge in consolidating data �ows considering the

inherent complexity and variety of data �ow operations.

Operation comparison. To integrate the operations of two data �ows we

need to compare them to ensure that they provide the equivalent dataset

at the output. To automate their comparison we need to formalize the

semantics of data �ow operations.

Before presenting CoAl that solves the �rst challenge, we discuss the theoretical

aspects of the last two challenges.

3.1 Operation reordering

Operation reordering has been widely studied in the context of data �ow op-

timization, both for traditional relational algebra operators (e.g., [124]) and

generic data �ows (e.g., [158, 78]). Di�erent reordering scenarios have proven

to improve the performance of data �ows (e.g., pushing selective operations

71

Chapter 3. Incremental Consolidation of Data-Intensive Multi-�ows

early in the �ow). Conversely, we observe that reordering techniques can also

be used for consolidating data �ows by �nding the maximal overlapping of

�ow operations. Thus, here we introduce a set of data �ow transformations

and generic equivalence rules which ensure that these transformations lead to

a semantically equivalent data �ow.

Following the previously proposed set of �ow transformations in the context

of ETL processes [158], in CoAl we extend this set considering also the asso-

ciative property of n-ary operations (e.g., Join) and thus rely on the following

four �ow transformations used for reordering the operations.

• Swap. Applied to a pair of adjacent unary operations, it interchanges the

order of these operations.

• Distribute/Factorize. Applied on a unary operation over an adjacent n-

ary operation, it respectively distributes the unary operation over the

adjacent n-ary operation or factorize several unary operations over the

adjacent n-ary operation.

• Merge/Split. Applied on a set of adjacent unary operations, it respec-

tively merges several operations into a single unary operation or splits a

unary operation into several unary operation.

• (Re-)associate. Applied on a pair of mutually associative n-ary opera-

tions, it interchanges the order in which these operations are executed.

Example. Examples of these transformations applied to integrate DIF-3

and DIF-4 into the referent data �ow (Figure 3.4) are showed in Figure 3.6. l

Furthermore, we de�ne here the equivalence rules applicable to a generic set

of data �ow operations, which must hold in order to guarantee a semantically

equivalent data �ow after performing the previous reordering transformations.

Our generic equivalence rules are expressed in terms of the operation properties

de�ned in Section 2.2 (i.e., schema, values, order). Notice that the equivalence

rules de�ned in terms of these properties can be conservative in some cases and

prevent some valid reorderings, but whenever applied, they do guarantee the

semantic equivalence of a reordered data �ow.

Let's consider two adjacent operations oA and oB in a data �ow, such that

oA precedes oB (i.e., oA oB). Thus, to ensure the equivalence transformation,

CoAl checks if there is no con�ict of the properties among these two operations,

i.e., if the following constraints hold.

• Schema con�ict. We must guarantee that all attributes of the schemata

used by operations oA and oB are available also after the operation re-

ordering.

pSpost_remB X SpreA � Hq^ pSpost_genA X SpreB � Hq

72

3. Data Flow Consolidation Challenges

Example. In DIF-2 (Figure 3.3), notice that Aggr4 generates the at-

tribute qrt that is accessed by the Rname5 operation, and thus there is a

con�ict of the schema property, which prevents the swap between these

two operations l

• Values con�ict. We must guarantee that none of the attributes' values

used by one operation are modi�ed by another operation.

pVpostB XVpreA � Hq^ pVpostA XVpreB � Hq

Example. In DIF-3 (Figure 3.6), Aggr5 generates the value of attribute

total_qty that is consumed by the Sort6 operation, and thus there is

a con�ict of the value property, which prevents the swap between these

two operations. l

• Order con�ict. We must guarantee that if the results of one operation are

a�ected by a speci�c order of an input dataset, another operation does

not modify the order of the dataset at the output.

pOpostB ñ OpreAq ^ pOpostA ñ OpreBq

Example. For the operations Sort6 and First-K72 of DIF-3, CoAl �nds

an order con�ict, since Sort6 a�ects the order of the tuples in the output

dataset, while the results of First-K7 are obviously a�ected by the order

of the input dataset. l

Besides these, if both oA and oB are n-ary operations, and hence CoAl tries

to apply the (re-)associate transformation, we must also ensure that oA and oB
are mutually associative operations.

Example. Notice that the equi-join operations (e.g., Join2 and Join6 opera-

tions in DIF-12 in Figure 3.3) are associative, as well as the typical set union

and intersection operations, whilst for example outer joins (left, right, and full)

and set di�erence in general do not satisfy associative property and cannot be

reordered using the (re-)associate transformation. l

Finally, only if for all the above conditions, CoAl detects no con�ict, it can

consider reordering oA and oB.

Proof. For the proof that the �rst three �ow transformations (i.e., swap,

distribute/factorize, and merge/split) lead to a semantically equivalent data

�ow, we refer the reader to the work of Simitsis et. al, [158]. Furthermore,

the proof that the association transformation leads to a semantically equiva-

lent data �ow, when applied over the operations that satisfy the associative

property, is based on the assumption of the equivalence of the output schemata

and the output datasets before and after the association is applied.

1. Schema equivalence. Regardless of the order of the two adjacent n-ary

operations that satisfy the associative property, the equivalent output

2The First-K operation keeps only the top K tuples of the input dataset (e.g., LIMIT in
SQL syntax).

73

Chapter 3. Incremental Consolidation of Data-Intensive Multi-�ows

schemata are provided at the output (e.g., concatenated schemata in the

case of equi-join, or equivalent schemata in the case of set union and set

intersection).

2. Dataset equivalence. The associative property, if satis�ed by the two ad-

jacent n-ary operations, guarantees the equivalence of the output datasets

before and after the (re-)associate transformation is applied.

3.2 Operations comparison

Another challenge for consolidating two data �ows is �nding the matching

operations between these �ows. In general, operations oA and oB, only match

if they imply the equivalent semantics and the subgraphs having oA and oB as

their sinks provide equal datasets.

We consider four possible outcomes of comparing two operations, oA and

oB, from a referent and a new data �ow, respectively (see Figure 3.8).

(1) Full match: the compared operations are equivalent (i.e., oA � oB). In

that case, we can consolidate the two operations as a single one in the integrated

multi-�ow.

Example. In DIF-1 and DIF-2 of Figure 3.3 we �nd some fully matching

operations, e.g., Filter1 or UDF3. l

(2) Partial (referent) match: the results of oB are subsumed by the results of

oA, thus oB can partially bene�t from the transformations already performed by

oA (i.e., oB � oA). Then, both operations can be partially collapsed as depicted

in Figure 3.8(2). Furthermore, the consolidation of the partially matched oper-

ation oB may involve an additional transformation (i.e., oB1) for obtaining the

original output data.

(3) Partial (new) match: the results of oA are subsumed by the results of oB
(i.e., oA � oB). Similarly, oA can bene�t from the transformations performed

by oB.

Example. Consider an alternative scenario where the requirement IR2 only

takes into account urgent orders, i.e., Filter1 uses year(o_date)=2013 AND

o_orderprior = '1-URGENT'. Then, we would �nd a partial match of the

Filter operations in DIF-1 and DIF-2, since Filter1 in DIF-2 could par-

tially bene�t from Filter1 in DIF-1 and would need an additional �lter using

o_orderprior = '1-URGENT'. l

(4) No match: Finally, it may happen that neither oB nor oA can bene�t

from one another, (i.e., oA �� oB). Then, the two operations cannot be con-

solidated. Thus, we introduce a fork in the already matched sub�ow, as shown

in Figure 3.8(4). The fork in such case requires the copy-partition functionality

(i.e., parallel �ows).

Following the notation in Section 2.2, here we formalize the comparison of

two operations oA and oB as follows:

74

4. Consolidation Algorithm

Fig. 3.8: Integration of data �ow operations

• oApIA, OA, SA,PreA,PostAq � oBpIB, OB, SB,PreB,PostBq i f f
IA � IB ^OA � OB ^ SA � SB;

• oApIA, OA, SA,PreA,PostAq � oBpIB, OB, SB,PreB,PostBq i f f
DoB1pIB1 , OB1 , SB1 , PreB1 ,PostB1q : IA � IB ^OA � IB1 ^OB1 � OB ^

SB � SA � SB1 ;

Intuitively, we �nd the equivalence (i.e., full match) of two data �ow oper-

ations, if their input and output schemata coincide, while at the same time the

operations de�ne the equivalent semantics (i.e., SA � SB). To �nd the partial

match between two operation oA and oB (i.e., cases (2) and (3) in Figure 3.8),

we need to check if the result of one operation (oB) can be partially obtained

from the results of another operation (oA), i.e., if the results of oB are subsumed

by the results of oA. To this end, we look for a new operation (o1B) so that the

semantics of operations oA and o1B can be functionally composed to imply the

equivalent semantics as the operation oB and hence provide the same result

dataset. Note that in general, �nding the subsumption among the expressions

is known to be a challenging problem. Thus for arbitrary operation expressions,

we rely on the current state of the art for reasoning over the expressions and

assume that they are in conjunctive normal form.

4 Consolidation Algorithm

We now present the CoAl algorithm for data �ow consolidation.

Intuitively, the incremental advancement property de�ned in the previous

section, requires that for solving the problem of integrating any two data �ow

graphs, by maximizing the reuse of their data and operations, we �rst need to

recursively solve the subproblems of integrating their subgraphs, starting from

the data sources, and following a topological order of nodes in the graphs.

Given the clear ordering and dependencies between these subproblems, we

formulate the problem of integrating data-intensive �ows as a dynamic pro-

75

Chapter 3. Incremental Consolidation of Data-Intensive Multi-�ows

gramming problem. We devise a bottom-up, iterative variant of the algorithm

that e�ciently solves the problem in our case.

In particular, CoAl starts with two data �ow graphs, the referent (DIFre f)

and the new (DIFnew), and proceeds following a topological order of the data

�ow operations in a graph, starting from the matched leaf (source) nodes.

CoAl iteratively searches larger matching opportunities between their opera-

tions by applying the generic equivalence rules (Section 3.1), hence considering

reordering without modifying the semantics of the involved data �ows. At each

iteration, CoAl compares two operations (one from each data �ow), and con-

tinues only if a full match is found (Section 3.2). This guarantees the following

two invariants:

(I1): At each step, only one pair of operations of referent and new data �ows

can be partially or fully matched.

(I2): A new match is added to the set of matched operations if and only if the

operations themselves match and their input �ows have been previously fully

matched.

In addition, when searching for next operations to match, the following invari-

ant must also hold:

(I3): An operation can be reordered to be matched next, if and only if such

reordering does not change the semantics (i.e., output) of a data �ow.

The consequence of these invariants is that a pair of matched operations is

eventually consolidated in the output, integrated multi-�ow, if the �ows they

belong to can be reordered so that their children are fully matched.

Thus, the correctness of the CoAl algorithm, in the sense that it integrates

input data �ows without a�ecting their outputs, is guaranteed by the three

characteristics of the algorithm �i.e., operation comparison, incremental ad-

vancement, and equivalent operation reordering� discussed in Section 3, and

demonstrated respectively with the invariants I1, I2, and I3.

Example. We illustrate di�erent steps of CoAl, using the scenario of in-

tegrating data �ow DIF-3 (Figure 3.6), into the referent DIF-12 multi-�ow

(Figure 3.4). l

In general, CoAl comprises four phases (see Algorithm 1): i) search for the

next operations to match; ii) compare the next operations; iii) reorder input

data �ows if a match has been found; and iv) integrate the solution with the

lowest estimated cost. The �rst three phases are executed in each iteration of

CoAl, while the last one is executed once, when no matching possibility is left.

Before detailing the four phases, we present the main structures maintained

by CoAl while looking for the �nal consolidation solution.

1. matchQ: A priority queue that contains pairs of referent and new data

�ows with currently overlapping areas which can be potentially extended

with new matching operations.

matchQ ::� matchDIFPair, matchQ|matchDIFPair;

76

4. Consolidation Algorithm

Algorithm 1 CoAl
inputs: DIFref, DIFnew; output: DIFint

1: altList := {r[DIFref,DIFnew,H,H],costnoInts}; � no int. alternative
2: matchQ := matchLeafs(DIFref,DIFnew);
3: while matchQ � H do
4: matchDIFPair[DIF1ref,DIF1new,allMatches,lastMatches] := dequeue(matchQ);
5: [matchOpsPair[ore f ,onew],edgeref] := dequeue(lastMatches);
6: nextOpsref := �ndNextForMatch(DIF1ref,oref,edgeref); � Algorithm 2
7: nextOpsnew := �ndNextForMatch(DIF1new,onew,edgeo1new); � Algorithm 2
8: for all pair(o1ref P nextOpsref, o1new P nextOpsnew) do
9: if o1ref � o1new _ o1ref � o1new _ o1new � o1ref then
10: DIF2ref := reorder(DIF1ref,o1ref,oref);
11: DIF2new := reorder(DIF1new,o1new,onew);
12: insert(allMatches, [[o1ref,o1new],intInfo]);
13: if o1ref � o1new then � full match
14: for i:=1 to deg(o1ref) enqueue(lastMatches, [[o1ref,o1new],edgerefi]);
15: enqueue(matchQ, [DIF2ref,DIF2new,allMatches,lastMatches]);
16: else if o1ref � o1new _ o1new � o1ref then � partial match
17: if lastMatches �H then � no further matchings avail.
18: insert(altList, [[DIF2ref,DIF2new,allMatches,lastMatches],cost2]);
19: else
20: enqueue(matchQ, [DIF2ref,DIF2new,allMatches,lastMatches]);
21: end if
22: end if
23: end if
24: end for
25: if no matching found then
26: if lastMatches �H then � no further matchings avail.
27: insert(altList,[[DIF1ref,DIF1new,allMatches,lastMatches],cost1]);
28: else
29: enqueue(matchQ, [DIF1ref,DIF1new,allMatches,lastMatches]);
30: end if
31: end if
32: end while
33: bestAlt := �ndMin(altList);
34: DIFint := integrate(bestAlt);

77

Chapter 3. Incremental Consolidation of Data-Intensive Multi-�ows

2. altList: A list of all alternative solutions ending up in a partial or full

overlapping of two data �ows (referent and new), together with the esti-

mated costs of such consolidation solution.

altList ::�[matchDIFPair,cost],altList| rmatchDIFPair, costs;

Each element of matchQ and altList contains information of integrated data

�ows, i.e.,

matchDIFPair ::� rDIFre f , DIFnew, allMatches, lastMatchess;

• A pair of data �ows (DIFre f and DIFnew), potentially reordered for such

integration.

• Pairs of pointers to all matched operations (allMatches), with information

about the matching type and integration (intInfo).

allMatches ::� rmatchOpsPair, intInfos, allMatches|
rmatchOpsPair, intInfos;

• A queue with pairs of pointers to the last matched operations (lastMatches),

and an out-edge in a referent graph (edgere f).
lastMatches ::� rmatchOpsPair, edgere f s, lastMatches|

rmatchOpsPair, edgere f s;

matchOpsPair ::�rore f , onews;
CoAl �rst initializes the list of alternative solutions by adding the alternative

with no integration of DIFnew and DIFre f , together with the cost of having these

two data �ows separately, i.e., costnoInt (Step 1).

CoAl then starts by searching for the matching leaf (source) nodes of new

and referent data �ows (i.e., matchLeafs, Step 2). The source data stores are

compared based on their main characteristics, i.e., source type, source name

or location, and extracted attributes. CoAl initializes matchQ with the pair

of the referent and new data �ows, together with the found matching pairs of

source data stores (i.e., initially both allMatches and lastMatches).

Example. When integrating DIF-3 (Figure 3.6), into the referent �ow, i.e.,

DIF-12 (Figure 3.4), we �rst identify common source nodes of the two data

�ow graphs (i.e., orders and lineitem). l

The four phases of CoAl are as follows:

i) Search for the next operations to match. At each iteration, we consider ex-

tending a single pair of currently overlapping data �ows from the priority

queue (matchQ) with a new pair of matching operations. For a dequeued

pair of data �ows (i.e., dequeue, Step 4), we identify the operations in these

�ows to be compared next, starting from a pair of previously identi�ed full

matches (i.e., ore f and onew dequeued from lastMatches; dequeue, Step 5).

Finding operations to be compared next in both data �ows is performed by

means of two calls to the function FindNextForMatch (i.e., Algorithm 2)

78

4. Consolidation Algorithm

Algorithm 2 FindNextForMatch
inputs: DIF, ocur, out-edge; output: nextOps
1: nextOps := H;
2: for all path P �ndPathsToForks(DIF, ocur, out-edge) do
3: for i:=1 to length(path) do
4: if canReorderppath, iq^ ful�llsI2ppathrisq then
5: insert(nextOps,path[i]);
6: end if
7: end for
8: end for
9: return nextOps;

in steps 6 and 7). In FindNextForMatch we apply the generic equivalence

rules explained in Section 3.1, and �nd the operations that can be pushed

down towards the last fully matched operations, thus ful�lling I2 (i.e., can-

Reorder and ful�llI2, Step 4 in Algorithm 2). Notice that we search until

we reach the operation that has multiple outputs (i.e., �ndPathsToForks,

Step 2), since swapping operations down a fork would a�ect the semantics

of other branches in a data �ow.

Example. For the fully matching nodes orders, of DIF-12 and DIF-3, we

�nd the following sets of operations to be compared next: ordersDIF�12 =

{Filter1, Join2}; ordersDIF�3 = {Filter1, Join3, Join4}. l

ii) Compare the next operations. CoAl then compares each pair of operations

from the previously produced sets (i.e., nextOpsre f and nextOpsnew), using

the comparison rules discussed in Section 3.2. Depending on the result, it

identi�es: (a) a full match, o1re f � o1new (Step 2a); (b) a partial match,

o1new � o1re f _ o1re f � o1new (Step 16) or (c) no match, o1re f �� o1new.

Example. From the two sets of operations that can be compared next, we

�nd two full matches between Filter1(DIF-12) and Filter1(DIF-3), and

Join2(DIF-12) and Join4(DIF-3). l

It may also happen that no matching is found for any pair of operations

(Step 25).

iii) Reorder the input data �ows. If CoAl �nds a (full or partial) match, it

proceeds (if needed) with operation reordering to align the input data �ows

and enable integration of the previously matched operations, i.e., to satisfy

I2, (i.e., reorder, steps 10 and 11).

Example. Following the above example, for the full match of the Fil-

ter operations in DIF-12 and DIF-3, no additional operation reordering

is necessary and CoAl directly adds Filter1 to the current maximum

overlapping area (i.e., I2 is satis�ed). But, for the full match between

Join2(DIF-12) and Join4(DIF-3), CoAl must perform operation reorder-

ing (i.e., (re-)associate Join4 down Join3 in DIF-3), so that the Join4

operation could be matched next (I2). l

79

Chapter 3. Incremental Consolidation of Data-Intensive Multi-�ows

CoAl then extends the overlapping of input data �ows with matching pair

of operations to allMatches, together with their integration information

(i.e., insert, Step 12). Next, based on the type of the previously found

match, CoAl proceeds as follows:

• For a full match, it enqueues back to priority queue the two data

�ows (possibly reordered) to further extend the matching in the next

iterations (i.e., enqueue, Step 15), starting from the last matched

pair of operations added (i.e., lastMatches). Notice that CoAl needs

to enable the search in all possible output branches of the referent

data �ow, thus we enqueue back the currently matched operations

once for each of the next out-edges to be followed from the previously

matched operations (see Step 14).

• For a partial match, if there are no other previously matched opera-

tions from which it can extend matching (Step 17), CoAl estimates

the cost of the current solution and inserts it, along with its cost,

to the list of alternatives (Step 18). Otherwise, it enqueues back to

matchQ the two data �ows to further extend the matching in other

branches. (i.e., enqueue, Step 20).

Similarly, if no match is found (Step 25), this solution along with its es-

timated cost is also added to the list of potential alternatives only if it is

not possible to further extend the matching.

Example. In the given example (i.e., DIF-3 and DIF-12), this occurs after

we match the join operations (i.e., Join2 from DIF-12 and Join4 from

DIF-3). Going further in data �ows DIF-12 and DIF-3, we cannot �nd any

matching operation that can enlarge the common areas of these two data

�ows. Thus, we add the currently matched data �ows as an alternative

solution, resulting in an integrated multi-�ow branching after the matched

join operation (i.e., Join3;{1-4} in Figure 3.7) l

Otherwise, CoAl continues matching in other branches (i.e., Step 29).

The algorithm �nishes the matching process when all operations of in-

put data �ows are explored and compared (i.e., no more elements in the

matchQ).

iv) Integrate an alternative solution. After all iterations �nish, CoAl analyzes

the list of the found alternatives, looks for the one with the lowest esti-

mated cost (i.e., �ndMin, Step 33), and integrates it using the integration

information (i.e., integrate, Step 34).

Finally, CoAl returns the integrated multi-�ow (i.e., DIFint).

80

4. Consolidation Algorithm

4.1 Computational complexity

To integrate a referent (DIFre f � pVre f , Ere f q) and a new (DIFnew � pVnew, Enew
q) data �ow, the CoAl algorithm at �rst glance indicates at worst quadratic

complexity (in terms of |Vre f | � |Vnew|), due to the Cartesian product of oper-

ations that can be compared next (see Step 8). However, there are several

characteristics that either directly from the invariants of the CoAl algorithm

or from empirical experiences show that this is not a realistic upper bound of

the algorithm.

• Under the assumption that input data �ows are compact in terms that

they do not have redundant operations (i.e., operations of a single �ow

that can be fully matched; see Section 3.2), it is impossible that multi-

ple alternative paths branching from a single operation in a multi-�ow

completely match with a path of another data �ow.

• The search is led by the size of paths in the new data �ow (i.e., |pnew|
avg),

which is typically shorter than the paths in the referent data �ow.

• When searching next operations to compare (i.e., Algorithm 2), due to

con�icting dependencies among operations (see Section 3.1), it is also

unrealistic that all the operations in the paths of encompassing require-

ment subgraphs can be reordered to be compared next, which drastically

reduces the actual number of comparisons inside the loop.

We further analyze the complexity of the CoAl algorithm based on the

search space of the algorithm while looking for the next operations to match.

That is, we take into account the number of the main loop iterations (see Step

3 in Algorithm 1), and for each loop, the number of operations searched to be

compared next in each loop (see Algorithm 2). While the cost of Algorithm 2

for a new data �ow in bounded by the maximal size of new data �ow graphs, the

cost for a referent one grows iteratively as the size of the data �ow graph grows,

hence we take the latter one into account when estimating the complexity of

the CoAl algorithm. Additionally, notice that the number of the main loop

iterations (Step 3) depends on the number of elements previously enqueued to

the matchQ and lastMatched, which occurs only when we �nd a full match

between two data stores or two operations (see steps 2 and 2a in Algorithm 1).

In the worst case for the complexity, we can �nd a full match for all operations

in a path of a new data �ow, i.e., the path is completely subsumed by the

referent �ow.

We start by estimating the number of iterations of the main loop. The

complexity for a single path of new data �ow (i.e., pnew) can be obtained as

follows:

cppre f �int pnewq �
°|pnew|

i�1 degpore fi
q l

81

Chapter 3. Incremental Consolidation of Data-Intensive Multi-�ows

If we consider an average outdegree of a referent data �ow graph (i.e.,

degavgpDIFre f q):

cppre f �int pnewq �
°|pnew|

i�1 degpore fi
q � |pnew|

avg � degavgpDIFre f q l

Furthermore, CoAl performs such search for all paths starting from the

previously matched source data stores, i.e., maximally for |DSnewS | � |DSre fS |

paths.

c1pDIFre f �int DIFnewq � c1 �

= |DSnewS | � |DSre fS | � |DSnewS | � |pnew|
avg � degavgpDIFre f q l

Using graph theory, we can further represent the average outdegree of a

directed graph (i.e., DIFre f � pVre f , Ere f q) as
|Ere f |

|Vre f |
. At the same time, the aver-

age length of a source-to-target path |pnew|
avg can be obtained as the average

depth of a new graph. Assuming that a graph resulting from a single informa-

tion requirement is a tree, and the tree is balanced, we can obtain its depth as

log |Enew|
|Vnew|�|DSnewS |

|DSnewS |. That is:

c1 � |DSnewS | � |DSre fS | � |DSnewS | � plog |Enew|
|Vnew|�|DSnewS |

|DSnewS |q �
|Ere f |

|Vre f |
l

Next, for each loop, we estimate the complexity of searching for the next

operations to compare in the referent data �ow graph. Starting from a pair of

last matched operations, we search in all paths, and identify the next operations

that are candidates to be reordered and compared next (see Algorithm 2). Such

search in general resembles the tree traversal with the last matched operation

as a root and target data stores as leaf nodes. We estimate the size of such

tree and thus the complexity of its traversal with the average depth of a tree

(i.e., the average length of a source-to-target path), multiplied by the average

outdegree of the graph. Again, based on the graph theory, we can express such

estimations in terms of the size of a referent data �ow graph. That is:

c2 � depthavgpDIFre f q � degavgpDIFre f q � plog |Ere f |
|Vre f |�|DSre fR

|

|DSre fS |q �
|Ere f |

|Vre f |
l

Thus, we estimate the complexity of the algorithm as:

cint � c1 � c2 �

= p|DSnewS | � |DSre fS | � |DSnewS | � plog |Enew|
|Vnew|�|DSnewS |

|DSnewS |q �
|Ere f |

|Vre f |
q�

�pplog |Ere f |
|Vre f |�|DSre fR

|

|DSre fS |q �
|Ere f |

|Vre f |
q l

Assuming that the average size (i.e.,|Enew|, |Vnew|) and the number of source

data stores (i.e., |DSnewS |) in a new data �ow is constant, the theoretical com-

plexity for the problem of integrating data �ows can be given as a function of

the size of the referent data �ow (i.e., |Ere f |), the number of its data sources

(i.e., |DSre fS |), and its average outdegree (i.e.,
|Ere f |

|Vre f |
).

82

5. Evaluation

5 Evaluation

5.1 Prototype

CoAl works at the logical level and integrates data �ows coming from either

high level business requirements (e.g., [146]) or platform-speci�c programs (e.g.,

queries, scripts, ETL tool metadata; [93]). We built a prototype that imple-

ments the CoAl algorithm. The prototype is integrated into a larger ecosys-

tem for the design and deployment of data �ows from information require-

ments [90]. Communication with di�erent external modules of the ecosystem

for import/export of data �ows is enabled using a platform-independent repre-

sentation of a data �ow, namely xLM (i.e., XML encoding of data �ow metadata

[160]). Data �ows in other languages could be translated to/from xLM using

external tools (e.g., [92]).

5.2 Experimental setup

We selected a set of 15 data �ows, translated from the referent TPC-H bench-

mark queries3. Notice that even though the TPC-H benchmark provides a

relatively small set of input queries, such set covers di�erent sizes and com-

plexities of input data �ows and su�ces to demonstrate the functionality of the

CoAl algorithm. Thus the obtained results are generalizable to other inputs.

CoAl's �exibility to deal with di�erent complexities of data �ow operations is

previously showed in sections 2 and 3. Considered data �ows (similar to those

presented in Section 2), span from only 4 to the maximum of 20 operations,

performing various data transformations, i.e., �lters, joins, projections, aggre-

gations, user de�ned functions. More information about the selected queries

can be found in the TPC-H speci�cation [5]. We translated the selected SQL

queries, into the platform-independent representation that CoAl understands

(i.e., xLM).

To cover a variety of input scenarios (i.e., di�erent orders in which input

data �ows are provided), we have considered di�erent permutations of incoming

data �ows. Since the total number of di�erent permutations for the chosen 15

queries is not tractable (i.e., 15!, ¡ 1307 billions), we have randomly sampled,

a uniformly distributed set of 1000 permutations and obtained the average

values of the observed numbers. For each permutation, we have simulated the

incremental arrival of input data �ows, starting by integrating the �rst 2 data

�ows, and then incrementally adding the other 13.

3Selected TPC-H queries: q1, q2, q3, q4, q5, q6, q9, q10, q11, q13, q16, q17, q18, q19,
q21. Other queries are discarded due to limitations of the available external SQL translation
module.

83

Chapter 3. Incremental Consolidation of Data-Intensive Multi-�ows

Fig. 3.9: Search space exploration Fig. 3.10: CoAl's execution time

5.3 Scrutinizing CoAl

We �rst analyzed the distribution of the values obtained in the considered

sample of permutations. For all of them we con�rmed a positive (right) skew,

which indicated the stability of our data �ow integration algorithm. Thus,

in the reminder of this section, we report the mean values obtained from the

considered permutations.

Search Space. As shown in Figure 3.9 (Real complexity), the search space

(i.e., #states refers to the complexity in Section 4.1) grows linearly with the

number of input data �ows. For input �ows of an average size of 15 operations,

the number of states considered starts from only several when integrating 2

data �ows and go up to the maximum of 170 states when integrating the 15th

data �ow (Figure 3.9 reports the average values).

We additionally estimated the theoretical computational complexity of CoAl

for given inputs, following the formula in Section 4.1 and compared it to the

obtained real values (see Theoretical complexity (formula estimated) in Fig-

ure 3.9). We observed that the overestimation and a slight deviation of the

tendency of the formula estimated complexity comes from the generalizations

adopted for estimating the average depth and the degree of a data �ow graph.

Fitting the formula with the average values directly computed in the execution

(see Theoretical complexity (formula computed) in Figure 3.9), showed the co-

Fig. 3.11: Space/time correlation

84

5. Evaluation

Fig. 3.12: CoAl characteristics Fig. 3.13: Alternative solutions

inciding tendency with the real complexity and smaller overestimation resulted

from the averaged values.

On the other side, following the complexity discussion in Section 4.1, we

analyzed the time needed to complete the search in terms of the size of the

referent data �ow (i.e., number of edges). This analysis showed that the time

also grows linearly following the size of a referent data �ow (see Figure 3.10),

starting from only 6.4 ms with the initial size of a referent data �ow (i.e., 15

edges), and going up to the maximum of 195ms when integrating the �fteenth

data �ow over the referent data �ow with 147 edges. These values showed

a very low overhead of CoAl, making it suitable for today's right-time BI

applications. Moreover, such results further show CoAl's scalability for larger

input complexities. We additionally analyzed the correlation of the time and

the search space (see Figure 3.11), and showed that the growth of execution

time follows the same (linear) trend as the complexity growth, which validated

our complexity estimations discussed in Section 4.1.

Algorithm characteristics. We also studied the behavior of CoAl inter-

nal characteristics. Figure 3.12 shows how the number of matched operations

(#matchedOperations) and the number of �ow transitions (#�owTransitions),
related to the I2 invariant, are a�ected by the size of the problem. The average

number of matches increases from 1 to 4 (excluding the matched data sources),

until the sixth integrated data �ow, and then this trend slows only up to 5

matched for the following data �ows. This happens because an integrated �ow

may impose branching (multiple outputs) for the sub�ows shared among the

input data �ows (see Section 4). Such behavior restricts the operation reorder-

ings from one branch down the fork, as it would change the semantics of the

shared sub�ow, and thus of all the dependent branches.

This trend is also con�rmed by the number of di�erent �ow transitions

(i.e., number of di�erent operation reorderings; see Figure 3.12). This further

showed that in the basic integration scenario di�erent orders of incoming data

�ows might produce di�erent integration solution (although all of them will be

semantically equivalent). Notice, however, that tracing the metadata of original

data �ows and all integration alternatives (whose number grows linearly with

85

Chapter 3. Incremental Consolidation of Data-Intensive Multi-�ows

Fig. 3.14: Performance gains
(worst integration case)

Fig. 3.15: Performance gains
(best integration case)

the size of the problem; see Figure 3.13), would facilitate the maintenance of

integrated multi-�ows and the revision of some integration choices.

Improvement in the overall execution time. Additionally, by reviewing the

integrated multi-�ows for the considered sample of order permutations, we

have identi�ed a certain variation of the result characteristics (i.e., a relative

standard deviation of the output size is around 20%), and thus we isolated

two permutations whose outputs we further analyzed, i.e., (1) the best case -

among the considered permutations, the permutation that produces the largest

overlapping (i.e., the most matched operations) between the input data �ows,

and (2) the worst case - among the considered permutations, the permutation

that produces the smallest overlapping (i.e., the least number of matched op-

erations) between the input data �ows. For these two cases, we analyzed the

execution time of the multi-�ow after integrating all 15 data �ows from the

input, and compared it with the total execution time for the 15 individually

executed data �ows. Notice that we do not present here optimal solutions

in terms of performance, but rather analyze how di�erent degrees of data and

transformation reuse a�ect the overall execution time of a data-intensive multi-

�ow. For these experiments we ran data �ows in Pentaho Data Integration tool

using a dataset of 10k to 20k tuples generated from the TPC-H data generator.

The results are illustrated in Figures 3.14 and 3.15 for the worst and the

best overlapping case, respectively. We �rst individually executed the data

�ows from the input, and observed that it took 19.1s in total to execute 15

data �ows with the maximum of 2.4s for executing the data �ow of Q2 from

TPC-H. We further executed the integrated solutions of the best and the worst

case, as explained above. Notice in Figures 3.14 and 3.15 that some data �ows

are penalized by the integration (e.g., Q17), i.e., their execution time increased

due to unfavorable reordering of more selective operations (e.g., �lters over

joins) to achieve larger overlapping with the referent data �ow. Conversely,

some larger data �ows (e.g., Q2 and Q5) largely bene�t from the integration

by reusing already performed data processing of other data �ows. Note that

in both cases the overall execution time of the integrated multi-�ow decreased.

The best case solution (see Figure 3.15) took 13s for the overall execution,

86

6. Related Work

whilst the worst case solution (see Figure 3.14) took 15.7s. We thus observed

approx. 31.9% of improvement of the overall execution time for the best and

17.8% for the worst case, which �nally con�rms our initial assumptions.

We additionally con�rmed that the improvement of the overall execution

time is correlated with the amount of overlapping (i.e., number of shared data

and operations). For instance, the improvement in the overlapping size from

the worst to the best integration case discussed above (i.e., 51 in the worst to

79 in the best case) showed to be approx. proportional to the improvement of

the overall execution time for these two cases.

Furthermore, integration of multiple data �ows enabled extra optimization

inside the considered execution tool, by allowing the pipelined execution of

the uni�ed multi-�ow. This �nally resulted with 2.4s of the overall execution

pipeline for the best case, and 3.2s for the worst case. Notice that we report

these results for showing one of the bene�ts of integrating di�erent data �ows

(see shaded bars in Figures 3.14 and 3.15), while for the fair comparison we

used the results not taking into account the advantage of the enabled pipeline

execution.

6 Related Work

From the early years, the reuse in data integration �eld has been encouraged

and envisioned as bene�cial [148], since organizations typically perform data

integration e�orts that involve overlapping sets of data and code. However,

such problem has also been characterized as challenging due to inherently com-

plex enterprise environments. Di�erent guidelines and approaches have been

proposed to tackle this issue in various scenarios.

Schema mapping management. The data exchange and data integration

problems set the theoretical underpinnings of the complexity of what we today

call an ETL process [186]. Schema mappings, as a set of logical assertions re-

lating the elements of source and target schemata, play a fundamental role in

both data exchange [52] and data integration [106] settings. Intuitively, schema

mappings are predecessors to more complex ETL transformations [186]. Var-

ious approaches and tools dealt with automating schema mapping creation

(e.g., [52, 44]), while others further proposed high-level operations over the

set of mappings, i.e., composition, inversion, and merge, (e.g., [16]). We �nd

the problems of composing and merging schema mappings especially interest-

ing for the context of data �ow consolidation in terms of reducing information

redundancy and minimality. The remarks of these works motivated our re-

search, but moving towards more complex scenarios of today's BI introduced

new challenges both regarding the complexity of schema mappings (e.g., group-

ing, aggregation, or "black-box" operations) and the diversity of data sources

that these approaches could not support (i.e., only relational or XML data

87

Chapter 3. Incremental Consolidation of Data-Intensive Multi-�ows

formats have been previously considered). Conversely, we propose generic so-

lutions for both operation reordering and operation comparison challenges that

solve the problem for an arbitrary set of data �ow operations.

Work�ow optimization. Equivalence rules used in data �ow optimization

can be conveniently applied in the context of consolidating data �ows to max-

imize the data and operation sharing (see Section 3.1). Both traditional query

optimization [124] and multi-query optimization approaches [94] focus on per-

formance and consider a di�erent subset of operations than those typically en-

countered in complex data �ows (e.g., operations with "black-box" semantics).

Recently, more attention has been given to solving the data �ow optimization

problem for a generic set of complex operations (e.g., [158, 78]). In the for-

mer work, the problem of ETL optimization has been modeled as a state-space

search problem [158], with a set of generic equivalence transitions used to gen-

erate new (eventually optimal) states. Such equivalence transitions inspired

those presented in Section 3.1 (i.e., swap, factorize/distribute, merge/split),

but state generation is based solely on the information about the schemata

used and produced by ETL operations. We propose a less conservative ap-

proach where we distinguish three di�erent properties of data �ow operations

(i.e., schema, value, and order) and thus we are able to detect more promising

reordering (optimization) opportunities. On the other side, the later approach

[78] does consider the attributes' value as an important operation property,

but overlooks the dataset order. The main reason is that the approach focuses

solely on the set of second order operations written in an imperative language

for a big data analytics system (e.g., Map, Reduce, Cross, etc.).

Recent optimization approaches (e.g., [64]) discuss the problem of �nding

the optimal global query plan for a set of input queries by means of data and

operation sharing. Another approach considers two non-orthogonal challenges

when looking for the optimal data �ow design: operation sharing and reordering

[64]. However, unlike CoAl, this approach focuses mainly on the tradeo�s

of using these two approaches in the context of data �ow optimization and

does not study how operation reordering can enhance and maximize data and

operation sharing among di�erent data �ows. Moreover, these approaches are

limited to the typical relational algebra operators, while CoAl provides a generic

framework for the comparison and reordering of arbitrary data �ow operations

(see Section 2).

Data �ow design. The modeling and design of data-intensive �ows is a thor-

oughly studied area, both in the academia [13, 189, 190] and industry, where

many tools available in the market often provide overlapping functionalities for

the design and execution of these �ows. However, neither the research nor the

available tools provide the means for automatically adapting data �ow designs

to changing information requirements.

To the best of our knowledge, the only work tackling the integration of

ETL processes is in Albrecht and Naumann [14]. The authors propose a set of

88

7. Conclusions and Future Work

high level operators for managing the repository of ETL processes. However,

the work lacks the formal de�nition and automatic means for such operators.

Additionally, the authors do not consider the incremental consolidation of data

�ows led by information requirements.

7 Conclusions and Future Work

We have presented CoAl, our approach to facilitate the incremental consoli-

dation of data-intensive multi-�ows. CoAl starts from data �ows that satisfy

single information requirements. Iteratively, CoAl identi�es di�erent possibil-

ities for integrating new data �ows into the existing multi-�ow, focusing on

the maximal data �ow reuse. Finally, CoAl suggests a uni�ed data �ow design

evaluating it with the user-speci�ed cost model.

We have developed a prototype that implements the complete functionality

of CoAl. We used it to evaluate the e�ciency, scalability, and the quality of

the output solutions of our approach. We also report the improvement of the

overall execution time as well as other bene�ts of integrated multi-�ows.

The �nal goal of our overall work is to provide an end-to-end platform for

self-managing the complete lifecycle of BI solutions, from information require-

ments to deployment and execution of data-intensive �ows [90].

8 Acknowledgments

This work has been partially supported by the Secreteria d'Universitats i Re-

cerca de la Generalitat de Catalunya under 2014 SGR 1534, and by the Spanish

Ministry of Education grant FPU12/04915.

89

Chapter 3. Incremental Consolidation of Data-Intensive Multi-�ows

90

Chapter 4

A Requirement-Driven Approach

to the Design and Evolution of

Data Warehouses

The paper has been published in the

Journal of Information Systems, Volume 44: pp. 94-119 (2014). The layout of

the paper has been revised.

DOI: http://dx.doi.org/10.1016/j.is.2014.01.004

Elsevier copyright/ credit notice:

© 2014 Elsevier. Reprinted, with permission, from Petar Jovanovic, Oscar R-

omero, Alkis Simitsis, Alberto Abell�o, Daria Mayorova, A requirement-driven

approach to the design and evolution of data warehouses, Information Systems

Volume:44, August/2014

Abstract

Designing data warehouse (DW) systems in highly dynamic enterprise environ-

ments is not an easy task. At each moment, the multidimensional (MD) schema

needs to satisfy the set of information requirements posed by the business users.

At the same time, the diversity and heterogeneity of the data sources need to

be considered in order to properly retrieve needed data. Frequent arrival of

new business needs requires that the system is adaptable to changes. To cope

with such an inevitable complexity (both at the beginning of the design pro-

cess and when potential evolution events occur), in this chapter we present a

semi-automatic method called ORE, for creating DW designs in an iterative

fashion based on a given set of information requirements. Requirements are

91

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

�rst considered separately. For each requirement, ORE expects the set of pos-

sible MD interpretations of the source data needed for that requirement (in

a form similar to an MD schema). Incrementally, we build the uni�ed MD

schema that satis�es the entire set of requirements and meet some prede�ned

quality objectives. We have implemented ORE and performed a number of

experiments to study our approach. We have also conducted a limited-scale

case study to investigate its usefulness to designers.

1 Introduction

Data warehousing ecosystems have been widely recognized to successfully sup-

port strategic decision making in complex business environments. One of their

most important goals is to capture the relevant organization's data provided

through di�erent sources and in various formats with the purpose of enabling

analytical processing of such data. The most common design approach suggests

building a centralized decision support repository (like a DW) that gathers the

organization's data and which, due to its analytical nature, follows a multidi-

mensional (MD) design. The MD design is distinguished by the fact/dimension

dichotomy, where facts represent the subjects of analysis and dimensions show

di�erent perspectives from which the subjects can be analyzed (e.g., we can

analyze shopping orders for customers and/or suppliers). Furthermore, the

design of the extract-transform-load (ETL) processes responsible for manag-

ing the data �ow from the sources towards the DW constructs, must also be

considered.

Complex business plans and dynamic, evolving enterprise environments of-

ten result in a continuous �ow of new information requirements that may fur-

ther require new analytical perspectives or new data to be analyzed. Due to

the dynamic nature of the DW ecosystem, building the complete DW design at

once is not practical. Also, assuming that all information and business require-

ments are available from the beginning and remain intact is not realistic either.

At the same time, for constructing a DW design (i.e., its MD schema) the het-

erogeneity and relations among existing data sources need to be considered as

well.

The complexity of the monolithic approach for building a DW satisfying all

information requirements has also been largely characterized in the literature

as a stumbling stone in DW projects (e.g., see [97]). As a solution to this

problem, a step-by-step approach for building a DW has been proposed in [97]

(a.k.a. Data Warehouse Bus Architecture). This approach starts from data

marts (DM) de�ned for individual business processes and continues exploring

the common dimensional structures, which these DMs may possibly share. To

facilitate this process, a matrix as the one shown in Table 4.1 is used, which

relates DMs (i.e., their subsumed business requirements) to facts and dimen-

92

1. Introduction

Table 4.1: The DW Bus Architecture for IR1-IR5

C
u
st
o
m
er

S
u
p
p
li
er

N
a
ti
o
n

R
eg
io
n

O
rd
er
s

P
a
rt

P
a
rt
su
p
p

L
in
ei
te
m
_
d
im

ship. qty.(IR1)
` ` ` ` `

pro�t(IR2)
` ` `

revenue(IR3)
` ` ` ` `

avil. stock val.(IR4)
` ` `

ship. prior.(IR5)
` ` `

sions implied by each DM. Such matrix is used for detecting how dimensions

(in columns) are shared among facts of di�erent DMs (in rows), i.e., if a fact of

a DM in the row x is analyzed from a dimension of the column y, there is a tick
in the intersection of x and y. The content of the matrix in Table 4.1 follows

our running example based on the TPC-H benchmark [5], which is introduced

in more detail in Section 2. We consider �ve information requirements (i.e.,

IR1-IR5) and for each of them a single DM. Each requirement analyzes some

factual data (e.g., IR3 analyzes the revenue), from di�erent perspectives (e.g.,

revenue is analyzed in terms of parts �i.e., partsupplier-part hierarchy�

, and supplier's region �i.e., supplier-nation-region hierarchy�). Finally,

based on this matrix, di�erent DMs are combined into an MD schema of a

DW. However, such design guidelines still assume a tremendous manual e�ort

from the DW architect and hence, DW experts still encounter the burdensome

and time-lasting problem of translating the end-user's information requirements

into the appropriate MD schema design.

Automating such process has several bene�ts. On the one hand, it supports

the complex and time-consuming task of designing the DW schema. On the

other hand, results automatically produced guarantee that the MD integrity

constraints [114] are met as well as some DW quality objectives used to guide

the process [147]. Accordingly, several works tried to automate the process

of generating MD schemas (e.g., [168, 131, 142]). However, for the sake of

automation, these approaches tend to overlook the importance of information

requirements and focus mostly on the underlying data sources. Such practices

require an additional manual work in conforming the automatically produced

MD designs with the actual user requirements, which often does not scale well

for complex scenarios. For example, it has been shown that even for smaller

data source sizes the number of potential stars produced by means of a blind

search of MD patterns over the sources is huge [142]. Consequently, it is not

93

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

feasible to assume that the DW architect will be able to prune and �lter such

results manually.

To the best of our knowledge only three works went further and considered

integrating the information requirements in their semi-automatic approaches

for generating MD models [69, 115, 146]. At di�erent levels of detail, these

approaches support transforming every single requirement into an MD model

to answer such requirement. However, how to integrate such individual MD

models into a single, compact MD view is left to be done manually (although

[69, 115] introduce strict manual guidelines in their approaches to assist the

designer). Our experiments, described in Section 5, have shown that integrating

MD requirements, is not an easy task and this process must also be supported

by semi-automatic tools.

In this chapter, we present a semi-automatic method for Ontology-based

data warehouse REquirement-driven evolution and integration (ORE). ORE c-

omplements the existing methods (e.g., [168, 131, 142]) and assists on semi-

automatically integrating partial MD schemas (each representing a require-

ment or a set of requirements) into a uni�ed MD schema design. Moreover,

ORE could also be used to integrate existing MD schemas of any kind (e.g.,

as in [68]). ORE starts from a set of MD interpretations (MDIs) of individual

requirements (which resemble the rows of Table 4.1). Intuitively, an MDI is an

MD characterization of the sources that satis�es the requirement at hand (see

Section 2.2 for further details). Iteratively, ORE integrates MDIs into a single

MD schema which satis�es all requirements so far. Importantly, ORE gen-

erates MD-compliant results (i.e., ful�lling the MD integrity constraints) and

determines the best integration options according to a set of quality objectives,

to be de�ned by the DW designer. To guarantee so, ORE systematically traces

valuable metadata from each integration iteration. In all this process, the role

of the data sources is crucial and ORErequires a characterization of the data

sources in terms of a domain ontology, from where to automatically explore

relationships between concepts (e.g., synonyms, functional dependencies, tax-

onomies, etc.) by means of reasoning.

Our method, ORE, is useful for the early stages of a DW project, where

we need to create an MD schema design from scratch, but it can also serve

during the entire DW lifecycle to accommodate potential evolution events. As

we discuss later on, in the presence of a new requirement, our method does not

create an MD design from scratch, rather it can automatically absorb the new

requirement and integrate it with the existing MD schema so far.

Contributions. The main contributions of our work are as follows.

• We present a semi-automatic approach, ORE, which, in an iterative fash-

ion, deals with the problem of designing a uni�ed MD schema from a set

of information requirements.

• We introduce novel algorithms for integrating MD schemata, each sat-

94

2. Overview of our Approach

isfying one or more requirements. Results produced are guaranteed to

subsume all requirements so far, preserve the MD integrity constraints,

and meet the user de�ned quality objectives.

• We introduce the traceability metadata structure to systematically re-

cord information about the current integration opportunities both for

�nding the best integration solution w.r.t. the chosen quality objectives

and linking the �nal MD schema to the data sources by means of ETL

processes.

• We experimentally evaluate our approach by using a prototype. A set

of empirical tests have been performed to assess the output correctness,

a characterization of ORE's internal algorithms and the manual e�ort

for providing an integrated MD design from several requirements and in

turn, demonstrate the need for automated design approaches like ORE.

Outline. The rest of this chapter is structured as follows. Section 2 presents

an abstract overview of our approach through an example case based on the

TPC-H schema [5]. Sections 3 and 4 formally present the main structures and

stages our method goes through for integrating new information requirements

into a uni�ed MD schema. In Section 5 we provide the theoretical valida-

tion of our approach, while Section 5 presents the experimental evaluation of

ORE (both of its internals and from the end-users perspective). Section 6 dis-

cusses the related work, while Section 8 concludes the chapter and discusses

our future directions.

2 Overview of our Approach

In this section, we �rst introduce an example case based on the TPC-H schema

and formalize the notation used throughout the chapter. Then, we present the

overview of our solution to semi-automatically create an MD schema from a

set of information requirements.

2.1 Running example

Our example scenario is based on the schema provided by the TPC-H bench-

mark [5]. The abstraction of the schema is illustrated in Figure 4.1. The

TPC-H is a decision support benchmark which, besides the schema, also pro-

vides a set of business oriented queries (from here on, information requirements

- IR). For the sake of our example, let us assume a subset of �ve information

requirements, which are the following:

• IR1: The total quantity of the parts shipped from Spanish suppliers to

French customers.

95

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

Fig. 4.1: TPC-H Schema

• IR2: For each nation, the pro�t for all supplied parts, shipped after 01/

01/2011.

• IR3: The total revenue of the parts supplied from East Europe.

• IR4: For German suppliers, the total available stock value of supplied

parts.

• IR5: Shipping priority and total potential revenue of the parts ordered

before certain date and shipped after certain date to a customer of a given

segment.

2.2 Formalizing Information Requirements

In this section, we describe how information requirements are formalized in or-

der to be automatically processed. Requirements posed during the DW project

lifecycle di�er from usual user requirements in other software projects in that

they typically have analytical �avor. For this reason, it has been previously

discussed that information requirements can be elegantly represented in terms

of the MD model as data cubes (e.g., see [69, 145]), and they are usually elicited

with natural language template similar to the following one: �I want to analyze

fact (e.g., revenue or pro�t) from dimensions (e.g., time, customer) where

descriptors (e.g., previous year)�. This is a straightforward enunciation of

the cube-query metaphor [97] in natural language, which distinguishes two ba-

sic kinds of concepts, namely dimensional and factual concepts.

Thus, from an information requirement we can extract two kinds of in-

formation: (1) which data the user wants to analyze (i.e., factual data) and

(2) from which perspectives (i.e., the multidimensional space conformed by

the dimensions of analysis), which may contain descriptors (i.e., dimension at-

tributes). We further formalize the data cube in terms of a grammar, which

96

2. Overview of our Approach

can be conveniently used to serialize the content such as textual requirements

or MD interpretations in a machine readable form (e.g., XML, JSON, etc.).

In the domain that is being analyzed, we can identify the concepts that

retrieve the data asked by the requirement, i.e., domain_concept.

Fact (F) is the core MD concept in the domain and represents the focus

of the analysis. It usually contains a set of numerical measures (M), e.g., rev-

enue, quantity, extended price, which can be analyzed and aggregated from

di�erent perspectives (dimensions), using the appropriate aggregation func-

tions (AggFunc), e.g., SUM, AVERAGE, MAX. Additionally, numerical measures can

be derived by applying arithmetic operations (ArithmOp) or built-in functions

(DFunc) over basic measures. Formally:

DFunc := 'sqrt'|'abs'|...;

AggFunc := 'SUM'|'AVG'|'COUNT'|'MEDIAN'|...;

ArithmOp := '+'|'-'|'/'|'x'|...;

Expr := Expr,ArithmOp,M|M;

M := DFunc(M)|Expr| domain_concept ¡;
F := AggFunc(F)|M;

The multidimensional space (S) is determined by the analysis dimensions

(i.e., S = D1 � ... � Dn). Each dimension (D) represents a perspective from

which we analyze facts. In general, a single dimension consists of a hierarchy of

partially ordered set () of levels (L). In a data cube, dimensions appear at a

given level of detail (a.k.a. dimension level). Note that a meaningful cube can

only refer to a single level per dimension. A function (EFunc) can be applied on

levels to extract additional or normalized information -e.g., month('2001-09-28

01:00:00') would return '09'. Additionally, descriptors (Dsc) may be de�ned

over the dimension levels and used inside of logic predicates, -e.g., 'year =

2012'-. Note that the literal in the following grammar rules stands for any

numerical or textual constant value. Formally:

Oper := '>'|'<'|'>='|'<='|'='|'!='|'IN'|'MATCHES'|...;

EFunc := 'day'|'month'|...;

Dsc := Operand, Oper, Operand;

Operand := L| literal ¡;
L : = domain_concept ¡|EFunc(L)|Dsc;
D := D L|L

S := S�D|D

Given the above formalizations, we represent an information requirement

or data cube (IR) as a fact (F) and (at least) one dimension (usually a list of

dimensions), conforming its multidimensional space. Formally:

97

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

IR := F,S;

Various approaches have tackled the issue of modeling the MD data cube

for each requirement at hand. Basically, they identify the needed data sources'

subset that retrieves the data to answer each IR (intuitively a query) and map it

into an MD interpretation (i.e., assign MD roles to each concept in the subset)

to guarantee its compliance with the MD model. Eventually, they conform

MD schemas answering all the requirements. Each of these methods makes

di�erent assumptions and achieves di�erent degrees of automation but, to our

knowledge, only three of them largely automate the process of identifying,

for each requirement, the MD cube that answers such requirement [69, 115,

146]. However, none of these provides automatic means to integrate several

requirements into a single MD schema.

ORE starts from the MD knowledge extracted from each requirement (e.g.,

by means of any of the previously mentioned MD schema design approaches)

and aims to incrementally derive a uni�ed MD schema satisfying the entire set

of requirements.

For the purpose of formalizing our approach, we de�ne here the notion

of MD interpretation, regardless of the approach used to obtain these MD

interpretations.

An MD interpretation (MDI) represents a subset of the data sources' con-

cepts placed in a valid MD space that answers the IR at hand. Thus, an MDI
can be formally de�ned as a tagged graph, meeting IR and satisfying MD in-

tegrity constraints, such as

MDI � pV, E, role : V ÑIR tL, Fuq such that MDI (MDic
where V is the set of nodes, corresponding to source concepts, and E, the set
of edges representing the associations between these concepts at the sources.

Note that for a single MDI, �ÑIR� is a complete function and thus each node

(V) plays an MD role according to IR (i.e., it is either a level or a fact, see

the grammar introduced above). Additionally, the arrangement of nodes (V)

and edges (E) in an MDI must satisfy the MD integrity constraints (MDic).

Consequently, ORE relies on the previous approaches and assumes MDIs that

are sound (i.e., that satisfy the MD integrity constraints) and complete (i.e.,

that satisfy the requirement at hand). Following the work in [141], we de�ne

here the MD integrity constraints that need to hold in order to satisfy both the

soundness and completeness of the input MDIs.

• Information requirements. Information requirements (IR) are expected to

have an analytical layout, i.e., having the subject of the analysis (fact) and

the perspectives from which the subject is analyzed (dimensions). Such

requirements resemble the natural language template provided earlier in

this section.

98

2. Overview of our Approach

• The multidimensional space arrangement. The dimensions of a require-

ment must arrange the MD space in which the factual data of a require-

ment is depicted, i.e., each instance of factual data is identi�ed by a point

in each of its analysis dimensions.

• The base concept. A minimal set of levels which functionally determine

a fact must guarantee that given a point in each of the dimensions, such

set of points determines one and only one instance of factual data.

• Data summarization. Data summarization must be correct which is en-

sured by applying necessary conditions for summarization, discussed in

[114]: (1) Disjointness (the sets of objects to be aggregated must be dis-

joint); (2) completeness (the union of subsets must constitute the entire

set); and (3) compatibility of the dimension, the type of measure being

aggregated and the aggregation function.

Furthermore, an MDI contains two kinds of concepts. Those explicitly

demanded in the input requirement and those implicitly needed to properly

relate the explicitly demanded concepts in order to produce a single cube. Thus,

the latter depend on the data sources implementation and do not appear in IR.

From here on, we refer to them as intermediate concepts. It is worth noting that

initially, intermediate concepts may not have a strict MD role associated with

them. Therefore, considering the potential ambiguity of business requirements

and the diversity of the underlying associations in the data sources, several

MDIs may result from a single requirement (each of them, capturing di�erent

semantics) [141]. We write MDIIR to refer to the set of all MDIs satisfying

IR.

In [146], we describe our approach to generate and validate such set of

MDIs per requirement (as the ones shown in Figure 4.2). However, ORE aims

to be robust enough to process any valid MD cube-like form (i.e., respecting

the fact/dimension dichotomy) generated manually or automatically from in-

formation requirements through any of the current approaches available in the

literature. In fact, the only modi�cation needed to couple another approach to

ORE would be to serialize its output into the propriety format that ORE can

automatically process.

Example. Each requirement, de�ned at the beginning of Section 2 (i.e.,

IR1-IR5), gives rise to a set of one or more MDIs (see Figure 4.2). Levels

are depicted with white, and facts with gray boxes. The attributes of levels

or facts are placed inside the corresponding boxes. The empty levels or facts

(i.e., the boxes without any attributes) represent intermediate concepts and

in the case their MD knowledge is ambivalent (i.e., either playing a factual

or dimensional role, the MD integrity constraints are preserved) they are de-

picted as both level and fact. Consider now IR3, in plain text, and the MDIs

produced for that requirement. There, we distinguish between concepts ex-

99

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

plicitly demanded (i.e., revenue, parts, and region name) and intermediate

concepts (i.e., partsupplier, and nation).In this case, although nation is

intermediate concept, its role is set to dimensional as to preserve the MD in-

tegrity constraints. However, partsupplier remains as an ambivalent concept

since its MD interpretation has not been explicitly set in the requirement and

cannot be unequivocally inferred without further information (either as factual

or dimensional data the MDI satis�es the MD integrity constraints). Similarly,

three out of the �ve requirements in our example (IR1, IR2 and IR3) contain

ambivalent concepts and thus, they produce several MDIs (e.g., IR3 would

produce two, one where partsupplier plays a factual role and thus, it can be

used to �nd measures of potential interest, and another one where it plays a

dimensional role and consequently, it is used as an analysis perspective). l

2.3 Formalizing the Problem

MDIs, by themselves, cannot serve as a �nal MD schema. Each of them answers

a single requirement (i.e., cube-query) and may show unnecessary information

(e.g., intermediate concepts may be of no interest at all and only be relevant

for the ETL process). Intuitively, starting from a set of input requirements

(each of them represented as an MDIIR) and the data sources, the problem

at hand looks for overlapping subsets of the input MDIs such that produce a

single MD schema and meet some quality objectives.

Thus, we start from tMDIIRi | i � 1..mu and following an iterative ap-

proach, we derive the uni�ed MD schema satisfying the complete set of re-

quirements. In order to lead the integration process, ORE uses a cost model

(CM) which is de�ned with a set of parametric cost formulae (CF) that evalu-

ate some DW quality factors (QF) (e.g., structural complexity). A cost model

together with its formulae is a parameter of ORE and can be alternatively

customized by the designer to consider other quality factors (e.g., see [154]).

Without loss of generality, and for the sake of presentation, we assume that

the resulting uni�ed MD schema is a set of star schemas (SS) where each star

may answer one or more requirements. Similar to MDIs, we de�ne SS as follows:

SS � pV, E, role : V ÑIR1 ...IRm tD1, . . . , Dn, Fuq, such that SS (MDicq

Where m is the number of input requirements and n the number of dimen-

sions in the output. This de�nition is similar to that of MDI, but guarantees

that the MD role assigned to each node honors all the input requirements (i.e.,

�ÑIR1,...,IRm �). Moreover, an MD schema, unlike a data cube, contains dimen-

sion hierarchies, which correspond to sets of levels with a partial, strict order

() between them (e.g., nation region). Next, we search for a set of star

schemas (SS) such that

100

2. Overview of our Approach

(IR1) (IR2)

(IR3)

(IR4)

(IR5)

Fig. 4.2: Single MD interpretations for IR1-IR5

@i � 1..m : MDIIRi �q SS

where �q implies DMDIk P MDIIRi and DSSj P SS such that:

VMDIk � VSSj ,

EMDIk � ESSj ,

@pa, bq P EMDIk : roleMDIkpaq � roleMDIkpbq ñ roleSSjpaq � roleSSjpbq

Intuitively, each SS is a superset of the nodes, and edges of, at least, one

MDI per requirement. Each connected subgraph with the same tagging in

all corresponding MDIs gives rise to either a fact or one dimension in the star.

Each SS is generated in accordance with the de�ned quality factors (QF) which
are implemented by the chosen cost model (CM). Below, we further elaborate

on how to express CM and meet the quality objectives (Section 2.4.2).

Example. Starting from the MDIIR1 . . . MDIIR5 identi�ed for our require-

ments (see Figure 4.2), we aim at producing an MD schema meeting certain

quality objectives (e.g., minimal structural complexity). ORE follows an iter-

ative approach. Thus, it would start integrating the MDIs from IR1 and IR2

and produce a partial result (see Figure 4.3). Then, iteratively we integrate the

101

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

Fig. 4.3: MD schema satisfying IR1&IR2

Fig. 4.4: MD schema satisfying IR1-IR5

remaining requirements. At each iteration, the quality factors QF are evalu-

ated to choose among alternative integration options. Eventually, our method

produces a single SS satisfying the input requirements and meeting the chosen

quality objectives (see Figure 4.4). l

2.4 ORE in a Nutshell

This section presents the core components of our method (i.e., ORE). We �rst

describe the inputs to our system and then, the processing stages of ORE.

2.4.1 Inputs

Data sources. Disparate internal and external sources may be of interest for an

organization during the decision making processes. To boost the integration

of new information requirements spanning diverse data sources into the �nal

MD schema design, we capture the semantics (e.g., concepts, properties) of

the available data sources in terms of an OWL ontology. The main role of the

data sources ontology is supporting the integration of heterogeneous sources.

Moreover, the use of an ontology, as proposed in [144], allows us to automati-

102

2. Overview of our Approach

Fig. 4.5: Abstract representation of ORE stages

cally infer (by means of reasoning) relations between concepts (e.g., synonyms,

functional dependencies, taxonomies, etc.). In the literature, many works have

previously proposed to tackle data integration by means of ontologies. In this

chapter, we assume the ontology is already available (how to obtain such on-

tology is out of the scope). For example, we can create or maintain a domain

ontology as proposed in [142, 167].

Information requirements (IR). Information requirements are pre-processe-

d as previously explained in Section 2.2 and, for each requirement, an MDIIR
is generated. Thus, the input of ORE is a set of MDIs (one per requirement).

As discussed in Section 5, our prototype expects MDIs serialized as XML

�les. Thus, our method is �exible and the designer can choose any approach

to generate the MDIs as far as the results are serialized in a propriety XML

format (e.g., using XSLT), which can be directly processed by ORE.

Example. In addition to the MDIs for requirements IR1-IR5 (see Figure

4.2), which have already been discussed in Section 2.2, we use a domain on-

tology that corresponds to the TPC-H data stores (see Figure 4.1). In our

example, we followed the approach presented in [167] to automatically produce

it. However, due to space considerations, we do not further elaborate on this

and we refer the interested readers to that paper for additional details. Both,

the TPC-H and the set of MDIs in Figure 4.3 are the inputs of ORE. l

2.4.2 Stages

A schematic overview of our approach is illustrated in Figure 4.5. Our method

semi-automatically integrates new information requirements and incrementally

produces an MD schema satisfying the requirements so far. At the same time,

103

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

the set of operations that illustrates such integration step is identi�ed (i.e.,

integration operations) and further weighted (see Table 4.2) according to the

cost model to assist designer's choice on meeting the chosen quality objectives

(e.g., minimal structural complexity).

Our method, ORE, comprises four stages, namely matching facts, matching

dimensions, complementing the MD design, and integration (see Figure 4.5).

The �rst three stages gradually match di�erent MD concepts and explore new

design alternatives. The last stage considers these matchings and designer's

feedback to generate the �nal MD schema that accommodates a new IR. If a

new requirement does not entail any modi�cation on the current MD schema

it means that it is subsumed by the previous requirements considered.

Throughout all these stages, we use an internal structure, namely traceabil-

ity metadata (TM), for systematically tracing the MD knowledge integrated

so far. With TM, we avoid overburdening the produced MD schema with in-

signi�cant information for the �nal (business) user. For example, this structure

keeps the information about all alternative MDIIR, while only one MDIIR is

chosen per requirement to be included in the �nal MD schema. We keep these

alternatives because, in the future, due to new requirements, we may need to

reconsider the integration strategy chosen for a given concept. More details

about the TM structure are provided in Section 3. At each iteration, the TM
grows with the integration of each requirement and we use a cost model to

prioritize the most promising solutions and prune the rest. TM, along with the

user feedback, provides the basis for obtaining the �nal MD schema.

Consequently, a model for determining the cost of the output alternative

solutions is considered as a part of TM. Depending on the DW quality factors

that the user is interested in, the cost model can be arbitrary selected by the

designer to support end-user choice. Thus, ORE is not coupled to any speci�c

cost model. For the purpose of explanations and prototyping we consider the

structural complexity as a DW quality factor for building our cost model. The

structural complexity is discussed in [154] and di�erent metrics are provided

to support the cost model. These metrics refer to the correlation between

DW quality factors, like understandability, analizability and maintainability,

and di�erent structural characteristics of a DW schema, like number of dimen-

sional and factual concepts, their attributes (i.e., measures or descriptors), and

number of functional dependencies. Table 4.2 shows the set of theoretically

and empirically validated weights that express how introducing di�erent DW

concepts (by means of di�erent integration operations) a�ects the considered

DW quality factors (in this case structural complexity). We use this set of

weights as an example case for ORE, and refer the reader to [154] for more

details about how these values are obtained and later validated. We build our

example cost model with the following formula (f P CF) that calculates the

overall cost (i.e., structural complexity) of the MD schema. Note that the

equation is parametrized with the weights de�ned in Table 4.2 and considers

104

2. Overview of our Approach

Table 4.2: Integration operations

DW concept Operation name Weight

Dimensional

insertLevel 0.21

insertRollUp 0.27

insertDimDescriptor 0.04

MergeLevels 0.04�p7insertDimDescriptor)

Factual

insertFact 0.31

insertFactMeasure 0.36

MergeFacts 0.36�p7insertFactMeasure)

Factual/
renameConcept 0

Dimensional

the number of di�erent structural elements of an MD schema.

f � #level � 0.21� #rollUp � 0.27� #dimDescriptor � 0.04�
�# f act � 0.31� # f actMeasure � 0.36.

Example. The MD schema satisfying IR1� IR5, depicted in Figure 4.4,

contains the following MD structural elements: two facts with �ve measures,

eight levels with nine level attributes, and four roll-up relations between the

levels. Taking into account the equation f , we can calculate the overall cost in

terms of structural complexity of the MD schema as follows:

f � 8 � 0.21� 4 � 0.27� 9 � 0.04� 2 � 0.31� 5 � 0.36 � 5.54. l

Next, we give a high-level description of the four stages, during which

ORE iteratively integrates each new requirement into the MD schema that

satis�es the requirements so far, preserves the MD integrity constraints and

meets the chosen quality objectives.

Stage 1: Matching facts. Facts are the core MD concepts. Thus, we start

looking for potential matches between facts in the current IR and the MD

schema at hand. Consequently, we �rst search for di�erent alternatives to

incorporate the new IR (i.e., MDIIR) into TM. If ORE does not succeed,

a new SS is created to support the new requirement. For matching facts,

ORE searches for fact(s) in TM that produce a compatible set of points in the

MD space. As a result, di�erent possibilities to match the factual concepts in IR

with already processed requirements are identi�ed, as well as the appropriate

sets of integration operations. The costs of these integration possibilities are

further weighted according to our cost model (see Table 4.2), as explained in

the previous example.

Stage 2: Matching dimensions. After matching facts, ORE conforms the

dimensions producing the MD space of the merged fact. Di�erent matches

among levels are considered and thus, the di�erent valid integration possibilities

are obtained. With each possibility, a di�erent set of integration operations for

conforming these dimensions is considered and weighted.

Stage 3: Complementing the MD Design. ORE further explores the domain

ontology and searches for new analytical perspectives (e.g., proposing new MD

105

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

concepts of potential interest). Nevertheless, ORE never enriches the design

without the designer's acknowledgement and it is up to her to extend the cur-

rent schema with new MD concepts in the ontology (i.e., levels, descriptors, and

measures). Consequently, the designer is asked to (dis)approve the integration

of the discovered concepts into the �nal MD schema.

Stage 4: Integration. The MD schema is �nally obtained in two phases.

First, we identify possible groupings of concepts containing an equivalent MD

knowledge and which are directly connected by means of an MD compliment

relationship (i.e., adjacent concepts). Then, we collapse them to capture the

minimal information relevant to the user. Nevertheless, the complete TM is

still preserved in the background to assists further integration steps.

3 Traceability Metadata

Introducing traceability into software projects has been widely recognized as

bene�cial (e.g., [15]) for several reasons: (i) the comprehension and under-

standing of the �nal products, (ii) maintenance and reusability of the existing

software and, (iii) identifying the parts of the �nal product that ful�ll par-

ticular input requirements and hence, the impact that the changes in those

requirements have on the �nal product.

For the design of DWs, however, the potential advantages of traceability

have been largely overlooked. In a recent research work [111], the attention is

given to the bene�ts of keeping traces during the DW lifecycle. The authors

identify three kinds of valuable traces in the DW context: (i) traces coming

from information requirements, (ii) traces coming from the underlying data

sources, and (iii) traces linking elements in the MD conceptual models.

Through our iterative approach, we aim at keeping the similar set of traces

to enhance the MD schema design. To do so, we introduce a structure, namely

traceability metadata (TM), for systematically keeping the interesting infor-

mation about the MD knowledge integrated so far.

In Figure 4.6, we present the conceptual model of our TM structure. For

the sake of comprehension, it has been divided in four areas (1-4), describ-

ing four types of traceable information which helps to assess the impact that

particular requirements have on the resulting MD design. In comparison to

the work in [111], we keep the traces coming from information requirements,

i.e., requirement-related metadata (see 1 in Fig. 4.6) and the traces linking

elements in the MD conceptual models, i.e., resulting MD schema and MD

integration metadata (see 2 and 3 in Fig. 4.6). Notice that in this chapter, we

only discuss the metadata related to schema transformations that are essential

for ORE and thus, the traces related to the underlying data sources and data,

which are essential for building the ETL processes, are not considered here but

in our overall framework for the design and evolution of DW (see Section 8).

106

3. Traceability Metadata

Fig. 4.6: TM conceptual model

Additionally, we keep the metadata about the cost model being used and w.r.t.

the cost model, we produce and store a cost-based space of alternative solutions

(i.e., 4). TM also assists ORE to respond to di�erent changes that may occur

during the DW lifecycle and to accordingly adapt the MD design of a DW to

support such changes. TM stores the following information (1-4 in Figure 4.6):

1. Requirement-related metadata. As discussed in Section 2.2, IRs are rep-

resented as MDIs, which are modeled as tagged graphs. For this reason,

it is mandatory that every MDINode is tagged with an MD role (either fact

or level). Thus, in TM, for each IR, we store its MDIIRs as tagged nodes

(MDINode) and edges (Edge). Furthermore, nodes (GraphNode) may con-

tain attributes either dimensional (Descriptor, if the node is a level) or

factual (Measure, if the node is a fact).

2. Resulting MD schema. An MD schema (MDSchema) may contain several

star schemas (SSchema), which are essentially extended MDIs (see Sec-

tion 2.2). Therefore, they are also implemented as tagged graphs (with

nodes, SSNode, and edges Edges). Importantly, TM stores many di�erent

MDSchemas, each one re�ecting di�erent integration alternatives. These

integration alternatives are described through mappings (SSNodeMapping)

between MDINodes and SSNodes.

3. MD integration metadata. When an evolution event occurs (namely

adding new information requirement), ORE e�ciently accommodates the

existing MD schemas to these changes and records their occurrences for

assisting the user in future design steps. In TM, we store these changes as

a set of operations (IntegrationOperation), which are necessary to inte-

grate individual MD concepts (MDINodes) coming from new requirements

107

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

(i.e., new MDIs) into the existing MD design. There are several types of

integration operations: (1) operations for inserting new MD concepts into

the existing design (i.e., InsertFact, InsertLevel and InsertRollUp)

(2) operations for enriching the existing concepts with new MD attributes

(i.e., InsertFactMeasure and InsertDimDescriptor) and (3) operations

for combining new MD concepts with the existing ones (i.e., MergeFacts,

MergeLevels, RollupFacts and RenameOperation). According to Fig-

ure 4.6, in order to integrate two MDIs (MDIIntegration) we may need

several integration operations (IntegrationOperation). Note that all

operations are applied to one MDINode, except MatchingOperations and

InsertRollUp that refer to an additional MDI. Furthermore, when insert-

ing or merging, levels or facts, an additional set of operations may be

identi�ed (see bottom part of Figure 4.6). These operations can either

insert new attributes to these concepts (i.e., InsertFactMeasure and

InsertDimDescriptor), or when inserting a new level (insertLevel),

to insert an additional roll-up relation (i.e., InsertRollUp).

4. Cost-based space of alternative solutions. Finally, TM also stores a

reference cost model (CostModel) and a space of alternative solutions

(AltSpace). When integrating new requirements, it may occur that sev-

eral alternative scenarios appear to be valid outcomes of the MD design

process (this is mainly due to ambivalent concepts; see Section 2.2). How-

ever, considering the chosen DW quality factors (see Section 2.4.2), not

all of these output schemas would have the same overall score. In our

example case the cost depends on the size and the structural complexity

of each �nal solution. To assist the end user in e�ciently determining

the most suitable solution, in TM we maintain an ordered space of al-

ternative solutions (AltSpace), according to the overall score that is cal-

culated as explained in Section 2.4.2 by using the referenced cost model

(CostModel). Thus, we compute, for each integration alternative, its cost.

More speci�cally, each of the integration operations presented above adds

a certain weight (see Table 4.2) to the overall cost of the solution. As

discussed, to integrate two MDIs we may need several integration oper-

ations and consequently, ORE keeps track of the overall cost needed to

integrate them, which is used to sort the space of alternatives.

We de�ne this space as a partially ordered graph which is represented

with a triplet pS, NB, Stq. S represents a set of valid scenarios in terms

of �nal MD schemas and NB (Next Best) is a set of directed edges that

order these alternative solutions inside the space. At any moment, the

solution with the lowest overall cost can be identi�ed as the top solution

(St). In the case that the end user does not �nd the proposed top solution

suitable for her needs, the NB edges going from that solution will lead

her to its nearest alternatives, i.e., the next best solutions. Relevantly,

108

4. The ORE Approach

our search space only contains alternatives considering all requirements

at hand (i.e., partial results are not kept). Moreover, considering the

chosen cost model, the search space can be pruned to include only the

top-N alternative solutions (see Section 5).

TM is a building block of ORE and it is constantly maintained to re�ect

and ful�ll the set of IRs at hand. For example:

Adding an IR. Whenever a new requirement (IR) is posed, the TM is en-

riched with the missing metadata to answer such requirement. In particular,

new MDIIR that are identi�ed for a given requirement are added to the TM.

The added MDIIR initiates a new iteration of ORE to identify how the re-

quirement at hand can be integrated into the existing structures. To this end,

we identify all parts of the existing schemas (i.e., SSNodes), where the MDIs

of a new requirement can be integrated. Going from the identi�ed SSNodes,

through the SSNodeMapping we further identify possible relationships of the

new MDIs with the MDIs of previous requirements. In the following section,

we describe how an iteration of ORE is performed for such addition.

Example. Figure 4.3 shows the top solution St for integration of IR1 and

IR2. If a new requirement comes (e.g., IR3), ORE will ask for MDI of IR3

and go through its four internal stages to match these MDIs with the current

space of alternatives (S). At the end, it will produce new space (Snew) of MD

schemas (SSnew), each of them showing di�erent integration alternatives, such

that:

@SSnew P Snew,@i � 1..3 : MDIIRi �q SSnew
These new schemas are properly ordered (according to our cost model) and

stored in the space of alternative solutions (i.e., AltSpace). l

Removing and changing an IR. Besides accommodating the current MD

design to satisfy new IRs, TM also needs to react in response to a changed

or disregarded requirement. In the case of disregarding the existing require-

ment, the requirement (IR) is removed together with its MDIIR. ORE is then

relaunched for the remaining set of information requirements. When the exit-

ing requirement is changed, ORE �rst removes the obsolete requirement and

its MDIs and then adds a new (changed) requirement (IR) together with its

MDIIR. The main process of ORE is then relaunched for the updated set of

requirements. Note that relaunching ORE is not that costly at this point, con-

sidering the fact that the integration options for the existing MDIs are already

stored in TM together with the user's feedbacks and preferences.

4 The ORE Approach

As shown in the previous section, at each moment, ORE with the information

stored inside its TM structure satis�es the current set of requirements. The

109

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

Algorithm: ORE

inputs: MDIIR, S, output: Snew

1. options :�H;
2. For each SScur P S do

(a) For each rMDIi P MDIIR , SSj P SScurs do

i. matchedFactsOpers := FM(getFact(MDIi),getFact(SSj));
ii. If matchedFactsOpers � tinsertFactpFMDIi qu do

A. DMDIi := searchDimsOverFact(FMDIi);
B. DSSj := searchDimsOverFact(FSSj);

C. For each DMDIi P DMDIi , DSSj P DSSj do

If relatedpbottompDMDIi q, bottompDSSj qq then

matchedDimsOpers Y � DMptbottompDMDIi qu, tbottompDSSj quq;

D. optionsY � rSScurzSSj , SSj ,matchedFactsOpers,matchedDimsOperss;

3. For each o P f indBestNpoptionsq do

(a) SnewY � applyOperationspoq;

4. Snew :� INTpcomplementingMDSchemapapplyOperationsp f indToppoptionsqqqq;
5. return Snew;

space of alternative solutions is also created at the end to support users in

�nding the most suitable MD schema. For each new requirement ORE tries to

�nd the valid correspondences among the MD concepts and to incorporate the

new requirement into the existing MD design. At the same time, ORE attempts

to meet previously set quality objectives and to produce the minimal cost of

the output schema according to the proposed cost model (see Section 2.4.2).

An exhaustive search inside the current space of alternatives is performed to

achieve such goals. The main process of ORE is shown in the ORE algorithm.

Note that in order to uniquely reference the steps of the algorithms throu-

ghout the chapter we use the notation (Step �algorithm:step�).

Internally, whenever a new requirement arrives (IRnew), ORE tries to match

each MD interpretation (MDIi) of that requirement with the schemas (SSj) of

each solution in the current space of alternatives (S). The correspondences

between an MDIi and an SSj are found through the matchings of their indi-

vidual MD concepts, i.e., facts (FM call in Step ORE:2(a)i) and dimensions

(DM call in Step ORE:2(a)iiC). For such matchings, ORE bene�ts from the

ontology reasoning mechanisms to �nd relationships among the concepts from

heterogeneous data sources, in an e�cient and scalable manner (i.e., synonyms,

taxonomies, direct and transitive associations). Notice that only the associa-

tions that preserve the MD integrity constraints are accepted. After all the op-

erations to incorporate new concepts into the existing design have been found,

ORE considers creating the new space of alternative solutions (Step ORE:3).

The cost of each solution is calculated using the selected cost model as de-

scribed in Section 2.4.2. Eventually, the set of solutions is pruned by taking

into account their overall costs, such that only the best N solutions are kept

for further consideration (the value of N can be parametrized by the user).

110

4. The ORE Approach

Algorithm: FM

inputs: FMDIi , FSSj , output: intOps

1. If FMDIi �� FSSj then intOps :� tmergeFactspFMDIi , FSSj qu;

2. ElseIf FMDIi Ñ FSSj _ FSSj Ñ FMDIi then

(a) If FMDIi Ñ FSSj ^ FSSj Ð FMDIi then

intOps :� tmergeFactspFMDIi , FSSj q, renameConceptpFMDIi , FSSj qu;

(b) ElseIf FMDIi Ñ FSSj then

i. If acceptableGranularitypMDIiq then intOps :� trollupFactspFMDIi , FSSj qu;

(c) Else // FSSj Ñ FMDIi

i. If acceptableGranularitypSSjq then intOps :� trollupFactspFSSj , FMDIi qu;

3. Else

(a) DMDIi := searchDimsOverFact(FMDIi);
(b) DSSj := searchDimsOverFact(FSSj);

(c) If FMDIi Ñ DSSj _ FSSj Ñ DMDIi then

i. If FMDIi Ñ DSSj ^ FSSj Ñ DMDIi then

intOps :� tmergeFactspFMDIi , FSSj q, renameConceptpFMDIi , FSSj qu;

ii. ElseIf FMDIi Ñ DSSj then

A. If acceptableGranularitypMDIiq then intOps :� trollupFactspFSSj , FMDIi qu;

iii. Else // FSSj Ñ DMDIi

A. If acceptableGranularitypSSjq then intOps :� trollupFactspFMDIi , FSSj qu;

(d) Else intOps :� tinsertFactpFMDIi qu;

4. return intOps;

Among these N solutions ORE considers the top one to produce the �nal MD

schema by complementing the current one with new knowledge and conforming

its constructs respecting the minimal design properties (INT in Step ORE:4).

4.1 Matching facts

Respecting the MD integrity constraints described in Section 2.2, in order to

match two facts, these should produce an equivalent set of points in the MD

space. This is formally de�ned with the following condition pCq:
pCq: The fact FMDIi P MDIi matches the fact FSSj P SSj if and only if there

is a bijective function f such that for each point xMDIi in the MD space arranged

by the dimensions {D1�D2� ..�Dn} implied by FMDIi , there is one and only

one point ySSj in the MD space arranged by the dimensions (D1
1�D1

2�..�D1
m}

implied by FSSj , such that f pxMDIiq � ySSj .

The abstraction of the fact matching process that guarantees the ful�ll-

ment of the above condition (C) is described by the FM algorithm. Thus, FM

tests whether C is satis�ed by checking whether FMDIi (FSSj) functionally de-

termines all the dimensions of FSSj (FMDIi), i.e., whether FMDIi (FSSj) is related

by means of �1 - 1� or �* - 1� relationship to each dimension of FSSj (FMDIi)

(Step FM:3c). If this happens, it is because either they share the same MD

111

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

space (Step FM:3(c)i) or one can be rolled up to the other (Steps FM:3(c)iiA

and FM:3(c)iiiA). These relationships are searched by means of reasoning over

the domain ontology (see Section 2.4.1). As a special case, such matching is

achieved if both facts coincide or transitively if one fact functionally determines

the other, which is cheaper to be checked. Therefore, as an optimization, we

�rstly check the latter (Steps FM:1 and FM:2, respectively). It is worth noting

that if we roll up a fact, we must check whether the new granularity is still

acceptable for the associated requirements.

If the full match between both facts is found, i.e., they are equal (Step

FM:1) or they functionally determine each other (Steps FM:2a and FM:3(c)i),

the mergeFacts operation is added, followed by renameConcept, if they are

not equal. Alternatively, if one fact functionally determines the other (Steps

FM:2(b)i and FM:2(c)i) or if it functionally determines all the dimensions of

the other fact (Steps FM:3(c)iiA and FM:3(c)iiiA) the rollupFacts operation

is identi�ed to roll-up from the MD space of one fact to the MD space of the

other (only when the coarser granularity is acceptable for all involved require-

ments). Otherwise, if FM cannot identify a valid matching for the fact FMDIi ,

it generates the insertFact operation (Step FM:3d).

Example (Step FM:1) Figure 4.7 shows the case when the fact Lineitem of

the requirement IR2 matches the same fact in the existing TM. l

Example (Step FM:2) Figure 4.8 illustrates the case where the fact Partsup-

plier of IR4 matches the fact Lineitem that functionally determines it, which

is identi�ed in the ontology that captures the TPC-H data sources (see TPC-H

schema in Figure 4.1). Therefore, the operation rollupFactspLineitem, Partsu-
pplierq is identi�ed. Notice that in this case, we still should check whether the

new granularity allows to answer the requirements associated to SSj. l

Fig. 4.7: Matching the MD
Interpretation for IR2

Fig. 4.8: Matching facts
with rollupFacts

Fig. 4.9: Matching facts with
mergeFacts

Example (Step FM:3c). Figure 4.9 shows an example inspired by TPC-

H. A new PartMarket fact is introduced, which assesses the convenience of

releasing a speci�c Part in a speci�c market (i.e., Nation). Even though we

112

4. The ORE Approach

may �nd no direct matching (i.e., Steps FM:1 and FM:2) between PartMarket

and the Supplier-PartSupplier fact, their MD spaces do coincide as they both

functionally determine the dimensions (i.e., Nation and Part) of each other. On

the other side, in Figure 4.10, in the variation of the above example we have the

case that the dimensions of the fact PartMarket are functionally determined

by the Lineitem-PartSupplier fact but the opposite does not hold and thus, the

rollupFactspLineitem�PartSupplier,PartMarketq operation should be added.

As in the previous example, we still have to guarantee that the new granularity

allows to satisfy the requirements associated to SSj. l

Finally, all integration possibilities represented through the identi�ed op-

erations (i.e., rollupFacts, mergeFact, renameConcept or insertFact) are listed
with the weights they add to the �nal solutions (see Table 4.2). ORE then

creates an alternative solution for each of the integration possibilities. To pri-

oritize the resulting solutions, the overall cost of each solution is evaluated

according to prede�ned quality factors.

4.2 Matching dimensions

In this stage, ORE conforms the dimensions which form the MD spaces of

the facts (FMDIi , FSSj) for which it previously found a matching that is not

discarded by the user (Step ORE:2(a)iiC).

Since a single dimension Dx consists of a partially ordered set of individual

levels (see Section 2.2), with single bottom (i.e., atomic) level and with �to-

one� relationships among the levels, each dimension may be seen as a directed

acyclic graph (DAG), where the vertices of the graph are individual levels

and the directed edges between them are �to-one� relationships (i.e., functional

dependencies). Note that we assume the dimension graph is guaranteed to be

acyclic (this should be checked in a preliminar step), since the loops would

violate the MD integrity constraints [114].

Having this in mind, the problem of matching dimensions may be seen

as a graph matching problem. However, taking into account the MD context,

ORE must additionally preserve the MD integrity constraints (see Section 2.2).

Thus, we present here the DM algorithm, which solves the problem in our case.

DM is launched from the main (ORE) algorithm (Step ORE:2(a)iiC) for

each pair of dimensions coming from MDIi (DMDIi) and SSj (DSSj) with the

previously matched facts (FMDIi , FSSj) and bottom (atomic) levels connected

with an MD compliant relationships (i.e., �=�, �1-1�, �1-*�, and �*-1�).

Considering the topological order of levels in each of the dimensions, DM

starts by matching the atomic (bottom) levels of these dimensions.

In each call, DM searches for the matchings between all pairs of the candi-

date levels of MDIi (i.e., candidatesMDIi) and each candidate from the dimen-

sions of SSj (i.e., candidatesSSj), starting from the bottom of each of them and

113

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

Algorithm: DM

inputs: candidatesMDIi , candidatesSSj , output: intOps

1. If LMDIi �� LSSj then

intOps Y � tmergeLevelspLMDIi , LSSj quZDMpgetNextpLMDIi q, getNextpLSSj qq;

2. ElseIf LMDIi Ñ LSSj _ LSSj Ñ LMDIi then

(a) If LMDIi Ñ LSSj ^ LSSj Ñ LMDIi then

intOps Y � tmergeLevelspLMDIi , LSSj q, renameConceptpLMDIi , LSSj quZ

DMpgetNextpLMDIi q, getNextpLSSj qq;

(b) ElseIf LSSj Ñ LMDIi then

intOps Y � tinsertLevelpLMDIi q, insertRollUppLSSj , LMDIi quZDMptLMDIi u, getNextpLSSj qq;

(c) Else // LMDIi Ñ LSSj
intOps Y � tinsertLevelpLMDIi q, insertRollUppLMDIi , LSSj quZDMpgetNextpLMDIi q, tLSSjuq;

3. Else // No matching for current levels

(a) intOps Y � DMptLMDIi u, getNextpLSSj qq;
(b) intOps Y � tinsertLevelpLMDIi quZDMpgetNextpLMDIi q, tLSSjuq;

4. return intOps;

Fig. 4.10: Matching facts with rollupFacts
Fig. 4.11: Matching the MD

Interpretation for IR5

hence, recursively moves forward through the corresponding hierarchy, depend-

ing on the multiplicity of the relationship found. For each pair of candidate

levels, DM �rst checks if they exactly coincide (Step DM:1). If not, it may be

that one functionally determines the other (Step DM:2). This can be either

the case when both levels functionally determine each other, i.e., �1-1� relation-

ship (Step DM:2a), or the case when only one of them functionally determines

the other one, i.e., either �1-*� or �*-1� relationship (Steps DM:2b and DM:2c,

respectively). Again, these relationships are identi�ed by means of reasoning

over the input ontology.

If the levels are equal or the �1-1� relationship is found (i.e., a full match),

a recursive call moves forward in both hierarchies. However, when a �1-*� or

�*-1� relationship is identi�ed, DM can still explore the possibility that the

level being in the to-one side matches the next one in the to-many side of the

114

4. The ORE Approach

relationship. Thus, it only moves forward in one of the hierarchies. Finally,

if there is no relationship between the levels (Step DM:3), DM considers both

alternatives, i.e., moving forward in either one or the other hierarchy. Thus,

DM exhaustively visits all meaningful matchings for dimensions of MDIi and

of SSj, and builds the set of possible integration options (intOps).
For each integration option, DM stores the information about the corre-

sponding operations to be applied (see Table 4.2). When the full match be-

tween LMDIi and LSSj is found, either by equality or �1-1� relationship (Steps

DM:1 and DM:2a), we consider either only the mergeLevels or the mergeLevels

with the renameConcept operation to be applied, respectively.

Example. Figure 4.11 shows an integration possibility for the Orders di-

mension, in the case of integrating IR5 into the TM satisfying IR1-IR4. A full

matching (i.e., equality) is then found for both Orders and Customer levels of

the corresponding MDIi. Thus, the mergeLevels operations are proposed for

both Orders and Customer levels and they respectively involve insertDimDe-

scriptor operations for transferring o_shippriority and c_mktsegment. l

On the other hand, if �1 - *� or �* - 1� relationships are identi�ed (Step

DM:2b and DM:2c), we consider inserting a roll-up relation (i.e., insertRollUp

operation) in the star SSj to a new inserted level.

Example. In Figure 4.7, for the �* - 1� matching found between lev-

els Lineitem_dim and Orders, inserting a roll-up relation is proposed (i.e.,

insertRollUp(Lineitem_dim, Orders)), with the involved insertion of the level

(Lineitem_dim). l

Similarly to the previous stage, we may identify di�erent options to in-

tegrate levels in MDIi with di�erent candidate levels of the hierarchies from

SSj. Thus, we must consider the possibility of combining the current integra-

tion operations with all the alternatives of the successors (this is shown by the

symbol Z in the algorithm). Once all the integration options are found with

their corresponding weights, ORE creates an alternative solution for each of

the integration possibilities.

4.3 Complementing the MD design

After the previous two stages, ORE identi�es the space of possible solutions

for incorporating the new information requirement into the existing schema.

As we discussed before, this space can be partially ordered considering user

preferences and the cost of the individual solutions. In such a space we can

obtain the top element that corresponds to the solution currently most suitable

for the end user according to prede�ned quality objectives.

Considering the top solution found, in this stage ORE continues by analyz-

ing the ontology to complement the future MD design with new analytically

interesting concepts. This stage is optional and may be disregarded by the

user. By exploring the functional dependencies (�to-one� relationships) in the

115

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

Algorithm: INT

input: SStop, output: SSnew

1. SSnew �H;
2. For each SSj P SStop do

(a) SSnew := rH,H,Hs;
(b) seedF := �ndFactualConcept(SSj);
(c) F := group(seedF);
(d) setFact(SSnew,collapse(F));
(e) For each p f , L0q P FSSj ^ f P F^ L0 R F do

i. D = group(L0);
ii. setDimension(SSnew,collapse(D));

(f) SSnewY � tSSnewu

3. return SSnew;

ontology, ORE identi�es new levels for the previously conformed dimensions.

Furthermore, di�erent datatype properties in the ontology may also be iden-

ti�ed either as measures of the existing facts or descriptive attributes of the

levels. We distinguish two cases:

• If the property has a numerical data type (e.g., integer, double), we con-

sider using it as a measure if and only if the domain concept of the

property is identi�ed as a fact.

• Otherwise, in the case that the domain concept of a property is identi�ed

as a level, our method suggests using the property as a new descriptor.

Di�erent possibilities for enriching the current design are presented to the

designer as di�erent integration operations (i.e., insertLevel, insertFactMea-

sure, insertDimDescriptor). The designer may decide how to complement the

MD design. As shown in [142], automation of such exploration process is

highly achievable with polynomial complexity for the ontologies capturing the

data source semantics.

Example. For the Orders dimension in Figure 4.11, ORE explores the on-

tology and proposes concept Region as a new top level of the given dimension.

Also, ORE proposes di�erent descriptors for the levels Orders, Customer, Na-

tion, and Region; e.g., o_orderstatus, c_phone, and so on. l

4.4 Integration

Having the top solution for producing the MD schema identi�ed in the �rst two

stages and optionally complemented in the third stage, here, ORE produces the

�nal MD schema. The integration process is described with the INT algorithm

as follows.

The algorithm starts from the set of star schemas of the top solution (SStop)

produced in the previous stages of ORE, which now additionally answers the

IR at hand.

116

4. The ORE Approach

The factual and the dimensional concepts of each star (SSj) in SStop go

through two phases, namely grouping and collapsing.
(I) Grouping. As the ontological concepts can be represented by a directed

acyclic graph (DAG), these are combined together to produce di�erent groups

(subgraphs), so that all those in one group:

1. produce a connected subgraph and

2. have the same MD interpretation (i.e., all concepts are either factual or

dimensional).

(II) Collapsing. Starting from these groups of concepts we obtain the �nal

star schema. Inside each subgraph captured by a single group, we consider

only the concepts currently required by the user, either provided with the

requirement at hand or discovered when complementing the MD design in the

ontology (i.e., Section 4.3). The concepts considered inside each group are

then collapsed to produce one element (i.e., fact or dimension) of the �nal MD

schema.

The INT algorithm �rst initializes the output MD schema (SSnew, Step

INT:1). Next, INT initializes the new star schema (SSnew) that results from

integrating each star of SStop (Step INT:2a), with the empty sets of vertices

(i.e., facts or dimensions), edges (i.e., relationships among the MD concepts)

and MD roles that the vertices play (see how SS is de�ned in Section 2.3). INT

then searches for any factual concept (Step INT:2b) and starting from it, INT

performs grouping of the factual concepts transitively related (Step INT:2c).

As a result, the subgraph of related facts is produced and then collapsed in the

next step (Step INT:2d) to produce a single fact added to SSnew. Starting from

the collapsed fact, the levels arranging the dimensions over the new fact are

explored (Step INT:2e) and starting from the atomic level (L0), the adjacent

levels are grouped in a similar way as the facts and collapsed to produce a single

dimension. The dimensions produced are then also added to SSnew. Finally,

a new star (SSnew) resulted from integrating each SSj is added to the output

MD schema (Step INT:2f).

In these two phases, we free the �nal schema from knowledge currently irrel-

evant to the designer's choices and conform the schema to meet the previously

established DW quality objectives (i.e., minimal structural complexity). For

example, collapsing the adjacent levels simpli�es the corresponding dimensions

and lowers the number of roll-up relationships, which has a signi�cant in�uence

in the overall structural complexity of the schema. The process of integration

can optionally be assisted by the user, who can determine the level of integra-

tion by means of selecting the type of the �nally produced schemas (i.e., star

or snow�ake).

While concepts with currently no interest to the designer may be hidden

from the �nal MD schema design, TM structure still preserves all this knowl-

edge for using it in future integration steps. Furthermore, as TM traces the

117

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

knowledge about the complete MD interpretations (i.e., including all the con-

cepts) and also the mappings of these concepts to the data sources we can

bene�t from it when producing the appropriate data �ow design (e.g., ETL

process) to manage loading the data from the sources to the produced target

MD schema. This is the part of our overall research work as it is discussed in

Section 8 (e.g., see [88]) .

5 Theoretical Validation

In this section we present the theoretical validation of our approach where we

examine the satisfaction of four major properties:

• Soundness. The resulting MD schema must satisfy the MD integrity

constraints (see Section 2.2).

• Completeness. The set of information requirements integrated so far can

be answered from the resulting MD schema.

• Commutativity. Independently of the order of the input information re-

quirements, ORE must produce an equivalent MD schema at the output.

• Associativity. Independently of the order in which information require-

ments are integrated, ORE must produce an equivalent MD schema at

the output.

Finally, we discuss the theoretical complexity of the problem of the requir-

ement-driven DW design and our approach.

5.1 Soundness and Completeness

Here, we formally prove the soundness and completeness of ORE by analyzing

the set of integration operations applied through its four stages (see Table 4.2).

Precondition. For each new requirement (IR), ORE starts from a set of

MDIs (MDIIR) whose soundness (i.e., respecting the MD integrity constraints)

and completeness (i.e., satisfying IR) are ensured by means of the constraints

described in Section 2.2.

Trivial case. When the �rst requirement arrives (IR f irst), ORE chooses

an MDIi (MDIi P MDIIR f irst) such that MDIi has the lowest overall cost in

MDIIR f irst (w.r.t to the chosen cost model) and produces a MD schema by

means of the INT algorithm. According to our precondition, all input MDIs

are considered to be sound and complete. Notice that the soundness and com-

pleteness of the resulting MD schema is guaranteed because the INT algorithm

focuses on presentation issues and does not a�ect semantics.

Hereinafter, we consider the general case when a new requirement is inte-

grated into an existing (sound and complete) MD schema.

118

5. Theoretical Validation

Invariant of the process. Given an MDIi P MDIIRnew coming from a new

requirement IRnew and a star SSj from a current MD schema SScur, ORE,

through the four stages explained in the previous section, applies the set of

transformations (i.e, integration operations, see Table 4.2) to produce the �nal

MD schema. This process must guarantee the output schema soundness and

completeness and thus we subsequently show that the results produced by each

integration operation of ORE always results in a solution that preserves the

MD integrity constraints (i.e., the operation is sound) and able to answer the

current set of requirements (i.e., the operation is complete).

In what follows, we evaluate the above invariant by analyzing each integra-

tion operation individually. To analyze the soundness, for each operation, we

test whether it only considers relationships that are compliant with the MD

integrity constraints; whilst for the completeness, we test whether the newly

created MD schema subsumes the complete MD knowledge (i.e., semantics) of

the MDIs from which it was created.

Factual concepts operations

• mergeFactspFMDIi , FSSjq: ORE, in the FM algorithm (Section 4.1), merges

facts FMDIi P MDIi and FSSj P SSj if and only if the MD spaces of facts

FMDIi and FSSj are equivalent (see condition C in Section 4.1). From the

precondition above (i.e., MDIi is sound and complete), and by preserv-

ing the same MD space and keeping a single fact in the existing sound

and complete star SSj (invariant), it is not hard to see that mergeFacts
operation also preserves the MD integrity constraints of SSj and of the

resulting MD schema (i.e., mergeFacts is sound). Moreover, the existing

star SSj, after merging two facts, still answers the previous requirements

and additionally the new one through the existing or newly added mea-

sure attributes (i.e., mergeFacts is complete).

• insertFactpFMDIiq: In the case that in the FM algorithm ORE does not

�nd a fact with the equivalent MD space as the FMDIi fact of the new

requirement, it inserts FMDIi and creates a new star SSnew in the output

MD schema. Similar to the trivial case, insertFact operation does not

a�ect the current set of stars in SScur, but it creates a new star (SSnew) in

the output MD schema, whose soundness is guaranteed by the soundness

of the new MDIi from which it is created (i.e., insertFact is sound).

Consequently, as the existing set of stars (SScur) is intact, it still answers

the previous requirements, while the newly added star (SSnew) answers

the requirement at hand (IRnew) (i.e., insertFact is complete).

• insertFactMeasurepmFMDIi
, FSSjq: When merging facts FMDIi P MDIi and

FSSj P SSj, in the FM algorithm, ORE may insert a new measure mFMDIi
P

119

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

FMDIi into the existing fact FSSj . It is trivial to see that the insertFactM-

easure operation does not a�ect the MD integrity constraints of FSSj and

thus it does not violate the soundness of SSj and of the output MD schema

(i.e., insertFactMeasure is sound). Moreover, the existing star SSj still

answers the previous requirements and additionally the new one through

the existing or newly added measure attributes (i.e., insertFactMeasure
is complete).

Dimensional concepts operations

Note that ORE runs the DM algorithm (Section 4.2) only for the dimensions

that form the MD spaces of the facts (FMDIi , FSSj) for which it previously

found a matching. Additionally, ORE can introduce new analysis perspectives

(i.e., dimensions) to the existing fact FSSj , but only if there is a relationship

between the FSSj and the dimension at the data sources (i.e., in the ontology

that captures them). However, this does not change the existing answerability

of the fact but adds a new perspective through which it can be analyzed.

• mergeLevelpLMDIi , LSSjq: ORE, in the DM algorithm (Section 4.2), merges

levels LMDIi P MDIi and LSSj P SSj if and only if LMDIi � LSSj or the

�1-1� relationship between LMDIi and LSSj is found. By keeping the exist-

ing level LSSj in the sound and complete star SSj (invariant), mergeLevel
operation does not a�ect the MD constraints of SSj but only potentially

enriches the existing level LSSj with new level attributes (i.e., mergeLevel
is sound). Moreover, the star SSj, still answers the previous requirements

and additionally the new one through the existing or newly added level

descriptors (i.e., mergeLevel is complete).

• insertLevelpLMDIiq: In the case that in the DM algorithm, ORE does

not �nd any relationship of the level LMDIi P MDIi with levels of a

current hierarchy of the existing sound and complete star SSj (invariant),

it creates a new branch of the current hierarchy of SSj and inserts a new

level LMDIi by connecting it with the last matched level of that hierarchy.

As DM only moves through valid dimension hierarchies of MDIi and SSj,

insertLevel always connects newly inserted level to the last matched level

using a �to-one� relation of the MDIi hierarchy, and thus it preserves

the MD integrity constraints of SSj and of the output MD schema (i.e.,

insertLevel is sound). Moreover, as the lower levels remain intact, the

star SSj, still answers all the previous requirements and additionally the

new one through the existing levels or newly added level in the existing

hierarchy (i.e., insertLevel is complete).

• insertRollUppLSSj , LMDIiq: In the case that in the DM algorithm, ORE f-

inds a �1-*� or �*-1� relationship between levels LMDIi P MDIi and

120

5. Theoretical Validation

LSSj P SSj, it adds a new level LMDIi to the existing sound and com-

plete star SSj (invariant) (by means of the insertLevel operation) and

then inserts the roll-up relation to relate matching levels, i.e., LSSj and

LMDIi . By considering only the relationships that ful�ll the MD integrity

constraints (i.e., �1-*� or �*-1�), insertRollUp preserves the MD integrity

constraints of SSj and of the output MD schema (i.e., insertRollUp is

sound). Moreover, the star SSj can still answer the previous require-

ments with the existing levels. Additionally, the new requirement can be

answered with the existing levels or newly added level in the hierarchy

by using the inserted roll-up relation (i.e., insertRollUp is complete).

• insertDimDescriptorpdLMDIi
, LSSjq: When merging levels LMDIi P MDIi

and LSSj P SSj, in the DM algorithm, ORE may insert a new level descrip-

tor dLMDIi
P LMDIi into the fact FSSj of the existing, sound and complete

star SSj (invariant). It is trivial to see that the insertDimDescriptor op-
eration does not a�ect the MD integrity constraints of LSSj and thus pre-

serves the soundness of SSj and of the output MD schema (i.e., insertDim-

Descriptor is sound). Moreover, the star SSj, still answers the previous

requirements and additionally the new one through the existing or newly

added level descriptors (i.e., insertDimDescriptor is complete).

Factual/Dimensional concepts operations

• renameConceptpCMDIi , CSSjq: In the case of merging two facts or two lev-

els, ORE generates renameConcept operation to record that in order to

integrate concepts CMDIi and CSSj it may be necessary to rename the new

concept CMDIi to the name of the existing one CSSj . renameConcept is a
syntactic change and thus it does not a�ect the MD integrity constraints

of the existing star SSj or of the output MD schema (i.e., renameConcept
is sound). For the same reason, renameConcept operation neither a�ects

the ability of the output MD schema to answer all the current require-

ments (i.e., renameConcept is complete).

From the above analysis, we can conclude that given a sound and complete

MDIi P MDIIRnew of a new requirement IRnew (precondition), and a sound

and complete star SSj P SScur resulted from a single requirement (trivial case),

applying any valid combination of integration operations in the ORE algorithm

results in an output MD schema that preserves the MD integrity constraints

(i.e., all operations are sound) and answers the entire set of requirements (i.e.,

all operations are complete). Thus, the initial invariant always holds. This

further proves the soundness and completeness of our ORE approach and its

algorithms. l

121

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

5.2 Commutativity and Associativity

Commutativity. Following the general algebra de�nition of commutativity,

ORE needs to satisfy the following property (Note that the binary operator

��ORE� represents the application of ORE algorithm over the two information

requirements, by means of �rst integrating the left requirement and then the

right one):

@i, j P t1..nu, IRi �ORE IRj � IRj �ORE IRi
This property sates that for any two requirements IRi and IRj, the order

in which they are coming at ORE's input does not change the resulting space

of alternative solutions.

Associativity. Similarly, if we follow the general algebra de�nition of asso-

ciativity, ORE needs to satisfy the following property:

@i, j, k P t1..nu, pIRi �ORE IRjq �ORE IRk � IRi �ORE pIRj �ORE IRkq

This property sates that for any three requirements in a �xed order (IRi,

IRj, and IRk), the order in which ORE integrates them (i.e., �rst IRi and IRj
and then IRk, or �rst IRj and IRk and then IRi) does not change the resulting

space of alternative solutions.

As stated before, when the new information requirement (IRi) arrives, each

of its MDIs is compared to each of the stars of all the MD schemata in the cur-

rent space of alternative solutions. Only in the cases when the full matching

between facts is found (i.e., �=� and �1-1�) and when no matching is found at

all, the FM algorithm creates a single solution by merging the matched facts

(i.e., mergeFacts) or inserting the new fact into the output MD schema (i.e.,

insertFact), respectively. In all other cases, two di�erent solutions are created:

one, where the facts are merged into a single fact, through their dimensions

or changing the fact's granularity (see Steps FM:2(b)i, FM:2(c)i, and FM:3);

and another one where two di�erent stars are created over the facts that are

previously compared. Furthermore, the DM algorithm preserves all the alter-

native solutions previously generated by FM and potentially adds new ones by

matching the dimensions. ORE stores all these alternative solutions inside TM
(see Section 3). This characteristic of the ORE algorithm guarantees that no

matter in which order the requirements arrive (commutativity), or in which

order they are integrated (associativity), ORE exhaustively explores all inte-

gration options and thus it always produces the same set of solutions (i.e., MD

schemata) at the output either by merging several stars into one or by creating

separate stars. l

5.3 Computational complexity

We �rst analyze the complexity of the requirement-driven DW schema design

problem. For each new information requirement (IRi), we compare all the

MDIs of that requirement (MDI1, .., MDIp) with all the stars (SS1, .., SSq) of

122

5. Theoretical Validation

all alternative solutions (SS1, .., SSr). Furthermore, due to the di�erent integra-

tion options explained in sections 4.1 and 4.2, we produce di�erent alternative

solutions that are compliant with the soundness and completeness properties

discussed in the previous subsection. Considering the fact that for each new

requirement we need to compare all its MDIs with all the current alternative

solutions and �nd all the possible integration alternatives, it is not hard to see

from the above that the general problem of the requirement-driven DW design

is complex (clearly exponential). Formally, we can present it as follows:

If we assume a scenario where n information requirements are arriving at

the input.

IRi, i � 1..n
For each requirement IRi, there can be mi MD interpretations.

mi � |MDIIRi |

After the �rst requirement (IR1) arrives, its MDIs are inserted into the

space of alternative solutions S. The size of S will correspond to the number

of MDIs of IR1, i.e., m1.

|S| � m1
Next, when we integrate the second requirement (IR2) into the existing

space of alternative solutions S, the size of S will correspond to the product of

m1 for IR1 and m2 for IR2 multiplied by the coe�cient of alternative solutions

(i.e., γ1). Note that when comparing a single MDI with one star SS there is

at least one solution (i.e., γi ¥ 1). However, there may be additional solutions

which result from having di�erent alternatives to integrate an MDI with SS.
For example, in dimension matching algorithm in Step DM:3, if we do not �nd

the direct matching between current levels we explore both the hierarchy of the

�rst and the second dimension, which in turn can create more then one valid

solution.

|S| � m1 �m2 � γ1
Moreover, the algorithm will perform m1 �m2 comparisons of the MDIs of

incoming requirement and the stars of the existing space of solutions.

Considering the above, after integrating requirement IRn into the existing

space of alternative solutions S, the size of S will be the following.

|S| � pppm1 �m2 � γ1q �m3 � γ2q � .. �mn�1 � γn�2q �mn � γn�1
Let us consider that the average number of MDIs per requirement is m (i.e.,

@mi P m1..mn, mi � m).

|S| � pppm �m � γ1q �m � γ2q � .. �m � γn�2q �m � γn�1 �

Additionally, if we assume that each comparison produces in average γ
alternative solutions (i.e., @γj P γ1..γn�1, γj � γ). Then, we can approximate

the size of S as follows.

|S| � mn � γn�2 � γ � mn � γn�1

Here, we can see that the total number of comparisons among the MDIs

of incoming requirements and the stars of the existing space of solutions for n
requirements will be mn � γn�2.

123

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

If we further assume a realistic scenario where the number of incoming re-

quirements is big enough, we can then infer that n " m and n " γ. Taking

the above analysis into account, we can conclude that theoretical computa-

tion complexity for the problem of requirement-driven DW schema design is

exponential (i.e., Op2nq). l

As discussed in the chapter, and more speci�cally in sections 2.4 and 3, we

introduce a cost model that evaluates some quality factors as a parameter of

ORE. In our example scenario, we use the structural complexity of the output

MD schema as a quality factor. We further use this cost model for introducing

heuristics to tackle the inherent complexity of the problem at hand. To this

end, the cost-based space of alternative solutions, explained in detail in Section

3, is created and pruned after each integration iteration to maintain only the

top-N solutions.

Assuming that N is the limiting size of the space of alternative solutions S,

we revisit the analysis of the computational complexity of ORE.

With each new requirement IRi, we need to perform the maximum of mi �N
comparisons between the MDIs of IRi and the stars of S. For n incoming

requirements we perform the total of m1 � N � ..�mn � N comparisons. If we

again consider that m is the average number of MDIs per requirement, it is not

hard to see that the total number of comparisons for n requirements is m �N � n.
As before, if we assume n being big enough, i.e., n " m, we can conclude

that by introducing the cost-based heuristics, the computational complexity of

ORE is guaranteed to be linear (i.e., Opnq). l

Such linear complexity, as we will experimentally show in the next section,

can be further parametrized with the size of the space of alternative solutions

(i.e., N). Moreover, as it will be also empirically shown, for a manageable

size of N, ORE, in most of the cases does not miss the optimal solution w.r.t.

chosen quality objectives.

6 Evaluation

In this section, we �rst describe a prototype system which implements ORE's

functionalities. Next, we validate the correctness of the output MD schemata,

obtained for the TPC-H benchmark example used in this chapter, by compar-

ing these to the ones manually derived in the Star Schema Benchmark (SSB)

[126]. Finally, we report on our experimental �ndings from both scrutinizing

the ORE's prototype and performing an empirical case study with a group of

participants. On the one hand, we scrutinize ORE to validate our theoretical

conclusions w.r.t.: (1) the algorithm's complexity (in terms of the execution

time), (2) quality of the results (in terms of the chosen quality factors), (3) the

algorithm's characteristics (in terms of the number of performed integration

operations), and (4) scalability (in terms of the growing amount of require-

124

6. Evaluation

ments). On the other hand, we evaluate the manual e�ort of the real end-users

needed for the MD schema design w.r.t.: (1) elapsed time, (2) quality and ac-

curacy of the results, and (3) the emotional response (by means of the user's

con�dence in the provided solutions), in order to show the inherent complexity

of the design tasks when performed manually.

6.1 Prototype

As a proof of concept, we have built a prototype implementation of ORE.

ORE expects two kinds of inputs: information requirements expressed as MDIs

and an OWL ontology representing the sources. In order to integrate the end-

to-end solution of our research work (more details in Section 8) and to automate

our testing exercises, we linked ORE to GEM. GEM is our previous solution to

produce MDIs from requirements, [146] (see Figure 4.12). Moreover, the output

generated by GEM is guaranteed to be sound and complete. These two modules

(i.e., GEM and ORE) are communicating through the TM module (Section

3). We have chosen MongoDB for implementing a storage repository for TM.

We justify our choice with the fact that handling semistructured, document-

oriented data (e.g., information requirements, MDIs, Star schema (SS)) is more

e�cient with NOSQL databases, like MongoDB. Moreover, the consistency

tradeo�s (i.e., eventual consistency) that boost the scalability, availability and

latency of a MongoDB, �t the TM's needs for data storage. Later in this section

we show some experimental �ndings that con�rm such design choice.

When a new requirement arrives, it is processed by GEM, which produces

a set of MDIs describing the MD data cube representing such requirement and

stores them into the TM repository. Next, the produced MDIs of a single

requirement are read from TM, and serialized in a proprietary XML format

understood by ORE. ORE then processes these MDIs as explained throughout

this chapter and produces the alternative MD schemata, each one in terms of

a set of stars (i.e., SSi), and stores them inside the TM.

Fig. 4.12: Prototype setup

Figure 4.12 shows the architecture of our prototype. This architecture is

125

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

modular in that another module could be chosen to replace GEM if necessary,

as far as the output MDIs are sound and complete (see Section 2.2) and they

are expressed in ORE's proprietary XML format.

For describing the sources as an OWL ontology we followed the method

proposed in [167], which largely automates the process for well-formed sources.

ORE communicates with the ontology describing the sources by means of Jena

API [6]. Depending on the complexity of such ontology, the requests for �nding

the relationship between the ontology concepts may be costly (e.g., [144]).

Since such requests are frequent, in our implementation we used a component

called Transitive Closure Cache (TCC) to facilitate the probing of the ontology.

TCC receives requests from ORE for discovering the relationship between two

concepts, e.g., (A,B). If no entry is found, it means that no previous iteration

asked for the relationships of A. At this point, TCC accesses the ontology and

looks for the requested relationship, but it also further explores the ontology to

�nd the transitive closure for A through �1 - 1�, �1 - *� or �* - 1� relationships

and loads the corresponding entries to its structures. If a following request

relating A, say (A,C), is posed, it will be answered from TCC. TCC works with

a limited size of the internal memory and the overwriting is done following the

least recently used cache algorithm.

6.2 Output validation

Following our running example scenario (i.e., the TPC-H benchmark), we per-

formed a set of experiments to validate the reliability of ORE by examining the

correctness of its resulting MD schemata. TPC-H is an ad hoc decision sup-

port benchmark, hence it provides a convenient source for analyzing data from

di�erent perspectives. Some e�orts have been invested in adapting the schema

of the TPC-H benchmark for MD purposes. In [126], the authors present the

Star Schema Benchmark (SSB). They manually design an MD schema based on

the TPC-H benchmark by applying traditional optimization techniques (e.g.,

denormalization) to the classical TPC-H schema. Here, we list the manual

modi�cations of the TPC-H schema that are proposed in [126] and describe

how each of these design choices is automatically supported in ORE.

• Combine the TPC-H Lineitem and Orders tables. The fact matching

stage of ORE �rst merges the facts of di�erent requirements that are

placed in the same MD space. Furthermore, in the last stage (i.e., inte-

gration), ORE denormalizes the schema and combines the adjacent MD

concepts into a single fact or dimension.

• Drop the Partsupplier table. As explained in [126], the Partsupplier

table is removed from the design as it has a di�erent temporal granu-

larity from the Lineitem and Orders. The authors further discuss that

Partsupplier can only be treated as a separate fact table belonging to

126

6. Evaluation

a di�erent data mart. As a matter of fact, when in the fact matching

stage, ORE does not �nd any existing fact whose MD space matches a

fact from the new requirement, it creates a new star inside the existing

MD schema with the new coming fact.

• Drop the comment attribute from Lineitem. We discuss in Section 2.2

that ORE only accepts MDIs that satisfy the MD integrity constraints.

As explained in Section 2.2, one of the requirements to guarantee this is

a correct data summarization which is further guaranteed among others,

by the condition of Compatibility. This condition indeed ensures that

the type of a measure being aggregated and the aggregation function are

compatible, which guarantees that the textual attributes, like l_comment,

will be left out from the fact table design.

• Drop the tables Nation and Region outboard to the dimensions Customer

and Supplier. In [126], the authors drop the tables Nation and Region

and add this information as attributes to the Customer and Supplier

tables (i.e., address). Such design choice is widely supported in ORE's

last stage (i.e., integration), where adjacent levels are combined and the

dimension is denormalized and collapsed into one table.

• Adding the Date dimension. To adapt the schema to the standard DW

design principles, the authors in [126] propose to complement the schema

with the new Date dimension which is very common when analyzing

the factual data such as sales. In ORE, after the fact and dimension

matching stages, the new MD schema can be additionally tuned with the

analytically interesting concepts in the stage of complementing the MD

design. In this stage, the domain ontology is searched and the new valid

MD concepts are proposed to the user. Likewise, the new dimension (e.g.,

Date) can be added to the MD design.

As an empirical proof, we ran ORE for a set of information requirements

adapted from the queries that are provided by the TPC-H benchmark and we

automatically obtained the same MD schema as SBB. The only exception is the

Partsupplier fact which ORE, due to di�erent granularity from other facts

(e.g., Lineitem), separates in a di�erent star. l

6.3 Experimental setup

The experimental setup involves a system called LEARN-SQL [8], which has

been used at UPC-BarcelonaTech since 2003 to assess assignments related to

exercises on the SQL language. The system is implemented using the open-

source, learning management system, i.e., Moodle. The data gathered so far

involve 2550 students in �ve di�erent subjects and concerns more than 600

di�erent SQL items (assignments). The students issued more than 150.000

submissions, which created a signi�cant data source to be analyzed for gain-

127

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

ing an insight into the students' performance regarding di�erent aspects of

the subjects. Three main data sources are considered for the analysis in the

LEARN-SQL system: (1) the operational DB deployed in PostgreSQL, (2)

the students' data in XML, and (3) the evaluation results (per semester) in

spreadsheet format. As a goal, a target MD data store should be provided to

conveniently support the demands from di�erent analytical requirements posed

by the system users (e.g., lecturers).

For evaluating our approach, we conducted a set of experiments using the

prototype being implemented (see Figure 4.12), with the aim to scrutinize

ORE for measuring its performances (i.e., computational complexity, results

quality, and di�erent characteristics of the algorithm) and scalability (in terms

of the number of requirements). As in the rest of this chapter, here we also use

the structural complexity as the example quality factor for evaluating the cost

of the output MD schemata. As an additional validation step for demonstrating

the need for automating the MD schema design, we performed a set of empirical

tests to measure the manual e�orts of the real users when manually designing

an MD schema from information requirements (in terms of the elapsed time,

the quality and accuracy of provided solutions, and the emotional response of

the users).

6.4 Scrutinizing ORE

As previously discussed in this chapter (see Section 5.3), the MD schema design

from information requirements is a computationally complex problem due to

the exponential growth of the space of possible solutions. However, as it can

be seen in Figure 4.13, not all these solutions have the same cost when it

comes to structural complexity of an MD schema. Therefore, we introduced a

cost-based approach based on our cost model to prune the space of alternative

solutions. Taking this into account, we used the previously described ORE's

prototype and performed a series of experiments. These experiments aimed

at validating the linear complexity of our cost-based solution (see Section 5.3)

and generally the practical feasibility of our approach. We collected di�erent

indicators about ORE's performance and scalability, and at the same time,

for our example scenario we aimed to show that ORE meets the chosen quality

objectives, i.e., the resulting MD schema is with minimal structural complexity.

Inputs. As we explain shortly, we had a case study conducted with the help

of a number of participants, real users of the LEARN-SQL system. During this

process, one group of participants (i.e., DB lecturers) analyzed the domain on-

tology that captures the semantics of data sources in the LEARN-SQL system,

and provided us with a set of thirteen requirements. Taking a look at them,

the users most often wanted to analyze the success of students focusing on

di�erent indicators (e.g., �nal marks, outcomes of single assignments, results

of the experiments executions over students' solutions, etc.) and from di�erent

128

6. Evaluation

Fig. 4.13: Cost di�erences

perspectives (e.g., candidates, semesters, kind of assignment items, subjects,

etc.). These requirements represent a real world case as they came from real

users showing real demands on a real system. What these requirements also

showed is that di�erent users may be interested in performing the same or sim-

ilar analysis which is a common case in real business environments. We use this

set of thirteen requirements as input dataset for performing the experiments

over ORE.

Experimental Methodology. Linking ORE to GEM allowed us to pro-

vide the collected requirements as inputs in our prototype setting (see Figure

4.12). From each individual requirement, GEM produced the corresponding

set of MDIs, which then fed ORE together with the domain OWL ontology we

created for the experiments with the users. We then ran ORE for di�erent per-

mutations of the input set of requirements. In each permutation, we simulated

iterative arrivals of new requirements to the system i.e., starting from a single

requirement a new requirement was considered in each iteration to be incor-

porated into the current MD schema design. Through a series of experiments

that we explain shorty, we collected di�erent indicators for each permutation

and iterations (e.g., overall time per iteration, time spent on fact matching,

time spent on dimension matching, overall time per complete permutation,

#matching facts, #matching dimensions).

Experiments. Next, we discuss di�erent experiments we performed over

ORE in more detail and report our �ndings.

Time. Considering that in general the requirement-driven DW design problem

is exponential, which we theoretically validated in Section 5.3, we performed

a set of experiments following the above methodology and with varying input

loads and constraints. The results are shown in Figure 4.14. As assumed, deal-

ing with the complete space of solutions is expensive. After only ten require-

129

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

Fig. 4.14: Time comparison

ments (considering all the MDIs of those requirements) the time to iteratively

integrate each requirement starts rapidly to grow and it later bursts for addi-

tional requirements (see dotted part of the purple line, i.e., w/o threshold, in

Figure 4.14). However, as previously discussed, our approach is cost-based (in

this experiment, we used as a quality factor the structural complexity of an

output schema) and we only keep the top-N best solutions after integrating a

new requirement. In the experiments, we used di�erent values for N (i.e., 25,

50, and 100) to analyze how N a�ects the execution time of ORE. The linear

complexity of our cost-based approach discussed in Section 5.3, we empirically

con�rm here after introducing the cost-based heuristics (i.e., keeping the top-N

solutions). The additional tests with di�erent thresholds (i.e., N) showed us

that after new requirements come, the time tends to stay in a certain range

depending on the number of top solutions kept (i.e., the value of N). Addition-

ally, Figure 4.14 (dashed line), shows that peaks may appear since the size of

inputs (i.e., #MDIs per requirement) is not limited. However, our cost-based

pruning keeps the problem manageable even in the worst case, regardless the

number of requirements already dealt with.

Another interesting observation is the higher latency that appears at the

beginning, when integrating the �rst few requirements (see Figure 4.14). This

comes from the fact that at the beginning we make a direct access to the

ontology for checking di�erent relationships among concepts, which tends to be

costly. As we discuss in Section 6.1, in our prototype we introduce a component

called Transitive Closure Cache (TCC), where we cache relationships among

ontology concepts, so over time we avoid accessing the ontology directly as the

relationships are mostly found in TCC. Notice in Figure 4.14 that even with

the expensive initial accesses to the ontology the time needed for integrating

new requirement stays within a manageable rate (200-240ms).

130

6. Evaluation

When measuring the times of di�erent stages in ORE, we noticed that

the average ratio of time spent on the fact matching stage (FM) appears to

be signi�cantly higher as opposed to the other stages. As an example, the

average ratio of time between fact and dimension matching stages (FM and

DM) is shown in Figure 4.15. Such behavior showed us that the real problem

of integrating MD designs is indeed �nding the matches of MD spaces of their

factual concepts which is done during the FM algorithm. Moreover, matching

the MD spaces of facts through all their dimensions tends to be more complex

than �nding the relation between the dimensions of the already matched facts.

Results Quality. Within the same set of experiments we also analyzed the cost

of the output MD schemas that ORE produces w.r.t. the quality objectives

we chose (i.e., minimal structural complexity). By testing di�erent thresholds

(i.e., values for N) we noticed that the optimal solution was always in the

top-N (independent of the size of N) for the current setting. Clearly, as it

usually happens with pruning techniques, at the moment there is no formal

guarantee that pruning will always consider the optimal solution. At the same

time, we also analyzed the alternative solutions with the highest cost. As one

may notice in Figure 4.13, there is a signi�cant and increasing di�erence of

the costs between the optimal solution (i.e., min cost) that ORE �nds and the

worst solution (i.e., max cost) that may result from some other approach (e.g.,

manual design). Such observations additionally demonstrated the importance

of automating the DW design process with the guarantee of meeting prede�ned

quality objectives.

Algorithm's characteristics. We also studied the behavior of characteristics of

ORE's algorithms. Figure 4.16 shows how the number of matchings of di�erent

concepts (factual and dimensional) is a�ected by the size of the problem. The

number of matchings represents the average matchings found between MDIs of
incoming requirement (1-13) and each of the alternative schemas at the output.

Starting from scratch, ORE �rst, as it �nds the empty TM, inserts the facts

and dimensions and creates �rst designs at the output. Then, it exhaustively

tries to match the facts and also their corresponding dimensions, as explained

in Section 4. However, as the incrementally integrated design matures, there

are lesser novel opportunities for matches, i.e., MD design becomes more com-

plete. In Figure 4.16, one may notice that the number of the facts matched is

proportionally lower then the number of levels, as we often have the situation

of having a single fact and several of its dimensions. On the other hand, as we

have already shown in Figure 4.15 time to perform the fact matching is still

signi�cantly higher from the time for dimension matching.

131

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

Fig. 4.15: Time per stage Fig. 4.16: Matchings found

Scalability. As we showed with the previous set of experiments, ORE is able

to handle the growing amount of requirements, by using the introduced cost-

based heuristics (i.e., top-N solutions). We �rst theoretically (in Section 5) and

then practically (in this section) proved that the complexity of the approach

by using these heuristics is linear and manageable regardless of the number of

incoming requirements. Additionally, for the sake of analyzing the scalability

and maintainability of the TM structure (see Section 3) for the growing amount

of information requirements, we performed a set of tests where we measured the

times for accessing the TM on MongoDB for reading and writing of di�erent

elements (e.g., MDIs). These tests showed us that the accessing times do not

depend on the current size of the TM but mostly on the size of individual

elements that are read or stored. As an example, reading MDIs from TM with

the average size of �ve concepts (facts or dimensions) has the average latency

of 5.2ms and it goes to maximum of 9ms for MDIs larger than 10 concepts,

independent of the current size of TM.

Summary. This set of experiments demonstrated the feasibility of our

semi-automatic approach for MD schema design. Furthermore, our cost-based

heuristics (see Section 5.3) proved to maintain the linear complexity of the ap-

proach which makes it scalable regardless of the number of requirements and

yet showed that ORE tends to generate the optimal solution. The main rec-

ommendation for the future users of the system would be to carefully choose

the size of the space of alternative solutions which is used for the cost-based

pruning (top-N). If N is too small (e.g., lower than 15), ORE does not always

provide the optimal solution at the output. However, if N is too high (e.g.,

larger than 500), more solutions will be produced (including the optimal), but

the performances will drastically drop. In fact, in our experimental scenario

we showed that even with N in the rage [25,100] which is rather manageable,

ORE always provides the optimal solutions at the output.

132

6. Evaluation

6.5 The LEARN-SQL Case Study

After evaluating the performance and observing di�erent characteristics of

ORE, we additionally conducted a series of empirical tests with the goal to

measure the emotional aspects and the amount of human e�orts needed for

manually designing MD schema from requirements, as well as for incorporating

new requirements into an existing schema.

Experimental methodology. These tests resembled the common practice of

a DW design project and aimed at capturing all the stages of such process, from

the collection of information requirements to the �nal design of the MD schema

that satis�es them. We considered the following variables: (a) independent,

i.e., the participants and the information requirements; (b) controlled, i.e.,

the object of the experiment (the domain ontology capturing data sources'

semantics of the system); and (c) dependent, the observed parameters. We

divide the observed parameters in three groups: (1)Time - How long did it

take for participants to complete the task? (2) Accuracy and Quality - How

many mistakes participants made? How far their solutions are from the ideal

case? (3) Emotional response - How con�dent the participants felt about the

completed tasks? The analysis was both quantitative and qualitative.

We considered two groups of users with di�erent backgrounds.

1. Six DW and conceptual modeling experts - researchers and lecturers from

the Department of Service and Information System Engineering (ESSI)

at UPC BarcelonaTech.

2. Six graduate students following the DW course at the Facultat d'Inform-

atica de Barcelona (FIB).

The tests were organized in three separate rounds as follows.

We �rst had a round where the seven real end-users of the LEARN-SQL

system familiarized themselves with the vocabulary used to build the domain

ontology. Next, these seven participants were asked to provide information re-

quirements for analyzing di�erent aspects of the system. Participants used the

natural language template introduced in Section 2.2 as guidelines for provid-

ing the requirements. For example, the following is a requirement demanded

by one of the lecturers: �Analyze failed experiments, from the point of view

of the day of the week, student's group and di�culty of assignment, where

the �nal mark is lower than 7.� Each participant came up with maximum 2

requirements totalling in 13 requirements for the study.

In the second round, the live session is organized and the participants of

both groups are introduced to the problem under the study. As some of the

participants, especially among the students were not DW experts, this session

provided some insights about the MD design principles, MD integrity con-

straints and the structural complexity of MD schema design as an example

133

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

quality factor used throughout this chapter. At the end of this session, sev-

eral participants posed questions and after the discussion the participants were

positive about being familiar with the problem under the study.

The �nal round, organized also as a live session, included two assignments

of the manual DW design that the participants were solving. In the �nal round,

both groups of participants were assessed.

Assignment 1 One of the information requirements produced in the �rst round

was handed out to participants, namely: �I want to analyze the average valid

processing outcome for each semester and the candidate where the candidate's

subject is DABD.�

Using the ontology graphical representation describing the sources (see Fig-

ure 4.17), the participants were asked to provide the MD interpretation of the

ontology subset needed to answer the provided requirement (i.e., to identify

the concepts that are needed to answer the requirement and determine a valid

MD role(s) for such concepts -i.e., factual and/or dimensional-).

134

6. Evaluation

F
ig
.
4
.1
7
:
L
E
A
R
N
-S
Q
L
o
n
to
lo
g
y

135

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

To answer this assignment, the participants were asked to �ll in a grid as

the one presented in Figure 4.18, one per each valid MDI, and to record the

start and the end time of the work. The time limit for this task was 10 minutes.

Fig. 4.18: Table for identifying MDIs for an IR

After the participants provided their solutions, the actual correct solutions

for the given assignment were presented to the user (see Figure 4.19). Addi-

tionally, the reasons why several MDIs resulted from a single requirement are

explained to the participants (i.e., existence of the intermediate concepts).

Assignment 2 In this assignment, we introduced a referent MD schema (see

Figure 4.20) meeting a set of previous requirements. In this assignment, par-

ticipants were asked to integrate the requirement considered in the previous

assignment with the referent MD schema. Intuitively, they are asked to look

for an MDI (out of the four produced in the previous assignment) such that it

achieves the best integration with the referent schema according to the set of

quality objectives, i.e., we asked them to minimize the structural complexity of

the resulting MD schema, as discussed in Section 2.4.2. As a result, the partic-

ipants were supposed to produce the �nal uni�ed MD schema that additionally

satis�es the new requirement, respects the MD integrity constraints and meets

the quality objectives (i.e., minimal structural complexity of a MD schema).

To answer this assignment the participants were asked to sketch the new MD

schema on paper and record the starting and ending time. The time limit for

this task was 15 minutes.

Results. Next, we report on our �ndings from the performed tests, in two

parts. The �rst part aims at identifying the background of the users and the

e�orts invested in solving the given assignments. In the second part, we evalu-

ate the solutions provided in the given assignments and investigate the possible

reasons why the participants failed to provide the correct solutions.

136

6. Evaluation

F
ig
.
4
.1
9
:

M
D

Is
re
su
lt
ed

fr
o
m

IR

137

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

Fig. 4.20: Reference MD schema

Background analysis. The �rst group of six lecturers are database and con-

ceptual modeling experts. However, four users were non experts when it comes

to DW and ETL technical issues. This was an excellent opportunity to see how

our methods could work with business users, who are familiar with the domain

and the requirements, but sometimes lack the technical expertise to perform

some pre-processing steps that would facilitate and advance their business anal-

ysis. Also, only one of them had seen LEARN-SQL internals before, which in

a sense resembles practice where not all analysts are initially familiar with the

system under the analysis. The second group of six users are graduate stu-

dents following the DW course during their master studies and thus not well

experienced users. However, as being part of the DW course, they showed a

strong commitment towards the activity and wanted to perform well. The �rst

and second rounds were used to smooth out these di�erences among our users

and a second interviewing round afterwards showed that all twelve users were

feeling comfortable with the technologies used in this experiment.

An expected observation among these two groups is the time/e�ort needed

to �nalize the given tasks. In average the students needed around twice as

much time in comparison to lecturers (experts) (see Figure 4.21).

Design evaluation. Next, we evaluated the solutions resulting from the given

assignments (see Figure 4.22). We focus here on the results of Assignment

2 (A2), which in a way resembles the work that ORE facilitates through its

algorithms. A2 required that the participants looked for potential fact match-

138

6. Evaluation

Fig. 4.21: Completion time for correct
designs

Fig. 4.22: Completeness of solutions
with �xed time

ing. In principle, given that the valid_response_processing fact (in the new

requirement) is a subclass of response_processing (which appears in the

reference MD schema) users tended to integrate the new requirement through

these facts. However, after a detailed analysis, they were supposed to recognize

at least one more promising alternative: merging evaluation (in the reference

MD schema) with the valid_response_processing (in the new requirement)

as in the top-right MDI in Figure 4.19. These two facts share the same MD

space (year_month � candidate) and thus, the facts could be properly com-

bined.

Nevertheless, these were not the only two valid solutions. Indeed, the results

provided for this assignment showed us that even a small example like this can

produce many valid solutions, from which we should �nd the one with the

lowest structural complexity. Figure 4.22 compares the level of completeness

for lecturers and students. Note that among all participants only one lecturer

provided solutions that were above 90% close to the ideal solution. We also

observed that the average completeness percentage for the lecturers was around

83% and for the students it was lower - around 56%.

Along with the previously discussed di�erence in the amount of e�ort (i.e.,

elapsed time), the noticeable di�erence of the two groups (lecturers and stu-

dents) in the quality and accuracy of the provided solutions showed us that the

DW design problem is indeed complex and it requires high level of experience

and expertise to achieve satisfactory results.

The most common error made by the participants was the attempt to match

valid_response_processing with response_process by means of the ontol-

ogy taxonomy they belong to. Such a matching may result in a valid solution

that answers the new requirement, but as previously discussed, it is not the one

with the lowest overall cost, in terms of structural complexity as an example

quality factor, as it introduces new concepts to the design. Furthermore, intu-

itively, this solution should be disregarded because we are merging two facts at

di�erent granularities when there is another fact at the same granularity (i.e.,

139

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

evaluation).

Summary. These empirical tests aimed at simulating the environment where

the users are supposed to provide the design of MD schema starting from the

input information requirements. We started with a moderately small problem

size and introduced time limits to simulate the complexity of larger DW design

problem (the complexity of a task is related to the time given to complete

it). As observed from the results, even for a small scenarios, the number of

possible design solutions is fairly high. Moreover, the best solutions do not

always appear to be the most obvious ones. Additionally, after �lling a simple

questionnaire at the end, most of the participants (including DB experts) were

not con�dent about having found the best solution. After combining these

�ndings with the results we obtained from scrutinizing ORE's prototype (i.e.,

low overall latency and high quality of generated results), we can conclude

that the automation of the DW design is a necessity for dynamic business

environments.

7 Related Work

Following a monolithic approach for building a DW is considered problematic

and thus, manual guidelines were given to overcome this issue (e.g., DW Bus

Architecture [97]). Some recent works (e.g., [71]) also study how the modern

software engineering methodologies can be applied in the DW context. The

authors in [71] de�ne a set of methodological principles that should be followed

during the design process and inspect their impact on di�erent quality fac-

tors (e.g., reliability, robustness, etc.). Apart from traditional DW designing

approaches (e.g., [67, 80, 115]), various works have studied the problem of ad-

justing the DW systems to changes of the business environments. For dealing

with such an issue, di�erent directions have been followed.

DW Evolution. The early approaches that fall into this category (e.g.,

[175, 172, 173] consider the DW as a set of materialized views over the source

relations and propose the algorithms for either maintaining the existing set

of views (i.e., view maintenance, [175]) or selecting new views to be materi-

alized (i.e., view selection, [172, 173]), in order to answer new queries. Since

a pure relational approach has been followed, these works use the equivalence

transformation rules to enhance the integration of new queries into the existing

view set. That makes these approaches not easily applicable to the current

heterogeneous environments. In fact, as it has become clear in the last decade,

DW are more complex than just a set of materialized views, especially when

the ETL �ows come into play. Additionally, these approaches mainly consider

two traditionally correlated costs in DW design: (1) view maintenance cost,

and (2) query evaluation cost. ORE, regarding new business oriented envi-

ronments, complements these approaches by taking into account other quality

140

7. Related Work

factors that additionally minimize the end-user's e�orts (e.g., the structural

complexity and understandability of the MD schema). Other DW evolution

approaches (e.g., [21, 183]) maintain the up-to-dateness of the existing DW

schemata in the event of a change by proposing a set of evolution operators

(e.g., for addition/deletion of dimensions/levels/facts or their instances). Some

(e.g., [135, 187]) additionally study the in�uence of di�erent evolution changes

on the quality factors of the DW (e.g., consistency and completeness). Similar

problems have been studied for ETL �ows too (e.g., [129]). One contribution

of these works is the formal de�nition of speci�c alteration operators, which

can be applied when an evolution change occurs. However, these works do not

study how the information requirements actually a�ect such evolution changes.

In this sense, our work complements them and starting from a given set of infor-

mation requirements, it aims to automatically derive the changes of the current

schema necessary to be applied for satisfying these new requirements.

Schema Versioning. Beside dealing with the changes by upgrading the ex-

isting schema, schema versioning approaches have also focused on keeping the

trace of these changes by separately maintaining di�erent versions of the schema

(e.g., [17, 23, 66]). Some of them (e.g., [17]) in addition to the versions result-

ing from real world changes, also store and maintain the alternative versions

which can simulate various operational/business scenarios and propose new an-

alytical perspectives. Speci�cally, [66] deals with the problem of cross-version

querying and introduces the concept of augmented schema, which keeps track

of change actions to enable answering the queries spanning the validity of dif-

ferent versions. ORE also systematically keeps traces of the changes occurred

so far, by using the TM structure (see Section 3). Contrarily, by maintaining

TM, ORE aims at reproducing the �nal solution and/or potentially choosing

an alternative integration option, but at any moment, the resulting MD schema

must answer all the current requirements.

Incremental DW design and DW schema Integration. There are works that

have studied the problem of incremental DW design (e.g., [122]). The authors

here propose the approach for incremental design of DW by deriving new facts

and dimensions from the existing ones by applying the set of deriving opera-

tions (i.e., dimension and measure transformation algebras). However, they do

not speci�cally discuss the in�uence of information requirements nor their au-

tomatic integration into the DW design. On the schema integration side, there

are works that use ontologies, to bridge the semantic gap among heterogeneous

data (e.g., [167]). To deal with the integration of heterogeneous DW schemas,

[179] proposes two approaches: loosely and tightly coupled. But, this work

assumes that a structural matching among schemas exists and proposes the d-

chase procedure (inspired by the chase procedure) for the chase of dimensional

instances to ensure the consistency of the given matching.

Overall, the importance of information requirements into the DW design

process has been generally overlooked. One recent work [112], proposes a

141

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

method to deal with the maintenance of a DW by identifying a set of semantic

mappings between data sources and user requirements. In a sense, we �nd the

motivation behind this work complementary to ours. However, the process of

identifying such mappings as well as integrating them into the current design

requires an extensive manual e�ort. In our work, we go a step further and

automate a large part of this process as we discussed in the previous sections.

Another exception is the work in [121] that starts from OLAP requirements

expressed in sheet-style tables and later translates them to single star schemas.

However, the integration proposed is based solely on union operations applied

to the facts and dimension hierarchies. Moreover, this work does not consider

the heterogeneity and complex relations that may exist in DW environments.

8 Conclusions and Future Work

In this chapter, we have presented ORE, a method to iteratively design the

MD schema of a data warehouse from requirements. To the best of our knowl-

edge, there is no other similar work dealing with such integration, which di�ers

from ontology or generic integration research papers in that the MD integrity

constraints are preserved and considered quality objectives are met.

This work represents an important step for ful�lling our �nal goal, i.e.,

to deliver a system for providing an end-to-end, requirement-driven solution

for DW design problem. Our work builds on top of the GEM system [146].

GEM starts with the information requirements at hand and generates for each

requirement separately a respective MD design along with the ETL operations

that build the data �ow. In another work [88], we present CoAl, an approach to

deal with the problem of integrating the ETL processes from single information

requirements.

In this chapter, we present our approach to incrementally design the MD

schema from individual requirements. Starting from single requirements, we

obtain a set of MD interpretations of the sources to answer such requirement

(e.g., GEM). Incrementally, we build a uni�ed MD schema satisfying the cur-

rent set of requirements. At the same time, the details about the previous

integration steps are traced by means of metadata to allow broader integration

possibilities when new requirements arrive.

Clearly, both the MD schema and the ETL constructs are highly correlated.

Our overall work is the �rst that considers them together. We plan to invest

on that and that opens several possible future directions. As one example, it

would be interesting to exploit the interdependence between ORE and CoAl

through which each of them bene�t from the relevant information inferred by

the other approach. For instance, the aggregation and normalization levels

of the produced schema could be considered, since this would e�ect the way

the appropriate ETL process is tailored (i.e., trade-o�s between materialized

142

9. Acknowledgements

views and OLAP querying). Similarly, checkpointing or bottlenecks detected

at the ETL level may cause some changes at the MD schema for the sake of

performance.

9 Acknowledgements

This work has been partly supported by the Spanish Ministerio de Ciencia e

Innovaci�on under project TIN2011-24747.

143

Chapter 4. A Requirement-Driven Approach to the Design and Evolution of Data
Warehouses

144

Chapter 5

Engine Independence for Logical

Analytic Flows

The paper has been published in the

Proceedings of the 30th IEEE International Conference on Data Engineering,

pp. 1060-1071 (2014). The layout of the paper has been revised.

DOI: http://dx.doi.org/10.1109/ICDE.2014.6816723

IEEE copyright/ credit notice:

© 2014 IEEE. Reprinted, with permission, from Petar Jovanovic, Alkis Simit-

sis, and Kevin Wilkinson, Engine independence for logical analytic �ows, 30th

IEEE International Conference on Data Engineering (ICDE), April/2014

Abstract

A complex analytic �ow in a modern enterprise may perform multiple, logically

independent, tasks where each task uses a di�erent processing engine. We term

these multi-engine �ows hybrid �ows. Using multiple processing engines has

advantages such as rapid deployment, better performance, lower cost, and so

on. However, as the number and variety of these engines grows, developing and

maintaining hybrid �ows is a signi�cant challenge because they are speci�ed at

a physical level and, so are hard to design and may break as the infrastructure

evolves. We address this problem by enabling �ow design at a logical level

and automatic translation to physical �ows. There are three main challenges.

First, we describe how �ows can be represented at a logical level, abstracting

away details of any underlying processing engine. Second, we show how a

physical �ow, expressed in a programming language or some design GUI, can be

imported and converted to a logical �ow. In particular, we show how a hybrid

145

Chapter 5. Engine Independence for Logical Analytic Flows

�ow comprising sub�ows in di�erent languages can be imported and composed

as a single, logical �ow for subsequent manipulation. Third, we describe how

a logical �ow is translated into one or more physical �ows for execution by

the processing engines. The chapter concludes with experimental results and

example transformations that demonstrate the correctness and utility of our

system.

1 Introduction

In a modern enterprise, answering a business question may require a complex,

analytic data �ow that integrates datasets and computation from a number

of diverse repositories and processing engines. Conceptually, one may con-

sider the �ow as a single, logical computation and it may be modeled as such.

However, a logical �ow has many possible implementations, each serving a

di�erent purpose. The job of the �ow designer is to create an implementa-

tion (or physical �ow) that meets objectives for the �ow and workload. But,

over time, objectives may change, data volumes may increase rendering an im-

plementation sub-optimal, the underlying infrastructure may change, or the

logical �ow may need modi�cation. Creating and modifying physical �ows is

labor-intensive, time-consuming, and error prone. Because enterprises are now

deploying a wide variety of systems, such as Map-Reduce systems, stream pro-

cessing systems, statistical analysis engines, and even elastic computing, the

trend is toward more of these complex, hybrid analytic �ows. This will only

increase the development and maintenance burden on IT departments.

What is needed is a notion of engine independence for logical analytic �ows.

Just as logical data independence insulates a data modeler from physical details

of the relational database, there are bene�ts in designing �ows at a logical level

and using automation to implement the �ows.

In this chapter, we present a system that does this. We focus on three

main challenges. First, we describe a language for encoding �ows at a logical

level. Second, we show how an existing, physical �ow written for one processing

engine, is imported and converted to a logical �ow that is engine independent.

Third, given a logical �ow, we show how to generate a physical �ow (and

executable code) for a targeted processing engine. These physical to logical and

logical to physical translations also support hybrid �ows, i.e., �ows that involve

multiple engines. Our �ow translators are components in a larger system, called

Hybrid Flow Management System (HFMS), that includes modules for design,

optimization, and execution of complex analytic �ows [164]. Other tools, like

ETL design GUIs, o�er some separation between design and implementation,

but the design is tool-speci�c. Our work goes beyond that. HFMS logical �ows

span engines and, most importantly, the engines are peers enabling data and

function shipping between all.

146

2. Problem Formalization

The logical, engine-independent �ow gives a uni�ed, end-to-end view of the

entire analytic computation. From this logical view, there is a number of pos-

sible and practical �ow transformations. These may alter the �ow design, but

not its semantics (functionality). HFMS allows a �ow processor to manipulate

a logical �ow between the physical to logical and logical to physical transla-

tions. Optimizing the logical �ow is one possible transformation [163]. Or, one

might decompose a single, large, complex �ow into smaller sub�ows to reduce

contention in a workload or to improve maintainability of the �ow [164]. Con-

versely, one might compose a series of individual, connected �ows into one large

�ow to improve performance. Or, a �ow processor might generate documents

about the �ow, either as pseudo-code or as a natural language description [151].

In this chapter, our focus is not on speci�c �ow processors. Rather, our

point is that a logical view of a �ow simpli�es and enhances �ow processors. In

fact, �ow translation can be useful by itself. A not unusual scenario is to have

an algorithm encoded for one engine (e.g., written in Map-Reduce) that you

wish to apply to data in a di�erent engine (e.g., database). Rather than ship

the data to the algorithm, our �ow translators enables shipping the algorithm

to the data. Hence, our core contribution is that, by showing how to transform

physical �ows to logical �ows and back, we enable new computations on hybrid

�ows that would otherwise be di�cult to program over the original physical

�ows.

The next section formalizes the translation problem. Section 3 presents an

overview of our system, including encoding of �ows and dictionaries for map-

ping between logical and physical elements. Section 4 describes the physical to

logical translation process and Section 6 describes logical to physical. Section 5

presents an evaluation of our system through use cases of �ows running over

three processing engines. The �nal sections discuss related work and conclu-

sions.

2 Problem Formalization

2.1 Preliminaries

We represent an analytic �ow Γ as an acyclic, parameterized digraph ΓpUΓq

� pVΓpUΓq, EΓq, where UΓ is a �nite set of properties of the vertices VΓ of

Γ. VΓ are either operators, Vop, or data stores, Vds, and the edges EΓ model

the data �ow among the vertices. A special class of operators includes the

connectors, Vcn � Vop, which are discussed in Section 4. The vertex prop-

erties capture information related to business requirements, Q, resource allo-

cation, R, and characteristics, C, like the vertex type Ctype (e.g., sentiment-

Miner, join), implementation type Cimpl (e.g., merge-sort join), engine used

Ceng (e.g., Hadoop, database), etc. Therefore, the properties of a vertex vj in

147

Chapter 5. Engine Independence for Logical Analytic Flows

Γ are U j
Γ � Qj

Γ Y Rj
Γ Y C j

Γ.

In general, the vertices of an analytic �ow Γ may be assigned to a multiplic-

ity of engines. The set of all engines used in Γ is represented as ΦΓ �
�

j C
j
Γeng,

for all vertices vj P VΓ. Connected vertices assigned to the same engine con-

stitute a sub�ow of Γ. Hence, Γ may comprise a partially ordered set of such

sub�ows IK � tGiu, 1 ¤ i ¤ K (K being the size of the set), each one hav-

ing vertices assigned to a single engine. Each of these sub�ows is an acyclic

digraph Gi�pVi, Eiq. Their partial order in Γ is de�ned by the reachability of

the �ow. The reachability relation of Γ is the transitive closure of its edges set

EΓ, i.e., the set of all ordered pairs px, yq of its vertices in VΓ for which there

exist vertices v1�x, ..., v|VΓ|
�y, such that pvj�1, vjq P EΓ, for all 1 j ¤ |VΓ|.

Depending on the structure of Γ, we have three types of �ows.

De�nition 1

A analytic �ow is a multi-�ow i� |IK| ¡ 1.

De�nition 2

A multi-�ow is a hybrid �ow i� |ΦΓ|¡1.

Each of the K sub�ows of a multi-�ow is called a single �ow. An analytic

�ow itself may be a single �ow too.

De�nition 3

A analytic �ow is a single �ow i� |IK|�1.

In what follows, we use the terms �ow and graph interchangeably. We do

the same for single �ow and sub�ow.

2.2 Logical and physical �ows

A logical �ow is independent of an execution engine. The graph GL representing

such a �ow contains vertices that do not necessarily have resource allocation

information or some of their characteristics completed (e.g., implementation

type).

A physical �ow is a �ow that is designed for a speci�c execution engine;

e.g., speci�c RDBMS, speci�c map-reduce engine, speci�c ETL engine. The

graph GP representing such a physical �ow contains the information needed to

bound an operator for example to a speci�c implementation and engine.

2.3 Normalized �ow

A �ow running on an engine is expressed in a language, L, that the engine can
execute. This language may be programming code or even metadata that the

engine interprets. Given n languages, we would need n � pn � 1q parsers to

convert one language to another. We follow a di�erent approach: we introduce

148

2. Problem Formalization

an intermediate language, LN, that all other languages should be converted to

�rst. Hence, we reduce the number of parsers needed to 2� n. A previous use

of this idea goes back to the early days of NL processing [152].

LN has the following characteristics. It describes �ows, their operators

(schemata, semantics) and the interconnection among them. It captures ad-

ditional operational properties at the �ow and operator levels like resources

required and physical characteristics. It can also represent various levels of

abstraction. We use LN as our logical �ow language. Hence, a physical �ow

expressed in a language Li is translated �rst to LN and from there, it can be

converted back to the same or to another language. In Section 3, we present

an implementation of LN, called xLM. This implementation, as we describe

shortly, allows keeping logical constructs in LN and also Li constructs, i.e.,

engine speci�c details for multiple engines.

De�nition 4

We call engine agnostic xLM, denoted as a-xLM, the xLM encoding of a logical

�ow GL.

De�nition 5

We call engine speci�c xLM, denoted as s-xLM, the xLM encoding of a physical

�ow GP.

2.4 Dictionary

To enable conversions from one language to another and from physical to log-

ical �ows and vice versa, we keep a dictionary of mappings, DM, between

logical constructs and their valid physical incarnations in the supported lan-

guages. Example logical constructs are operators, functions, expressions, and

data types. We denote as CLi , a construct expressed in a language Li; e.g,

for a logical construct we write CLN . We have two types of DM mappings:

(a) DMS: (CLi ,CLN), these are, in general, one-to-one mappings used in phys-

ical to logical conversion, in order to identify the logical counterpart in LN of

a physical construct in Li; and (b) DMO: (CLN ,{CLi}), these are, in general,

one-to-many mappings that map a logical construct to di�erent physical im-

plementations. (In Section 4.1, we discuss more complicated cases where more

than one physical operator map to a single logical operator.)

In Section 3, we describe an implementation of DM and Figure 5.5 shows

example dictionary entries.

2.5 Conversion process

For converting a physical �ow to a logical one and vice versa, we are using a

mapping system de�ned as follows.

149

Chapter 5. Engine Independence for Logical Analytic Flows

De�nition 6

A mapping system is a triplet (S ,T ,MS ,T), where: S is a source graph, T is

a target graph, and MS ,T is a mapping between S and T .

Having a physical graph, GP, of a �ow, we can use a mapping MGP ,GL to

convert it to a logical graph GL, by applying the mapping onto all its vertices

VP. An implementation of MGP ,GL may be: MGP ,GLpoptype, engine, implq that
can be used to probe the dictionary DM for getting a logical operator corre-

sponding to the physical implementation impl of the physical operator optype
in the engine engine. Hence, starting from source code we can use MGP ,GL to

produce an engine agnostic graph encoded in a-xLM.

A reverse mapping, MGL ,GP , converts a-xLM to s-xLM. If a speci�c im-

plementation of an operator is not de�ned in the mapping, then the system

chooses the most e�cient one according to the cost model used; if none exists,

the system propagates the error to the user. Note that the s-xLM produced can

be expressed in a language di�erent from the one used in the original �ow. We

also de�ne a mapping MGP ,G1
P
for changing the implementation of operations

in a physical �ow.

Finally, the composition of mappings is allowed. For example, the composite

mapping:

MGP2 ,G1
P2
(MGL ,GP2

(MGP1 ,GL))

describes how a physical �ow GP1 expressed in a language L1 can be �rst con-

verted to a logical �ow GL, then to a physical �ow GP2 expressed in another

language L2, and then, to a di�erent incarnation G1
P2

that uses alternative

implementation for a subset of its operations on the same engine.

2.6 Problem statements

Problem 1 (Physical to Logical)

Given an analytic �ow Γ, we construct a logical �ow GL as follows:

GL � cmpp
�

1¤i¤K MGPi
,GLi
q, @Gi P IK

That is, given an analytic �ow Γ and a physical representation GP of it,

we produce a logical �ow by converting �rst all single physical �ows to logical

�ows, and then, we compose these �ows to a uni�ed, logical �ow GL. Flow

composition, cmp, is described and solved in Section 4.2.1. l

Problem 2 (Logical to Physical)

Given a logical �ow GL, we construct an analytic �ow Γ1 as follows:

Γ1 �
�

1¤j¤K1 MGLj
,GPj

, @GLj P dcmppGLq

150

3. Architecture

flow parser

dictionary

xLM generator flow processor xLM generator engine-specific
code creator

engine
specific xLM

engine
agnostic xLM

engine
agnostic xLM

executable
code

dictionary

flow
specifications

start with flow
specifications

Physical to
Logical

Logical to
Physical

Fig. 5.1: Architecture of our solution
flo

w
 p

ro
ce

ss
or

PART = LOAD 'part' USING PigStorage('|')
as (ppkey,retprice);

LNITEM = LOAD 'lnitem' USING PigStorage('|')
as (okey,lpkey,qty,extprice,tax);

M = JOIN LNITEM BY (lpkey), PART BY (ppkey);
C = FILTER M BY (extprice >

ROUND(retprice) * (1+tax));
N = GROUP C BY (okey);
F = FOREACH N GENERATE group,

SUM(C.qty) as qty;
STORE F INTO 'REPORT';

PigLatin

a-xLM s-xLM

physical flow (PigLatin) engine agnostic xLM physical flow (SQL)engine specific xLM

<param>
<pengine>hfms</pengine>
<ptype>filter_cond</ptype>
<expr>

<leftfun/>
<leftop>Input_1.extprice</leftop>
<oper>></oper>
<rightfun>$$ ROUND($1) *(1 +

$2)</rightfun>
<rightop>Input_1.retprice,

Input_1.tax</rightop>
</expr>

</param>

<param>
<pengine>sql</pengine>
<ptype>where</ptype>
<expr>

<leftfun/>
<leftop>Input_1.extprice</leftop>
<oper>></oper>
<rightfun>$$ ROUND($1) *(1 + $2)

</rightfun>
<rightop>Input_1.retprice,

Input_1.tax</rightop>
</expr>

</param>

CREATE TABLE REPORT AS
SELECT * FROM (

SELECT okey, (SUM(qty)) as qty FROM (
SELECT okey, lpkey, qty, extprice, tax, ppkey, retprice
FROM (

SELECT okey, lpkey, qty, extprice, tax, ppkey, retprice
FROM LNITEM_LOLoad, PART_LOLoad
WHERE lpkey = ppkey

) AS M_LOJoin
WHERE extprice > (ROUND(retprice) * (1 + tax))

) AS C_LOFilter
GROUP BY okey

) AS N_LOCogroup;

SQL

Fig. 5.2: Example process for translating a PigLatin script to SQLFig. 5.3: xLM elements

That is, given a logical �ow GL corresponding to a �ow Γ, we produce

a semantically equivalent multi-�ow Γ1, by decomposing �rst the �ow GL to

single, logical �ows GLj , 1 ¤ j ¤ K1, each designed to run on a single engine,

and then, we convert each GLj to a physical �ow GPj . The poset of all GPj

comprises Γ1. Notice that in general: (a) Φ1
Γ may di�er from ΦΓ, as Γ1 may run

on the same or a di�erent set of engines than the original �ow Γ; and (b) the

number of single �ows K in Γ and K1 in Γ1 may be di�erent. Flow decomposition,

dcmp, is described and solved in Section 6.1.1. l

The two problems may be connected or not; i.e., starting from an analytic

�ow, the end goal might be to produce only its logical abstraction (Prob-

lem 1) or to produce another implementation of it (a combination of both

Problems 1 and 2).

3 Architecture

This section describes our system architecture and implementations of our �ow

language, LN, and the dictionary, DM.

3.1 System overview

An overview of our approach is illustrated in Figure 5.1. We start with the

�ow speci�cations (e.g., a script in a programming language or metadata that

encodes a physical �ow) and we �rst convert it to a logical graph, encoded in

151

Chapter 5. Engine Independence for Logical Analytic Flows

engine agnostic xLM, a-xLM. This is the task of the `physical to logical' module.

There, we �rst parse the �ow and then, we produce an xLM representation

of the �ow constructs using the dictionary. During parsing, it is possible,

as we describe next, to collect statistics and cost estimates for the �ow and

its operations. Note also that the original �ow may comprise more than one

sub�ow (e.g., scripts) that may be written or be expressed in more than one

programming language or forms. These are all translated into a single logical

�ow.

Next, a �ow processor may transform the logical �ow. Example processing

modules are a �ow optimizer (e.g., [163], [165], [162]), a collection statistics

module (e.g., [163]), a �ow execution scheduler (e.g., [164]), and so on. Detail-

ing the di�erent �ow processors is out of the scope of this chapter.

The `logical to physical' module converts the engine agnostic, logical �ow

into an engine speci�c �ow according to the engine selections made either by

a �ow processor or a �ow administrator and using the xLM mappings stored

in the dictionary. In some cases, the engine speci�c �ow may be further pro-

cessed by a �ow processor; e.g., to apply engine speci�c optimizations to the

physical �ow (not shown in Figure 5.1). Finally, an `engine speci�c code gen-

erator' module translates the engine speci�c xLM to executable code that can

be dispatched to the processing engines.

3.2 Example

Figure 5.2 depicts a simple example of �ow translation. In this scenario, we

start with a PigLatin script, parse it and with the help of the dictionary, we

translate the PigLatin operators to engine agnostic operators expressed in xLM

(a-XLM). Then, a �ow processor may change the �ow. Finally, we produce

engine speci�c, SQL-speci�c here, xLM (s-xLM) and from there, we generate

a SQL incarnation of the original script. The �gure highlights the process for

an example �lter operation. We discuss this process in more detail in the rest

of this chapter.

3.3 Flow encoding

HFMS uses xLM to serve as its language LN [160]. xLM is a �ow metadata lan-

guage expressed, in its current implementation, in XML. It captures structural

information of a �ow, design metadata (e.g., functional and non-functional

requirements, physical characteristics like resource allocation, positional infor-

mation), operator properties (e.g., type, schemata, statistics, parameters and

expressions needed for instantiating an operator, engine and implementation

details, physical characteristics like memory budget), and so on.

xLM encodes a DAG and supports a rich set of operators, like relational

algebra, analytic, machine learning or ETL-like operators. For the moment,

152

3. Architecture

<node> (cnt'd)
<type>filter</type> <param>

... <pengine>sql</pengine>

<param> <ptype>where</ptype>

<pengine>hfms</pengine> <expr>...</expr>

<ptype>filter_cond</ptype> </param>

<expr>...</expr> <...>

</param> </node>

Fig. 5.4: Multiple language representations of a node in xLM

however, our �ow processors do not address �xpoints or iterative computations

over a set of operators. In addition, HFMS treats operators with unknown

or incomplete semantics as black-boxes. Processing �ows containing black-box

operators might not be optimal (e.g., optimization actions would be rather

conservative), but it would be at minimum correct, respecting the semantics of

the data �ow and the schemata involved.

The two main xLM structural components are design and node. Figure 5.3

shows a skeleton of design (left) and node (right). Design describes a �ow as

a graph with its vertices and edges. It also describes �ow properties, resources

used, and features (e.g., location coordinates of the GUI elements) captured as

expressions; e.g., we express `timeWindow=2h' and `max(failures)=3' as:

`timeWindow = 2h': `max(failures) = 3':
<leftop>timeWindow</leftop> <leftfun>max</leftfun>

<oper>=</oper> <leftop>failures</leftop>

<rightop>2h</rightop> <oper>=</oper>

<rightop>3</rightop>

Node describes a �ow vertex with its name, type, operational type, engine,

implementation, schemata, properties, resources, and features. The vertex type

denotes if it is an operator or a data store. The operational type (opType¡)
denotes the functionality of the operator; e.g., aggregator, tokenizer, senti-

ment miner. Flow vertices have input, output, and parameter schemata. Each

schema represents a set of �elds (attr¡) that have name, type, and properties

(e.g., format, unit). Additional elements captured are properties like selectiv-

ity, throughput, path location; resources like i/o cost, allocated memory; and

features like design coordinates.

xLM encodes both the logical and physical �ows. Engine/language spe-

ci�c constructs can be nested in the corresponding element. For example, the

xLM node for the �lter of Figure 5.2 may contain multiple entries for its �lter

condition as in Figure 5.4. Based on the engine chosen for this �lter, dur-

ing �ow conversion we may use the engine agnostic snippet (pengine�h f ms,
we use `hfms' as a label of logical constructs) or the engine speci�c snippet

(pengine�sql, here, `sql' stands for generic SQL code, but it is also possible to

specify a speci�c database engine) to produce the appropriate �ow semantics.

Beside expressions, the same logic is also followed to encode other engine spe-

153

Chapter 5. Engine Independence for Logical Analytic Flows

ci�c elements like schemata attribute properties (e.g., data types) in di�erent

languages.

3.4 Dictionary

A logical operator may have multiple physical implementations either on a sin-

gle engine or across multiple engines. For example, a join operator can be

implemented as a nested loop or hash join in a database and as a replicated or

skewed join in PigLatin. In order to achieve engine inter-operability and pre-

serve �ow semantics across multiple engines, we need a means for translating

engine speci�c characteristics from one engine to another. To deal with this,

we implemented a dictionary of mappings. In addition to keeping information

useful for code interpretation and generation, the dictionary also contains at-

tributes that can be used during �ow processing, like the operator cost models

speci�c to an implementation and engine.

The dictionary comprises: (a) categories; (b) language speci�c mappings;

and (c) operation mappings (see Figure 5.5-left).

Categories describe in a machine-processable way the dictionary structure

and mapping types. The mappings connect the di�erent incarnations of �ow

constructs for multiple engines. Categories are used as an index and allow

changing the dictionary at runtime without a�ecting our system's operation.

For preserving �ow semantics across engines, we handle di�erent data types,

expressions, and operators with the language speci�c mappings in physical to

logical conversion and the operation mappings in logical to physical translation.

The language speci�c mappings implement the DMS mappings and are en-

gine speci�c, as they capture the intrinsic characteristics of an engine and map

them to a-xLM. Many engines separate the logical operator names from the

internal, physical name corresponding to a speci�c implementation. For exam-

ple, PigLatin FILTER translates into LOFilter when the script code translates

into an execution plan. There is also a variety of representations for functions

and operands used in expressions across engines; e.g., the function ROUND is

invoked in PigLatin as a call to a library (org.apache.pig.builtin.ROUND). Di�er-

ences also occur among data types, and thus, we convert engine speci�c data

types to logical data types.

The operation mappings implement the DMO mappings and describe the

logical operations supported; e.g., operator and data store types. Figure 5.5-

right shows an example entry in the dictionary for a FILTER operator, which has

multiple implementations per engine and across engines. An operator entry has

associated attributes, including: a logical operator name (e.g., 'hfms.name'=

'FILTER'), a link to a cost model for computing the operator's cost, and tem-

plate structures for the translation of the operator to a physical implementation.

Figure 5.5-right shows example implementations: in PigLatin, Filter; in SQL,

Selection; and in Pentaho PDI, an open source ETL tool, two implementa-

154

3. Architecture

{
 "categories":[
 {"cat":"optype"},
 {"cat":"boolop"},
 {"cat":"mathop"},
 …
],

 "operations":[
 ...
 {"category" : "optype",
 "hfms.name" : "Filter",
 "cost": "HFMS.FILTERCOST",
 …
 },
 ...
],
 "pig_ls_mappings":{
 ...
 "LOFilter":"FILTER",
 ...
 "org.apache.pig.builtin.ROUND":"ROUND",
 ...
 "GreaterThan":">",
 ... }
}

{"category" : "optype",
 "hfms.name" : "Filter",
 "pig":[{"name" : "Filter",

 "ptype":[{"filter_cond" : "BY"}],
 "cost":"pig.FILTER"
 }],

 "sql":[{"name" : "Selection",
 "ptype":[{"filter_cond" : "WHERE"}],
 "cost":"sql.SELECTROWS"
 }],

 "pdi":[{"name" : "FilterRows",
 "ptype":[{"filter_cond" : "condition"}],
 "impl":"FilterRows",
 "cost":"pdi.FILTERROWS"},

 {"name" : "JavaFilter",
 "ptype":[{"filter_cond" : "condition"}],
 "impl":"JavaFilter",
 "cost":"pdi.JAVAFILTER"}]

}

Fig. 5.5: Example entries in the dictionary

tions of �lter, FilterRows and JavaFilter. The physical implementation details

can be used in code generation or by a �ow processor; e.g., for choosing the

appropriate cost model for an operator. Other attributes stored for operators

include links to code templates or implementation speci�c, physical properties

like whether an operator is order preserving, parallelizable, streaming, etc.

Implementation. The dictionary can be implemented in various ways. In

our implementation, we use a single �le in JSON format; but other formats are

straightforward to use.

Maintenance. Modifying the dictionary is a semi-automated process. It is

extensible to new engines and implementations. For adding a new language

or modifying an existing one, we use a template dictionary instance. When

we �nish entering the details for the new/updated language, then we use an

automated mechanism for updating the dictionary accordingly.

3.5 Error handling

Translation failures may occur for various reasons; e.g., unavailable mappings or

non-supported operations in an engine, connection or machine failures, runtime

errors especially as we probe an engine to get an explain plan or run a sample

�ow to get runtime statistics. To the extent possible, we catch these errors and

propagate them back to the user.

Errors such as incorrect dictionary mappings are harder to catch. Akin to

proving a compiler is correct, it is hard to formally prove correctness properties.

However, we can provide the user with a crude test-and-learn mechanism [38] to

validate a mapping through experimentation with example data. In Section 7.2,

we discuss experiments on correctness.

155

Chapter 5. Engine Independence for Logical Analytic Flows

xLM generator

flow

dictionary

map node to
dictionary and

get agnostic desc

xLM
node

output
engine

agnostic xLM

script parser

parse each
node

engine
agnostic xLM

start with
a flow

script

produce
explain plan

for script

engine

plan

start with
a script

flow parser

parse each
node

flow engine

analyzed
node

analyzed
node

Fig. 5.6: Import single �ow

4 Physical to Logical

This section deals with Problem 1 and describes how we convert a physical,

analytic �ow into an engine agnostic, logical �ow. We distinguish two cases:

single �ows and multi-�ows. Hybrid �ows come as a variation of multi-�ows.

4.1 Single �ow

Converting a physical, single �ow GP to a logical �ow GL is described by a

mapping MGP ,GL . The main challenge here is to understand the semantics of

a physical �ow or else, of a script of execution code, and map it to a logical

representation. For solving this, we �rst present how we parse execution code

and convert it to xLM (see also Figure 5.6). Another challenge is how we deal

with many-to-one mappings as in some languages a computation may require a

di�erent number of operators than in others. We can solve this either explicitly

using the dictionary or implicitly as we discuss shortly.

One approach for parsing �ow speci�cations would be to use a language

speci�c parser to parse its source code. For some �ows, like Map-Reduce pro-

grams, STORM programs, R scripts, etc., this might be the only solution. For

several languages, e.g., SQL, there exist third-party parsers. In general, writing

a language speci�c parser can be cumbersome. However, if the system provides

an explain plan1, as do database engines or Hadoop languages like PigLatin, we

parse the plan instead of the code. We prefer using the explain plan because it

is easier to parse and, coming from the engine, we know that it is syntactically

correct. In addition, it provides extra information, which is not easy or some-

times even impossible to �nd by parsing the source code directly, such as cost

1An explain plan shows the physical operators and data �ow an engine uses to execute a
�ow.

156

4. Physical to Logical

estimates per operator, input data sizes, operator implementation, etc. Our

script parser analyzes the explain plan (or the source code if the plan is not

available) and gets engine speci�c information for each operator or data store

of the �ow. The script parser is engine speci�c and is added to the system as

a plug-in.

The script parser pipelines information for each operator or data store to

the xLM generator. This generator probes the DM dictionary to map physi-

cal to logical operators. According to the mappings found, the engine speci�c

information is replaced accordingly. For example: the engine speci�c operator

type is transformed to a logical operator; an engine speci�c expression is trans-

formed to the form supported by the dictionary; the cost or data size estimates

are used to feed the appropriate, implementation speci�c cost models that are

essential for �ow processing (e.g., optimization); and so on. Sometimes there

are one-to-one mappings from one engine to another or to xLM. However, there

are cases where the mappings are more complicated. For example, in PigLatin

we can use two operators to specify aggregation (see Figure 5.2):

N = GROUP C BY (okey);

F = FOREACH N GENERATE group,SUM(C.qty)as qty;

Other programming languages perform the same calculation with a single op-

erator. For example, in SQL we write:

SELECT SUM(qty)as qty FROM lnitm GROUP BY okey;

Many-to-one mappings can be resolved explicitly with a speci�c dictionary

mapping or implicitly. For example, there are one-to-one mappings in the

dictionary that map PigLatin.GROUPBY and PigLatin.FOREACH_GENERATE to

logical GROUPER and PROJECT operators and from there to SQL.GROUPBY and

SQL.PROJECT, respectively. Our language speci�c parser (i.e., the `xLM �ow

processor' module in Figure 5.9) is enriched with additional smarts: when a

logical GROUPER operator is followed by a logical PROJECT operator and i�

the involved schemata match (e.g., PROJECT only uses the grouping attributes

and the aggregates from the GROUPER) and the combination is valid, then

we combine the two operators into one, generalized GROUPER. For no valid

mappings, the process halts and asks for directions.

When all nodes have been processed, we output the engine agnostic a-xLM.

This represents a logical �ow abstraction.

Parsing the �ow speci�cation as described above is one way to create a

logical �ow. We use an alternative approach when an analytic �ow has been

created by a �ow design tool like an ETL or a work�ow tool. Instead of a script

parser, it involves the engine itself (see left, bottom corner of Figure 5.6). This

is more e�ective when access to the engine codebase is permitted. For example,

we implemented this method in PDI, where we over-write the default printer

method so that, for every �ow node, we get the respective information (e.g.,

logical and physical) and pipeline it to the xLM generator [165]. The subsequent

steps are as before.

157

Chapter 5. Engine Independence for Logical Analytic Flows

4.2 Multi-�ow import

If the input �ow comprises a multiplicity of single �ows, possibly written in

di�erent languages, we work as follows. To abstract away the intrinsic charac-

teristics of each language, we �rst process each single �ow separately to create

their logical counterparts. Then, we deal with three problems: (a) identify ap-

propriate connect points that link single �ows within a multi-�ow, (b) choose

appropriate connector operators, and (c) compose them into a single �ow. For-

mally, this process is de�ned as a composition, cmp, over the physical to logical
mappings: cmpp

�
iPIK

MGPi
,GLi
q.

4.2.1 Composition

To deal with these problems, we formulate �ow composition as a series-parallel

graph (SPG) composition problem [49]. SPGs are created by composing two-

terminal graphs (TTG). We may have parallel or series composition of two

TTGs. The former produces a new TTG created from the disjoint union of the

two graphs by merging their sources and their sinks to create a new source and

sink, respectively, for the new TTG. The latter produces a TTG created from

the disjoint union of the two graphs by merging the sink of the �rst graph with

the source of the second.

Formally, a TTG is a triple pG, s, tq, where G � pV, Eq is an acyclic di-

graph and s,t P V; s is called a source and t a sink of G. Assume two TTGs

ppV1, E1q, s1, t1q and ppV2, E2q, s2, t2q. Assuming t1 � s2 (reads t1 connects to

s2), the connect point is de�ned as V1 XV2 � tt1u. Then, the series composi-

tion of the two TTGs is the TTG: ppV1YV2, E1Y E2q, s1, t2q. Assuming t1 � t2
and s1 � s2 as connect points (i.e., V1XV2 � ts1, t1u), the parallel composition

of the two TTGs is the TTG: ppV1 YV2, E1 Y E2q, s1, t1q.

In our case, a graph may have more than one source and/or sink vertices.

However, it can be seen as a TTG if we work as follows. Considering a series

of �ows in a partial order, we begin with the �rst and last �ows. If the �rst

�ow has more than one source, we add a dummy root vertex and connect the

�ow sources to the root. This dummy vertex has no semantics and used only

for the composition. We do the same for the last �ow if it has more than one

sink vertex. (We work similarly if the partial order de�nes more than one `�rst'

or `last' �ows.) For all the other �ows in the series, we de�ne a single connect

point between two connecting �ows at a time. Hence, any �ow in the series

can now be seen as a TTG.

The above drawing shows an example involving two graphs G1 and G2. G1
has two source nodes and by adding a dummy root, R, we create a single point of
entry. For connecting G1 to G2 we need to identify a connect point. Assuming

this is de�ned between vertices T11 and S21 �e.g., these two may represent the

same physical storage, like a �le� we are able to identify the TTGs involved in

158

4. Physical to Logical

S11

S12

O11

T11

T12

S21 O21 T21

G1G1
G2G2

S11

S12

O11

T11

T12

S21 O21 T21

G1G1
G2G2

R

S11

S12

O11

T11

T12

S21 O21 T21

G1G1
G2G2

R

this composition as the graphs R Ñ � � � Ñ T11 and S21 Ñ � � � Ñ T21.

We identify connect points in two ways. First, these can be explicitly de-

�ned by the user, e.g., in the form of metadata. Alternatively, these points can

be inferred based on an analysis of the input �ows. When the �ows contain

connectors (described shortly), these may connect �ows to the same data stor-

age, which is then automatically used as a connect point; e.g., one �ow writes

to a �le or a table and a following �ow reads from it. We can also discover

compatible vertices between two �ows, based on the similarity and compati-

bility of their output (for vertices in the �rst �ow) and input (for vertices in

the second �ow) schemata. We process pairs of �ows based on their execution

order2 and search for possible matchings between the sink vertices of the pre-

ceding �ow and the source vertices of the following �ow. Exact matches are

candidate connect points. For approximate matches, we perform conservative

schema refactoring by changing the names of the inputs and/or outputs. An

application of this technique has been used for demonstrating composition of

PigLatin scripts [151]. User feedback is requested if no match is found. Ad-

vanced schema matching and mapping techniques [136, 99] could be used too,

but we consider this is as an interesting future direction.

Note that �ow composition is not shown in Figure 5.6, which only shows

import for single �ows. For multi-�ows, a `�ow composer' module analyzes the

individual, logical graphs produced and performs the composition as discussed.

4.2.2 Connectors

As we identify candidate connect points, we also determine appropriate opera-

tors to realize the connections. At a logical level, a link between single �ows is

modeled in the �ow with a connector operator. At a physical level, connectors

delimit sub�ow boundaries and, possibly, engine barriers, i.e., operators on ei-

ther side of a connector may run on di�erent engines. Based on the connection

semantics, a number of connection types are supported: pipeline, blocking,

check point, and control point (Figure 5.7). Check points can be useful for

recoverability or synchronization. Control points moderate the data �ow ac-

cording to a condition; e.g., wait until x% of the data has arrived, send batches

2 Single �ows may come as di�erent scripts with metadata determining their execution
order. Without such a metadata, the user de�nes the order. Here, without loss of generality
we assume that the execution order is provided.

159

Chapter 5. Engine Independence for Logical Analytic Flows

© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

T1 T3

T2

store point

o1 o2

T1 T3T2

blocking

o1 o2

T1 T3o1 o2cp2

control point

T1 T3

pipeline

o1 o2

T1 T3

T2

store point

o1 o2

T3T2

blocking

o1 o2

T1 T3o1 o2cp2

control point

T1 T3

pipeline

o1 o2 T1

Fig. 5.7: Connection types

every y time units, etc. As a syntactic sugar, in the �rst three cases, an explicit

connector operator may be omitted from the �ow graph design.

As said, given a multi-�ow, the connectors may be speci�ed explicitly,

through metadata associated with the �ow, or determined implicitly. Implicit

connectors are located during the physical to logical conversion by looking for

operator patterns. Figure 5.8 illustrates two example types of sub�ow connec-

tivity.

Figure 5.8-left shows an inter-engine connection from a PigLatin sub�ow to

a SQL sub�ow. The connector executes on the consumer sub�ow and reads

data from an HDFS �le (many db providers o�er such connectors). In such

cases, the connect point between the two sub�ows can be inferred by looking

into their sink and source nodes as discussed.

Figure 5.8-right shows two sub�ows where no connectors have been spec-

i�ed nor can any be inferred. In this case, we analyze the terminal nodes of

the graphs and if we identify compatible vertices, we add an appropriate con-

nector. If no match is found, then we ask the user to resolve the ambiguity.

Suppose the user speci�es a connector between HDFS f ile1 (F2) and database

table T1. The �gure shows two possible connectors. We can automatically

enrich the producer sub�ow with a connector at its output, which will even-

tually be converted to PigLatin during code generation �see Section 6; this is

shown in bold, red in the (I) solution. Alternatively, we can add extra oper-

ators packaged as glue code to read from the storage point of the �rst �ow,

f ile1, and load data to the matching, entry point of the second �ow, T1; the
(II) solution includes the parts of the scripts encircled by the blue dotted line.

The choice between the two solutions depends on parameters like availability

(not all engines support explicit connectors), costs, or user choice. Regarding

costs of di�erent connecting paths, we use a cost model based on a combination

of micro-benchmarks and runtime statistics monitoring the system status (e.g.,

disk i/o, network congestion). A discussion on the costs is outside the scope of

this chapter (more details in [163]).

To uniformly capture the di�erent cases in MGP ,GL , metadata for logical

connectors includes semantics of these cases. A �ow processor may exploit it

160

5. Flow Processor

© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

F1

F2

o1

T1

T2

flow1

flow2

connection point

o2

ic
input engine
connector

engineX

engineY

engine barrier

A = load (…);
B = filter A by x=1;
Store B into “hdfs://…/file1”;

copy T1 source
hdfs(url='hdfs://…/file1',…);
do_something_with(T1);

PigLatin

SQL

F1

F2

T1

flow1

flow2

connection
point

engineX

engineY

T2

o1

o2

engine
barrier

create tmp table T2
select * from T1;

SQL

A = load (…);
B = filter A BY …;
Store B into “file1”;
Store B into “{T1(…)}”

using dbConnector(…);

PigLatin (I)

Glue code (II)
Read from “file1”;
….
Load to table T1;

Fig. 5.8: Example connectors for hybrid �ows

as needed. This metadata is also used in converting a logical connector to a

physical connector. The metadata is captured as xLM properties like: pipeline

or blocking connections; disk or memory storage; the type of the encapsulated

data stores for blocking connectors; the �ow lineage, in which single �ow a part

of the multi-�ow originally belongs to; �le paths; db connections; partitioning

and clustering schema; etc. As an aside, in some cases it is reasonable to

convert a blocking connector (e.g., a storage object) to a pipelined connector.

For example, if the storage object is a temporary table in a SQL script and

it only has one reader, then the �ow that produces the data can be pipeline

connected to the �ow that consumes the table. But we need to be careful, since

there may be other objects (e.g., other �ows) that may use this storage.

5 Flow Processor

A �ow processor takes as input a logical �ow graph, performs some transfor-

mation on that graph, and produces as output a second logical graph that is

functionally equivalent to the input but with di�erent properties.

As discussed, the HFMS optimizer is one example of a �ow processor. An-

other �ow processor might be used to decompose a long �ow into sub�ows or

to compose multiple sub�ows into a single �ow. A more detailed analysis of

the modules that handle �ow processing can be found elsewhere [164].

In the context of this chapter, an important function of a �ow processor is

to alter connectors. For example, �ow composition would remove connectors.

Flow decomposition would add connectors. Flow optimization may include

function shipping, i.e., moving an operator from one engine to another, which

161

Chapter 5. Engine Independence for Logical Analytic Flows

involves swapping the position of an operator and a connector. Retargeting a

single �ow from one engine to another involves modifying the metadata for the

connector to the new engine. Once the connectors are determined, so are the

engine boundaries. Since connectors link sub�ows on di�erent engines, given

the engine assignment, a physical �ow can be generated. Note that the engine

assignment can also be de�ned manually by a system administrator.

6 Logical to Physical

This section deals with Problem 2 and describes how we convert an engine

agnostic, logical �ow �rst into a physical, engine speci�c �ow, and then, to

executable code that can be dispatched to execution engines.

6.1 Creating an engine speci�c �ow

A logical graph is engine agnostic, a-xLM. A �ow processor determines on what

engine(s) it will be executed and thus, we convert a-xLM to s-xLM using this

information. If the entire �ow has been assigned to a single engine, we proceed

directly to the conversion. If the operators of the logical �ow have been as-

signed to multiple engines, then before converting GL to GP, we decompose the

logical �ow, dcmppGLq, to single �ows, GLj , each running on one engine (see

Problem 2).

6.1.1 Decomposition

For a logical �ow GL�pVL, ELq, the connectors between sub�ows assigned to

di�erent engines are engine barriers (see also Figure 5.8). For creating single

�ows, we split the logical graph at the engine barriers. The result of this split

is a set of weak graph components, each one corresponding to a single �ow.

A weak component is the maximal subgraph in which all pairs of vertices in

the subgraph are reachable from one another in the underlying subgraph. The

weak components are stored in a list according to a topological sort of the

original �ow; each weak component, i.e., single �ow, is prioritized according

to the topological order of its vertices in the original, composed �ow. These

priorities will determine the execution order of the scripts produced in code

generation, as we describe shortly.

6.1.2 Conversion

Converting a logical �ow GLj to a physical �ow GPj is described by a mapping

MGLj
,GPj

(see also Figure 5.9). GLj is encoded in a-xLM, which describes the

main �ow structure, but also carries engine speci�c details captured during

MGP ,GL , like paths to data storage or design metadata. These details are now

162

6. Logical to Physical

xLM flow processor

code
templates

execution
code

xLM generator

engine
agnostic xLM

dictionary

process each
xLM node

analyzed xLM
logical node

map node to
dictionary and get

engine specific desc

engine specific
xLM node

output engine
specific xLM

engine
specific xLM

start with an
engine agnostic

xLM flow

generate code
for specific

engine

Fig. 5.9: Convert a-xLM to s-xLM and generate code

<param>
<pengine>hfms</pengine>
<ptype>filter_cond</ptype>
<expr>

<leftfun/>
<leftop>Input_1.extprice</leftop>
<oper>></oper>
<rightfun>$$ ROUND($1) *(1 + $3)</rightfun>
<rightop>Input_1.retprice, Input_1.tax</rightop>

</expr>
</param>

a-xLM

<param>
<pengine>sql</pengine>
<ptype>where</ptype>
<expr>

<leftfun/>
<leftop>Input_1.extprice</leftop>
<oper>></oper>
<rightfun>$$ ROUND($1) *(1 + $2)</rightfun>
<rightop>Input_1.retprice, Input_1.tax</rightop>

</expr>
</param>

s-xLM

C = FILTER M BY (extprice > ROUND(retprice) * (1+tax));
PigLatin

(1) PigLatin Expr(2) Expr a-XLM

(3) a-XLM Expr

(4) Expr s-XLM

‘>’

‘*’
‘+’

tax

‘ROUND’

1retpriceextprice

(5) s-XLM SQL
SELECT extprice, tax, retprice FROM part, lnitem
WHERE extprice > ROUND(retprice) * (1+tax)

SQL

Fig. 5.10: Example expression tree usage

used for producing s-xLM. For space considerations, we omit an extensive de-

scription of the conversion of a-xLM constructs into s-xLM. The dictionary is a

centerpiece in this process as it contains templates with default metadata infor-

mation for operator representation in di�erent engines as part of the language

speci�c mappings, DMS.

We elaborate on the conversion of expressions as an indicative example.

Operators have parameter schemata describing their functionality. Typically,

this information is represented with an expression. Expression formats vary

across languages so, during the import phase, the original expressions are trans-

formed into the logical format that our system understands. Now, we perform

the reverse operation and convert them to a form that the targeted engine can

process. There are two issues.

First, we determine the context of the expression. For example, an expres-

sion may describe a �lter condition or may de�ne a new projection schema;

e.g., in SQL these correspond to conditions in the WHERE and SELECT clauses,

respectively.

Second, apart from the metadata, we need to parse the expression itself.

Expressions, like mathematic expressions or built-in functions, may be rep-

resented di�erently in di�erent engines. For example, a conjunction may be

163

Chapter 5. Engine Independence for Logical Analytic Flows

written as `X AND Y' or `AND(X,Y)' or `X && Y', etc. Similarly, built-in func-

tions may also di�er from engine to engine. For example, SQRT(a) in SQL,

Math.sqrt(a) in PDI, org.apache.pig.builtin.SQRT(a) in PigLatin, etc. Hence, dur-

ing the conversion from physical to logical, we map the engine speci�c forms

to logical forms as follows. Starting from an engine speci�c expression, we

�rst build an expression tree, whose nodes are operators and built-in functions

found in the expression, while the leaves of the tree are the attributes and

constants included in the expression. Now, we reuse this tree for producing an

engine speci�c expression (possibly for another engine). We use the dictionary

to retrieve suitable mappings for the constructs of the expression (e.g., AND or

&&, built-in functions) and the proper usage of such expressions (e.g., `X AND

Y' or `AND(X,Y)').

Figure 5.10 shows a transformation for the FILTER of Figure 5.2. As dis-

cussed in Section 6, starting from PigLatin, we identify the expression describ-

ing its �lter condition (step 1 in Figure 5.10), create an expression tree, and

produce a-xLM (step 2). We now reuse the expression tree (step 3) for creating

s-xLM for SQL (step 4), and �nally, produce SQL code (step 5).

An overview of the conversion of a-xLM to s-xLM is depicted in Figure 5.9

(on the left of the vertical dashed line).

6.2 Code generation

This section describes how we generate code from s-xLM; see also Figure 5.9,

on the right of the vertical dashed line.

We generate code separately for each of the decomposed, single engine spe-

ci�c �ows; these tasks are done in parallel. In each single �ow, we process the

�ow operations following a topological sort of the �ow graph to ensure that

before generating a code snippet all its prerequisites have been created. At the

end, we produce orchestration code to package (e.g., as a shell script) the code

pieces for execution.

Next, we describe a template mechanism that enables code generation and

then, we give an example of code generation for SQL �other languages are

omitted for space considerations.

6.2.1 Templates

For each operator implementation in the dictionary, we de�ne a code template

with formal parameters, which can be used to produce code for a graph con-

struct. We distinguish two groups of templates: code and metadata templates.

Code templates produce executable code directly when they are appropriately

instantiated (e.g., a template for producing a SQL or PigLatin statement).

Metadata templates produce meta-code interpretable by design tools, like ETL

tools, which store the �ow metadata in a speci�c format (e.g., in an XML or

164

6. Logical to Physical

JSON script). This format is later used for importing a �ow into those exter-

nal tools, and then at compile time, the tools create the appropriate execution

code.

In our current implementation, we support a fairly large number of opera-

tors (more than a hundred) and it is relatively easy to register a new one. Our

code templates are expressed in JavaScript and are invoked by a script engine

at runtime. For the example FILTER of Figure 5.5, simpli�ed example code

templates for PigLatin and SQL are as follows:

function pig_FILTER(args) {

return args.operator + " =\n FILTER "

+ args.producer + "\n BY " + args.param + ";";

}

function sql_SELECTROWS(args) {

w=(args.where=="")?"":" \nWHERE " + args.where;

g=(args.groupby=="")?"":" \nGROUP BY " + args.groupby;

h=(args.having=="")?"":" \nHAVING " + args.having;

o=(args.orderby=="")?"":" \nORDER BY " + args.orderby;

return "SELECT "+args.out+"\nFROM "+args.in+w+g+h+o+";";

}

When code is generated, the formal parameters are replaced by the actual

parameters from the engine speci�c �ow in order to generate a code snippet

for the operator. The operator metadata also includes formal schemata for the

input and output data sets, which specify the required and optional �elds of

each input record and the �elds of the output records. In addition, there is a

parameter schema that speci�es the formal parameters, if any, needed for the

operator. The data stores also have associated metadata, like a size estimate

of the data set, as number of records, and a schema for the records. For data

stores, the metadata also includes the location of the data store.

The code templates for the above, example �lter operator can be instan-

tiated as Z = FILTER X BY Y (PigLatin) and SELECT Z' FROM X WHERE Y (SQL),

assuming that the �lter operator has a parameter schema Y, a producer oper-

ation X, and a consumer operation Z with input schema Z'.

In addition to generating code for operators, we can also generate code

that implements data �ow between operators. There are two cases. If both

producer and consumer operators use the same underlying execution engine,

the execution form for that engine may have syntax for connecting the two

operators, e.g., nested SQL clauses or pipelining Unix shell scripts. If no syntax

is available, e.g., PigLatin, the output of the producer can be placed in a

temporary data set which is then speci�ed as an input to the consumer. If

either the producer or the consumer is a connector, then, as we discussed in

Section 4.2, connector code snippets are generated to transfer the dataset across

engine.

165

Chapter 5. Engine Independence for Logical Analytic Flows

6.2.2 Code generation - The SQL case

For space considerations, we describe code generation with code templates. We

work similarly with metadata templates.

The designer may in�uence the style of generated code. For example, a

nesting �ow may run faster. But a decomposed �ow splits the computation

into shorter phases that use fewer resources and under certain conditions may

reduce contention for system resources. Also, a designer might want to decom-

pose a complicated, nested SQL query (e.g., perhaps a query generated by a

reporting tool) into a script of sub-�ows in order to resolve a data consistency

issue (i.e., by exposing intermediate results). The �nal form of the executable

depends on the designer's objectives. There are trade-o�s among response time,

throughput, maintainability, etc. in using these forms. In di�erent ways and

at di�erent times, both styles can be useful.

HFMS o�ers an interactive environment, where a designer may explore

and test alternatives for �ow execution by indicating the degree of pipelining

desired for the executable code. At one end of the spectrum, blocking may

be speci�ed. In this case, every operator is made into a blocking operator by

simply inserting the output of the operator into a temporary table. At the

other end of the spectrum, pipelining may be speci�ed. In this case, the entire

�ow is generated �if possible� as a single SQL statement by using nested SQL.

Note that this does not convert a blocking operator into non-blocking. For

example, even sort operators are nested even though this operator is blocking.

However, it enables the SQL engine to optimize the entire �ow as a single

statement which should produce more e�cient code, but perhaps less readable

or maintainable.

Between the two extremes, a user may specify pipelining that uses tem-

porarily tables either more or less aggressively. We use heuristics to determine

where to insert the temporary tables, like after a naturally occurring blocking

operator, since no pipelining can occur with such an operator anyway. We

also use estimates of the size of the datasets as well as available resources to

determine whether to use temporary tables or not. For example a small data

set may easily be bu�ered in memory to reduce the amount of I/O. A large

data set may need to be spooled to disk even if pipelining is speci�ed.

Under the hood, the user or a �ow processor may choose a nesting strategy.

We �rst split the �ow graph at breaking points into query paths. Breaking

points denote where a new subquery should start or a temporary table may

be needed. Example breaking points are operators with multiple output (e.g.,

Router) and multiple input (e.g., Merger) paths. Then, we process each query

path and construct a SQL subquery; depending on the nesting level, this may

be a single query or it may contain temporary tables. If a query path contains

a data storage (e.g., source table, intermediate table) then an appropriate DDL

statement is constructed too.

166

7. Evaluation

For creating a nesting query, we use template placeholders in the SQL

expression of each operator and afterwards, we replace it with an appropriately

constructed subquery. For example, the SQL expressions for the operators of

a sub�ow T1ÑN2ÑN3 may be as follows:

T1: create table T1 ...; --T1 may already exist too

N2: select * from ##T1##;

N3: select * from ##N2##;

Following a topological sort, we resolve dependencies by replacing the place-

holders ##T1## and ##N2## with the respective expressions. Based on the nesting

level, we create the �nal query as follows. For maximum nesting, we have:

select * from (select * from T1) as N2;

For a lesser nesting level and assuming that N2 is a breaking point, the templates

for N2 and N3 would be:

N2: create temp table TEMP_N2 as select * from ##T1##;

N3: select * from ##N2##;

and the �nal query is:

create temp table TEMP_N2 as select * from T1;

select * from TEMP_N2;

Finally, we produce the �nal SQL expressions for tables, temporary tables,

and the main (nested) query. Due to space considerations, we omit a formal

description of this algorithm.

7 Evaluation

We demonstrate the utility of our techniques by showing representative results

of our system behavior.

7.1 Preliminaries

Implementation. The system we described here comprises an API module

for our hybrid �ow management system (HFMS). The API is implemented in

about 25K lines of Java code. The dictionary is implemented in JSON. xLM

template operators are built with Apache Velocity 1.7. Code generation is

performed with embedded JavaScript. For engine support, when we do not use

code parsers, we parse execution plans that we get either by probing the engine

(e.g., JDBC for SQL) or by using an external library of the language without

connecting to the engine (e.g., PigServer for PigLatin). We also modi�ed the

open source codebase of PDI to make it xLM aware.

Methodology. In the evaluation, we focus on three languages: SQL (sql)

running on a commercial DBMS, PigLatin (pig) running on Hadoop 0.20.2,

167

Chapter 5. Engine Independence for Logical Analytic Flows

0

200

400

600

800

1000

1200

1400

q1 q6 q4 q1
3

q1
6

q1
9 q3 q1
1

q1
7

q1
8

q1
0

q2
1 q5 q9 q2

sql-axlm sql-pp pig-axlm pig-pp

0

10

20

30

40

50

q1 q6 q4 q1
3

q1
6

q1
9 q3 q1
1

q1
7

q1
8

q1
0

q2
1 q5 q9 q2

sql-b sql-l sql-n pig pdi

0

100

200

300

400

500

600

q1 q6 q4 q1
3

q1
6

q1
9 q3 q1
1

q1
7

q1
8

q1
0

q2
1 q5 q9 q2

sql pig pdi

Fig. 5.11: Time analysis for 15 TPC-H �ows (times in msec): (a) from SQL/Pig code to
a-xLM, (b) from s-xLM to code, (c) from SQL code to xLM to code

and PDI �ows (pdi) running on the community edition of Pentaho PDI 4.4.0.

Our intention is to show that our techniques work for both declarative and

procedural languages, but also for �ows expressed as metadata.

We used �ows written in all three languages implementing the logic of 15
TPC-H and 15 TPC-DS queries. We chose these as representative examples

of transactional and analytical scenarios. We also used 10 custom made �ows

combining ETL and analytical logic and having their sub�ows implemented

either in one (multi-�ows) or in two (hybrid �ows) languages.

7.2 Experiments
0 20 40 60 80

m1-(2)

m2-(2)

m3-(2)

m4-(2)

m5-(2)

m6-(3)

m7-(3)

m8-(3)

m9-(4)

m10-(4)

multi-flows

0 20 40 60

h1-(2)

h2-(2)

h3-(2)

h4-(2)

h5-(2)

h6-(3)

h7-(3)

h8-(3)

h9-(4)

h10-(4)

hybrid flows

0 20 40 60 80

m1-(2)

m2-(2)

m3-(2)

m4-(2)

m5-(2)

m6-(3)

m7-(3)

m8-(3)

m9-(4)

m10-(4)

multi-flows

0 20 40 60 80

h1-(2)

h2-(2)

h3-(2)

h4-(2)

h5-(2)

h6-(3)

h7-(3)

h8-(3)

h9-(4)

h10-(4)

hybrid flows

Fig. 5.12: Flow composition (times in msec)

168

7. Evaluation

0

20

40

60

80

100

120

q3 q4
2

q5
2

q5
5

q2
2

q3
7 q7 q2
6

q2
7

q7
9

q2
5

q8
4

q6
8

q9
1

q8
1

sql-s2c sql-a2s
pig-s2c pig-a2s
pdi-s2c pdi-a2s

Fig. 5.13: From a-xLM to s-xLM to code
(times in msec)

0

200

400

600

800

1000

1200

1400

q1 q6 q4 q1
3

sql-axlm

0

1000

2000

3000

4000

5000

6000

0 2000 4000 6000

m1-(2)

m2-(2)

m3-(2)

m4-(2)

m5-(2)

m6-(3)

m7-(3)

m8-(3)

m9-(4)

m10-(4)

flow inputs
mf - sql-l
mf - sql-n

0 20 40 60 80

1-(2)

2-(2)

3-(2)

4-(2)

5-(2)

6-(3)

7-(3)

8-(3)

9-(4)

0-(4)

multi-flows

0 20 40 60

h1-(2)

h2-(2)

h3-(2)

h4-(2)

h5-(2)

h6-(3)

h7-(3)

h8-(3)

h9-(4)

h10-(4)

hybrid flows

1-(2)

2-(2)

3-(2)

4-(2)

5-(2)

6-(3)

7-(3)

8-(3)

9-(4)

0-(4)

multi-flows h1-(2)

h2-(2)

h3-(2)

h4-(2)

h5-(2)

h6-(3)

h7-(3)

h8-(3)

h9-(4)

h10-(4)

hybrid flows

0 1000 2000 3000

h1-(3)

h2-(2)

h3-(3)

h4-(2)

h5-(3)

flow inputs
hb1
hb2

Fig. 5.14: Flow execution (times in msec)

7.2.1 Correctness

We evaluated the correctness of our methods in two ways: (a) comparing the

code generated, and (b) examining the results produced by executing all sce-

narios used in all three code variants: SQL, PigLatin, and PDI.

Compare code. We compared the original code and execution plans (where

available) to both the code produced and the execution plans the engines cre-

ated for the new code. For a fair comparison, (a) we created snippets in the

language they were originally written in and disabled any interaction with the

�ow processors, and (b) we brought the original and new snippets in the same

format: same capital/small letter format, trim extra spaces and indentation,

etc. We also round-tripped the translation of scripts starting from one lan-

guage, converting them to the other two languages in a random order, and

then back to the original language. All scripts compared were semantically

equivalent. However, there were also di�erences as follows.

Di�erent variable names: this is due to the code re-factoring done in com-

position for enabling schema matches and due to the operator and variable

name substitution performed to add semantics to a script; e.g., change one-

char names in PigLatin like `C=Join...' with `C_LOJoin=Join...'.

Di�erent placing order: operators belonging to the same execution order

class �i.e., operators without dependencies amongst them� may be placed dif-

ferently; e.g., two operators f ilter1 and f ilter2 may be reordered as f ilter2 and

f ilter1.

Di�erent �avor of code: the code produced may have di�erent nesting degree

(e.g., number of intermediate tables).

Compare results. We ran all �ows in their original con�guration. We then

produced new �ows by varying combinations of the following attributes: target

engines (single and multiple engines) and decomposition level (ranging from

full nested to full blocking). For all scripts, the produced results after running

code variants for the same �ow were identical to the original, except, for row

order, when it was not speci�ed in the �ow.

As a side note, the results we report here are indicative of our e�ort to

169

Chapter 5. Engine Independence for Logical Analytic Flows

evaluate our translators. During implementation, we have gone through the

language speci�cation, translated each operator, and ran tests with it. Of

course these tests are with speci�c input values and so, while great for catching

obvious programming errors, they may miss data-dependent errors or subtle

implementation di�erences between engines. In addition, we have not per-

formed extensive tests to evaluate program equivalence in side e�ects or failure

conditions.

7.2.2 Performance

We performed experiments focusing on the behavior of our system. All other

features of HFMS (e.g., optimizer, workload manager) were disabled.

Physical to Logical. Figure 5.11(a) shows execution times for creating a

logical graph starting from the 15 TPC-H �ows written in sql and pig. For sql

and pig the di�erent phases during import are: parse a plan (pp) and create a

logical graph (axlm). For pdi, since we changed its codebase to produce directly

xLM, there is only one phase, axlm. For space considerations, we do not plot

the results for pdi, but for the same �ows they range between 5 and 20 seconds.

The �ows in the �gure are placed in increasing order of complexity. We

consider complexity related to the �ow size and type of operators performed;

e.g., nesting or operators with more than one input or output schemata make

parsing more complex. As seen, parsing gets slower with �ow complexity.

Our parsers work di�erently. For sql and pig, some of the smarts in under-

standing the operations involved, nesting, etc. can be inferred from the plan.

In pdi and when we parse code directly, some cycles are also spent for identi-

fying the �ow semantics, get extra information like runtime statistics, sizes of

the involved data sets, etc. In addition, especially for pdi, some extra time (an

avg 2-3sec per �ow) is spent to ensure correct transfer of metadata associated

with the �ow design, not the semantics. A faster implementation is possible by

changing the internals of PDI engine, but since we wanted to leave the light-

est possible footprint and not be highly dependent from future versions of the

engine, we compromised with paying an extra cost for operations not directly

related to a-xLM creation.

We performed similar experiments with the 15 TPC-DS �ows. The times

for converting them to a-xLM starting from sql and pig follow the same trends

as with the TPC-H �ows. axlm dominates the import (an average of 497msec),

while pp was cheaper (avg 88msec). Import for pdi was again slower, between

7 and 24 seconds, for the reasons we discussed.

We performed composition of 10 multi-�ows (m) and 10 hybrid �ows (h) (in
pig and sql). We omit the results for each sub�ow import, since the trend is as

before. Figure 5.12 shows the results of composing the individual sub�ows into

a single logical graph. The y-axis shows the id of each �ow and in a parenthesis,

the number of its sub�ows, K. In most cases, composition takes less than

170

7. Evaluation

40msec. Time di�erence for same K relates to the identi�cation of connection

points (e.g., the hybrid h4-p2q comes with no pre-speci�ed connectors).

Logical to Physical. The avg time for converting a-xLM to s-xLM, for the

TPC-H �ows tested was 3msec and for producing code from s-xLM was 23 for

pig, 15 for pdi, 14 for sql (all times in msec). Figure 5.11(b) shows time needed to

parse s-xLM and generate code for all engines pig, pdi, and sql �in three variants,

blocking sql-b, moderate use of intermediate storage sql-l, and nesting sql-n.

Again, the �ows in the �gure are placed in increasing order of complexity. In

general, we produce sql faster than the other two languages, but on average, this

is close to pdi code creation. For pig, we spend some extra cycles to identify n-

to-m mappings and decompose operators like the GROUPER operation discussed

in Section 4.1.

Figure 5.11(c) shows end-to-end time needed to convert a �ow written in

sql to xLM and from there either to pig, pdi or sql again. These times are pretty

similar, and as the �gure shows too, our system needs less than 500msec for a

full translation. There is similar behavior when we start from pig (on avg less

than 500msec) or pdi, with the latter being slower (5 to 20 seconds) due to the

import cost of PDI �ows.

We observed similar trends for the TPC-DS �ows. These are more complex

�ows, so the conversion a-xLM to s-xLM was a bit slower, averaging 10msec

for all s-xLM variants. Figure 5.13 shows the end-to-end times for the three

languages tested.

For the 10 hybrid �ows, the time to decompose each one to graphs assigned

to pig and sql is less than 2msec. After that, code generation for each sub�ow

is as in the other cases.

Execution. The focus here is on �ow translators, not �ow processors. How-

ever, an indicative example of how translation enables advanced opportunities

in �ow execution is shown in Figure 5.14. We tested 10 multi-�ows and 5 hy-

brid �ows comprising a varying number n of single �ows, denoted as mi-(n) and

hi-(n), respectively. Multi-�ows were improved after composing them as one

�ow, either as sql-l or sql-n, as the database optimizes the whole. hb1 shows

that just composition can improve hybrid �ows, because each engine optimizes

better its sub�ow. hb2 shows the e�ect of additional optimization performed to

the entire �ow (e.g., shipping operations from sql to pig). For space constraints,

we show here only the sql part of the hybrid; pig is much slower (avg 1min) but

is also a�ected positively by hb2. These are examples. A detailed study on the

bene�ts in running processes as hybrid �ows and in modifying a hybrid �ow

workload at runtime can be found in [164, 162].

7.2.3 Discussion

As seen here, and from our overall user experience, the translation is fairly fast

and can be done at run time. If used by a user, the translation is interactive

171

Chapter 5. Engine Independence for Logical Analytic Flows

and o�ers an `instantaneous' feeling. If used by a �ow processor, it does not

add much to the latency of �ow execution. This makes the �ow translators a

useful component of HFMS as it enables features like optimization (provides a

single view of the end-to-end �ow), workload management at a �ow execution

run time (enables new actions like �ow decomposition and �ow shipping when

the targeted engine is unavailable or overloaded), scheduling (�exibility in code

rewriting allows more options in cloud resource provisioning and scheduling),

etc.

On the other hand, our translators are useful as an autonomous system

too. An example use case is code migration. It can be used to migrate legacy

routines to a new language (or even a new version of the language) or to

convert code running on one system to another; e.g., from one database engine

to another that may use di�erent SQL syntax.

8 Related Work

Various systems generate a single type of executable code from a logical graph.

Some systems generate code within a particular family of targets; e.g., database

query systems generate SQL for a variety of database engines. Other sys-

tems generate executable code for more than one execution engine like ETL

systems. But, these systems are in�exible in that they generate identical exe-

cutable code for a given graph. Our system generates various executable forms

from a single graph.

Research on federated database systems considered query processing acro-

ss multiple database engines (e.g., Garlic [149], Multibase [39], Pegasus [48]).

However, our work extends to a large variety of execution engines. Some sys-

tems consider hybrid execution in which queries span two execution engines,

namely a database and a Map-Reduce engines; e.g., HadoopDB/Hadapt [10],

PolyBase [45], Teradata Aster [58]. These are closer to our hybrid �ows, but

they are not designed as a general framework over multiple engines. They

follow an ego-centric logic providing connectors to other engines, whereas we

consider engines as equal peers.

There is research work in code generation for integration �ows. Orchid con-

verts declarative mapping speci�cation into data �ow speci�cations; but the

focus is on ETL jobs [44]. GCIP generates code for integration systems like

ETL and EAI, but not for other execution engines [27]. There is also work on

SQL generation that applies simple rules to compose SQL queries (without sub-

queries) by identifying insert and create/drop table statements and eliminating

intermediate steps [103]. Another work translates BPEL/SQL to BPEL/SQL

using process graph model, but the focus is on business processes [192]. We

di�er for these works, since we can digest more complex �ows written in other

languages too, and can convert them back to multiple languages.

172

9. Conclusions

9 Conclusions

Our work is motivated by the emerging trend of using a diverse set of processing

engines within a complex analytic �ow. Implementing and maintaining these

hybrid �ows at a physical level is a burden and we propose using logical �ows

for engine independence. In this chapter, we describe how engine independence

is supported by HFMS, our Hybrid Flow Management System. We show how

our language, xLM, can encode �ows, both logical and physical elements. We

then show how a physical �ow is imported into HFMS and translated to a

logical �ow that is not bound to a speci�c engine. That logical �ow can then

be translated back to a physical �ow and then to executable code for another

processing engine. These translations are enabled through a dictionary and

engine speci�c mappings that are easy to extend to new engines and new op-

erators. To represent links between sub�ows of a larger �ow, HFMS has a set

of connector operators that capture the semantics of the connections between

sub�ows.

An evaluation of the HFMS translators was demonstrated using three pro-

cessing engines, Hadoop/PigLatin, Pentaho PDI, and a SQL engine. Evidence

of correctness is shown by round-tripping, i.e., given a �ow for enginex, HFMS

translates it to a logical �ow and then to a physical �ow for enginex or enginey
that produces identical results. Examples of the utility were presented includ-

ing composition and decomposition.

We acknowledge there are language constructs that will be di�cult to trans-

late. For example, the semantics of user-de�ned functions (UDFs) vary across

engines, so not all can be translated (e.g., some support only scalar, some ag-

gregation, some are multi-valued, etc.). However, we believe our approach is

su�ciently general to model and translate a su�ciently large class of analytic

�ows. Some of our next steps include incorporating additional engines of in-

terest and enhancing the automation of �ow composition by using advanced

schema matching and mapping techniques [136, 99].

173

Chapter 5. Engine Independence for Logical Analytic Flows

174

Chapter 6

H-WorD: Supporting Job

Scheduling in Hadoop with

Workload-driven Data

Redistribution

The paper has been published in the

Proceedings of the 20th East-European Conference on Advances in Databases

and Information Systems, pp. 306-320 (2016). The layout of the paper has

been revised.

DOI: http://dx.doi.org/10.1007/978-3-319-44039-2_21

Springer copyright/ credit notice:

© 2016 Springer. Reprinted, with permission, from Petar Jovanovic, Os-

car Romero, Toon Calders, and Alberto Abell�o, H-WorD: Supporting Job

Scheduling in Hadoop with Workload-driven Data Redistribution, 20th East-

European Conference on Advances in Databases and Information Systems, Au-

gust/2016

Abstract

Today's distributed data processing systems typically follow a query shipping

approach and exploit data locality for reducing network tra�c. In such systems

the distribution of data over the cluster resources plays a signi�cant role, and

when skewed, it can harm the performance of executing applications. In this

chapter, we address the challenges of automatically adapting the distribution

175

Chapter 6. H-WorD: Supporting Job Scheduling in Hadoop with Workload-driven
Data Redistribution

of data in a cluster to the workload imposed by the input applications. We

propose a generic algorithm, named H-WorD, which, based on the estimated

workload over resources, suggests alternative execution scenarios of tasks, and

hence identi�es required transfers of input data a priori, for timely bringing

data close to the execution. We exemplify our algorithm in the context of

MapReduce jobs in a Hadoop ecosystem. Finally, we evaluate our approach

and demonstrate the performance gains of automatic data redistribution.

1 Introduction

For bringing real value to end-users, today's analytical tasks often require pro-

cessing massive amounts of data. Modern distributed data processing systems

have emerged as a necessity for processing, in a scalable manner, large-scale

data volumes in clusters of commodity resources. Current solutions, including

the popular Apache Hadoop [191], provide fault-tolerant, reliable, and scalable

platforms for distributed data processing. However, network tra�c is identi�ed

as a bottleneck for the performance of such systems [85]. Thus, current schedul-

ing techniques typically follow a query shipping approach where the tasks are

brought to their input data, hence data locality is exploited for reducing net-

work tra�c. However, such scheduling techniques make these systems sensitive

to the speci�c distribution of data, and when skewed, it can drastically a�ect

the performance of data processing applications.

At the same time, distributed data storage systems, typically independent

of the application layer, do not consider the imposed workload when deciding

data placements in the cluster. For instance, Hadoop Distributed File System

(HDFS) places data block replicas randomly in the cluster following only the

data availability policies, hence without a guarantee that data will be uniformly

distributed among DataNodes [156]. To address this problem, some systems

have provided rules (in terms of formulas) for balancing data among cluster

nodes, e.g., HBase [1], while others like HDFS provided means for correcting

the data balancing o�ine [156]. While such techniques may help balancing

data, they either overlook the real workload over the cluster resources, i.e., the

usage of data, or at best leave it to the expert users to take it into consideration.

In complex multi-tenant environments, the problem becomes more severe as

the skewness of data can easily become signi�cant and hence more harmful to

performance.

In this chapter, we address these challenges and present our workload-driven

approach for data redistribution, which leverages on having a complete overview

of the cluster workload and automatically decides on a better redistribution of

workload and data. We focus here on the MapReduce model [43] and Apache

Hadoop [191] as its widely used open-source implementation. However, notice

that the ideas and similar optimization techniques as the ones proposed in this

176

1. Introduction

chapter, adapted for a speci�c programming model (e.g., Apache Spark), could

be applied to other frameworks as well.

In particular, we propose an algorithm, named H-WorD, for supporting task

scheduling in Hadoop with Workload-driven Data Redistribution. H-WorD s-

tarts from a set of previously pro�led MapReduce jobs that are planned for

execution in the cluster; e.g., a set of jobs currently queued for execution in a

batch-queuing grid manager system. It initializes the cluster workload, follow-

ing commonly used scheduling techniques (i.e., exploiting data locality, hence

performing query shipping). Then, H-WorD iteratively reconsiders the current

workload distribution by proposing di�erent execution scenarios for map tasks

(e.g., executing map tasks on nodes without local data, hence performing also

data shipping). In each step, it estimates the e�ect of a proposed change to the

overall cluster workload, and only accepts those that potentially improve cer-

tain quality characteristics. We focus here on improving the overall makespan1

of the jobs that are planned for execution. As a result, after selecting execu-

tion scenarios for all map tasks, H-WorD identi�es the tasks that would require

data shipping (i.e., transferring their input data from a remote node). Using

such information, we can proactively perform data redistribution in advance

for boosting tasks' data locality and parallelism of the MapReduce jobs.

On the one hand, the H-WorD algorithm can be used o�ine, complemen-

tary to existing MapReduce scheduling techniques, to automatically instruct

redistribution of data beforehand, e.g., plugged as a guided rebalancing scheme

for HDFS [2]. On the other hand, H-WorD can be used on the �y, with more

sophisticated schedulers, which would be able to take advantage of a priori

knowing potentially needed data transfers, and leveraging on idle network cy-

cles to schedule such data transfers in advance, without deferring other tasks'

executions.

Contributions. In particular, our main contributions are as follows.

• We present an automatic approach for workload-driven data redistribu-

tion in Apache Hadoop.

• We introduce a novel algorithm, H-WorD, which, led by the real workload

in the cluster, decides on a data redistribution that would improve the

performance of executing that workload.

• We evaluate our approach using well-known MapReduce benchmarks, for

showing the e�ectiveness of the H-WorD algorithm.

Outline. The rest of the chapter is structured as follows. Section 2 intro-

duces a running example used throughout this chapter. Section 3 discusses the

motivation and presents the problem of data redistribution in Hadoop. Section

1We de�ne makespan as the total time elapsed from the beginning of the execution of a
set of jobs, until the end of the last executing job [22].

177

Chapter 6. H-WorD: Supporting Job Scheduling in Hadoop with Workload-driven
Data Redistribution

4 formalizes the notation and presents the H-WorD algorithm. In Section 5, we

report on our experimental �ndings. Finally, sections 6 and 7 discuss related

work and conclude this chapter, respectively.

2 Running Example

To illustrate our approach and facilitate the explanations throughout this chap-

ter, we introduce a running example based on a set of three MapReduce Word-

Count2 jobs, with di�erent input data sets. A MapReduce job executes in two

consecutive phases, namely map and reduce [43]. Map phase processes an input

�le from HDFS. The �le is split in logical data blocks of the same size (e.g.,

64MB or 128MB), physically replicated for fault tolerance, and distributed over

the cluster nodes. Each data block is processed by a single map task.

Table 6.1: Example MapReduce jobs

job ID �le ID size (MB) #tasks durmapTask (s) durmapInTrans f er (s)
1 f1 1920 15 40 6.34
2 f2 640 5 40 6.34
3 f3 1280 10 40 6.34

We pro�led the example MapReduce jobs using an external tool, called

Star�sh [77]. Star�sh can create job pro�les on the �y, by applying sampling

methods (e.g., while jobs are queued waiting for execution), or from previous

jobs' executions. The portion of the pro�les of the example jobs focusing on

map tasks are presented in Table 6.1. We trace the number of map tasks, the

average duration of each task (durmapTask), as well as the average duration of

transferring its input data block over the network (i.e., durmapInTrans f er).

Furthermore, we consider a computing cluster with three computing nodes,

each with a capacity of 2CPUs and 2GB of memory, connected through the

network with 100Mbps of bandwidth (see Figure 6.1). We deployed Hadoop

2.x on the given cluster, including HDFS and MapReduce. In addition, for

simplifying the explanations, we con�gured HDFS for creating only one replica

of each input data block. In Figure 6.1, we depict the initial distribution of

the input data in the cluster. Note that each input data block is marked as

DBX f id, where X is an identi�er of a block inside a �le, and �d is the id of the

�le it belongs to.

For reasons of simplicity, we con�gured all example jobs to require con-

tainers (i.e., bundles of node resources) with 1CPU and 1GB of memory for

accommodating each map and reduce task, i.e., mapreduce.map.memory.mb =

mapreduce.reduce.memory.mb = 1024, and mapreduce.map.cpu.vcores = ma-

preduce.reduce.cpu.vcores = 1.

2WordCount Example: https://wiki.apache.org/hadoop/WordCount

178

https://wiki.apache.org/hadoop/WordCount

3. The Problem of Skewed Data Distribution

Fig. 6.1: Example cluster con�guration and initial data distribution

3 The Problem of Skewed Data Distribution

We further applied the default scheduling policy of Hadoop (i.e., exploiting data

locality) to our running example. An execution timeline is showed in Figure

6.2, where the x-axis tracks the start and end times of tasks and the y-axis

shows the resources the tasks occupy at each moment. For clarity, we further

denote a task tj
i both with the task id i, and the job id j. Notice in Figure 6.1

that the job ids refer to groups of input data blocks that their map tasks are

processing, which determines the placement of the map tasks in the cluster for

exploiting data locality. First, from the timeline in Figure 6.2, we can notice

that although the distribution of input data is not drastically skewed, it a�ects

the execution of job 3, since for executing map task m3
4, we need to wait for

available computing resources on node1.

Fig. 6.2: Timeline of executing example MapReduce jobs, baseline

Furthermore, we can also observe some idle cycles on the computing re-

sources (i.e., node3), that obviously could alternatively accommodate m3
4, and

�nish the map phase of job 3 sooner. However, node3 does not contain the

needed input data at the given moment, thus running m3
4 on node3 would re-

quire transferring its input data (i.e., tt3
1), which would also defer its execution

(see alternative execution of m3
4 in Figure 6.2).

Having such information beforehand, we could redistribute data in a way

that would improve utilization of cluster resources, and improve the makespan.

179

Chapter 6. H-WorD: Supporting Job Scheduling in Hadoop with Workload-driven
Data Redistribution

Fig. 6.3: Timeline of executing example MapReduce jobs, with data redistribution

Such data redistribution could be done o�ine before starting the execution of

MapReduce jobs. However, note that there are also idle cycles on the network

resource (e.g., between s1 and s2, and between s2 and s3). This is exactly where

having more information about the imposed workload makes the di�erence. In

particular, knowing that the higher workload of node1 can potentially a�ect

the makespan of the jobs' execution, we could take advantage of idle network

resources and plan for timely on the �y transferring of m3
4's input data to

another node, in overlap with other tasks' execution, and hence improve the

execution makespan. Such alternative execution scenario is depicted in Figure

6.3.

We showcased here in a simple running example that in advance data re-

distribution can moderately improve the makespan. However, typical scenarios

in Hadoop are much more complex, with larger and more complex cluster con-

�gurations, greater number of jobs, more complex jobs, and larger input data

sizes. Thus, it is obvious that estimating the imposed workload over cluster

resources and deciding on data and workload redistribution is intractable for

humans and requires e�cient automatic means. At the same time, in such real

world scenarios improving resource utilization and minimizing the execution

makespan is essential for optimizing the system performance.

We further studied how to automatically, based on the estimated workload,

�nd new execution scenarios that would improve data distribution in the clus-

ter, and hence reduce the makespan. Speci�cally, we focused on the following

challenges:

• Resource requirements. For obtaining the workload that a job imposes

over the cluster, we need to model cluster resources, input MapReduce

jobs, and the resource requirements of their tasks.

• Alternative execution scenarios. We need to model alternative execution

scenarios of MapReduce jobs, based on the distribution of input data in

180

4. Workload-driven Redistribution of Data

a cluster and alternative destination resources for their tasks. Conse-

quently, alternative execution scenarios may pose di�erent resource re-

quirements.

• Workload estimation. Next, we need an e�cient model for estimating the

workload over the cluster resources, for a set of jobs, running in certain

execution scenarios.

• Data redistribution. Lastly, we need an e�cient algorithm, that, using

the estimated workload, selects the most favorable execution scenario,

leading to a better distribution of data in a cluster, and to reducing the

makespan.

4 Workload-driven Redistribution of Data

In this section, we tackle the previously discussed challenges, and present our

algorithm for workload-driven redistribution of data, namely, H-WorD.

4.1 Resource requirement framework

In this chapter, we assume a set of previously pro�led MapReduce jobs as

input (see the example set of jobs in Table 6.1). Notice that this is a realistic

scenario for batched analytical processes that are run periodically, hence they

can be planned together for better resource utilization and lower makespan.

For instance, in a grid manager system, a set of jobs are queued, waiting for

execution, during which time we can decide on a proper distribution of their

input data.

A set of MapReduce jobs is submitted for execution in a cluster, and each

job jx consists of sets of map and reduce tasks.

J :� tj1, ..., jnu, jx :� MTx Y RTx (6.1)

The set of all tasks of J is de�ned as TJ �
�n

x�1 jx �
�n

x�1pMTx Y RTxq.

These tasks can be scheduled for execution in the cluster that comprises

two main resource types, namely: computing resources (i.e., nodes; Rcmp), and

communication resources (i.e., network; Rcom).

R :� Rcmp Y Rcom � tr1, ..., rnu Y trnetu (6.2)

Each resource r (computing or communication) has a certain capacity vector

Cprq, de�ning capacities of the physical resources that are used for accommo-

dating MapReduce tasks (i.e., containers of certain CPU and memory capaci-

ties, or a network of certain bandwidth).

@r P Rcmp, Cprq :� xccpuprq, cmemprqy;@r P Rcom, Cprq :� xcnetprqy (6.3)

Each task tj
i requires resources of certain resource types (i.e., computing and

communication) during their execution. We de�ne a resource type requirement

181

Chapter 6. H-WorD: Supporting Job Scheduling in Hadoop with Workload-driven
Data Redistribution

RTRk of task tj
i , as a pair rS, ds, such that tj

i requires for its execution one

resource from the set of resources S of type k (S � Rk), for a duration d.

RTRkpt
j
iq :� rS, ds, st. : S � Rk (6.4)

Furthermore, we de�ne a system requirement of task tj
i , as a set of resource

type requirements over all resource types in the cluster, needed for the complete

execution of tj
i .

SRptj
iq :� tRTR1pt

j
iq, ..., RTRlpt

j
iqu (6.5)

Lastly, depending on speci�c resources used for its execution, task tj
i can be

executed in several di�erent ways. To elegantly model di�erent execution sce-

narios, we further de�ne the concept of execution modes. Each execution mode

is de�ned in terms of a system requirement that a task poses for its execution

in a given scenario (denoted SRptj
iq).

Mptj
iq :� tSR1pt

j
iq, ..., SRmpt

j
iqu (6.6)

Example. The three example MapReduce jobs (job 1, job 2, and job 3; see

Table 6.1), are submitted for execution in the Hadoop cluster shown in Fig-

ure 6.1. Cluster comprises three computing resources (i.e., node1, node2, and
node3), each with a capacity of x2CPU, 2GBy, connected through a network

of bandwidth capacity x100Mbpsy. Map task m1
1 of job 1 for its data local

execution mode requires a container of computing resources, on a node where

the replica of its input data is placed (i.e., node1), for the duration of 40s. This

requirement is captured as RTRcmppm1
1q � rtnode1u, 40ss. l

4.2 Execution modes of map tasks

In the context of distributed data processing applications, especially MapRe-

duce jobs, an important characteristic that de�nes the way the tasks are exe-

cuted, is the distribution of data inside the cluster. This especially stands for

executing map tasks which require a complete data block as input (e.g., by

default 64MB or 128MB depending on the Hadoop version).

Data distribution. We �rst formalize the distribution of data in a cluster

(i.e., data blocks stored in HDFS; see Figure 6.1), regardless of the tasks using

these data. We thus de�ne function floc that maps logical data blocks DBX f id P

DB of input �les to a set of resources where these blocks are (physically)

replicated. floc : DB Ñ PpRcmpq (6.7)

Furthermore, each map task mj
i processes a block of an input �le, denoted

dbpmj
iq � DBX f id. Therefore, given map task mj

i , we de�ne a subset of resources

where the physical replicas of its input data block are placed, i.e., local resource

set LRj
i .

@mj
i P MTJ , LRj

i :� flocpdbpmj
iqq (6.8)

Conversely, for map task mj
i we can also de�ne remote resource sets, where

some resources may not have a physical replica of a required data block, thus

182

4. Workload-driven Redistribution of Data

executing mj
i may require transferring input data from another node. Note that

for keeping the replication factor ful�lled, a remote resource set must be of the

same size as the local resource set.

@mj
i P MTJ , RR

j
i :� tRRj

i |RRj
i P pPpRcmpqzLRj

iq ^ |RRj
i | � |LRj

i |u (6.9)

Following from the above formalization, map task mj
i can be scheduled to run

in several execution modes. The system requirement of each execution mode

of mj
i depends on the distribution of its input data. Formally:

@mj
i P MTJ ,Mpmj

iq � tSRlocpm
j
iqu Y

�|RR
j
i |

k�1 tSRrem,kpm
j
iqu, s.t. : (10)

SRlocpm
j
iq � trLRj

i , dj,cmp
i su; SRrem,kpm

j
iq � trRRj

i,k, dj,cmp
i,k s, rtrnetu, dj,com

i,k su

Intuitively, a map task can be executed in the local execution mode (i.e.,

SRlocpm
j
iq), if it executes on a node where its input data block is already placed,

i.e., without moving data over the network. In that case, a map task requires

a computing resource from LRj
i for the duration of executing map function

over the complete input block (i.e., dj,cmp
i � durmapTask). Otherwise, a map

task can also execute in a remote execution mode (i.e., SRrempm
j
iq), in which

case, a map task can alternatively execute on a node without its input data

block. Thus, the map task, besides a node from a remote resource set, may

also require transferring input data block over the network. Considering that

a remote resource set may also contain nodes where input data block is placed,

hence not requiring data transfers, we probabilistically model the duration of

the network usage.

dj,com
i,k �

$'&
'%

|RRj
i,kzLRj

i |
2

|RRj
i,k|

� durmapInTrans f er, if on the �y redistribution (11)

0, if o�ine redistribution

In addition, note that in the case that data redistribution is done o�ine, given

data transfers will not be part of the jobs' makespan (i.e., dj,com
i,k � 0).

Example. Notice that there are three execution modes in which map task

m3
4 can be executed. Namely, it can be executed in the local execution mode

SRlocpm3
4q � trtnode1u, 40ssu, in which case, it requires a node from its local

resource set (i.e., LR3
4 � tnode1u). Alternatively, it can also be executed in one

of the two remote execution modes. For instance, if executed in the remote

execution mode SRrem,2pm3
4q � trtnode3u, 40ss, rtnetu, 6.34ssu, it would require

a node from its remote resource set RR3
4,1 � tnode3u, and the network resource

for transferring its input block to node3 (see dashed boxes in Figure 6.2). l

Consequently, selecting an execution mode in which a map task will execute,

directly determines its system requirements, and the set of resources that it will

potentially occupy. This further gives us information of cluster nodes that may

require a replica of input data blocks for a given map task.

183

Chapter 6. H-WorD: Supporting Job Scheduling in Hadoop with Workload-driven
Data Redistribution

To this end, we base our H-WorD algorithm on selecting an execution mode

for each map task, while at the same time collecting information about its

resource and data needs. This enables us to plan data redistribution beforehand

and bene�t from idle cycles on the network (see Figure 6.3).

4.3 Workload estimation

For correctly redistributing data and workload in the cluster, the selection

of execution modes of map tasks in the H-WorD algorithm is based on the

estimation of the current workload over the cluster resources.

Algorithm 3 getWorkload

inputs: SRptj
iq; output: W : R Ñ Q

1: for all r P R do
2: Wprq Ð 0;
3: end for
4: for all rS, ds P SRptj

iq do
5: for all r P S do
6: Wprq Ð Wprq� d

|S| ;

7: end for
8: end for

In our context, we de�ne a workload as a function W : R Ñ Q, that maps

the cluster resources to the time for which they need to be occupied. When

selecting an execution mode, we estimate the current workload in the cluster in

terms of tasks, and their current execution modes (i.e., system requirements).

To this end, we de�ne the procedure getWorkload (see Alg. 3), that for map

task tj
i , returns the imposed workload of the task over the cluster resources R,

when executing in execution mode SRptj
iq.

Example. Map task m3
4 (see Figure 6.2), if executed in local execution mode

SRlocpm3
4q, imposes the following workload over the cluster: Wpnode1q � 40,

Wpnode2q � 0, Wpnode3q � 0, Wpnetq � 0. But, if executed in remote execu-

tion mode SRrem,2pm3
4q, the workload is redistributed to node3, i.e., Wpnode1q �

0, Wpnode2q � 0, Wpnode3q � 40, and to the network for transferring input data
block to node3, i.e., Wpnetq � 6.34. l

Following from the formalization in Section 4.1, a resource type require-

ment of a task de�nes a set of resources S, out of which the task occupies one

for its execution. Assuming that there is an equal probability that the task

will be scheduled on any of the resources in S, when estimating its workload

imposed over the cluster we equally distribute its complete workload over all

the resources in S (steps 4 - 8). In this way, our approach does not favor any

speci�c cluster resource when redistributing data and workload, and is hence

agnostic to the further choices of the chosen MapReduce schedulers.

184

4. Workload-driven Redistribution of Data

4.4 The H-WorD algorithm

Given the workload estimation means, we present here H-WorD, the core algo-

rithm of our workload-driven data redistribution approach (see Alg. 4).

Algorithm 4 H-WorD
inputs: MTJ

1: todo Ð MTJ ;
2: for all r P R do Wprq Ð 0; end for
3: for all t P MTJ do
4: SRcurptq Ð SRlocptq;
5: Wt Ð getWorkloadpSRcurptqq;
6: for all r P R do
7: Wprq Ð Wprq�Wtprq;
8: end for
9: end for
10: while todo �H do
11: t Ð nextFromptodoq; todo Ð todozttu;

12: SRnewptq Ð SRxptq|qpW � ∆x,curq � min
SRjptqPMptqztSRcurptqu

"
qpW � ∆j,curq

*

13: if qpWq ¡ qpW � ∆new,curq then
14: SRcurptq Ð SRnewptq;
15: W Ð W � ∆new;
16: end if
17: end while

H-WorD initializes the total workload over the cluster resources following

the policies of the Hadoop schedulers which mainly try to satisfy the data

locality �rst. Thus, as the baseline, all map tasks are initially assumed to

execute in a local execution mode (steps 2 - 9).

H-WorD further goes through all map tasks of input MapReduce jobs, and

for each task selects an execution mode that potentially brings the most bene�t

to the jobs' execution. In particular, we are interested here in reducing the

execution makespan, and hence we introduce a heuristic function q(W), which

combines the workloads over all resources, and estimates the maximal workload

in the cluster, i.e., qpWq � maxrPRpWprqq. Intuitively, this way we obtain a

rough estimate of the makespan of map tasks executing in the cluster. Using

such heuristic function balances the resource consumption in the cluster, and

hence prevents increasing jobs' makespan by long transfers of large amounts of

data.

Accordingly, for each map task, H-WorD selects an execution mode that im-

poses the minimal makespan to the execution of input MapReduce jobs (Step

12). The delta workload that a change in execution modes (SRcur Ñ SRnew) im-

poses is obtained as: ∆new,cur � getWorkloadpSRnewptqq � getWorkload pSRcur
ptqq.

Finally, for the selected (new) execution mode SRnewptq, H-WorD analyzes

if such a change in execution modes actually brings bene�ts to the execution

of input jobs, and if the global makespan estimate is improved (Step 13), we

assign the new execution mode to the task (Step 14). In addition, we update

185

Chapter 6. H-WorD: Supporting Job Scheduling in Hadoop with Workload-driven
Data Redistribution

the current total workload over the cluster due to changed execution mode of

the map task (Step 15).

Example. An example of the H-WorD execution is shown in Table 6.2.

After H-WorD analyzes the execution modes of task m3
4, it �nds that the remote

execution mode SRrem,2pm3
4q improves the makespan (i.e., 440 Ñ 400). Thus,

it decides to select this remote execution mode for m3
4. l

Table 6.2: H-WorD algorithm: example of the improved makespan for task m3
4

Workload Initial ... After task m3
4 ...

W(node1) 440 ... 400 ...
W(node2) 400 ... 400 ...
W(node3) 360 ... 400 ...
W(net) 0 ... 15 ...

Makespan: q(W) 440 ... 400 ...

It should be noted that the order in which we iterate over the map tasks

may a�ect the resulting workload distribution in the cluster. To this end, we

apply here a recommended longest task time priority rule in job scheduling [22],

and in each iteration (Step 11) we select the task with the largest duration,

combined over all resources. H-WorD is extensible to other priority rules.

Computational complexity. When looking for the new execution mode to

select, the H-WorD algorithm at �rst glance indicates combinatorial complexity

in terms of the cluster size (i.e., number of nodes), and the number of replicas,

i.e., |RRt| �
|Rcmp|!

p|Rcmp|�|LRt|q!�|LRt|!
. The search space for medium-sized clusters

(e.g., 50-100 nodes), where our approach indeed brings the most bene�ts, is

still tractable (19.6K-161.7K), while the constraints of the replication policies

in Hadoop, which add to fault tolerance, additionally prune the search space.

In addition, notice also that for each change of execution modes, the corre-

sponding data redistribution action may need to be taken to bring input data

to the remote nodes. As explained in Section 3, this information can either be

used to redistribute data o�ine before scheduling MapReduce jobs, or incorpo-

rated with scheduling mechanisms to schedule input data transfers on the �y

during the idle network cycles (see Figure 6.3).

5 Evaluation

In this section we report on our experimental �ndings.

Experimental setup. For performing the experiments we have implemented

a prototype of the H-WorD algorithm. Since the HDFS currently lacks the

support to instruct the data redistribution, for this evaluation we rely on simu-

lating the execution of MapReduce jobs. In order to facilitate the simulation of

MapReduce jobs we have implemented a basic scheduling algorithm, following

the principles of the resource-constrained project scheduling [100].

186

5. Evaluation

Fig. 6.4: H-WorD overhead (skew: 0.5,
#jobs: 9)

Fig. 6.5: Performance gains - #nodes (skew:
0.5, #jobs: 9)

Inputs. Besides WordCount, we also experimented with a reduce-heavy

MapReduce benchmark job, namely TeraSort3. We started from a set of three

pro�led MapReduce jobs, two WordCount jobs resembling jobs 1 and 2 of our

running example, and one TeraSort job, with 50 map and 10 reduce tasks. We

used the Star�sh tool for pro�ling MapReduce jobs [77]. When testing our

algorithm for larger number of jobs, we replicate these three jobs.

Experimental methodology. We scrutinized the e�ectiveness of our algo-

rithm in terms of the following parameters: number of MapReduce jobs, initial

skewness of data distribution inside the cluster, and di�erent cluster sizes. No-

tice that we de�ne skewness of data distribution inside a cluster in terms of

the percentage of input data located on a set of X nodes, where X stands for

the number of con�gured replicas. See for example 37% skewness of data in

our running example (bottom of Figure 6.1). This is important in order to

guarantee a realistic scenario where multiple replicas of an HDFS block are

not placed on the same node. Moreover, we considered the default Hadoop

con�guration with 3 replicas of each block. In addition, we analyzed two use

cases of our algorithm, namely o�ine and on the �y redistribution (see Sec-

tion 4.4). Lastly, we analyzed the overhead that H-WorD potentially imposes,

as well as the performance improvements (in terms of jobs' makespan) that

H-WorD brings.

Scrutinizing H-WorD. Next, we report on our experimental �ndings.

Note that in the presented charts we analyzed the behavior of our algorithm

for a single parameter, while others are �xed and explicitly denoted.

Algorithm overhead. We �rst analyzed the overhead that the H-WorD al-

gorithm imposes to scheduling of MapReduce jobs. Following the complexity

discussion in Section 4.4, for small and medium-sized clusters (i.e., from 20

to 50 nodes), even though the overhead is growing exponentially (0.644s Ñ

135.68s; see Figure 6.4), it still does not drastically delay the execution of

input MapReduce jobs (see Figure 6.5).

Performance improvements. We further report on the performance improve-

3TeraSort: https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/

examples/terasort/package-summary.html

187

https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/examples/terasort/package-summary.html

Chapter 6. H-WorD: Supporting Job Scheduling in Hadoop with Workload-driven
Data Redistribution

Fig. 6.6: Performance gains - data skewness
(#nodes: 20, #jobs: 9)

Fig. 6.7: �Correcting� skewness - entropy
(#nodes: 20, #jobs: 9)

ments that H-WorD brings to the execution of MapReduce jobs.

• Cluster size. We start by analyzing the e�ectiveness of our approach in

terms of the number of computing resources. We can observe in Figure

6.5 that skewed data distribution (50%) can easily prevent signi�cant

scale-out improvements with increasing cluster size. This shows another

advantage of H-WorD in improving execution makespan, by bene�ting

from balancing the workload over the cluster resources. Notice however

that the makespan improvements are bounded here by the �xed paral-

lelism of reduce tasks (i.e., no improvement is shown for clusters over 40

nodes).

• �Correcting� data skewness. We further analyzed how H-WorD improves

the execution of MapReduce jobs by �correcting� the skewness of data

distribution in the cluster (see Figure 6.6). Notice that we used this test

also to compare o�ine and on the �y use cases of our approach. With

a small skewness (i.e., 25%), we observed only very slight improvement,

which is expected as data are already balanced inside the cluster. In ad-

dition, notice that the makespan of o�ine and on the �y use cases for the

25% skewness are the same. This comes from the fact that �correcting�

small skewness requires only few data transfers over the network, which

do not additionally defer the execution of the tasks. However, observe

that larger skewness (i.e., 50% - 100%) may impose higher workload over

the network, which in the case of on the �y data redistribution may

defer the execution of some tasks. Therefore, the performance gains in

this case are generally lower (see Figure 6.6). In addition, we analyzed

the e�ectiveness of our algorithm in �correcting� the data distribution by

capturing the distribution of data in the cluster in terms of a Shannon en-

tropy value, where the percentages of data at the cluster nodes represent

the probability distribution. Figure 6.7 illustrates how H-WorD e�ec-

tively corrects the data distribution and brings it very close (∆ � 0.02)
to the maximal entropy value (i.e., uniform data distribution). Notice

that the initial entropy for 100% skew is in this case higher than 0, since

replicas are equally distributed over 3 cluster nodes.

188

6. Related Work

• Input workload. Lastly, we analyze the behavior of our algorithm in terms

of the input workload, expressed in terms of the number of MapReduce

jobs. We observed (see Figure 6.8) that the performance gains for various

input load sizes are stable (�48.4%), having a standard deviation of 0.025.

Moreover, notice that data redistribution abates the growth of makespan

caused by increasing input load. This demonstrates how our approach

smooths the execution of MapReduce jobs by boosting data locality of

map tasks.

Fig. 6.8: Performance gains - workload (skew: 0.5, #nodes: 20)

Lastly, in Figure 6.5, we can still observe the improvements brought by

data redistribution, including the H-WorD overhead. However, if we keep in-

creasing the cluster size, we can notice that the overhead, although tractable,

soon becomes severely high to a�ect the performance of MapReduce jobs' ex-

ecution (e.g., 2008s for the cluster of 100 nodes). While these results show the

applicability of our approach for small and medium-sized clusters, they at the

same time motivate our further research towards de�ning di�erent heuristics

for pruning the search space.

6 Related Work

Data distribution. Currently, distributed �le systems, like HDFS [156], do not

consider the real cluster workload when deciding about the distribution of data

over the cluster resources. By default, data are distributed randomly, without

a guarantee that they will be balanced. Additional tools, namely balancer, are

provided to balance data o�ine. However, such balancing is still done blindly,

without considering the real usage of such data by the given workload.

Data locality. Hadoop's default scheduling techniques (i.e., Capacity [3] and

Fair [4] schedulers), typically rely on exploiting data locality in the cluster, i.e.,

favoring query shipping. Moreover, other, more advanced scheduling proposals,

e.g., [85, 197], to mention a few, also favor query shipping and exploiting data

locality in Hadoop, claiming that it is crutial for performance of MapReduce

jobs. The approach in [197] in addition proposes techniques that address the

con�ict between data locality and fairness in scheduling MapReduce jobs. For

189

Chapter 6. H-WorD: Supporting Job Scheduling in Hadoop with Workload-driven
Data Redistribution

achieving higher data locality, they delay jobs that cannot be accommodated

locally to their data. While we agree that data locality is essential for boosting

the execution of MapReduce jobs, these approaches overlook the fragileness of

such techniques to skewed distribution of data in a cluster.

Combining data and query shipping. To address such problem, other ap-

proaches (e.g., [72, 194]) propose combining data and query shipping in a

Hadoop cluster. In [72], the authors investigate on data locality, and claim

that having a global overview of the executing tasks, rather than one task at a

time as in current techniques, gives better opportunities for optimally schedul-

ing tasks and selecting local or remote execution. [194], on the other side,

uses a stochastic approach, and builds a model for predicting a workload over

the cluster resources, when deciding on data locality for map tasks. We �nd

the ideas and techniques for estimating resource workload of these approaches

motivational for our work. However, these techniques do not leverage on the es-

timated workload to perform in advance data transfers and additionally boost

data locality for map tasks.

Finally, the �rst approach that tackles the problem of adapting data place-

ment to the workload is presented in [127]. We �nd this work especially in-

teresting for our research. The authors argue for the bene�ts of having a data

placement aware of the cluster workload. However, while the authors propose

an e�cient framework for load-aware data placement, they consider data place-

ments for single jobs, in isolation. In addition, they propose di�erent placement

techniques depending on the job types. We, on the other side, propose more

generic approach relying only on an information gathered from job pro�les, and

consider a set of di�erent input jobs at a time.

7 Conclusions and Future Work

In this chapter, we have presented H-WorD, our approach for workload-driven

redistribution of data in Hadoop. H-WorD starts from a set of MapReduce jobs

and estimates the workload that such jobs impose over the cluster resources.

H-WorD further iteratively looks for alternative execution scenarios and iden-

ti�es more favorable distribution of data in the cluster beforehand. This way

H-WorD improves resource utilization in a Hadoop cluster and reduces the

makespan of MapReduce jobs. Our approach can be used for automatically

instructing redistribution of data and as such is complementary to current

scheduling solutions in Hadoop (i.e., those favoring data locality).

Our initial experiments showed the e�ectiveness of the approach and the

bene�ts it brings to the performances of MapReduce jobs in a simulated Hadoop

cluster execution. Our future plans focus on providing new scheduling tech-

niques in Hadoop that take full advantage of a priori knowing more favorable

data distribution, and hence use idle network cycles to transfer data to the

190

8. Acknowledgements

tasks in advance, without additionally deferring their executions.

8 Acknowledgements

This work has been partially supported by the Secreteria d'Universitats i Re-

cerca de la Generalitat de Catalunya under 2014 SGR 1534, and by the Spanish

Ministry of Education grant FPU12/04915.

191

Chapter 6. H-WorD: Supporting Job Scheduling in Hadoop with Workload-driven
Data Redistribution

192

Chapter 7

Conclusions and Future Directions

Abstract

In this chapter, we summarize the main results of this PhD thesis, presented

in Chapters 2 - 6. In addition, we propose several promising future directions

stemming from this thesis work.

1 Conclusions

In this PhD thesis, we presented our approach for managing di�erent phases

of the data-intensive �ow lifecycle. The main goal of this thesis is to provide

means for automating and facilitating burdensome tasks of the design and

optimization of data-intensive �ows. The thesis included a theoretical study,

by means of a literature survey, aiming at indicating the main challenges in the

�led of DIFs in today's BI applications. Considering the remaining challenges

identi�ed in the literature, this thesis further presented several approaches for

facilitating the DIF lifecycle. In particular, we focus on design, optimization,

implementation, execution, and maintenance of DIFs.

In what follows, we �rst summarize the contributions presented in chapters

2 - 6, and �nally conclude the overall thesis.

Chapter 2 presented the survey of the current literature in the �led of DIFs.

The goal of this survey was on studying the related work in the �eld, and con-

sequently on identifying the remaining challenges and gaps in the design and

optimization of DIFs. The �rst result provided a clear picture of the theoretical

underpinnings of DIFs in today's BI applications. Moreover, the study further

identi�ed the main challenges that distinguish traditional, batched DIFs (e.g.,

ETL processes) that typically integrate in-house data for loading DW for fur-

ther strategic analysis, and today's DIFs that require means for e�ciently dis-

193

Chapter 7. Conclusions and Future Directions

covering and integrating a plethora of both internal and external sources, in

near real-time. We accordingly, using these challenges as dimensions, classi�ed

the current approaches based on the level they achieve in each of these dimen-

sions. Finally, as the main outcome of this study, we proposed a high-level

architecture for managing the burdensome lifecycle of DIFs. The architecture

captures in a holistic way the complete lifecycle of DIFs, and as such, it can

be seen as a roadmap for both academia and industry toward building DIFs in

next generation BI systems. In particular, in this PhD thesis, the results of

this survey served as a cornerstone for further studying in detail some of the

remaining challenges in the �led of DIFs.

Chapter 3 presented our approach for dealing with the design, mainte-

nance, and multi-�ow optimization of DIFs. In particular, we presented the

novel algorithm, called CoAl, which facilitates the incremental consolidation of

DIFs, starting from data �ows satisfying individual information requirements.

CoAl iteratively searches for di�erent possibilities of integrating new data �ows

into the existing multi-�ow, focusing on maximizing data and operation reuse,

and �nally, proposes a uni�ed solution satisfying all information requirements.

In Chapter 3, we formalized the notion of DIFs, including the formalization

of DIF's operation semantics. Furthermore, in terms of this notation we in-

troduced novel techniques for operation comparison and operation reordering,

which are used by the CoAl algorithm when searching for maximizing the

DIF reuse. Finally, using the implemented prototype of the CoAl algorithm,

we presented the evaluation results of our approach. The results presented in

Chapter 3 demonstrated the e�ciency and scalability of our approach, as well

as the quality of produced solutions. In particular, we report the improvements

of the overall execution time and other bene�ts of integrated multi-�ows.

Chapter 4 presented our semi-automatic method, called ORE, for iteratively

creating DW schema designs, based on information requirements. ORE starts

from MD interpretations of single requirements, and incrementally builds a uni-

�ed solution satisfying the complete set of information requirements. Chapter

4 formalized the notion of information requirements and their MD interpreta-

tions, as well as the MD schema, and further presented two main algorithms

that support the integration of MD schemata, i.e., fact matching (FM) and di-

mension matching (DM). Apart from the main goal of providing semi-automatic

support for the design and maintenance of MD schema, an important objective

of this approach was to provide systematic collection of metadata during the

entire evolution cycle, in order to �fuel� the process of design and adaptation

of back-end DIFs (i.e., ETL processes) to the occurred evolution events. Given

the generally high complexity of the MD schema integration process, caused

by the plethora of di�erent integration possibilities, ORE uses a customizable

cost model for evaluating the resulted solutions, in order to prune the search

space and o�er a user only solutions that satisfy the previously set objectives.

Using such heuristics, in Chapter 4, we lastly evaluated the performance and

194

1. Conclusions

di�erent characteristics of the ORE method, demonstrating its e�ciency in

dealing with increasing problem size (i.e., number of input information require-

ments). In addition, we also reported the results of evaluating the bene�ts of

our semi-automatic approach, by measuring the emotional aspects and the con-

siderable amount of human e�orts required for manually handling the design

and evolution of a DW schema.

Chapter 5 presented our approach, called BabbleFlow, for supporting the

implementation and deployment of DIFs, potentially spanning diverse execu-

tion and storage engines. In particular, the main objective of this work was

to provide the engine independence for DIFs, enabling processing of DIF at

the logical level, as well as their further deployment on a variety of execution

engines. Chapter 5 thus introduced our logical encoding of DIFs, called xLM.

We further presented the techniques for parsing DIFs from di�erent execution

engines into xLM, and also back to the same or di�erent execution engine(s). In

Chapter 5, we also demonstrated an important functionality of our approach

for building hybrid DIFs, by means of decomposing a logical DIF, and gen-

erating code for speci�c sub�ows executing on di�erent engines. Finally, we

extensively evaluated our approach using data �ows from TPC-H and TPC-DS

benchmarks, as well as custom made data �ows combining ETL and analyti-

cal functionalities. The results showed both the e�ciency of our approach for

translating DIF into deployable formats, as well as di�erent bene�ts that it can

bring to the optimization of hybrid DIFs.

Chapter 6 presented our approach, called H-WorD, for supporting the sche-

duling of execution of DIFs with workload-driven data redistribution. The

main goal of this work was to build a system to analyze the workload that

DIFs impose over execution resources, and decide on a better redistribution of

input data that improves their overall makespan. In particular, we presented a

model, exempli�ed with the MapReduce framework, which based on the place-

ment of data inside the cluster, estimates DIFs' execution times and de�nes

di�erent execution modes in which data processing tasks can execute. Fur-

thermore, the H-WorD algorithm uses such model for deciding more bene�cial

execution modes of data processing tasks, and hence the distribution of their

input data in the cluster. We demonstrated two use cases of our approach,

namely, o�ine, complementary to existing scheduling algorithm, where the re-

distribution of data is performed beforehand, and on the �y, which requires

adaptation of current scheduling algorithms, to leveraging on idle network cy-

cles, schedule needed data transfers on the �y, in advance, without deferring

other task's executions. Finally, we evaluated our approach by means of sim-

ulating the MapReduce jobs executions, and using typical MapReduce bench-

mark examples from the Apache Hadoop distribution (i.e., WordCount and

TeraSort). The results showed the e�ciency of H-WorD in dealing with small

and medium-sized clusters, while also indicated a need for introducing heuris-

tics for pruning the search space when looking for the more bene�cial data

195

Chapter 7. Conclusions and Future Directions

distribution. More importantly, the evaluation results largely corroborated the

bene�ts that improving the distribution of data in the cluster brings to the

execution makespan of DIFs.

Fig. 7.1: The results of this PhD thesis inside the lifecycle of DIFs
(Note: The modules in red are the main results of this PhD thesis

whereas the gray ones resulted from collaborative work.)

Overall, the burdensome tasks of designing, deploying, and optimizing the

execution of data-intensive �ows in BI systems require considerable amount

of human e�ort, which in today's hectic business environments is not always

a�ordable, both in terms of money and time. Moreover, the maintenance of

DIFs in front of changed information requirements demands a continuous sup-

port of a designer during the entire lifecycle. To this end, this PhD thesis

proposed automated means for e�ciently supporting tasks in di�erent phases

of the DIF lifecycle, namely design, optimization, implementation, execution,

and maintenance (see Figure 7.1). In particular, we started from CoAl (Chap-

ter 3) which facilitates the incremental design of DIFs and their maintenance

in front of evolving analytical needs of end users. Moreover, CoAl also pro-

vides support for multi-�ow optimization of DIF by means of maximizing the

data and operation reuse among DIFs. Next, we proposed ORE (Chapter 4),

which automates the incremental design of MD schema and at the same time

systematically traces metadata of such process in order to further support the

196

2. Future Directions

design of back-end, batched DIFs in DW systems, and their adaptation to the

evolution of the target schema. Furthermore, for implementing DIFs, we pro-

posed BabbleFlow (Chapter 5), which provides support for deploying DIFs over

single or multiple execution engines. Moreover, it also facilitates the design of

DIFs, specially in the case when they span multiple execution or storage en-

gines (i.e., hybrid data �ows). Finally, we proposed H-WorD (Chapter 6), to

facilitate the execution of DIFs, by means of supporting their scheduling with

workload-driven data redistribution.

The main results of this PhD thesis were integrated as modules inside

Quarry, our platform for managing the lifecycle of analytical infrastructures

(see Appendix A). As we showed above, these modules automated to large ex-

tent the burdensome tasks during the DIF lifecycle, previously typically left to

the manual e�orts of BI system designer.

Moreover, during the last �ve years, the Quarry project has included col-

laboration with other researchers, bachelor, master , and PhD students, which

overall resulted in modules that encompass the complete lifecycle of DIFs (see

Figure 7.1). The GEM system [146] was in fact a springboard for the research

path of this PhD thesis, introducing automatable means for analyzing infor-

mation requirements of business users and designing MD schemata and ETL

processes that satisfy them. GEM's developlemt and integration was the topic

of my master thesis [86]. Next, MineDigger module provided graphical inter-

face to the Quarry platform, largely facilitating the process of requirements

elicitation and analysis for end users, and providing high usability of the com-

plete Quarry platform. Its development and integration with Quarry platform

was the topic of the bachelor degree project, done by H�ector Cand�on [33].

Lastly, a critical part of the DIF lifecycle, i.e., testing, was largely facilitated

by Bijoux, the data generation tool for evaluating di�erent quality objectives

of DIFs [178]. The Bijoux module resulted from the collaborative work with a

master student Emona Nakuci, working on her master thesis [123], and a fellow

colleague PhD student, Vasileios Theodorou.

2 Future Directions

In this PhD thesis, we provided the means to fully or partially facilitate the

phases of the DIF lifecycle. Nevertheless, there are several possible directions

for future work inside the Quarry project.

Regarding the design of DIFs, driven by information requirements, although

high automation is achieved, it required lowering the level of abstraction for

providing the requirement, tightening the requirements to a multidimensional

model. Further research is needed to bridge the gap between the typical ways

end users de�ne their requirements and how these requirements are further

automatically translated into deployable DIFs.

197

Chapter 7. Conclusions and Future Directions

In the context of DW systems, DIFs are highly correlated to the design and

constraints imposed over the target MD schema. Thus, the design and mainte-

nance of ETL processes must be instructed by the design decisions made at the

MD schema side. We made a step toward this in our ORE approach. However,

further study is required to handle and exploit such interdependence between

the MD schema and ETL process design (i.e., ORE and CoAl), and explore

the possibilities how each of these design processes can bene�t from the rele-

vant information inferred by the other process. For instance, the aggregation

and normalization levels of the produced schema could be reconsidered, since

this would a�ect the way the back-end ETL process is tailored (i.e., trade-o�s

between materialized views and OLAP querying). Similarly, checkpointing or

bottlenecks detected at the ETL level may cause changes at the MD schema

for the sake of performance.

The implementation and deployment of DIFs is largely supported by the

automatable means for translating DIFs to executable formats, provided by

BabbleFlow. On the one hand, the extension of such system for more high-

level functional, procedural, or object-oriented languages (e.g., Java, Scala,

Python) would require further work, and it would be immensely bene�cial

for applying the approach for modern data processing platforms, like Apache

Spark, Hadoop, etc. On the other hand, further work in this topic should be

directed toward enabling smarter deployment of DIFs, especially for deciding

the target execution engine(s) of DIFs in the hybrid execution environments.

Lastly, further work is also required for building more sophisticated schedu-

ling techniques for executing DIFs in distributed data processing systems. Our

results in Chapter 6 showed that we can bene�t from smarter data redistribu-

tion when scheduling DIFs. Thus the plan here is to study how such informa-

tion can be further included inside the scheduling policies of data processing

systems (e.g., Hadoop and Spark). Another interesting research direction is

toward providing a more dynamic scheduling system. Instead of starting from

a static set of DIFs, the scheduler should only use a high level notion of cluster

workload (e.g., DIF types, arrival rates, service rates), and by means of predic-

tion models, anticipate future workload over the cluster resources, and decide

on the needed, in advance, data transfers, hence avoiding deferment of data

processing tasks.

198

Bibliography

References

[1] Apache HBase. https://hbase.apache.org/. [02-March-2016].

[2] Cluster Rebalancing in HDFS. http://hadoop.apache.org/docs/r1.

2.1/hdfs_design.html#Cluster+Rebalancing. [02-March-2016].

[3] Hadoop: Capacity Scheduler. http://hadoop.apache.org/docs/

current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html.

[04-March-2016].

[4] Hadoop: Fair Scheduler. https://hadoop.apache.org/docs/r2.7.1/

hadoop-yarn/hadoop-yarn-site/FairScheduler.htmll. [04-March-

2016].

[5] TPC-H, last accessed March, 2015. http://www.tpc.org/tpch/.

[6] Apache Jena, last accessed September, 2013. http://jena.apache.org/.

[7] A. Abell�o, J. Darmont, L. Etcheverry, M. Golfarelli, J.-N. Maz�on, F. Nau-

mann, T. B. Pedersen, S. Rizzi, J. Trujillo, P. Vassiliadis, and G. Vossen.

Fusion Cubes: Towards Self-Service Business Intelligence. IJDWM,

9(2):66�88, 2013.

[8] A. Abell�o, E. Rodr��guez, T. Urp��, X. B. Illa, M. J. Casany, C. Mart��n,

and C. Quer. LEARN-SQL: Automatic Assessment of SQL Based on

IMS QTI Speci�cation. In ICALT, pages 592�593, 2008.

[9] A. Abell�o, O. Romero, T. B. Pedersen, R. B. Llavori, V. Nebot, M. J. A.

Cabo, and A. Simitsis. Using semantic web technologies for exploratory

OLAP: A survey. IEEE Trans. Knowl. Data Eng., 27(2):571�588, 2015.

[10] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin, and A. Sil-

berschatz. HadoopDB: An architectural hybrid of mapreduce and DBMS

technologies for analytical workloads. PVLDB, 2(1):922�933, 2009.

[11] A. Ailamaki. Running with scissors: Fast queries on just-in-time

databases. In IEEE 30th International Conference on Data Engineer-

ing, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014, page 1,

2014.

[12] Z. E. Akkaoui, J.-N. Maz�on, A. A. Vaisman, and E. Zim�anyi. BPMN-

Based Conceptual Modeling of ETL Processes. In DaWaK, pages 1�14,

2012.

[13] Z. E. Akkaoui, E. Zim�anyi, J.-N. Maz�on, and J. Trujillo. A BPMN-Based

Design and Maintenance Framework for ETL Processes. IJDWM, 9(3),

2013.

199

https://hbase.apache.org/
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#Cluster+Rebalancing
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#Cluster+Rebalancing
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/r2.7.1/hadoop-yarn/hadoop-yarn-site/FairScheduler.htmll
https://hadoop.apache.org/docs/r2.7.1/hadoop-yarn/hadoop-yarn-site/FairScheduler.htmll

References

[14] A. Albrecht and F. Naumann. METL: Managing and Integrating ETL

Processes. In VLDB PhD Workshop, 2009.

[15] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo. Recov-

ering traceability links between code and documentation. IEEE Trans.

Software Eng., 28(10):970�983, 2002.

[16] M. Arenas, J. P�erez, J. L. Reutter, and C. Riveros. Foundations of schema

mapping management. In PODS, pages 227�238, 2010.

[17] B. Bebel, J. Eder, C. Koncilia, T. Morzy, and R. Wrembel. Creation and

management of versions in multiversion data warehouse. In SAC, pages

717�723, 2004.

[18] L. Bellatreche, S. Khouri, and N. Berkani. Semantic Data Warehouse

Design: From ETL to Deployment �a la Carte. In DASFAA (2), 2013.

[19] H. Berthold, P. R�osch, S. Z�oller, F. Wortmann, A. Carenini, S. Campbell,

P. Bisson, and F. Strohmaier. An architecture for ad-hoc and collabora-

tive business intelligence. In EDBT/ICDT Workshops, 2010.

[20] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story So Far.

Int. J. Semantic Web Inf. Syst., 5(3):1�22, 2009.

[21] M. Blaschka, C. Sapia, and G. H�o�ing. On schema evolution in multidi-

mensional databases. In DaWaK, pages 153�164, 1999.

[22] J. Bła
zewicz, K. H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz. Hand-

book on scheduling: from theory to applications. Springer Science &

Business Media, 2007.

[23] M. Body, M. Miquel, Y. B�edard, and A. Tchounikine. A multidimensional

and multiversion structure for OLAP applications. In DOLAP, pages 1�6,

2002.

[24] M. B�ohm, D. Habich, and W. Lehner. Multi-�ow optimization via hori-

zontal message queue partitioning. In ICEIS, pages 31�47, 2010.

[25] M. B�ohm, D. Habich, W. Lehner, and U. Wloka. DIPBench Toolsuite:

A Framework for Benchmarking Integration Systems. In ICDE, pages

1596�1599, 2008.

[26] M. B�ohm, U. Wloka, D. Habich, and W. Lehner. Workload-based opti-

mization of integration processes. In CIKM, pages 1479�1480, 2008.

[27] M. B�ohm, U. Wloka, D. Habich, and W. Lehner. GCIP: exploiting the

generation and optimization of integration processes. In EDBT, pages

1128�1131, 2009.

200

References

[28] R. M. Bruckner, B. List, and J. Schiefer. Striving towards near real-time

data integration for data warehouses. In DaWaK, pages 317�326, 2002.

[29] N. Bruno, S. Jain, and J. Zhou. Continuous cloud-scale query optimiza-

tion and processing. PVLDB, 6(11):961�972, 2013.

[30] P. Buneman, S. B. Davidson, M. F. Fernandez, and D. Suciu. Adding

Structure to Unstructured Data. In ICDT, pages 336�350, 1997.

[31] A. Cal��, D. Calvanese, G. De Giacomo, and M. Lenzerini. Data integra-

tion under integrity constraints. Inf. Syst., 29(2):147�163, 2004.

[32] A. Cal��, D. Lembo, and R. Rosati. Query rewriting and answering under

constraints in data integration systems. In IJCAI, pages 16�21, 2003.

[33] H. Cand�on. The minecart project: A wee step towards bi 2.0. 2014.

Bachelor Degree Project.

[34] D. Caruso. Bringing Agility to Business Intelligence, February 2011.

Information Management, http://www.information-management.

com/infodirect/2009_191/business_intelligence_metadata_

analytics_ETL_data_management-10019747-1.html.

[35] C. L. P. Chen and C. Zhang. Data-intensive applications, challenges,

techniques and technologies: A survey on big data. Inf. Sci., 275:314�

347, 2014.

[36] Y. Chen, S. Alspaugh, and R. Katz. Interactive analytical processing

in big data systems: A cross-industry study of mapreduce workloads.

Proceedings of the VLDB Endowment, 5(12):1802�1813, 2012.

[37] G. Cugola and A. Margara. Processing �ows of information: From data

stream to complex event processing. ACM Comput. Surv., 44(3):15, 2012.

[38] T. H. Davenport. How to design smart business experiments. Harvard

business review, 87(2):68�76, 2009.

[39] U. Dayal. Processing queries over generalization hierarchies in a multi-

database system. In VLDB, pages 342�353, 1983.

[40] U. Dayal, M. Castellanos, A. Simitsis, and K. Wilkinson. Data integration

�ows for business intelligence. In EDBT, pages 1�11, 2009.

[41] U. Dayal, H. A. Kuno, J. L. Wiener, K. Wilkinson, A. Ganapathi, and

S. Krompass. Managing operational business intelligence workloads. Op-

erating Systems Review, 43(1):92�98, 2009.

201

http://www.information-management.com/infodirect/2009_191/business_intelligence_metadata_analytics_ETL_data_management-10019747-1.html
http://www.information-management.com/infodirect/2009_191/business_intelligence_metadata_analytics_ETL_data_management-10019747-1.html
http://www.information-management.com/infodirect/2009_191/business_intelligence_metadata_analytics_ETL_data_management-10019747-1.html

References

[42] U. Dayal, K. Wilkinson, A. Simitsis, M. Castellanos, and L. Paz. Op-

timization of Analytic Data Flows for Next Generation Business Intelli-

gence Applications. In TPCTC, pages 46�66, 2011.

[43] J. Dean and S. Ghemawat. MapReduce: simpli�ed data processing on

large clusters. Commun. ACM, 51(1):107�113, 2008.

[44] S. Dessloch, M. A. Hern�andez, R. Wisnesky, A. Radwan, and J. Zhou.

Orchid: Integrating Schema Mapping and ETL. In ICDE, pages 1307�

1316, 2008.

[45] D. J. DeWitt, A. Halverson, R. V. Nehme, S. Shankar, J. Aguilar-Saborit,

A. Avanes, M. Flasza, and J. Gramling. Split query processing in poly-

base. In SIGMOD Conference, pages 1255�1266, 2013.

[46] A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data Integration.

Morgan Kaufmann, 2012.

[47] X. L. Dong, A. Y. Halevy, and C. Yu. Data integration with uncertainty.

VLDB J., 18(2):469�500, 2009.

[48] W. Du, R. Krishnamurthy, and M. Shan. Query optimization in a het-

erogeneous DBMS. In VLDB, pages 277�291, 1992.

[49] R. J. Du�n. Topology of series-parallel networks. Journal of Mathemat-

ical Analysis and Applications, 10(2):303�318, 1965.

[50] W. W. Eckerson. Best practices in operational BI. Business Intelligence

Journal, 12(3):7�9, 2007.

[51] European Commission. G. technology readiness levels (TRL), 2014.

[52] R. Fagin, L. M. Haas, M. A. Hern�andez, R. J. Miller, L. Popa, and

Y. Velegrakis. Clio: Schema Mapping Creation and Data Exchange. In

Conceptual Modeling: Foundations and Applications, 2009.

[53] R. Fagin, B. Kimelfeld, and P. G. Kolaitis. Probabilistic data exchange.

Journal of the ACM (JACM), 58(4):15, 2011.

[54] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange:

Semantics and Query Answering. In ICDT, pages 207�224. Springer,

2003.

[55] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange:

semantics and query answering. Theor. Comput. Sci., 336(1):89�124,

2005.

202

References

[56] R. Feldman and J. Sanger. The text mining handbook: advanced ap-

proaches in analyzing unstructured data. Cambridge University Press,

2007.

[57] E. Ferrara, P. D. Meo, G. Fiumara, and R. Baumgartner. Web data

extraction, applications and techniques: A survey. Knowl.-Based Syst.,

70:301�323, 2014.

[58] E. Friedman, P. M. Pawlowski, and J. Cieslewicz. Sql/mapreduce: A

practical approach to self-describing, polymorphic, and parallelizable

user-de�ned functions. PVLDB, 2(2):1402�1413, 2009.

[59] M. Friedman, A. Y. Levy, and T. D. Millstein. Navigational Plans for

Data Integration. In Intelligent Information Integration, 1999.

[60] S. Garc�ia, O. Romero, and R. Ravent�os. DSS from an RE perspective:

A systematic mapping. Journal of Systems and Software, 117:488 � 507,

2016.

[61] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sa-

giv, J. D. Ullman, V. Vassalos, and J. Widom. The TSIMMIS Approach

to Mediation: Data Models and Languages. J. Intell. Inf. Syst., 8(2):117�

132, 1997.

[62] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-A.

Jacobsen. BigBench: towards an industry standard benchmark for big

data analytics. In SIGMOD Conference, pages 1197�1208, 2013.

[63] G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. On reconciling

data exchange, data integration, and peer data management. In PODS,

pages 133�142, 2007.

[64] G. Giannikis, D. Makreshanski, G. Alonso, and D. Kossmann. Shared

workload optimization. PVLDB, 7(6):429�440, 2014.

[65] P. Giorgini, S. Rizzi, and M. Garzetti. Grand: A goal-oriented approach

to requirement analysis in data warehouses. DSS, 45(1):4�21, 2008.

[66] M. Golfarelli, J. Lechtenb�orger, S. Rizzi, and G. Vossen. Schema ver-

sioning in data warehouses: Enabling cross-version querying via schema

augmentation. Data Knowl. Eng., 59(2):435�459, 2006.

[67] M. Golfarelli, D. Maio, and S. Rizzi. The dimensional fact model: A

conceptual model for data warehouses. Int. J. Cooperative Inf. Syst.,

7(2-3):215�247, 1998.

203

References

[68] M. Golfarelli, F. Mandreoli, W. Penzo, S. Rizzi, and E. Turricchia.

OLAP query reformulation in peer-to-peer data warehousing. Inf. Syst.,

37(5):393�411, 2012.

[69] M. Golfarelli and S. Rizzi. Data Warehouse Design: Modern Principles

and Methodologies. McGraw-Hill, Inc., New York, NY, USA, 1 edition,

2009.

[70] M. Golfarelli, S. Rizzi, and I. Cella. Beyond data warehousing: what's

next in business intelligence? In DOLAP, pages 1�6, 2004.

[71] M. Golfarelli, S. Rizzi, and E. Turricchia. Modern software engineering

methodologies meet data warehouse design: 4wd. In DaWaK, volume

6862 of LNCS, pages 66�79. Springer, 2011.

[72] Z. Guo, G. Fox, and M. Zhou. Investigation of data locality in mapreduce.

In CCGrid, pages 419�426, 2012.

[73] L. M. Haas. Beauty and the Beast: The Theory and Practice of Infor-

mation Integration. In ICDT, pages 28�43, 2007.

[74] R. Halasipuram, P. M. Deshpande, and S. Padmanabhan. Determining

essential statistics for cost based optimization of an ETL work�ow. In

EDBT, pages 307�318, 2014.

[75] A. Y. Halevy. Answering queries using views: A survey. VLDB J.,

10(4):270�294, 2001.

[76] D. Heimbigner and D. McLeod. A Federated Architecture for Information

Management. ACM Trans. Inf. Syst., 3(3):253�278, 1985.

[77] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and

S. Babu. Star�sh: A self-tuning system for big data analytics. In CIDR,

pages 261�272, 2011.

[78] F. Hueske, M. Peters, M. Sax, A. Rheinl�ander, R. Bergmann, A. Krettek,

and K. Tzoumas. Opening the Black Boxes in Data Flow Optimization.

PVLDB, 5(11):1256�1267, 2012.

[79] R. Hughes. Agile Data Warehousing: Delivering world-class business

intelligence systems using Scrum and XP. IUniverse, 2008.

[80] B. H�usemann, J. Lechtenb�orger, and G. Vossen. Conceptual data ware-

house modeling. In DMDW, page 6, 2000.

[81] IBM, P. Zikopoulos, and C. Eaton. Understanding Big Data: Analytics

for Enterprise Class Hadoop and Streaming Data. McGraw-Hill Osborne

Media, 1st edition, 2011.

204

References

[82] W. H. Inmon. Building the Data Warehouse. John Wiley & Sons, Inc.,

1992.

[83] W. H. Inmon, D. Strauss, and G. Neushloss. DW 2.0: The architecture

for the next generation of data warehousing: The architecture for the

next generation of data warehousing. Morgan Kaufmann, 2010.

[84] M. Jarke and J. Koch. Query Optimization in Database Systems. ACM

Comput. Surv., 16(2):111�152, 1984.

[85] J. Jin, J. Luo, A. Song, F. Dong, and R. Xiong. BAR: an e�cient

data locality driven task scheduling algorithm for cloud computing. In

CCGrid, pages 295�304, 2011.

[86] P. Jovanovic. Integration of multidimensional and ETL design. 2011.

Master Thesis.

[87] P. Jovanovic, O. Romero, and A. Abell�o. A uni�ed view of data-intensive

�ows in business intellignece systems: A sruvey. Trans. Large-Scale Data-

and Knowledge-Centered Systems, 2013. InPress.

[88] P. Jovanovic, O. Romero, A. Simitsis, and A. Abell�o. Integrating ETL

processes from information requirements. In DaWaK, pages 65�80, 2012.

[89] P. Jovanovic, O. Romero, A. Simitsis, and A. Abell�o. Incremental con-

solidation of data-intensive multi-�ows. IEEE Trans. Knowl. Data Eng.,

28(5):1203�1216, 2016.

[90] P. Jovanovic, O. Romero, A. Simitsis, A. Abell�o, H. Cand�on, and

S. Nadal. Quarry: Digging up the gems of your data treasury. In EDBT,

pages 549�552, 2015.

[91] P. Jovanovic, O. Romero, A. Simitsis, A. Abell�o, and D. Mayorova. A

requirement-driven approach to the design and evolution of data ware-

houses. Inf. Syst., 44:94�119, 2014.

[92] P. Jovanovic, A. Simitsis, and K. Wilkinson. Babble�ow: a translator for

analytic data �ow programs. In SIGMOD Conference, pages 713�716,

2014.

[93] P. Jovanovic, A. Simitsis, and K. Wilkinson. Engine independence for

logical analytic �ows. In ICDE, pages 1060�1071, 2014.

[94] P. Kalnis and D. Papadias. Multi-query optimization for on-line analyt-

ical processing. Inf. Syst., 28(5):457�473, 2003.

[95] A. Karagiannis, P. Vassiliadis, and A. Simitsis. Scheduling strategies for

e�cient ETL execution. Inf. Syst., 38(6):927�945, 2013.

205

References

[96] R. Kimball and J. Caserta. The Data Warehouse ETL Toolkit. John

Wiley & Sons, 2004.

[97] R. Kimball, L. Reeves, W. Thornthwaite, and M. Ross. The Data Ware-

house Lifecycle Toolkit. J. Wiley & Sons, 1998.

[98] T. Kirk, A. Y. Levy, Y. Sagiv, D. Srivastava, and Others. The information

manifold. In Proceedings of the AAAI 1995 Spring Symp. on Informa-

tion Gathering from Heterogeneous, Distributed Enviroments, volume 7,

pages 85�91, 1995.

[99] P. G. Kolaitis. Schema mappings, data exchange, and metadata manage-

ment. In PODS, pages 61�75, 2005.

[100] R. Kolisch and S. Hartmann. Heuristic algorithms for the resource-

constrained project scheduling problem: Classi�cation and computa-

tional analysis. Springer, 1999.

[101] G. Kougka and A. Gounaris. Cost optimization of data �ows based on

task re-ordering. CoRR, abs/1507.08492, 2015.

[102] G. Kougka, A. Gounaris, and K. Tsichlas. Practical algorithms for execu-

tion engine selection in data �ows. Future Generation Computer Systems,

45:133�148, 2015.

[103] T. Kraft, H. Schwarz, R. Rantzau, and B. Mitschang. Coarse-grained

optimization: Techniques for rewriting SQL statement sequences. In

VLDB, pages 488�499, 2003.

[104] W. Labio and H. Garcia-Molina. E�cient Snapshot Di�erential Algo-

rithms for Data Warehousing. In VLDB, pages 63�74, 1996.

[105] A. H. F. Laender, B. A. Ribeiro-Neto, A. S. da Silva, and J. S. Teixeira. A

Brief Survey of Web Data Extraction Tools. SIGMOD Record, 31(2):84�

93, 2002.

[106] M. Lenzerini. Data Integration: A Theoretical Perspective. In PODS,

pages 233�246. ACM, 2002.

[107] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of massive

datasets. Cambridge University Press, 2014.

[108] L. Libkin. Data exchange and incomplete information. In PODS, pages

60�69, 2006.

[109] B. G. Lindsay, L. M. Haas, C. Mohan, H. Pirahesh, and P. F. Wilms. A

Snapshot Di�erential Refresh Algorithm. In SIGMOD Conference, pages

53�60, 1986.

206

References

[110] A. L�oser, F. Hueske, and V. Markl. Situational Business Intelligence. In

BIRTE, volume 27, pages 1�11, 2008.

[111] A. Mat�e and J. Trujillo. A trace metamodel proposal based on the model

driven architecture framework for the traceability of user requirements in

data warehouses. Inf. Syst., 37(8):753�766, 2012.

[112] A. Mat�e, J. Trujillo, E. de Gregorio, and I.-Y. Song. Improving the main-

tainability of data warehouse designs: modeling relationships between

sources and user concepts. In DOLAP, pages 25�32, 2012.

[113] J. Maz�on, J. Trujillo, and J. Lechtenb�orger. Reconciling requirement-

driven data warehouses with data sources via multidimensional normal

forms. Data Knowl. Eng., 63(3):725�751, 2007.

[114] J.-N. Maz�on, J. Lechtenb�orger, and J. Trujillo. A survey on summarizabil-

ity issues in multidimensional modeling. Data Knowl. Eng., 68(12):1452�

1469, 2009.

[115] J.-N. Maz�on and J. Trujillo. An MDA approach for the development of

data warehouses. Decision Support Systems, 45(1):41�58, 2008.

[116] P. McBrien and A. Poulovassilis. Data Integration by Bi-Directional

Schema Transformation Rules. In ICDE, pages 227�238, 2003.

[117] K. McDonald, A. Wilmsmeier, D. C. Dixon, and W. Inmon. Mastering

the SAP Business Information Warehouse. John Wiley & Sons, 2002.

[118] T. Morzy and R. Wrembel. On querying versions of multiversion data

warehouse. In DOLAP, pages 92�101, 2004.

[119] L. T. Moss and S. Atre. Business intelligence roadmap: the complete

project lifecycle for decision-support applications. Addison-Wesley Pro-

fessional, 2003.

[120] L. Mu�noz, J.-N. Maz�on, and J. Trujillo. Automatic generation of ETL

processes from conceptual models. In DOLAP, pages 33�40, 2009.

[121] A. Nabli, J. Feki, and F. Gargouri. Automatic construction of multidi-

mensional schema from OLAP requirements. In AICCSA, page 28, 2005.

[122] P. Naggar, L. Pontieri, M. Pupo, G. Terracina, and E. Virardi. A model

and a toolkit for supporting incremental data warehouse construction. In

DEXA, pages 123�132, 2002.

[123] E. Nakuci. Data generation for the simulation of artifact-centric pro-

cesses. 2014. Master Thesis.

207

References

[124] T. Neumann. Query optimization (in relational databases). In Encyclo-

pedia of Database Systems, pages 2273�2278. Springer US, 2009.

[125] K. W. Ong, Y. Papakonstantinou, and R. Vernoux. The SQL++ semi-

structured data model and query language: A capabilities survey of sql-

on-hadoop, nosql and newsql databases. CoRR, abs/1405.3631, 2014.

[126] P. O'Neil and E. O'Neil and X. Chen. The Star Schema Bench-

mark, http://www.cs.umb.edu/�poneil/StarSchemaB.PDF (last access

21/09/2013).

[127] B. Palanisamy, A. Singh, L. Liu, and B. Jain. Purlieus: locality-aware

resource allocation for mapreduce in a cloud. In SC, pages 58:1�58:11,

2011.

[128] A. S. Pall and J. S. Khaira. A comparative review of extraction, transfor-

mation and loading tools. Database Systems Journal, 4(2):42�51, 2013.

[129] G. Papastefanatos, P. Vassiliadis, A. Simitsis, and Y. Vassiliou. Policy-

regulated management of ETL evolution. J. Data Semantics, 13:147�177,

2009.

[130] P. F. Patel-Schneider and I. Horrocks. Position paper: a comparison of

two modelling paradigms in the Semantic Web. In WWW, pages 3�12,

2006.

[131] C. Phipps and K. C. Davis. Automating data warehouse conceptual

schema design and evaluation. In DMDW, volume 58 of CEURWorkshop

Proceedings, pages 23�32, 2002.

[132] K. Pohl. Requirements Engineering - Fundamentals, Principles, and

Techniques. Springer, 2010.

[133] J. Polo, Y. Becerra, D. Carrera, J. Torres, E. Ayguad�e, and M. Steinder.

Adaptive MapReduce scheduling in shared environments. In IEEE/ACM

CCGrid, pages 61�70, 2014.

[134] W. Qu and S. Dessloch. A real-time materialized view approach for ana-

lytic �ows in hybrid cloud environments. Datenbank-Spektrum, 14(2):97�

106, 2014.

[135] C. Quix. Repository support for data warehouse evolution. In DMDW,

page 4, 1999.

[136] E. Rahm and P. A. Bernstein. A survey of approaches to automatic

schema matching. VLDB J., 10(4):334�350, 2001.

208

References

[137] E. Rahm and H. H. Do. Data Cleaning: Problems and Current Ap-

proaches. IEEE Data Eng. Bull., 23(4):3�13, 2000.

[138] A. Rheinl�ander, A. Heise, F. Hueske, U. Leser, and F. Naumann. Sofa:

An extensible logical optimizer for udf-heavy data �ows. Information

Systems, 52(0):96 � 125, 2015.

[139] S. Rizzi. Business intelligence. In Encyclopedia of Database Systems,

pages 287�288. 2009.

[140] O. Romero and A. Abell�o. A Survey of Multidimensional Modeling

Methodologies. IJDWM, 5(2):1�23, 2009.

[141] O. Romero and A. Abell�o. Automatic Validation of Requirements to

Support Multidimensional Design. Data Knowl. Eng., 69(9):917�942,

2010.

[142] O. Romero and A. Abell�o. A framework for multidimensional design of

data warehouses from ontologies. Data Knowl. Eng., 69(11):1138�1157,

2010.

[143] O. Romero and A. Abell�o. Open Access Semantic Aware Business Intelli-

gence. In E. Zim�anyi, editor, Business Intelligence, volume 172 of Lecture

Notes in Business Information Processing, pages 121�149. Springer Inter-

national Publishing, 2014.

[144] O. Romero, D. Calvanese, A. Abell�o, and M. Rodriguez-Muro. Discov-

ering functional dependencies for multidimensional design. In DOLAP,

pages 1�8, 2009.

[145] O. Romero, P. Marcel, A. Abell�o, V. Peralta, and L. Bellatreche. Describ-

ing analytical sessions using a multidimensional algebra. In DaWaK, vol-

ume 6862 of Lecture Notes in Computer Science, pages 224�239. Springer,

2011.

[146] O. Romero, A. Simitsis, and A. Abell�o. GEM: Requirement-Driven

Generation of ETL and Multidimensional Conceptual Designs. In

DaWaK, volume 6862 of Lecture Notes in Computer Science, pages 80�

95. Springer, 2011.

[147] R. Romero, J.-N. Maz�on, J. Trujillo, M. A. Serrano, and M. Piattini.

Quality of data warehouses. In Encyclopedia of Database Systems, pages

2230�2235. 2009.

[148] A. Rosenthal and L. J. Seligman. Data integration in the large: The

challenge of reuse. In VLDB, pages 669�675, 1994.

209

References

[149] M. T. Roth, M. Arya, L. M. Haas, M. J. Carey, W. F. Cody, R. Fagin,

P. M. Schwarz, J. T. II, and E. L. Wimmers. The garlic project. In

SIGMOD Conference, page 557, 1996.

[150] P. Roy and S. Sudarshan. Multi-query optimization. In Encyclopedia of

Database Systems, pages 1849�1852. 2009.

[151] C. P. Sayers, A. Simitsis, G. Koutrika, A. G. Gonzalez, D. T. Cantu, and

M. Hsu. The farm: where pig scripts are bred and raised. In SIGMOD

Conference, pages 1025�1028, 2013.

[152] R. C. Schank and L. G. Tesler. A conceptual parser for natural language.

In Proceedings of the 1st International Joint Conference on Arti�cial

Intelligence, Washington, DC, May 1969, pages 569�578, 1969.

[153] F. Serban, J. Vanschoren, J. Kietz, and A. Bernstein. A survey of intel-

ligent assistants for data analysis. ACM Comput. Surv., 45(3):31, 2013.

[154] M. A. Serrano, C. Calero, H. A. Sahraoui, and M. Piattini. Empirical

studies to assess the understandability of data warehouse schemas using

structural metrics. Software Quality Journal, 16(1):79�106, 2008.

[155] N. C. Shu, B. C. Housel, R. W. Taylor, S. P. Ghosh, and V. Y. Lum.

EXPRESS: A Data EXtraction, Processing, amd REStructuring System.

ACM Trans. Database Syst., 2(2):134�174, 1977.

[156] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop dis-

tributed �le system. In MSST, pages 1�10, 2010.

[157] A. Simitsis, P. Vassiliadis, U. Dayal, A. Karagiannis, and V. Tziovara.

Benchmarking ETL work�ows. In TPCTC, pages 199�220, 2009.

[158] A. Simitsis, P. Vassiliadis, and T. K. Sellis. State-Space Optimization

of ETL Work�ows. IEEE Trans. Knowl. Data Eng., 17(10):1404�1419,

2005.

[159] A. Simitsis and K. Wilkinson. Revisiting ETL benchmarking: The case

for hybrid �ows. In TPCTC, pages 75�91, 2012.

[160] A. Simitsis and K. Wilkinson. The speci�cation for xLM: an encoding

for analytic �ows, 2014.

[161] A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal. QoX-driven

ETL design: reducing the cost of ETL consulting engagements. In SIG-

MOD Conference, 2009.

[162] A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal. Optimizing an-

alytic data �ows for multiple execution engines. In SIGMOD Conference,

pages 829�840, 2012.

210

References

[163] A. Simitsis, K. Wilkinson, and U. Dayal. Hybrid Analytic Flows - the

Case for Optimization. Fundam. Inform., 128(3):303�335, 2013.

[164] A. Simitsis, K. Wilkinson, U. Dayal, and M. Hsu. HFMS: managing the

lifecycle and complexity of hybrid analytic data �ows. In ICDE, pages

1174�1185, 2013.

[165] A. Simitsis, K. Wilkinson, and P. Jovanovic. xPAD: a platform for ana-

lytic data �ows. In SIGMOD Conference, pages 1109�1112, 2013.

[166] D. Skoutas and A. Simitsis. Designing ETL processes using semantic web

technologies. In DOLAP, pages 67�74, 2006.

[167] D. Skoutas and A. Simitsis. Ontology-Based Conceptual Design of ETL

Processes for Both Structured and Semi-Structured Data. Int. J. Seman-

tic Web Inf. Syst., 3(4):1�24, 2007.

[168] I.-Y. Song, R. Khare, and B. Dai. SAMSTAR: a semi-automated lexical

method for generating star schemas from an entity-relationship diagram.

In DOLAP, pages 9�16, 2007.

[169] K. H. Strange. Data Warehouse TCO: Don't Underestimate the Cost of

ETL. Gartner Research, CS-15-2007, 2002.

[170] K. H. Strange. ETL Was the Key to This Data Warehouse's Success.

Gartner Research, CS-15-3143, 2002.

[171] V. Tannen. Relational algebra. In Encyclopedia of Database Systems,

pages 2369�2370. 2009.

[172] D. Theodoratos and M. Bouzeghoub. A general framework for the view

selection problem for data warehouse design and evolution. In DOLAP,

pages 1�8, 2000.

[173] D. Theodoratos, T. Dalamagas, A. Simitsis, and M. Stavropoulos. A ran-

domized approach for the incremental design of an evolving data ware-

house. In ER, pages 325�338, 2001.

[174] D. Theodoratos and T. K. Sellis. Designing Data Warehouses. Data

Knowl. Eng., 31(3):279�301, 1999.

[175] D. Theodoratos and T. K. Sellis. Incremental design of a data warehouse.

J. Intell. Inf. Syst., 15(1):7�27, 2000.

[176] V. Theodorou, A. Abell�o, W. Lehner, and M. Thiele. Quality measures

for etl processes: from goals to implementation. Concurrency and Com-

putation: Practice and Experience, pages n/a�n/a, 2015. cpe.3729.

211

References

[177] V. Theodorou, A. Abell�o, M. Thiele, and W. Lehner. POIESIS: a tool

for quality-aware ETL process redesign. In EDBT, pages 545�548, 2015.

[178] V. Theodorou, P. Jovanovic, A. Abell�o, and E. Naku�ci. Data generator

for evaluating ETL process quality. Information Systems, pages �, 2016.

[179] R. Torlone. Two approaches to the integration of heterogeneous data

warehouses. Distributed and Parallel Databases, 23(1):69�97, 2008.

[180] J. Trujillo and S. Luj�an-Mora. A UML Based Approach for Modeling

ETL Processes in Data Warehouses. In ER, pages 307�320, 2003.

[181] V. Tziovara, P. Vassiliadis, and A. Simitsis. Deciding the physical imple-

mentation of ETL work�ows. In DOLAP, pages 49�56, 2007.

[182] J. D. Ullman. Information Integration Using Logical Views. In ICDT,

pages 19�40, 1997.

[183] A. A. Vaisman, A. O. Mendelzon, W. Ruaro, and S. G. Cymerman.

Supporting dimension updates in an OLAP server. Inf. Syst., 29(2):165�

185, 2004.

[184] J. Varga, O. Romero, T. B. Pedersen, and C. Thomsen. Towards next

generation BI systems: The analytical metadata challenge. In DaWaK,

pages 89�101, 2014.

[185] P. Vassiliadis. Gulliver in the land of data warehousing: practical expe-

riences and observations of a researcher. In DMDW, page 12, 2000.

[186] P. Vassiliadis. A Survey of Extract-Transform-Load Technology. IJDWM,

5(3):1�27, 2009.

[187] P. Vassiliadis, M. Bouzeghoub, and C. Quix. Towards quality-oriented

data warehouse usage and evolution. Inf. Syst., 25(2):89�115, 2000.

[188] P. Vassiliadis and A. Simitsis. Near real time ETL. In New Trends in

Data Warehousing and Data Analysis, pages 1�31. Springer, 2009.

[189] P. Vassiliadis, A. Simitsis, P. Georgantas, M. Terrovitis, and S. Ski-

adopoulos. A generic and customizable framework for the design of ETL

scenarios. Inf. Syst., 30(7), 2005.

[190] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos. Conceptual modeling for

ETL processes. In DOLAP, pages 14�21, 2002.

[191] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,

R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,

O. O'Malley, S. Radia, B. Reed, and E. Baldeschwieler. Apache hadoop

YARN: yet another resource negotiator. In SOCC, pages 5:1�5:16, 2013.

212

References

[192] M. Vrhovnik, H. Schwarz, O. Suhre, B. Mitschang, V. Markl, A. Maier,

and T. Kraft. An approach to optimize data processing in business pro-

cesses. In VLDB, pages 615�626, 2007.

[193] F. Waas, R. Wrembel, T. Freudenreich, M. Thiele, C. Koncilia, and

P. Furtado. On-demand ELT architecture for right-time BI: extending

the vision. IJDWM, 9(2):21�38, 2013.

[194] W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang. Map task scheduling in

MapReduce with data locality: Throughput and heavy-tra�c optimality.

In INFOCOM, pages 1609�1617, 2013.

[195] K. Wilkinson, A. Simitsis, M. Castellanos, and U. Dayal. Leveraging

Business Process Models for ETL Design. In ER, pages 15�30, 2010.

[196] R. Winter and B. Strauch. A Method for Demand-driven Information

Requirements Analysis in DataWarehousing Projects. In In Proc. HICSS,

pages 1359�1365, 2003.

[197] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and

I. Stoica. Delay scheduling: a simple technique for achieving locality and

fairness in cluster scheduling. In EuroSys, pages 265�278, 2010.

213

References

214

Appendices

215

Appendix A

Quarry: Digging Up the Gems of

Your Data Treasury

The paper has been published in the

Proceedings of the 18th International Conference on Extending Database Tech-

nology (EDBT 2015), Brussels, Belgium, pp. 549-552, 2015. The layout of the

paper has been revised.

DOI: http://dx.doi.org/10.5441/002/edbt.2015.55

Abstract

The design lifecycle of a data warehousing (DW) system is primarily led by re-

quirements of its end-users and the complexity of underlying data sources. The

process of designing a multidimensional (MD) schema and back-end extract-

transform-load (ETL) processes, is a long-term and mostly manual task. As

enterprises shift to more real-time and 'on-the-�y' decision making, business

intelligence (BI) systems require automated means for e�ciently adapting a

physical DW design to frequent changes of business needs. To address this

problem, we present Quarry, an end-to-end system for assisting users of vari-

ous technical skills in managing the incremental design and deployment of MD

schemata and ETL processes. Quarry automates the physical design of a DW

system from high-level information requirements. Moreover, Quarry provides

tools for e�ciently accommodating MD schema and ETL process designs to

new or changed information needs of its end-users. Finally, Quarry facilitates

the deployment of the generated DW design over an extensible list of execution

engines. On-site, we will use a variety of examples to show how Quarry facili-

tates the complexity of the DW design lifecycle.

217

http://dx.doi.org/10.5441/002/edbt.2015.55

Appendix A. Quarry: Digging Up the Gems of Your Data Treasury

1 Introduction

Traditionally, the process of designing a multidimensional (MD) schema and

back-end extract-transform-load (ETL) �ows, is a long-term and mostly man-

ual task. It usually includes several rounds of collecting requirements from

end-users, reconciliation, and redesigning until the business needs are �nally

satis�ed. Moreover, in today's BI systems, deployed DW systems, satisfying

the current set of requirements is subject to frequent changes as the business

evolves. MD schema and ETL process, as other software artifacts, do not lend

themselves nicely to evolution events and in general, maintaining them manu-

ally is hard. First, for each new, changed, or removed requirement, an updated

DW design must go through a series of validation processes to guarantee the

satisfaction of the current set of requirements, and the soundness of the updated

design solutions (i.e., meeting MD integrity constraints [114]). Moreover, the

proposed design solutions should be further optimized to meet di�erent quality

objectives (e.g., performance, fault tolerance, structural complexity). Lastly,

complex BI systems may usually involve a plethora of execution platforms,

each one specialized for e�ciently performing a speci�c analytical processing.

Thus the e�cient deployment over di�erent execution systems is an additional

challenge.

Translating information requirements into MD schema and ETL process de-

signs has been already studied, and various works propose either manual (e.g.,

[97]), guided (e.g., [13]) or automated [18, 131, 146] approaches for the design

of a DW system. In addition, in [52] a tool (a.k.a. Clio) is proposed to au-

tomatically generate correspondences (i.e., schema mappings) among di�erent

existing schemas, while another tool (a.k.a. Orchid) [44] further provides inter-

operability between Clio and procedural ETL tools. However, Clio and Orchid

do not tackle the problem of creating a target schema. Moreover, none of these

approaches have dealt with automating the adaptation of a DW design to new

information needs of its end-users, or the complete lifecyle of a DW design.

To address these problems, we built Quarry, an end-to-end system for as-

sisting users in managing the complexity of the DW design lifecycle.

Quarry starts from high-level information requirements expressed in terms

of analytical queries that follow the well-known MD model. That is, having a

subject of analysis and its analysis dimensions (e.g., Analyze the revenue from

the last year's sales, per products that are ordered from Spain.). Quarry pro-

vides a graphical assistance tool for guiding non-expert users in de�ning such

requirements using a domain-speci�c vocabulary. Moreover, Quarry automates

the process of validating each requirement with regard to the MD integrity

constraints and its translation into MD schema and ETL process designs (i.e.,

partial designs).

Independently of the way end-users translate their information requirements

218

2. Demonstrable Features

Fig. A.1: Quarry: system overview

into the corresponding partial designs, Quarry provides automated means for

integrating these MD schema and ETL process designs into a uni�ed DW design

satisfying all requirements met so far.

Quarry automates the complex and time-consuming task of the incremental

DW design. Moreover, while integrating partial designs, Quarry provides an

automatic validation, both regarding the soundness (e.g., meeting MD integrity

constraints) and the satis�ability of the current business needs.

Finally, for leading the automatic integration of MD schema and ETL pro-

cess designs, and creating an optimal DW design solution, Quarry accounts

for user-speci�ed quality factors (e.g., structural design complexity of an MD

schema, overall execution time of an ETL process).

Since Quarry assists both MD schema and ETL process designs, it also

e�ciently supports the additional iterative optimization steps of the complete

DW design. For example, more complex ETL �ows may be required to reduce

the complexity of an MD schema and improve the performance of OLAP queries

by pre-aggregating and joining source data.

Besides e�ciently supporting the traditional DW design, the automation

that Quarry provides, largely suits the needs of modern BI systems requiring

rapid accommodation of a design to satisfy frequent changes.

Outline. We �rst provide an overview of Quarry and then, we present its

core features to be demonstrated. Lastly, we outline our on-site presentation.

2 Demonstrable Features

Quarry presents an end-to-end system for managing the DW design lifecycle.

Thus, it comprises four main components (see Figure A.1): Requirements Elic-

itor, Requirements Interpreter, Design Integrator, and Design Deployer.

For supporting non-expert users in providing their information requirements

219

Appendix A. Quarry: Digging Up the Gems of Your Data Treasury

Fig. A.2: Requirements Elicitor

at input, Quarry provides a graphical component, namely Requirements Elici-

tor (see Figure A.2). Requirements Elicitor then connects to a component (i.e.,

Requirements Interpreter), which for each information requirement at input

semi-automatically generates validated MD schema and ETL process designs

(i.e., partial designs). Quarry further o�ers a component (i.e., Design Inte-

grator) comprising two modules for integrating partial MD schema and ETL

process designs processed so far, and generating uni�ed design solutions sat-

isfying a complete set of requirements. At each step, after integrating partial

designs of a new requirement, Quarry guarantees the soundness of the uni�ed

design solutions and the satis�ability of all requirements processed so far. The

produced DW design solutions are further sent to the Design Deployer com-

ponent for the initial deployment of a DW schema and an ETL process that

populates it. The deployed design solutions are then available for further user-

preferred tunings and use.

To support intra and cross-platform communication, Quarry uses the com-

munication & metadata layer (see Figure A.1).

220

2. Demonstrable Features

2.1 Requirements Elicitor

Requirements Elicitor uses a graphical representation of a domain ontology

capturing the underlying data sources. A domain ontology can be additionally

enriched with the business level vocabulary, to enable non-expert users to ex-

press their analytical needs. Notice for example a graphical representation of

an ontology capturing the TPC-H1 data sources in top-left part of Figure A.2.

Apart from manually de�ning requirements from scratch, Requirements Elici-

tor also o�ers assistance to end-users' data exploration tasks by analyzing the

relationships in the domain ontology, and automatically suggesting potentially

interesting analytical perspectives. For example, a user may choose the focus

of an analysis (e.g., Lineitem), while the system then automatically suggests

useful dimensions (e.g., Supplier, Nation, Part). The user can further accept

or discard the suggestions and supply her information requirement.

2.2 Requirements Interpreter

Each information requirement de�ned by a user, is then translated by the

Requirements Interpreter to a partial DW design. In particular, Requirements

Interpreter maps an input information requirement to underlying data sources

(i.e., by means of a domain ontology that captures them and corresponding

source schema mappings; see Section 2.5), and semi-automatically generates

MD schema and ETL process designs that satisfy such requirement. For more

details and a discussion on correctness we refer the reader to [146].

In addition, Quarry allows plugging in other external design tools, with the

assumption that the provided partial designs are sound (i.e., meet MD integrity

constraints) and that they satisfy an end-user requirement. To enable such

cross-platform interoperability, Quarry provides logical, platform-independent

representations (see Section 2.5). Generated designs are stored to the Com-

munication & Metadata layer using corresponding formats and related to the

information requirements they satisfy.

2.3 Design Integrator

Starting from each information requirement, translated to corresponding par-

tial MD schema and ETL process designs, Quarry takes care of incrementally

consolidating these designs and generating uni�ed design solutions satisfying

all current requirements (see Figure A.3).

MD Schema Integrator. This module semi-automatically integrates partial

MD schemas. MD Schema Integrator, comprises four stages, namely match-

ing facts, matching dimensions, complementing the MD schema design, and

integration. The �rst three stages gradually match di�erent MD concepts and

1http://www.tpc.org/tpch/

221

http://www.tpc.org/tpch/

Appendix A. Quarry: Digging Up the Gems of Your Data Treasury

Deployable design solutions

<MDschema>
 <facts>
 <fact>
 <name>fact_table_revenue</name>
 ...

<MDschema>
 <facts>
 <fact>
 <name>fact_table_revenue</name>
 ...

<MDschema>
 <facts>
 <fact>
 <name>fact_table_revenue</name>
 ...

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Partsupp</from>

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Partsupp</from>

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Partsupp</from>
...

Partial designs

<MDschema>
 <facts>
 <fact>
 <name>fact_table_revenue</name>
 ...

<MDschema>
 <facts>
 <fact>
 <name>fact_table_revenue</name>
 ...

<MDschema>
 <facts>
 <fact>
 <name>fact_table_netprofit</name>
 ...

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Partsupp</from>

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Partsupp</from>

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Nation</from>
...

...

...

IR 1

IR N

IR 1

IR N

MD schema (xMD)

ETL process (xLM)

Unified design solutions (IR 1 – IR N)

<MDschema>
 <facts>
 <fact>
 <name>fact_table_revenue</name>
 ...

<MDschema>
 <facts>
 <fact>
 <name>fact_table_revenue</name>
 ...

<MDschema>
 <facts>
 <fact>
 <name>fact_table_revenue</name>
 …
<MDschema>
 <facts>
 <fact>
 <name>fact_table_netprofit</name>
 ...

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Partsupp</from>

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Partsupp</from>

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Partsupp</from>
 <to>EXTRACTION_Partsupp</to>
 <enabled>Y</enabled>
 </edge> … </edges>
 <nodes> <node>
 <name>DATASTORE_Partsupp</name>
 <type>Datastore</type>
...

MD
Int.

ETL
Int.

CREATE DATABASE demo;
CREATE TABLE fact_table_revenue (

Partsupp_PartsuppID BIGINT… ,
Orders_OrdersID BIGINT …,
revenue double precision ,

PRIMARY KEY(Partsupp_PartsuppID,
 Orders_OrdersID)

); …
CREATE TABLE fact_table_netprofit (

...
); ...

<transformation>
 <connection>
 … <database>demo</database>...
<order>
 <hop>
 <from>DATASTORE_Partsupp</from>
 <to>EXTRACTION_Partsupp</to>
 <enabled>Y</enabled>
 </hop> …
<step>
 <name>DATASTORE_Partsupp</name>
 <type>TableInput</type> ...

MD schema (xMD)

ETL process (xLM)

MD schema (SQL, RDBMS)

MD
dep.

ETL process (Pentaho PDI)

ETL
dep.

Fig. A.3: Design integration & deployment example

explore new DW design alternatives. The last stage considers these matchings

and end-user's feedback to generate the �nal MD schema that accommodates

new information requirements. To boost the integration of new information re-

quirements spanning diverse data sources into the �nal MD schema design, we

capture the semantics (e.g., concepts, properties) of the available data sources

in terms of a domain ontology and corresponding source schema mappings (see

Section 2.5). MD Schema Integrator automatically guarantees MD-compliant

results and produces the optimal solution by applying cost models that capture

di�erent quality factors (e.g., structural complexity).

ETL Process Integrator. This module processes partial ETL designs and

incrementally consolidates them into a uni�ed ETL design. ETL Process Inte-

grator, for each new requirement maximizes the reuse by looking for the largest

overlapping of data and operations in the existing ETL process. To boost the

reuse of the existing data �ow elements when answering new information re-

quirements, ETL Process Integrator aligns the order of ETL operations by

applying generic equivalence rules. ETL Process Integrator also accounts for

the cost of produced ETL �ows when integrating information requirements, by

applying con�gurable cost models that may consider di�erent quality factors

of an ETL process (e.g., overall execution time).

More details, as well as the underlying algorithms of MD Schema Integra-

tor can be found in [91] and of ETL Process Integrator in [89].

222

2. Demonstrable Features

<MDschema>
 <facts>
 <fact>
 <name>fact_table_revenue</name>
 ...
 </facts>
 <dimensions>
 <dimension>
 <name>Part</name>
 ...
 </dimensions>
</MDschema>

<MDschema>
 <facts>
 <fact>
 <name>fact_table_revenue</name>
 ...
 </facts>
 <dimensions>
 <dimension>
 <name>Part</name>
 ...
 </dimensions>
</MDschema>

<MDschema>
 <facts>
 <fact>
 <name>fact_table_revenue</name>
 ...
 </facts>
 <dimensions>
 <dimension>
 <name>Part</name>
 ...
 </dimensions>
</MDschema>

<cube>
 <dimensions>
 <concept id="Part_p_nameATRIBUT"/>
 <concept id="Supplier_s_nameATRIBUT"/>
 </dimensions>
 <measures>
 <concept id="revenue">
 <function> Lineitem_l_extendedpriceATRIBUT
 * Lineitem_l_discountATRIBUT</function>
 </concept>
 </measures>
 <slicers>
 <comparison>
 <concept id="Nation_n_nameATRIBUT"/>
 <operator>=</operator>
 <value>Spain</value>
 </comparison>
 </slicers>
…

...
<aggregations>
 <aggregation order="1">
 <dimension refID="Part_p_nameATRIBUT"/>
 <measure refID="revenue"/>
 <function>AVERAGE</function>
 </aggregation>
 <aggregation order="1">
 <dimension
 refID="Supplier_s_nameATRIBUT"/>
 <measure refID="revenue"/>
 <function>AVERAGE</function>
 </aggregation>
 </aggregations>
</cube>

 to xRQ

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Partsupp</from>
 <to>EXTRACTION_Partsupp</to>
 <enabled>Y</enabled>
 </edge> … </edges>
 <nodes> <node>
 <name>DATASTORE_Partsupp</name>
 <type>Datastore</type>
 <optype>TableInput</optype>
 ... </nodes> … </design>

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Partsupp</from>
 <to>EXTRACTION_Partsupp</to>
 <enabled>Y</enabled>
 </edge> … </edges>
 <nodes> <node>
 <name>DATASTORE_Partsupp</name>
 <type>Datastore</type>
 <optype>TableInput</optype>
 ... </nodes> … </design>

<design>
 <metadata>...</metadata>
 <edges> <edge>
 <from>DATASTORE_Partsupp</from>
 <to>EXTRACTION_Partsupp</to>
 <enabled>Y</enabled>
 </edge> … </edges>
 <nodes> <node>
 <name>DATASTORE_Partsupp</
name>
 <type>Datastore</type>
 <optype>TableInput</optype>
 ... </nodes> … </design>

to xMD

to xLM

Partial designs

Fig. A.4: Example design process

2.4 Design Deployer

Finally, Quarry supports the deployment of the uni�ed design solutions over

the supported storage repositories and execution platforms (see example in

Figure A.3). By using platform-independent representations of a DW design

(see Section 2.5), Quarry is extensible in that it can link to a variety of execu-

tion platforms. At the same time, the validated DW designs are available for

additional tunings by an expert user (e.g., indexes, materialization level).

2.5 Communication & Metadata Layer

To enable communication inside Quarry, the Communication & Metadata

layer uses logical (XML-based) formats for representing elements that are ex-

changed among the components. Information requirements are represented in

the form of analytical queries using a format called xRQ2 (see bottom-left snip-

pet in Figure A.4). An MD schema is represented using the xMD format3 (see

top-right snippet in Figure A.4), and an ETL process design using the xLM

format [160] (see bottom-right snippet in Figure A.4). Moreover, the Com-

munication & Metadata layer o�ers plug-in capabilities for adding import and

2xRQ's DTD at: www.essi.upc.edu/~petar/xrq.html
3xMD's DTD at: www.essi.upc.edu/~petar/xmd.html

223

www.essi.upc.edu/~petar/xrq.html
www.essi.upc.edu/~petar/xmd.html

Appendix A. Quarry: Digging Up the Gems of Your Data Treasury

export parsers, for supporting various external notations (e.g., SQL, Apache

PigLatin, ETL Metadata; see more details in [93]).

Besides providing the communication among di�erent components of the

system, the Communication & Metadata layer

also serves as a repository for the metadata that are produced and used during

the DW design lifecycle. The metadata used to boost the semantic-aware inte-

gration of DW designs inside the Quarry platform, are domain ontologies cap-

turing the semantics of underlying data sources, and source schema mappings

that de�ne the mappings of the ontological concepts in terms of underlying

data sources.

2.6 Implementation details

Quarry has been developed at UPC, BarcelonaTech in the last three years,

using a service-oriented architecture.

On the client side, Quarry provides a web-based component for assisting

end-users during the DW lifecycle (i.e., Requirements Elicitor). This compo-

nent is implemented in JavaScript, using the specialized D3 library for visu-

alizing domain ontologies in form of graphs. The rest of modules (i.e., Re-

quirements Interpreter, MD Schema Integrator, and ETL Process Integrator)

are deployed on Apache Tomcat 7.0.34, with their functionalities o�ered via

HTTP-based RESTful APIs. Such architecture provides the extensibility to

Quarry for easily plugging and o�ering new components in the future (e.g., de-

sign self-tuning). Currently, all module components are implemented in Java

1.7, whilst new modules can internally use di�erent technologies. For generat-

ing internal XML formats (i.e., xRQ, xMD, xLM) we created a set of Apache

Velocity 1.7 templates, while for their parsing we rely on the Java SAX parser.

For representing domain ontology inside Quarry, we used Web Ontology Lan-

guage (OWL), and for internally handling the ontology objects inside Java,

we used the Apache Jena libraries. Lastly, the Communication & Metadata

layer, which implements communication protocols among di�erent components

in Quarry, uses a MongoDB instance, and a generic XML-JSON-XML parser

for reading from and writing to the repository.

3 Demonstration

In the on-site demonstration, we will present the functionality of Quarry, using

our end-to-end system for assisting users in managing the DW design lifecycle

(see Figure A.1). We will use di�erent examples of synthetic and real-world

domains, covering a variety of underlying data sources, and a set of representa-

tive information requirements from these domains depicting typical scenarios

of the DW design lifecycle. Demo participants will be especially encouraged to

224

4. Acknowledgements

provide example analytical needs using Requirements Elicitor, and play the role

of Quarry's end-users. The following scenarios will be covered by our on-site

demonstration.

DW design. Business users are not expected to have deep knowledge of

the underlying data sources, thus they may choose to pose their information

requirements using the domain vocabulary. To this end, business users may use

the graphical component of Quarry (i.e., Requirements Elicitor), and its graph-

ical representation of a domain ontology. This scenario shows how Quarry sup-

ports non-expert users in the early phases of the DW design lifecycle, to express

their analytical needs (i.e., through assisted data exploration of Requirements

Elicitor), and to easily obtain the initial DW design solutions.

Accommodating a DW design to changes. Due to possible changes in a busi-

ness environment, a new information requirement could be posed or existing

requirements might be changed or even removed from the analysis. Design-

ers thus must reconsider the complete DW design to take into account the

incurred changes. This scenario demonstrates how Quarry e�ciently accom-

modates these changes and integrate them by producing an optimal DW design

solution. We will consider structural design complexity as an example quality

factor for output MD schemata, and overall execution time for ETL processes.

The participants will see the bene�ts of integrated DW design solutions (e.g.,

reduced overall execution time for integrated ETL processes, executed in Pen-

taho PDI).

Design deployment. Finally, after the involved parties agree upon the pro-

vided solution, the chosen design is deployed on the available execution plat-

forms. In this scenario, we will show how Quarry facilitates this part of the

design lifecycle and generates corresponding executables for the chosen plat-

forms. We use PostgreSQL for deploying our MD schema solutions, while for

running the corresponding ETL �ows, we use Pentaho PDI.

4 Acknowledgements

This work has been partly supported by the Spanish Ministerio de Ciencia e

Innovaci�on under project TIN2011-24747.

225

	cover
	thesisPetar
	Front page
	Curriculum Vitae
	Abstract
	Contents
	Thesis Details
	1 Introduction
	1 Background and Motivation
	2 The Lifecycle of Data-intensive Flows
	2.1 Research Problems and Challenges

	3 Structure of the Thesis
	4 Thesis Overview
	4.1 Chapter 2: A Unified View of Data-Intensive Flows in Business Intelligence Systems: A Survey (The State of the Art)
	4.2 Chapter 3: Incremental Consolidation of Data-Intensive Multi-flows (Data Flow Integrator)
	4.3 Chapter 4: A Requirement-Driven Approach to the Design and Evolution of Data Warehouses (Target Schema Integrator)
	4.4 Chapter 5: Engine Independence for Logical Analytic Flows (Data Flow Deployer)
	4.5 Chapter 6: Supporting Job Scheduling with Workload-driven Data Redistribution (Data Flow Scheduler)

	5 Contributions

	2 A Unified View of Data-Intensive Flows in Business Intelligence Systems: A Survey
	1 Introduction
	2 Example Scenario
	3 Methodology
	3.1 Selection process
	3.2 Phase I (Outlining the study setting).
	3.3 Phase II (Analyzing the characteristics of data-intensive flows).
	3.4 Phase III (Classification of the reviewed literature).

	4 Defining dimensions for studying data-intensive flows
	4.1 Data Extraction
	4.2 Data Transformation
	4.3 Data Delivery
	4.4 Optimization of data-intensive flows

	5 Data Extraction
	5.1 Structuredness
	5.2 Coupledness
	5.3 Accessability
	5.4 Discussion

	6 Data Transformation
	6.1 Malleability
	6.2 Constraintness
	6.3 Automation
	6.4 Discussion

	7 Data Delivery
	7.1 Interactivity
	7.2 Openness
	7.3 Discussion

	8 Optimization of data-intensive flows
	8.1 Optimization input
	8.2 Dynamicity
	8.3 Discussion

	9 Overall Discussion
	9.1 Architecture for managing the lifecycle of data-intensive flows in next generation BI systems

	10 Conclusions

	3 Incremental Consolidation of Data-Intensive Multi-flows
	1 Introduction
	2 Overview
	2.1 Running Example
	2.2 Preliminaries and Notation
	2.3 Problem Statement

	3 Data Flow Consolidation Challenges
	3.1 Operation reordering
	3.2 Operations comparison

	4 Consolidation Algorithm
	4.1 Computational complexity

	5 Evaluation
	5.1 Prototype
	5.2 Experimental setup
	5.3 Scrutinizing CoAl

	6 Related Work
	7 Conclusions and Future Work
	8 Acknowledgments

	4 A Requirement-Driven Approach to the Design and Evolution of Data Warehouses
	1 Introduction
	2 Overview of our Approach
	2.1 Running example
	2.2 Formalizing Information Requirements
	2.3 Formalizing the Problem
	2.4 ORE in a Nutshell

	3 Traceability Metadata
	4 The ORE Approach
	4.1 Matching facts
	4.2 Matching dimensions
	4.3 Complementing the MD design
	4.4 Integration

	5 Theoretical Validation
	5.1 Soundness and Completeness
	5.2 Commutativity and Associativity
	5.3 Computational complexity

	6 Evaluation
	6.1 Prototype
	6.2 Output validation
	6.3 Experimental setup
	6.4 Scrutinizing ORE
	6.5 The LEARN-SQL Case Study

	7 Related Work
	8 Conclusions and Future Work
	9 Acknowledgements

	5 Engine Independence for Logical Analytic Flows
	1 Introduction
	2 Problem Formalization
	2.1 Preliminaries
	2.2 Logical and physical flows
	2.3 Normalized flow
	2.4 Dictionary
	2.5 Conversion process
	2.6 Problem statements

	3 Architecture
	3.1 System overview
	3.2 Example
	3.3 Flow encoding
	3.4 Dictionary
	3.5 Error handling

	4 Physical to Logical
	4.1 Single flow
	4.2 Multi-flow import

	5 Flow Processor
	6 Logical to Physical
	6.1 Creating an engine specific flow
	6.2 Code generation

	7 Evaluation
	7.1 Preliminaries
	7.2 Experiments

	8 Related Work
	9 Conclusions

	6 H-WorD: Supporting Job Scheduling in Hadoop with Workload-driven Data Redistribution
	1 Introduction
	2 Running Example
	3 The Problem of Skewed Data Distribution
	4 Workload-driven Redistribution of Data
	4.1 Resource requirement framework
	4.2 Execution modes of map tasks
	4.3 Workload estimation
	4.4 The H-WorD algorithm

	5 Evaluation
	6 Related Work
	7 Conclusions and Future Work
	8 Acknowledgements

	7 Conclusions and Future Directions
	1 Conclusions
	2 Future Directions
	Bibliography
	References

	Appendices
	A Quarry: Digging Up the Gems of Your Data Treasury
	1 Introduction
	2 Demonstrable Features
	2.1 Requirements Elicitor
	2.2 Requirements Interpreter
	2.3 Design Integrator
	2.4 Design Deployer
	2.5 Communication & Metadata Layer
	2.6 Implementation details

	3 Demonstration
	4 Acknowledgements

